
Three-phase PMSM Pump Reference Safety
Software Design User Guide

NXP Semiconductors Document identifier: PMSMSAFEUG
User Guide Rev. 0, 31 May 2022

Contents
Chapter 1 Introduction... 3

Chapter 2 External command PWM input 10 V... 5

Chapter 3 MCU features and peripheral settings...6

Chapter 4 Software description..16

Chapter 5 Build and run application...68

Chapter 6 Remote control using FreeMASTER...71

Chapter 7 Project files and IDE workspace structure.. 89

Chapter 8 Identifying parameters of user motor.. 91

Chapter 9 Acronyms.. 98

Chapter 10 List of symbols.. 100

Chapter 11 Useful links..103

Chapter 12 Referenced documents... 104

Chapter 13 Revision history...105

Chapter 14 Failure mode and effect analysis.. 106

NXP Semiconductors

Three-phase PMSM Pump Reference Safety Software Design User Guide, Rev. 0, 31 May 2022
User Guide 2 / 122

Chapter 1
Introduction
This user guide describes three-phase permanent magnet synchronous motor pump (PMSM) reference design optimized for
HVP-MC3PH-LITE hardware equipped with Kinetis V series MCU. The aim of the reference design is to help customers develop
motor control solutions with IEC60730 class B safety features intended for controlled heating systems, electric circulation pumps,
service water installation, and other devices used in industrial. The supported control methods are listed in Table 1.

The document consists of several parts. The first part talks about hardware and its settings. The next part is about MCU and
its peripheral settings. After this part follows the software part, describing safety implementation, state machine, and all control
algorithms including current reconstruction and space vector modulation. Chapter user interface has part aimed for remote control
using real-time debug monitor and data visualization tool FreeMASTER. The next chapter shows the project and IDE workspace
structure. The end of the document talks about tuning of the software for using with customer motor.

The sensorless control software and the PMSM control theory in general are described in design reference manual DRM148
Sensorless PMSM Field-Oriented Control (FOC). The NXP IEC 60730 Class B Safety Library and Real-Time Control Embedded
Software Motor Control and Power Conversion Libraries, also known as RTCESL, are used in the reference design. For more
information, visit www.nxp.com/motorcontrol_pmsm.

Table 1. Supported control methods

Supported control methods in SDK example

Device Default
motor Scalar Voltage

Current
FOC

(Torque)

Sensorless

Speed

FOC

Sensored Speed

FOC

Servo
control (Position

FOC)

HVP3PH_LITE PMSM ✓ ✓ ✓ ✓ X X

1.1 Hardware setup
The Three-phase PMSM Pump Reference Design application was designed, implemented, and verified for the HVP3PH_LITE
hardware development platform and the reference PMSM motor. Both are described in next sections.

1.2 Inverter HVP3PH_LITE
The HVP3PH_LITE is high-voltage platform intended for using with 3-phase motors roughly up to 60 Watts. Development platform
board has the power supply input voltage of 230 VAC. The output current is up to 0.5 A RMS. The inverter itself is realized by
advanced Motion System-on-module providing a fully-featured, high-performance inverter output stage for AC motors. These
modules integrate optimized gate drive of the built-in MOSFETs (FRFET technology) to minimize EMI and losses, while also
providing multiple on-module protection features including under-voltage lockouts and thermal monitoring.

The board is mounted with MKV10Z32VLF7 Kinetis KV10 MCU build on Arm® Cortex®-M0+ core running at 75 MHz with 32 kB
Flash and 8 kB SRAM.

Board has integrated input for medium temperature sensor and PWM input intended for reading the external pump
speed command.

The block diagram of this complete NXP motor-control development kit is shown in Figure 1. The top of the HVP3PH_LITE is
shown in Figure 2.

NXP Semiconductors

Three-phase PMSM Pump Reference Safety Software Design User Guide, Rev. 0, 31 May 2022
User Guide 3 / 122

https://www.nxp.com/design/software/development-software/freemaster-run-time-debugging-tool:FREEMASTER
https://www.nxp.com/products/product-information/nxp-product-programs/iec-60730-safety-standard-for-household-appliances:APIEC60730
https://www.nxp.com/products/processors-and-microcontrollers/arm-microcontrollers/general-purpose-mcus/kv-series-cortex-m4-m0-plus-m7/real-time-control-embedded-software-motor-control-and-power-conversion-libraries:RTCESL
https://www.nxp.com/products/processors-and-microcontrollers/arm-microcontrollers/general-purpose-mcus/kv-series-cortex-m4-m0-plus-m7/real-time-control-embedded-software-motor-control-and-power-conversion-libraries:RTCESL
http://www.nxp.com/motorcontrol_pmsm
https://www.nxp.com/docs/en/data-sheet/KV10P48M75.pdf

Figure 1. HVP3PH_LITE block diagram

Figure 2. HVP3PH_LITE

1.2.1 Medium temperature sensor
Platinum temperature sensor PTFx102xxxx is used as a default temperature sensor of pump medium. The sensor is connected
to connector J6.

NXP Semiconductors
Introduction

Three-phase PMSM Pump Reference Safety Software Design User Guide, Rev. 0, 31 May 2022
User Guide 4 / 122

Chapter 2
External command PWM input 10 V
PWM input is used for controlling speed of the circulation pump (i.e. the external command PWM input). The input signal is
connected to J7. By default, the valid PWM signal has duty cycle from 10 % to 90 % with frequency in range from 200 Hz to 2 kHz.

2.1 Reference permanent magnet synchronous motor
The application is designed for using permanent magnet synchronous motor (PMSM). The application is tuned for motor with
following parameters:

Table 2. Default PMSM motor parameters

Characteristic Symbol Value Units

Rated voltage Vt 230 V

Rated speed - 1000 rpm

Rated power P 52 W

Current RMS IRMS 0.45 A

Number of pole-pairs pp 3 -

Parameters of the customer motor can be obtained by several ways. The two common ways are using parameters from the motor
data sheet or manual measurement (see document AN4680). The next option is using MCAT what is part of all SDK motor control
examples. MCAT is used for automated PMSM parameter identification. (see document AN4896)

2.2 Hardware assembling
• Connect the three-phase motor wires to the screw terminals J5 (Motor connection) on the HVP3PH_LITE.

• Connect the Medium temp sensor to J6 connector on the HVP3PH_LITE.

Connect external command PWM source to the screw terminals J7 (PWM input 10 V) on the HVP3PH_LITE. Make sure its duty
cycle and frequency matches limits described in Section 2.1.2.

• Connect J-link debugger via external isolator to the SWD connector J2 on the HVP3PH_LITE.

• Plug the 230 V AC to the AC power connector J1 on the HVP3PH_LITE.

NXP Semiconductors

Three-phase PMSM Pump Reference Safety Software Design User Guide, Rev. 0, 31 May 2022
User Guide 5 / 122

https://www.nxp.com/webapp/Download?colCode=AN4680&location=null
https://www.nxp.com/design/designs/mcuxpresso-sdk-for-motor-control:MCUXPRESSO-SDK-MOTOR-CONTROL
https://www.nxp.com/design/designs/mcuxpresso-sdk-for-motor-control:MCUXPRESSO-SDK-MOTOR-CONTROL
https://www.nxp.com/doc/AN4986

Chapter 3
MCU features and peripheral settings
This chapter describes the peripheral settings and application timing.

3.1 Kinetis KV1x family
The KV10Z MCU is highly scalable member of the Kinetis V series and provides a cost-competitive motor-control solution. Built
upon the ARM® Cortex®-M0 core running at 75 MHz with up to 128 kB of flash and up to 16 kB of RAM, the MCUs deliver a platform
that enables the customers to build a scalable solution portfolio. The additional features include dual 16-bit ADCs sampling at up
to 1.2 MS/s in 12-bit mode and 20 channels of flexible motor-control timers (PWMs) across six independent time bases. For more
information, see KV11F Sub-Family Reference Manual (document KV11P64M75RM).

3.2 Peripheral settings
In this chapter there are described peripherals settings. On KV10Z there is a 6-channel FlexTimer (FTM) used for 6-channel PWM
generation and two 16-bit SAR ADCs for phase currents, DC-bus voltage, temperatures, and reference voltage measurement.
The FTM and ADC are synchronized via Programmable Delay Block (PDB). There is also one channel from another independent
FTM used for slow loop interrupt generation. Motor control peripheral settings are located in m1_periph_init.c and m1_periph_init.h
file. External control peripheral settings are located in app_periph_init.c and app_periph_init.h file. The safety peripheral settings
are located in safety_periph_init.c and safety_periph_init.h.

3.2.1 PWM generation - FTM0 (M1_PWM_PERIPH)
• FTM is clocked from 75 MHz System clock source

• Only 6six channels are used, the other two are masked in OUTMASK register.

