The ongoing convergence of Artificial Intelligence (AI) and the Internet of Things (IoT), in what’s being referred
to as the
AIoT, or Artificial Intelligence of Things, has a lot to offer developers across market segments. As connectivity
becomes
universally interoperable, there will be vast amounts of raw data collected in the IoT. A device equipped with the
ability to
analyze, learn from, and react to data can help make sense of this and can help make the data deliver more valuable
experiences.
AI can also help IoT systems be more autonomous, by responding to data in real time, without human intervention.
Though still a relatively new area of the IoT, the AIoT is already changing the way we live and work, by optimizing
processes,
improving cybersecurity, enabling real-time insights and automating tasks. For example, the AIoT is making smart
homes truly
intelligent, with systems that become familiar with our habits and preferences and anticipate our needs. In
manufacturing,
AI-enabled machines are enhancing predictive maintenance and reducing downtime, with the ability to monitor wear and
tear,
foresee issues and schedule maintenance before actual problems occur. In the supply chain, AI-enhanced logistics and
inventory
control are making it easier to maintain stocks and fulfill orders and in healthcare, the AIoT is helping caregivers
diagnose
and treat conditions with greater accuracy. In transportation, AI-enabled systems are reducing congestion and
improving traffic
flow, and in the enterprise, AIoT devices are monitoring network activity to detect and prevent cyberattacks.
Where to Start
The current selection of AI models tailored for use in the IoT is similarly impressive – covering everything from
detecting
objects and identifying patterns or anomalies to recognizing keywords, processing natural language or understanding
visual
information – and new capabilities are being introduced at a rapid pace.
As exciting as these options may be, though, developers should do some advance planning before diving in. Adding AI
has the
potential to increase the value of just about any IoT device, but entering the AIoT only really makes sense – from a
time and
effort standpoint – if the addition really contributes to the use case.
Also, when evaluating how to add AI, there are a number of questions to be answered. What connectivity protocol is
best suited
to transmitting the gathered data? What are the security requirements of the use case? Will my system be able to
communicate
directly with other devices in the setup? (Hint: this is where Matter comes into the picture.)
The answers to these questions depend heavily on the use case and the ecosystem where the device will operate.
Matter for Smart Home and “Home-Like” Environments
For developers working on devices that will operate in and around the home, answering these questions is simple,
because
Matter , the new smart-home
connectivity standard from the Connectivity Standards Alliance (CSA), is an ideal choice for the foundation of AIoT.
Now in its
fourth release, Matter spans a range of smart-home device types. Matter was specifically designed to unify consumer
devices,
networks and protocols so that certified products from any manufacturer can interoperate seamlessly over existing
network
infrastructures and across multiple smart-home platforms.
Matter supports Ethernet, Wi-Fi, and Thread, which are widely used connectivity protocols, and onboards devices to
the network
using Bluetooth Low Energy. Matter also defines a common language that creates a securely overlay of the physical
IP-based
networks. Matter authenticates and authorizes network nodes, creates and manages the secure fabric and defines the
structure and
semantics of messages that flow within the fabric.
Matter may be a standard designed specifically for smart homes, but the same concepts that define Matter –
standardized
protocols, security, and semantics – can apply to other domains, too. There are plenty of use cases, in commercial
buildings,
retail, manufacturing, healthcare and agriculture that have similar requirements and can benefit from the kinds of
devices and
features, including lighting and HVAC control, that Matter supports. As Matter continues to evolve and more device
types are
supported, Matter will become all the more relevant to a wide range of AIoT use cases in non-residential verticals.
Matter’s Limitations for Enterprise
Having said that, Matter as it exists today has some underlying limitations that tend to rule out large-scale,
non-residential
deployments. For example, as currently defined, Matter only supports local access, using Local Area Networks (LANs)
that operate
in unlicensed spectrum. Deployments that use Wide Area Networks (WANs) to support mobility are outside of Matter’s
present
scope. That includes cellular, satellite and low-power WAN (LP-WAN) technologies, such as LoRaWAN.
Matter is also designed for mass-market verticals, where deployments are managed and secured by consumers.
Enterprises tend to
operate on a different scale, deploying networks that benefit from being managed and monitored by dedicated IT
personnel working
with network-management tools. These types of IT-specific management tools aren’t yet available with Matter.
Another aspect of mass-market deployment is that Matter uses compliance certification as the basis for device
attestation. That
is, when devices are installed, Matter checks the unique attestation certificate of each device to confirm that it
is certified
by the CSA and built by a trusted manufacturer. This is a good solution for mass-produced consumer products, but it
doesn’t
address the needs of the more complicated enterprise market, where devices tend to use multi-stage supply chains and
undergo
extensive customization before being deployed.
A Developer’s Guide to AIoT with Matter (and Beyond)
Understanding the details of where Matter fits in the AIoT is a more nuanced discussion than I have space for here,
but I’d like
to recommend a new white paper that thoroughly explores this topic.
Bill Curtis , an
analyst
specializing in Industrial IoT and IoT technology at Moor Insights & Strategy, has been following the evolution of
Matter since
its earliest days (in fact, Bill and I first met in 2014 when our companies were founding members of Thread Group)
and, as a
tech evangelist, he provides a unique perspective on what Matter and AIoT mean for developers.
His latest paper, titled “ AIoT: Connecting AI to the Real World ” discusses
how connectivity enables the AIoT, and gives a detailed review of the considerations for AIoT deployment. He
explains where Matter fits today and how the Matter approach, which relies on an application layer of standardized
protocols,
security and semantics, can still benefit verticals that are, as of now, beyond the scope of Matter.
Bill also highlights the
NXP approach to Matter and
the many
ways we simplify and streamline development. NXP has been a significant contributor to the Matter efforts and has a
portfolio of
Matter-certified platforms with all the silicon, software and services needed to build and deploy the full range of
Matter
devices, from sensors to gateways and hubs. Bill emphasizes the importance of
NXP’s Tri-Radio technology, which combines Wi-Fi, Bluetooth, and Thread on a single chip,
and serves to streamline wireless hardware and software
development. The result is, as Bill sees it, lower costs, better performance and universal IP-based device
connectivity that
enable product companies to scale rapidly as the AIoT continues to expand.
More on Matter
We recommend taking a look at Bill’s other research papers, which serve to provide a complete introduction to Matter
and its
importance in smart-home and consumer-electronic (CE) markets:
We also invite you to discover more about how NXP supports
Matter, in the AIoT
and
elsewhere.