• FTM counter is running in BDM mode.

• Channels 0+1, 2+3, 4+5 are combined in pairs running in complementary mode

• Fault mode is enabled at each combined pair with manual fault clearing.

• PWM frequency is defined in macro M1_PWM_FREQ, default frequency is 10 kHz.

• Dead-time insertion is enabled at each combined pair. Value of deadtime is defined in macro M1_PWM_DEADTIME.

• FTM generates trigger to PDB on counter initialization.

• FTM fault zero is connected to the M1_CMP_OT_PERIPH (over-temperature) and fault one is connected to
M1_CMP_OC_PERIPH (over-current). Both FTM fault signals are active high.

3.2.2 Analog sensing – ADC1 (M1_ADC_PERIPH) and ADC0 (FS_ADC_PERIPH)
• ADCs operate as 12-bit, single-ended converters.

• ALTCLK clock source is used (by default set to ~18.67 MHz).

• ADCs are using HW triggers.

• DMA is enabled for M1_ADC_PERIPH.

• band gap voltage regulator is enabled.

3.2.3 PWM and ADC synchronization (M1_PDB_PERIPH)
• PDB is used ADC triggering and synchronization between M1_PWM_PERIPH and M1_ADC_PERIPH &

FS_ADC_PERIPH.

• PDB is triggered from FTM0.

NXP Semiconductors

Three-phase PMSM Pump Reference Safety Software Design User Guide, Rev. 0, 31 May 2022
User Guide 6 / 122

https://www.nxp.com/files-static/32bit/doc/ref_manual/KV11P64M75RM.pdf

• There is a PDB Sequence Error interrupt enabled.

3.2.4 Over-current and over-temperature check – CMP1 (M1_CMP_OC_PERIPH) and CMP0
(M1_CMP_OT_PERIPH)

• DAC output value is set according to desired over-current/over-temperature threshold level.

• Reference voltage is VDD.

• Positive input to the CMP is taken from analog pin (M1_CMP_OT_PERIPH_IN_POS and
M1_CMP_OC_PERIPH_IN_POS).

• Negative input is taken from internal 6-bit DAC reference (M1_CMP_OT_PERIPH_IN_NEG and
M1_CMP_OC_PERIPH_IN_NEG).

• CMP filter is enabled, four consecutive samples must agree.

3.2.5 DMA for ADC results reading – DMA0 (M1_DMA_PERIPH)
• Error interrupts enabled.

• Enabled TRGCOCO triggering for M1_DMA_CHN_RSLT (result register transfer from M1_ADC_PERIPH).

• Enabled TRGDMAAB triggering for M1_DMA_CHN_ACHN (channel number transfer to M1_ADC_PERIPH).

• Enabled TRGDMA1 triggering for M1_DMA_CHN_DLY (PDB delay transfer to M1_PDB_PERIPH).

• Enabled TRGDMADBG for M1_DMA_CHN_DBG channel (M1_DMA_DEBUG_MASK mask transfer to
M1_DMA_DEBUG_GPIO.PTOR upon completion of M1_DMA_CHN_DLY transfer).

3.2.6 Slow-loop interrupt generation – FTM2 (M1_TMR_PERIPH)
• FTM is clocked from 75 MHz System clock.

• FTM counter is running in BDM mode.

• Initialize modulo is set to frequency 1 kHz.

• FTM interrupt is enabled.

3.2.7 External control signal measurement – FTM1 (APP_EXTCMD_PERIPH)
• FTM is clocked from 75 MHz System clock.

• FTM counter is running in BDM mode.

• Initialized modulo is set to maximal value.

• Dual-edge, one-shot capture mode is set.

• The pwm_in_mcu signal ON-time measurement is selected.

3.3 Peripheral connection
The analog measurement, PWM generation, and fast-loop FL timing peripheral connection block diagram is shown in Figure 3
below. Following peripherals are used:

• M1_PWM_PERIPH – The three-phase PWM generator periphery. Responsible for TRGP synchronization trigger
generation for M1_PDB_PERIPH upon the PWM timer reload.

• M1_PDB_PERIPH – Two-channel PDB delay timer and ADC conversion trigger TRGAM1 and TRGAFS generator. The
M1_PDB_CHANNEL channel delay register is updated by M1_DMA_PERIPH and the TRGAM1 is generated Nsmpl-times
per TPWM period. The FS_PDB_CHANNEL generates single TRGAFS trigger per TPWM is updated by software in FL
during TTST_UI_MAX period.

NXP Semiconductors
MCU features and peripheral settings

Three-phase PMSM Pump Reference Safety Software Design User Guide, Rev. 0, 31 May 2022
User Guide 7 / 122

• M1_ADC_PERIPH – The analog converter used for motor-control quantity sample acquisition. Triggered Nsmpl-times per
TPWM period by M1_PDB_CHANNEL of M1_PDB_PERIPH. Each conversion completion generates TRGCOCO trigger,
which start M1_DMA_CHN_RSLT transfer.

• FS_ADC_PERIPH – The analog converter used for safety comparison check FS.CMP. Triggered once per TPWM period by
FS_PDB_CHANNEL of M1_PDB_PERIPH. The conversion result is recovered at the start of FL during TTST_UI_MAX period.

• Three M1_DMA_PERIPH channels:

— M1_DMA_CHN_RSLT – Transfer of ADC measurement result from RA register of M1_ADC_PERIPH register to the
ADC result table M1_DMA_TAB_RSLT in non-safety part of RAM. Each transfer is triggered by TRGCOCO trigger
and generates TRGDMA0 trigger upon completion.

— M1_DMA_CHN_ACHN – Transfer of the next ADC channel value from M1_DMA_TAB_ACHN table in Flash to SC1A
register of M1_ADC_PERIPH converter. Each transfer is triggered by TRGDMA0 trigger and generates TRGDMA1
trigger upon completion.

— M1_DMA_CHN_DLY – Transfer of the next M1_PDB_CHANNEL delay register value and
M1_PDB_CS_LDOK_MASK mask from PDB delay table M1_DMA_TAB_DLY to the DLY0 and SC registers of
M1_PDB_PERIPH. Each transfer is triggered by TRGDMA1 trigger. Completion of major loop (transfer of the last
sample in TPWM) starts the fast loop interrupt routine (FL).

NXP Semiconductors
MCU features and peripheral settings

Three-phase PMSM Pump Reference Safety Software Design User Guide, Rev. 0, 31 May 2022
User Guide 8 / 122

Figure 3. ADC measurement, PWM generation, and FL triggering chain

The slow-control loop (SL) is triggered by M1_TMR_PERIPH timer periphery (see Figure 4 below).

NXP Semiconductors
MCU features and peripheral settings

Three-phase PMSM Pump Reference Safety Software Design User Guide, Rev. 0, 31 May 2022
User Guide 9 / 122

Figure 4. Slow-loop triggering chain

All implemented triggers are listed in Table 3 below.

Table 3. : Trigger signal description

Signal name Description Occurrence

TRGRST The MCU restart trigger. At startup

TRGF Fast control loop (FL) synchronization trigger. Once per Ts.

TRGS Slow control loop (SL) synchronization trigger. Once per Ts-slow.

TRGOC Fast hardware over-current fault trigger from M1_CMP_OC_PERIPH. Raised by hardware over­
current event.

TRGOT Fast hardware over-temperature fault trigger
from M1_CMP_OT_PERIPH.

Raised by hardware over­
temperature event.

TRGP Trigger generated by M1_PWM_PERIPH periphery for analog conversion
sequence synchronization.

Once per Ts.

TRGCOCO The M1_ADC_PERIPH conversion completion trigger. Nsmpl-times per Ts.

TRGAM1 Trigger generated by M1_PDB_PERIPH periphery for triggering of
individual M1_ADC_PERIPH samples.

Nsmpl-times per Ts.

TRGAFS Trigger generated by M1_PDB_PERIPH periphery for triggering of
FS_ADC_PERIPH sample.

Once per Ts.

TRGDMA0 Trigger generated by M1_DMA_CHN_RSLT channel. Nsmpl-times per Ts.

TRGDMA1 Trigger generated by M1_DMA_CHN_ACHN channel. Nsmpl-times per Ts.

The clock distribution diagram is shown in Figure 5 below. There are three independent clock sources:

• CLOCK_LPO_FREQ – The 1 kHz clock generated by PMC periphery, used by WDOG periphery only.

• CLOCK_MCGIRCLK_FREQ – The 1 MHz clock generated by FAST_IRCLK in MCG periphery. Serves as independent
clock source for LPTMR timer periphery to perform the FS.WDOG reset-capability and the FS.CLK clock tests.

NXP Semiconductors
MCU features and peripheral settings

Three-phase PMSM Pump Reference Safety Software Design User Guide, Rev. 0, 31 May 2022
User Guide 10 / 122

• CLOCK_MCGOUTCLK_FREQ – The 74.7 MHz frequency used by all other MCU peripheries, memories, and CPU.
Generated by Frequency Locked-Loop (FLL) using the SLOW_IRCLK source in MCG periphery. The clock is further
divided in SIM periphery as follows:

— CLOCK_SYSTEM_FREQ – The undivided 74.7 MHz clock for core, M1_PWM_PERIPH, M1_DMA_PERIPH,
M1_TMR_PERIPH, PORT, GPIO, and APP_EXTCMD_PERIPH peripheries.

— CLOCK_BUS_FEQ – The 24.9 MHz clock for Flash, M1_PDB_PERIPH, M1_CMP_OC_PERIPH, and
M1_CMP_OV_PERIPH peripheries.

— CLOCK_ALT_ADC_FREQ – The 18.7 MHz clock for M1_ADC_PERIPH and FS_ADC_PERIPH analog converters.

Figure 5. Clock distribution diagram

3.4 Hardware timing and synchronization
There are generally four timing sections in which the application is executed:

• After-reset (AR) – The initialization phase executed after the MCU reset. Started by the MCU restart trigger (TRGRST).

• Background (BR) – The lowest-priority execution cycle with non-fixed execution period.

• Slow-loop (SL) – The slow control loop with priority higher that BR. Execution started by slow control loop synchronization
trigger (TRGS) every Ts-slow = 1 ms, after the AR phase is completed.

NXP Semiconductors
MCU features and peripheral settings

Three-phase PMSM Pump Reference Safety Software Design User Guide, Rev. 0, 31 May 2022
User Guide 11 / 122

• Fast-loop (FL) - The fast control loop with the highest priority (it is assumed to be uninterruptible). Execution started by
fast control loop synchronization trigger (TRGF) every Ts = 100 µs, after the AR phase is completed.

Additionally, the following time periods are defined:

• TPWM – Period of the generated PWM signals pwm_at, pwm_bt, pwm_ct, pwm_ab, pwm_bb, and pwm_cb. By default set
to 100 µs.

• Ts – Period at which the fast-loop is executed. By default equal to the TPWM.

• Ts-slow – Period at which the slow-loop is executed. By default equal to 1 ms.

• TDLY1ST – Minimal delay between M1_PWM_PERIPH reload (TRGP trigger event) and the first allowed M1_ADC_PERIPH
conversion (end of TTST_UI_MAX period).

• TDLYLAST – Minimal delay between the last M1_ADC_PERIPH conversion in TPWM period and M1_PWM_PERIPH reload
(TRGP trigger event).

• TDLYNXT – Minimal delay between two M1_ADC_PERIPH samples given by conversion time and transfer time of
M1_DMA_CHN_RSLT, M1_DMA_CHN_ACHN, and M1_DMA_CHN_DLY channels.

• TTST_UI_MAX – Period during which all uninterruptible safety tests are sequentially executed (no sample can be taken by
M1_ADC_PERIPH and no other interrupt can occur during this time). The completion of all necessary tasks is confirmed
by software by correctly configuring M1_DMA_CHN_DLY channel, otherwise the sample is taken by M1_ADC_PERIPH at
the end of TTST_UI_MAX, resulting in M1_PDB_SC_OFF_MASK being applied (M1_PDB_PERIPH counter is stopped).

• TDT – Dead-time defined as minimum time between falling and raising edge of complementary PWM signal. The delay is
inserted by M1_PWM_PERIPHERY periphery to prevent DC-bus shoot through and the MOSFET heating.

The application timing diagram in Figure 6 shows the synchronization of the M1_PWM_PERIPH → M1_PDB_PERIPH →
M1_ADC_PERIPH → M1_DMA_PERIPH and M1_PWM_PERIPH → M1_PDB_PERIPH → FS_ADC_PERIPH peripherals and
execution of background, fast-loop, and slow loop.

To help with acquisition of large number of variably placed ADC samples, scalable DMA-enhanced M1.ADC driver is implemented.
The benefits are a minimal CPU assistance, a large number of quantities in exact times can be acquired every TPWM period and
the second converter FS_ADC_PERIPH is free for safety compare checking FS.CMP. Total of Nsmpl = 10 quantities are sampled
by default:

1. The first idcb_rc current sample (sample position changes).

2. The second idcb_rc current sample (sample position changes).

3. The idcb_rc current offset measurement (during V111 voltage vector).

4. Voltage reference VREFL.

5. Voltage reference VREFH.

6. Internal band gap voltage reference.

7. Inverter temperature ipm_temp_rc.

8. Medium temperature medium_temp_rc.

9. MCU temperature mcu_temp.

10. DC-bus voltage vdcb_rc.

The M1_ADC_PERIPH measurement occurs as follows:

1. The M1_PDB_PERIPH counter is reloaded with every M1_PWM_PERIPH counter reload (TRGP). This ensures PWM­
ADC synchronization.

2. When M1_PDB_PERIPH counter reaches the DLY0 value, M1_ADC_PERIPH measurement trigger is generated
(TRGAM1).

3. Once the conversion completes, the M1_DMA_CHN_RSLT channel is triggered (TRGCOCO). The measurement result
is transferred from RA register to the ADC result table M1_DMA_TAB_RSLT.

NXP Semiconductors
MCU features and peripheral settings

Three-phase PMSM Pump Reference Safety Software Design User Guide, Rev. 0, 31 May 2022
User Guide 12 / 122

4. The M1_DMA_CHN_ACHN channel is triggered next (TRGDMA0). The channel number of the next analog sample is
transferred to SC1A register of M1_ADC_PERIPH.

5. The M1_DMA_CHN_DLY channel is triggered next (TRGDMA1). The DLY0 is updated for next sample (to be ahead of
the PDB counter current value).

6. The fast loop (FL) ISR is triggered on M1_DMA_PERIPH major loop complete trigger. The M1_PWM_PERIPH registers
are loaded via LDOK by software at the start of fast-loop.

7. All the active-vector idcb_rc sample time updates and uninterruptible safety tests (FS.PC, FS.RAM, FS.WDOG refresh,
FS.DMA, FS.CMP, and part of FS.CORE) are conducted during TTST_UI_MAX time.

8. The M1_PDB_PERIPH is by default configured to trigger M1_ADC_PERIPH sample at the end of TTST_UI_MAX
period. The software must configure the M1_PDB_PERIPH before this sample conversion is triggered, otherwise the
M1_PDB_SC_OFF_MASK is applied to SC register of M1_PDB_PERIPH, resulting PDB counter stop. This feature is
implemented to make sure that proper timing is adhered by the application and the M1_PDB_TAB_DLY table is updated
before the first sample is taken.

The safety FS_ADC_PERIPH measurement channel and time is sequentially changed to provide parallel measurement of
all motor-control M1_ADC_PERIPH quantities (so analog compare check FS.CMP can be done). The FS_ADC_PERIPH
measurement occurs as follows:

1. The M1_PDB_PERIPH counter is reloaded with every FTM counter reload (TRGP). This ensures PWM-ADC
synchronization.

2. When M1_PDB_PERIPH counter reaches the DLY0 value, FS_ADC_PERIPH measurement trigger is generated
(TRGAFS).

3. The latest sample is recovered and the next is configured during TTST_UI_MAX period at the start of fast-loop ISR (FL).

NXP Semiconductors
MCU features and peripheral settings

Three-phase PMSM Pump Reference Safety Software Design User Guide, Rev. 0, 31 May 2022
User Guide 13 / 122

Figure 6. Application timing diagram

While it is desirable to use TPWM~100 µs due to lower audible noise, it might not always be necessary to operate with such short
fast loop period Ts (depending on motor electrical time constant) and therefore greatly lower the CPU load. The M1.ADC driver
allows to use double rate Ts = 2·TPWM. This is achieved by stopping the M1_PDB_PERIPH counter before the first idcb_rc current
sample is taken and waiting for the next TRGP trigger. Principle of This feature is shown in figure below.

NXP Semiconductors
MCU features and peripheral settings

Three-phase PMSM Pump Reference Safety Software Design User Guide, Rev. 0, 31 May 2022
User Guide 14 / 122

Figure 7. Application timing for double PWM vs FL rate

NXP Semiconductors
MCU features and peripheral settings

Three-phase PMSM Pump Reference Safety Software Design User Guide, Rev. 0, 31 May 2022
User Guide 15 / 122

Chapter 4
Software description
This chapter describes architecture of the mc_pmsm_safe software. Additional documents like the requirement specification and
software design document are normally NXP-internal only. The high-level block diagram of the PMSM pump software is shown
in Figure 8 below. At high level, the software is organized in following blocks:

• Startup – Safe MCU memory initialization.

• main – The safe module with all ISRs, calling MCU after-reset (AR), background (BL), fast-loop (FL), slow-loop (SL)
routine.

• Application – The non-safety user application tasks. One of goals is FOC setpoint and state commanding.

• FOC – The non-safety Field-Oriented Control routines (speed and current control loops, setpoint command).

• MC state-machine – The safe sensorless motor control part, including state-machine, estimators, and diagnostic routines.

• ADC+DMA – The safe DMA-based ADC driver designed for single-shunt current reconstruction.

• PWM – The safe three-phase shifted-PWM driver.

• FS – The functional safety routines module, containing a number of MCU core, memory, and peripheral self-tests.

• RTCESL 4.7 – Real Time Control Embedded Software Motor Control and Power Conversion Libraries (www.nxp.com/
rtcesl).

• IEC60730B library 4.1 – Certified IEC60730 class B safety libraries (www.nxp.com/iec60730).

• FreeMASTER 3.0 – The FreeMASTER debugging interface (www.nxp.com/freemaster).

Figure 8. High-level system block diagram

4.1 Safety tests implemented using IEC60730 Class B library
Safety tests are implemented using IEC60730B libraries. Individual tests can be configurated and optional switched on or off in
safety_cfg.h header file. The necessary macros for the safety example are defined in this file. The "switch macros", which enable

NXP Semiconductors

Three-phase PMSM Pump Reference Safety Software Design User Guide, Rev. 0, 31 May 2022
User Guide 16 / 122

http://www.nxp.com/rtcesl
http://www.nxp.com/rtcesl
http://www.nxp.com/iec60730
http://www.nxp.com/freemaster

the user to turn off the calling of the safety test, are defined in the beginning. More information can be found in document Kinetis
CM0+ Safety Example or IEC60730_B_CM0_Library_UG_v4_1.

The safety mechanisms were selected and implemented on the basis of Failure Mode and Effect Analysis (FMEA), which is
available in Appendix A.

4.1.1 Program counter register test (FS.PC)
The goal is test program counter register for stuck-at. The test is executed after-reset and during runtime (uninterruptible test
period TTST_UI_MAX).

The PC register test is implemented using the certified IEC60730 class B safety library routines (see documentation at
www.nxp.com/iec60730). The program counter cannot be tested using a simple pattern like other core register. The test instead
executes small routines in two different memory addresses (addresses should be different in as many bits as possible to check
for stuck-at). The PC test routine located in Flash at 0x410 is executed first. During the execution a small part for code is copied to
0x1FFFFBEE address (close invert value of 0x410) and executed as well. If the routines correctly set the PC Test Flag memory,
the test passed. The RAM memory content at 0x1FFFFBEE is restored after the test.

The program counter test cannot be interrupted.

 NOTE

Figure 9. Program Counter test routine locations

NXP Semiconductors
Software description

Three-phase PMSM Pump Reference Safety Software Design User Guide, Rev. 0, 31 May 2022
User Guide 17 / 122

https://www.nxp.com/docs/en/user-guide/IEC60730BKCM0EUG.pdf
https://www.nxp.com/docs/en/user-guide/IEC60730BKCM0EUG.pdf
https://www.nxp.com/docs/en/nxp/users-guides/IEC60730BCM0L41UG.pdf
http://www.nxp.com/iec60730

4.1.2 Core register test (FS.CORE)
The goal is to test the CM0+ core registers for the stuck-at condition. The test is executed after-reset AR and during runtime
(fast-loop FL and background BG).

The core registry is implemented using the certified IEC60730 class B safety library routines (see documentation at www.nxp.com/
iec60730). A pattern test is used to check for stuck-at faults. The test is split as follows:

• Interruptible - Register tested after-reset and at background: R0-R7, R12, LR, APSR, PSP, R8-R11, and CONTROL.

• Uninterruptible - Registers tested after-reset and in the fast-loop as uninterruptible test: PRIMASK and MSP.

4.1.3 Watchdog test (FS.WDOG)
The goal is check for program stall and to test the ability of WDOG to reset MCU in specified time. The test is executed after-reset
(reset capability and starvation) and during runtime (starvation).

The WDOG test is implemented using the certified IEC60730 class B safety library routines (see documentation at www.nxp.com/
iec60730). The FS.WDOG test covers:

• Reset capability test - The after-reset test of WDOG ability to cause MCU reset in time. Two clocks are compared by this
test:

— The CLOCK_MCGIRCLK_FREQ (sourced by FAST_IRCLK) is acting as an independent timer for LPTMR periphery.

— The CLOCK_LPO_FREQ (sourced by LPO 1kHz oscillator) acts as WDOG source clock.

The reset source is determined at the start of the test. If other-than-WDOG source is detected, the LPTMR counter is restarted
and WDOG starvation is awaited in endless loop. If the restart was caused by WDOG, the last value of LPTMR counter (before
WDOG-caused reset) is checked for valid limits.

• Program stall check - The WDOG must be periodically fed, otherwise its starvation causes MCU reset. The starvation
period is by default set to 30ms. During runtime the WDOG update is conducted as one of uninterruptible test routines at
the beginning of the fast control loop (TTST_UI_MAX).

Some debuggers do not allow the WDOG reset. Due to this, it is necessary to turn off the WDOG when debugging
the application.

 NOTE

4.1.4 Interrupt handling test (FS.ISR)
The goal is check for correct interrupt execution rate and safely handle unexpected IRQs.

The test is executed during runtime (within fast-, slow- and background-loop).

Following system of counters is implemented to check for correct interrupt execution rate:

• Fast-loop counter – Incremented every fast-loop FL. Checked for limit violation and then cleared every slow-loop ISR. If
the fast-loop vs slow-loop execution rate is incorrect a safety fault is triggered.

• Slow-loop counter – Incremented every slow-loop ISR. Checked for limit violation and then cleared every background
execution. Because the slow loop and background loop are not synchronized, only upper limit is checked (violation means
too long background loop execution).

All interrupt vectors have assigned ISR. If the unexpected IRQ is generated, the safety error handler routine is invoked.

4.1.5 Analog compare test (FS.CMP)
The goal is checking the PORT→AMUX→M1_ADC_PERIPH→M1_DMA_PERIPH analog measurement chain. The test is
executed during runtime (within fast-loop).

The test is implemented within M1.ADC driver. The M1_ADC_PERIPH samples of all measured quantities are store in ADC
result table M1_DMA_TAB_RSLT table each fast loop. The FS_ADC_PERIPH is configured to measure one analog quantity at
the same time as M1_ADC_PERIPH (see Figure 10). The FS_ADC_PERIPH quantity is periodically changed every SL, so all

NXP Semiconductors
Software description

Three-phase PMSM Pump Reference Safety Software Design User Guide, Rev. 0, 31 May 2022
User Guide 18 / 122

http://www.nxp.com/iec60730
http://www.nxp.com/iec60730
http://www.nxp.com/iec60730
http://www.nxp.com/iec60730

quantities are eventually scanned. Difference between M1_ADC_PERIPH and FS_ADC_PERIPH results is accumulated in FL,
until evaluation in SL occurs. If the accumulated difference between M1_ADC_PERIPH and FS_ADC_PERIPH results crosses
maximal threshold, the safety error is entered.

Figure 10. The analog compare check

4.1.6 Analog reference check (FS.REF)
The goal is check measured analog quantities for valid range.

The test is executed during runtime (within slow-loop SL).

The quantities measured by M1.ADC driver, which are relevant for ADC reference test, are listed in Table 4. When any of these
quantities are above expected maximum or below expected minimum, the safety fault is triggered.

NXP Semiconductors
Software description

Three-phase PMSM Pump Reference Safety Software Design User Guide, Rev. 0, 31 May 2022
User Guide 19 / 122

Table 4. Quantities check by analog reference test

Quantity Minimum Maximum

idcb_rc current offset 1.60 V 1.70 V

VREFH - 0.10 V

VREFL 3.20 V -

medium_temp_rc 1.45 V 1.95 V

ipm_temp_rc 0.10 V 2.80 V

mcu_temp 0.50 V 0.80 V

band gap 0.95 V 1.05 V

DC-bus current idcb_rc offset reference test can be violated upon sudden PWM stop, because the DC-bus
current might continue to flow, depending on pre-stop conditions (see example in Figure 11). This phenomenon is
considered to be safe, therefore, to prevent unnecessary fault trigger, the idcb_rc offset reference test violation is
ignored roughly one millisecond after M1.PWM stop PWM output generation.

 NOTE

Figure 11. Safe idcb_rc analog reference test violation

4.1.7 M1_DMA_PERIPH Safety Function (FS.DMA)
The goal is check for correct DMA behavior.

The test is executed during rutime as uninterruptible test (during TTST_UI_MAX).

NXP Semiconductors
Software description

Three-phase PMSM Pump Reference Safety Software Design User Guide, Rev. 0, 31 May 2022
User Guide 20 / 122

A number of tests were implemented to check the M1_DMA_PERIPH operation (see Figure 12):

• TCD memory stuck-at test - Stuck-at test of all M1_DMA_PERIPH TCDs read-write memory. A simple pattern test is used.

• TCD checksum test - Checksum test of all DMA TCDs. The TCD checksums are calculated during build a compared to
value calculated during runtime.

• M1_DMA_TAB_DLY checksum test - The checksum check for constant part of M1_DMA_TAB_DLY.

• M1_DMA_TAB_RSLT under-/over-flow test - The M1_DMA_TAB_RSLT result table over- and under-flow check. Patterns
around the result table are checked for change.

Figure 12. Implemented FS.DMA tests

4.1.8 Program flow check (FS.FLOW)
The goal is check for correct and complete order of application execution. The test is executed after-reset and in all safety relevant
runtime loops.

The Control Flow Checking by Software Signatures (CFCSS) is utilized (see Figure 13 for principle). Following loops have their
signature variables:

• After-reset sequence. Signatures are ordered as follows:

NXP Semiconductors
Software description

Three-phase PMSM Pump Reference Safety Software Design User Guide, Rev. 0, 31 May 2022
User Guide 21 / 122

1. FS.INIT – WDOG initialization.

2. FS.START – MCU memory startup.

3. FS.INIT – Clock initialization.

4. FS.INIT – The PORT (MCU pin) initialization.

5. FS.INIT – The LPTMR initialization.

6. FS.FCN – Common safety routine initialization.

7. FS.WDOG – Test of WDOG reset capability.

8. FS.FLASH – Test of complete safety-related Flash memory.

9. FS.RAM – Test of complete safety-related RAM memory.

10. FS.PC – Test of program counter.

11. FS.CPU – Test of core registers.

12. MC.INIT – Initialization of M1_DMA_PERIPH.

13. MC.INIT – Initialization of M1_ADC_PERIPH and FS_ADC_PERIPH.

14. MC.INIT – Initialization of M1_PDB_PERIPH.

15. MC.INIT – Initialization of M1_TMR_PERIPH.

16. MC.INIT – Initialization of M1_PWM_PERIPH.

17. M1.ADC – Initialization of M1.ADC driver and FS.REF, FS.DMA, and FS.CMP analog tests.

18. M1.SM – Initialization of M1.SM state-machine.

• Fast-loop sequence. Signatures are ordered as follows:

1. FS.FCN – One uninterruptible test was completed.

2. M1.ADC – Analog measurements (phase currents and DC-bus voltage) were updated.

3. M1.SM - The fast-loop M1.DIAG fault diagnostic routines were completed. The set of routines depends on M1.SM state.

4. M1.SM – The control action from M1.CTRL was obtained or M1.SM state transition occurred.

5. M1.PWM – The PWM output driver update.

6. FS.ISR – The interrupt handling test.

• Slow-loop sequence. Signatures are ordered as follows:

1. FS.CLK – The clock test measurement.

2. FS.ISR – The interrupt handling test.

3. FS.CMP – The analog compare test.

4. M1.ADC – Analog measurements (temperatures and voltage references) were updated.

5. M1.SM – The slow-loop M1.DIAG fault diagnostic routines were completed. The set of routines depends on M1.SM
state.

6. M1.SM – The M1.CTRl slow-loop update (providing M1.SM state to M1.CTRL and obtaining M1SM_RequestStart/
M1SM_RequestStop request from M1.CTRL).

• Background-loop sequence. Signatures are ordered as follows:

1. FS.CORE – Interruptible test of core registers.

2. FS.FLASH – Safety-related Flash runtime test.

3. FS.CLK – The clock test evaluation.

4. FS.STACK – The stack over-/under-flow check.

NXP Semiconductors
Software description

Three-phase PMSM Pump Reference Safety Software Design User Guide, Rev. 0, 31 May 2022
User Guide 22 / 122

5. FS.ISR – The interrupt handling test.

• Uninterruptible tests. Executed sequentially (one test per fast-loop FL). Signatures are ordered as follows:

1. FS.CORE – Uninterruptible core registers test.

2. FS.PC – Program counter test.

3. FS.RAM – Safety-relevant RAM memory runtime test.

4. FS.WDOG – Feeding of watchdog.

5. FS.DMA – M1_DMA_PERIPH TCD memory stuck-at test.

6. FS.DMA – Check of M1_DMA_PERIPH TCDs checksum.

7. FS.DMA – The M1_DMA_TAB_DLY table checksum.

8. FS.DMA – The M1_DMA_TAB_RSLT table over-/under-flow check.

If the final signature at the end of the loop does not match the expected value, the safety fault is triggered.

Figure 13. Control Flow Checking by Software Signatures (CFCSS) principle

4.1.9 External command check (M1.DIAG.EXTCMD)
The goal is checking the pwm_in_mcu PWM control signal to prevent unwanted M1.SM start. The test is executed in the fast-loop
(edge counting) and slow-loop (edge count check).

A precise value of the control PWM duty cycle D is acquired via FTM periphery in double-capture mode. In order to prevent
unwanted machine start a parallel control PORT-based PWM signal raising edge counter is implemented in the fast loop (see
block diagram Figure 14). If the edge count rate does not correspond to allowed pwm_in_mcu frequency range (200 Hz < fctrl <
2 kHz by default), a FAULT state is entered by M1.SM.

NXP Semiconductors
Software description

Three-phase PMSM Pump Reference Safety Software Design User Guide, Rev. 0, 31 May 2022
User Guide 23 / 122

Figure 14. The M1.DIAG.EXTCMD safety mechanism block diagram

4.1.10 Safety flash test (FS.FLASH)
The goal is check safe part of Flash memory for content change.

The test is executed after-reset AR and during runtime in the background BG.

The Flash test is implemented using the certified IEC60730 class B safety library routines (see documentation at www.nxp.com/
iec60730). The CRC of safety-related Flash is calculated using CRC periphery and compared to CRC stored at the end of FLASH
memory in Safety region CRC section (see Figure 15). The Flash test is executed:

• After-reset the entire safety-relevant Flash region is checked.

• During runtime the CRC for Flash is repeatedly calculated by 8x4B blocks.

NXP Semiconductors
Software description

Three-phase PMSM Pump Reference Safety Software Design User Guide, Rev. 0, 31 May 2022
User Guide 24 / 122

http://www.nxp.com/iec60730
http://www.nxp.com/iec60730

Figure 15. Tested Flash memory

The test can be turned off in the safety_config.h file.

The test consists of the following two parts:

• Post-build CRC calculation of the dedicated memory.

• Runtime CRC calculation and comparison with the post-build result.

The post-build calculation is different for each IDE:

In the IAR IDE, the CRC is calculated by the IDE directly using the linker (see Options->Build Action). The Flash test is fully
integrated to the example project in the IAR IDE. It is necessary only to turn this test on in the safety_config.h file.

In the MCUXpresso IDE, the CRC is calculated by the S-record third-party tool. The user must do some additional steps. For more
information, see post-build CRC in document Kinetis CM0+ Safety Example.

NXP Semiconductors
Software description

Three-phase PMSM Pump Reference Safety Software Design User Guide, Rev. 0, 31 May 2022
User Guide 25 / 122

https://www.nxp.com/docs/en/user-guide/IEC60730BKCM0EUG.pdf

When you debug your application with the Flash test turned on, be careful when using the breakpoint. The software
breakpoint usually changes the CRC result and causes a safety error.

 NOTE

4.1.11 Safety RAM Test (FS.RAM)
The test checks the on-chip RAM for direct-coupling faults. The test is executed after-reset and during runtime in the fast-loop
(uninterruptible test period TTST_UI_MAX).

The march test is implemented using the certified IEC60730 class B safety library routines (see documentation at www.nxp.com/
iec60730). The test is destructive so the investigated RAM is copied to the RAM Test Backup section (see Figure 16) and restored
once after the memory block test completes. The test is executed:

• After-reset test is conducted for entire safety-relevant RAM.

• The runtime test is executed for 3x4B memory blocks. However, the next block address is moved only by 1x4B. This way,
the faults in neighboring RAM cell can be discovered.

This test cannot be interrupted.

 NOTE

NXP Semiconductors
Software description

Three-phase PMSM Pump Reference Safety Software Design User Guide, Rev. 0, 31 May 2022
User Guide 26 / 122

http://www.nxp.com/iec60730
http://www.nxp.com/iec60730

Figure 16. Tested RAM memory

4.1.12 Stack over-/under-flow test (FS.STACK)
The goal is check for the stack over- and under-flow. The test is executed during runtime in the background BG.

The march test is implemented using the certified IEC60730 class B safety library routines (see documentation at www.nxp.com/
iec60730). The stack RAM memory area is surrounded by specific memory patterns (see Figure 17). These patterns are checked
for change during runtime.

NXP Semiconductors
Software description

Three-phase PMSM Pump Reference Safety Software Design User Guide, Rev. 0, 31 May 2022
User Guide 27 / 122

http://www.nxp.com/iec60730
http://www.nxp.com/iec60730

Figure 17. Stack test patterns

4.1.13 Clock test (FS.CLK)
The clock test procedure tests the oscillator frequency for the CPU core in the wrong frequency condition.

The goal is to test the CLOCK_MCGOUTCLK_FREQ frequency for drift.

The test is executed during runtime in slow-loop SL (measurement) and back-ground (evaluation).

The clock test is implemented using the certified IEC60730 class B safety library routines (see documentation at www.nxp.com/
iec60730). Two clocks are compared by the clock test:

• The core and slow-loop (SL) timer is supplied by CLOCK_MCGOUTCLK_FREQ (sourced by SLOW_IRCLK oscillator).

• The LPTMR periphery is supplied by CLOCK_MCGIRCLK_FREQ (sourced by FAST_IRCLK oscillator).

The LPTMR counter value is stored and then restarted every SL (one millisecond by default). The stored counter value is then
checked in the background for valid range.

NXP Semiconductors
Software description

Three-phase PMSM Pump Reference Safety Software Design User Guide, Rev. 0, 31 May 2022
User Guide 28 / 122

http://www.nxp.com/iec60730
http://www.nxp.com/iec60730

4.2 Motor control faults
The motor control faults can be configured in m1_pmsm_appconfig.h file. The safety mechanisms were selected and implemented
based on Failure Mode and Effect Analysis (FMEA), which is available in Appendix A.

4.2.1 Blocked rotor test (M1.DIAG.BCLKROT)
The goal is check for blocked-rotor condition.

The test is executed during HI_SPD state of M1.SM in the slow-loop SL.

The blocked rotor detection algorithm principle is shown in Figure 18 below. The blocked rotor condition is determined based on
the BEMF observer (M1.EST.HISPD) estimated EMF voltage. If the rotor is spinning properly, then the estimated Q-axis BEMF
voltage should be above minimal threshold value. Otherwise a fault condition is triggered.

Figure 18. Blocked-rotor test algorithm

The fault check can be disabled using M1_DIAG_BLOCK_ROTOR_ENABLE macro in m1_pmsm_appconfig.h file.

4.2.2 Disconnected phase test (M1.DIAG.PHLOSS)
The goal is check for disconnected phase or malfunctioning MOSFET.

The test is executed during HI_SPD state in the slow-loop SL (evaluation) and fast-loop FL (measurement).

Permanently open MOSFET eventually causes over-current condition (see short states in Table 5 below). Disconnected phase
or permanently closed MOSFET causes permanently zero idcb_rc sample in one or more SVM sectors. The algorithm detecting
such condition is shown in Figure 19 below. Both idcb_rc samples for given SVM sector are compared against minimal threshold
constant idcb_rc_min. If |idcb_rc| < idcb_rc_min condition persists for too long, the fault condition is activated.

NXP Semiconductors
Software description

Three-phase PMSM Pump Reference Safety Software Design User Guide, Rev. 0, 31 May 2022
User Guide 29 / 122

Table 5. The idcb_rc signal during phase-loss or MOSFET malfunction

SVM Sector
1 2 3 4 5 6

State Sample

All phases OK
idcb_rc #1 IA IB IB IC IC IA

idcb_rc #2 -IC -IC -IA -IA -IB -IB

Phase_A lost
idcb_rc #1 0 IBC IBC ICB ICB 0

idcb_rc #2 IBC IBC 0 0 ICB ICB

Phase_B lost
idcb_rc #1 IAC 0 0 ICA ICA IAC

idcb_rc #2 IAC IAC ICA ICA 0 0

Phase_C lost
idcb_rc #1 IAB IBA IBA 0 0 IAB

idcb_rc #2 0 0 IBA IBA IAB IAB

pwm_at
permanently ON

idcb_rc #1 IA short short short short IA

idcb_rc #2 -IC -IC short short -IB -IB

pwm_at
permanently OFF

idcb_rc #1 0 IB IB IC IC 0

idcb_rc #2 IBC IBC -IA -IA ICB ICB

pwm_ab
permanently ON

idcb_rc #1 short IB IB IC IC short

idcb_rc #2 short short -IA -IA short short

pwm_ab
permanently OFF

idcb_rc #1 IA IBC IBC ICB ICB IA

idcb_rc #2 -IC -IC 0 0 -IB -IB

Figure 19. Phase-loss test algorithm block diagram

NXP Semiconductors
Software description

Three-phase PMSM Pump Reference Safety Software Design User Guide, Rev. 0, 31 May 2022
User Guide 30 / 122

The fault check can be disabled using M1_DIAG_PHLOSS_ENABLE macro in m1_pmsm_appconfig.h file.

4.2.3 Rotor over-load test (M1.DIAG.LOAD)
The goal is check for motor over-load.

The test is executed during HI_SPD state in the slow-loop SL.

Block diagram of the over-load detection algorithm is shown in Figure 20 below. The fault condition is true when the maximal
current (torque) is generated but the speed drops. Both following conditions must, therefore, be true at the same time:

• The rotor speed is below minimal value .

• The actual stator current for a minimal time.

The threshold constant should be configured to be close, but below the maximal current output value of speed controller. The

speed threshold constant should be set above the under-speed fault threshold .

Figure 20. Over-load detection algorithm block diagram

The fault check can be disabled using M1_DIAG_OVER_LOAD_ENABLE macro in m1_pmsm_appconfig.h file.

4.2.4 Over-temperature of medium (M1.DIAG.TMP_MED)

The goal is check (quantity medium_temp_rc converted into Celsius degrees) for over-temperature.

The test is executed during all M1.SM states in the slow-loop SL.

NXP Semiconductors
Software description

Three-phase PMSM Pump Reference Safety Software Design User Guide, Rev. 0, 31 May 2022
User Guide 31 / 122

The condition is checked, where is the fault activation threshold constant (see block diagram in
Figure 21).

Figure 21. Medium over-temperature test algorithm block diagram

The fault check can be disabled using M1_DIAG_OVER_MED_TMP_ENABLE macro in m1_pmsm_appconfig.h file.

4.2.5 Over-temperature of inverter (M1.DIAG.TMP_IPM)

The goal is check (quantity ipm_temp_rc converted into Celsius degrees) for over-temperature.

The test is executed during all M1.SM states in the slow-loop SL.

The condition is checked, where is the fault activation threshold constant (see block diagram in
Figure 22).

Figure 22. IPM over-temperature test algorithm block diagram

The fault check can be disabled using M1_DIAG_OVER_IPM_TMP_ENABLE macro in m1_pmsm_appconfig.h file.

4.2.6 Over-temperature of MCU (M1.DIAG.TMP_MCU)

The goal is check (quantity mcu_temp converted into Celsius degrees) for over-temperature.

The test is executed during all M1.SM states in the slow-loop SL.

The condition is checked, where is the fault activation threshold constant (see block diagram in
Figure 23).

NXP Semiconductors
Software description

Three-phase PMSM Pump Reference Safety Software Design User Guide, Rev. 0, 31 May 2022
User Guide 32 / 122

Figure 23. MCU over-temperature test algorithm block diagram

The fault check can be disabled using M1_DIAG_OVER_MCU_TMP_ENABLE macro in m1_pmsm_appconfig.h file.

4.2.7 Under-/over-voltage test (M1.DIAG.UV_OV)

The goal is check DC-bus voltage (converted vdcb_rc quantity) for over-/under-voltage.

The test is executed during all M1.SM states in the fast-loop FL.

The under-voltage condition and the over-voltage condition is checked, where

and are fault activation threshold constants (see block diagram in Figure 24).

Figure 24. Under-/over-voltage test algorithm block diagram

The fault check can be disabled using M1_DIAG_OVER_MCU_TMP_ENABLE macro in m1_pmsm_appconfig.h file.

4.2.8 Hardware over-current test (M1.DIAG.HWOC)
The goal is check DC-bus current idcb_rc for over-current.

The test is active at all times. Status is check by software in M1.SM during fast loop FL. The condition idcb_rc > idcb_rc_thr is
constantly checked by M1_CMP_OC_PERIPH (see block diagram in Figure 25). If such condition is detected, the TRGOC trigger
is generated and M1_PWM_PERIPH sets PWM outputs into inactive state without requiring software interaction. The status of
M1.DIAG.HWOC is checked every FL in M1.SM. If the fault activation is detected, the M1.SM enters FAULT state.

NXP Semiconductors
Software description

Three-phase PMSM Pump Reference Safety Software Design User Guide, Rev. 0, 31 May 2022
User Guide 33 / 122

Figure 25. Hardware over-current test algorithm block diagram

4.2.9 Software over-current test (M1.DIAG.SWOC)

The goal is check squared stator current value for over-current.

The test is executed during all M1.SM states in the fast-loop FL.

The SW over-current fault protection checks condition (see block diagram in Figure 26). The SW

over-current activation threshold constant is generally set below the HW over-current threshold idcb_rc_thr.

Figure 26. Software over-current test algorithm block diagram

4.2.10 Under-/over-power test (M1.DIAG.UP_OP)

The goal is check input power for over-power and under-power (includes dry run) condition.

The test is executed during HI_SPD state in the slow loop SL.

The under-power protection checks condition and the overpower protection checks

(see block diagram in Figure 27). The thresholds and are speed-dependent and updated during
runtime using two Look-Up Tables (LUT).

NXP Semiconductors
Software description

Three-phase PMSM Pump Reference Safety Software Design User Guide, Rev. 0, 31 May 2022
User Guide 34 / 122

Figure 27. Over-/under-power test algorithm block diagram

The fault check can be disabled using M1_DIAG_OVER_POWER_ENABLE and M1_DIAG_UNDER_POWER_ENABLE macros in
m1_pmsm_appconfig.h file.

4.2.11 Under-/over-speed test (M1.DIAG.US_OS)

The goal is check estimated rotor speed for over-speed and under-speed condition.

The test is executed during HI_SPD state in the slow loop SL.

The under-speed protection checks condition and the over-speed protection checks condition ,

where and are fault activation threshold constants (see block diagram in Figure 28).

NXP Semiconductors
Software description

Three-phase PMSM Pump Reference Safety Software Design User Guide, Rev. 0, 31 May 2022
User Guide 35 / 122

Figure 28. Over-/under-speed test algorithm block diagram

The fault check can be disabled using M1_DIAG_OVER_SPEED_ENABLE and M1_DIAG_UNDER_SPEED_ENABLE macros in
m1_pmsm_appconfig.h file.

4.2.12 Stator resistance test (M1.DIAG.RES)
The goal is check estimated stator resistance for valid range.

The test is executed during HI_SPD and ALIGN state in the slow loop SL.

There are two checks executed, which both aim to detect stator resistance change:

1. In ALIGN M1.SM state: This stator resistance test checks for invalid conditions and , where

and are alignment current limits (see block diagram in Figure 29). The test is enabled only in the last quarter

of the alignment duration so the current has time to settle. The aim of this test is to check that the
stator current measurement (including current measurement scale) is correct before the current controllers are engaged
(see M1.CTRL.SPEED_CL control mode description).

NXP Semiconductors
Software description

Three-phase PMSM Pump Reference Safety Software Design User Guide, Rev. 0, 31 May 2022
User Guide 36 / 122

Figure 29. Stator resistance test algorithm during ALIGN block diagram

2. In HI_SPD M1.SM state: The stator resistance test checks for invalid conditions and , where

and are expected stator resistance limits (see block diagram in Figure 30). This test relies on the
M1.EST.RES output and its goal is to monitor for changes in the estimated stator resistance during runtime.

Figure 30. Stator resistance test algorithm during HI_SPD block diagram

The fault check can be disabled using M1_DIAG_REST_ENABLE macro in m1_pmsm_appconfig.h file.

4.2.13 Power stability test (M1.DIAG.PWRSTAB)

The goal is check for input power steady state condition violation.

The test is executed during HI_SPD state in the slow-loop SL.

An ability of system to reach steady state in defined time is checked. A following algorithm (see timing diagram in Figure 31 and
block diagram in Figure 32) is used:

1. Input power is filtered by two levels of Low-Pass Filters (LPFs) and

. Setup of this filters affects sensitivity of the algorithm to fast input power deviations.

2. The difference between two different filtered powers is accumulated

}, where is power

difference limit constant and accumulated power difference.

NXP Semiconductors
Software description

Three-phase PMSM Pump Reference Safety Software Design User Guide, Rev. 0, 31 May 2022
User Guide 37 / 122

3. The accumulated power difference is then compared to fault threshold > .

Figure 31. Power stability test algorithm time diagram

Figure 32. Power stability test algorithm block diagram

The fault check can be disabled using M1_DIAG_UNSTAB_PWR_ENABLE macro in m1_pmsm_appconfig.h file.

4.3 State machine
From motor-control point of view, the state machine is responsible for conducting following steps:

NXP Semiconductors
Software description

Three-phase PMSM Pump Reference Safety Software Design User Guide, Rev. 0, 31 May 2022
User Guide 38 / 122

• Measure (M1.MEAS) – M1.ADC driver is called so all quantities (phase currents, DC-bus voltage, temperatures) are
available. Safety relevant step.

• Estimate (M1.EST) – The stator resistance and the rotor position and speed estimation algorithms are called. The used
algorithms differ based on the MC.SM state. Safety relevant step.

• Diagnostics (M1.DIAG) – Measured and estimated quantities are analyzed by various algorithms so unsafe conditions can
be detected. The algorithm differs based on the MC.SM state. Safety relevant step.

• Control (M1.CTRL) – The control algorithm executed in M1.CTRL. The current and speed control loops are executed to
obtain required stator voltage. This step is not safety relevant.

• Actuate (M1.ACT) – The DC-bus ripple and dead-time compensations are applied and the Space Vector Modulation
(SVM) algorithm calculates the required phase duty cycles for M1.PWM driver.

These steps are, however, dependent on the actual motor state (namely rotor speed), and M1SM_RequestStart/
M1SM_RequestStop request issued by M1.CTRL module. The role of the M1.SM state-machine is, therefore, implemented right
timing, machine start and stop, state transfer, and ensure that right algorithms are executed. The high-level M1.SM execution
flowchart is shown in Figure 33. Following M.1SM states (described in more detail later in this section) were implemented:

• NO_INIT – Default M1.SM state prior initialization.

• FAULT – Entered when any M1.DIAG pending fault is detected by diagnostic algorithms. The STOP state is entered when
no fault is observed for a configured time.

• STOP – The M1.SM is idle and the M1SM_RequestStart request form M1.CTRL is awaited.

• ALIGN – Rotor alignment state.

• LO_SPD – Open-loop startup state

• MI_SPD – The position open-loop to the position closed-loop transition.

• HI_SPD – High-speed state with closed-loop speed control.

• FREE – The freewheel state where no toque is applied for a constant time to allow the rotor to slow down.

All implemented M1.SM states are executed in both fast-loop FL and slow-loop SL. State transition is controlled in the fast-loop FL.

NXP Semiconductors
Software description

Three-phase PMSM Pump Reference Safety Software Design User Guide, Rev. 0, 31 May 2022
User Guide 39 / 122

Figure 33. M1.SM state-machine flowchart

4.3.1 Uninitialized state (NO_INIT)
Goal: Enter safety error state when initialized M1.SM state-machine SL or FL routine is executed.

Execution: The state should never be executed.

Transitions:

• T.INIT – The STOP state is entered when the M1.SM state machine initialization routine is executed during AR.

Called M1.CTRL algorithm: none

Called M1.EST algorithm: none

Called M1.DIAG algorithm: none

Details: The default state prior to the M1.SM state-machine initialization. The M1.SM initialization is expected to be done by a
separate function during AR phase, so normally the NO_INIT state should not occur, and its execution is considered to be safety
error trigger.

NXP Semiconductors
Software description

Three-phase PMSM Pump Reference Safety Software Design User Guide, Rev. 0, 31 May 2022
User Guide 40 / 122

4.3.2 Idle state (STOP)
Goal: Await M1SM_RequestStart request from M1.CTRL.

Execution: Fast-loop FL and slow-loop SL.

Transitions:

• T.FLT – The M1.DIAG fault was detected. The M1_PWM_PERIPH output is immediately disabled. All M1.SM internal state
variables are cleared.

• T.S-A – The ALIGN state is entered when M1SM_RequestStart request is received from M1.CTRL.

Called M1.CTRL algorithm: M1.CTRL.IDLE

Called M1.EST algorithm: none

Called M1.DIAG algorithm: M1.DIAG.TMP_MED, M1.DIAG.TMP_IPM, M1.DIAG.TMP_MCU, M1.DIAG.UV_OV,
M1.DIAG.SWOC, M1.DIAG.HWOC, M1.DIAG.EXTCMD

Details: The portion relevant to this state is highlighted in Figure 34. This is the default idle state of M1.SM, during which
the M1.CTRL.IDLE control subroutine is called to receive M1SM_RequestStart request (results in T.S-A transition). The
M1_PWM_PERIPH output signals are disabled.

Figure 34. Highlighted M1.SM STOP state

4.3.3 Fault state (FAULT)
Goal: Await for pending recoverable fault condition to disappear.

Execution: Fast-loop FL and slow-loop SL.

Transitions:

NXP Semiconductors
Software description

Three-phase PMSM Pump Reference Safety Software Design User Guide, Rev. 0, 31 May 2022
User Guide 41 / 122

• T.S – The STOP state is entered when fault recovery time Tfault passes after all pending M1.DIAG faults disappear. All
M1.SM internal state variables are cleared.

Called M1.CTRL algorithm: M1.CTRL.IDLE

Called M1.EST algorithm: none

Called M1.DIAG algorithm: M1.DIAG.TMP_MED, M1.DIAG.TMP_IPM, M1.DIAG.TMP_MCU, M1.DIAG.UV_OV,
M1.DIAG.SWOC, M1.DIAG.HWOC, M1.DIAG.EXTCMD

Details: The portion relevant to this state is highlighted in Figure 35. The FAULT state is entered whenever a recoverable
M1.DIAG fault is diagnosed in any M1.SM state. The state is left only when the fault condition disappears for at least Tfault. The
M1_PWM_PERIPH output signals are disabled.

Figure 35. Highlighted M1.SM FAULT state

4.3.4 Alignment state (ALIGN)
Goal: Align rotor into a known position before the motor startup procedure can begin.

Execution: Fast-loop FL and slow-loop SL.

Transitions:

• T.S – The STOP state is entered when request M1SM_RequestStop is received from M1.CTRL. All M1.SM internal state
variables are cleared.

• T.FLT – The M1.DIAG fault was detected. The M1_PWM_PERIPH output is immediately disabled. All M1.SM internal state
variables are cleared.

• T.A-LS – The alignment procedure was completed after Talign passed.

Called M1.CTRL algorithm: M1.CTRL.VOLT

NXP Semiconductors
Software description

Three-phase PMSM Pump Reference Safety Software Design User Guide, Rev. 0, 31 May 2022
User Guide 42 / 122

Called M1.EST algorithm: M1.EST.ALIGN

Called M1.DIAG algorithm: M1.DIAG.TMP_MED, M1.DIAG.TMP_IPM, M1.DIAG.TMP_MCU, M1.DIAG.UV_OV,
M1.DIAG.SWOC, M1.DIAG.HWOC, M1.DIAG.EXTCMD

Details: The portion relevant to this state is highlighted in Figure 36. Before any non-zero stator voltage is applied (M1.CTRL.VOLT
output is applied), two steps are performed:

1. The PWM is enabled – The bootstrap circuit is charged using the M1.PWM.START algorithm.

2. The startup calibration – The phase current measurement offsets are measured in M1.ADC.CALIB algorithm so these
can removed during further operation.

Once the PWM is reliably enabled and calibration is completed, the M1.CTRL.VOLT output is applied for Talign duration. The
voltage vector position is given by M1.EST.ALIGN algorithm (see Section 4.4.2.1). The stator voltage and position during ALIGN
state is shown in Figure 37.

Figure 36. Highlighted M1.SM ALIGN state

NXP Semiconductors
Software description

Three-phase PMSM Pump Reference Safety Software Design User Guide, Rev. 0, 31 May 2022
User Guide 43 / 122

Figure 37. Stator voltage position and amplitude during ALIGN state

4.3.5 Low-speed state (LO_SPD)
Goal: Accelerate the rotor until a minimal M1.EST.HISPD speed is reached.

Execution: Fast-loop FL and slow-loop SL.

Transitions:

• T.FREE – The STOP state is entered when request M1SM_RequestStop is received from M1.CTRL.

• T.FLT – The M1.DIAG fault was detected. The M1_PWM_PERIPH output is immediately disabled. All M1.SM internal state
variables are cleared.

• T.LS-MS – The minimal speed was reached by M1.EST.LOSPD algorithm and the LO_SPD state is entered.

Called M1.CTRL algorithm: M1.CTRL.CURR

Called M1.EST algorithm: M1.EST.LOSPD

Called M1.DIAG algorithm: M1.DIAG.TMP_MED, M1.DIAG.TMP_IPM, M1.DIAG.TMP_MCU, M1.DIAG.UV_OV,
M1.DIAG.SWOC, M1.DIAG.HWOC, M1.DIAG.EXTCMD

Details: The portion relevant to this state is highlighted in Figure 38. This is the sensorless rotor startup state, during which the
stator current vector is rotating with constantly increasing speed (see Figure 39). The M1.CTRL.CURR control subroutine is called

to maintain the stator current amplitude. Once the startup speed reaches the BEMF observer activation threshold , the
MI_SPD state is entered via T.LS-MS transition. Alternatively, if the M1SM_RequestStart request is received from M1.CTRL, the
FREE state is entered via T.FREE transition.

NXP Semiconductors
Software description

Three-phase PMSM Pump Reference Safety Software Design User Guide, Rev. 0, 31 May 2022
User Guide 44 / 122

Figure 38. Highlighted M1.SM LO_SPD state

Figure 39. Stator current position, speed, and amplitude during LO_SPD state

4.3.6 Medium-speed state (MI_SPD)
Goal: Continue accelerating until M1.EST.HISPD speed estimate can be used to drive motor.

Execution: Fast-loop FL and slow-loop SL.

NXP Semiconductors
Software description

Three-phase PMSM Pump Reference Safety Software Design User Guide, Rev. 0, 31 May 2022
User Guide 45 / 122

Transitions:

• T.FREE – The STOP state is entered when request M1SM_RequestStop is received from M1.CTRL.

• T.FLT – The M1.DIAG fault was detected. The M1_PWM_PERIPH output is immediately disabled. All M1.SM internal state
variables are cleared.

• T.MS-HS – The speed, where the M1.EST.LOSPD estimates become reliable was reached.

Called M1.CTRL algorithm: M1.CTRL.CURR

Called M1.EST algorithm: M1.EST.LOSPD and M1.EST.HISPD

Called M1.DIAG algorithm: M1.DIAG.TMP_MED, M1.DIAG.TMP_IPM, M1.DIAG.TMP_MCU, M1.DIAG.UV_OV,
M1.DIAG.SWOC, M1.DIAG.HWOC, M1.DIAG.EXTCMD

Details: The portion relevant to this state is highlighted in Figure 40. The M1.CTRL.CURR control routine is called to perform
the stator current control and the M1.EST.HISPD algorithm is running on the background (see Figure 41). Once the low-speed

algorithm M1.EST.LOSPD speed reaches merge threshold , the HI_SPD state is entered via T.MS-HS transition.
Alternatively, if the M1SM_RequestStart request is received from M1.CTRL, the FREE state is entered via T.FREE transition.

Figure 40. Highlighted M1.SM MI_SPD state

NXP Semiconductors
Software description

Three-phase PMSM Pump Reference Safety Software Design User Guide, Rev. 0, 31 May 2022
User Guide 46 / 122

Figure 41. Figure Stator current position, speed, and amplitude during MI_SPD state

4.3.7 High-speed State (HI_SPD)
Goal: Normal motor operation.

Execution: Fast-loop FL and slow-loop SL.

Transitions:

• T.FREE – The STOP state is entered when request M1SM_RequestStop is received from M1.CTRL.

• T.FLT – The M1.DIAG fault was detected. The M1_PWM_PERIPH output is immediately disabled. All M1.SM internal state
variables are cleared.

Called M1.CTRL algorithm: M1.CTRL.CURR and M1.CTRL.SPD

Called M1.EST algorithm: M1.EST.HISPD

Called M1.DIAG algorithm: M1.DIAG.TMP_MED, M1.DIAG.TMP_IPM, M1.DIAG.TMP_MCU, M1.DIAG.UV_OV,
M1.DIAG.SWOC, M1.DIAG.HWOC, M1.DIAG.EXTCMD, M1.DIAG.PWRSTAB, M1.DIAG.RES, M1.DIAG.UP_OP,
M1.DIAG.US_OS, M1.DIAG.PHLOSS, M1.DIAG.LOAD, M1.DIAG.BLCKROT

Details: The portion relevant to this state is highlighted in Figure 42. The normal high-speed operation state, during which
all M1.DIAG algorithms are active. The M1.CTRL.CURR and M1.CTRL.SPD control subroutines are called to perform the
stator current and speed control. If the M1SM_RequestStart request is received from M1.CTRL, the FREE state is entered via
T.FREE transition.

NXP Semiconductors
Software description

Three-phase PMSM Pump Reference Safety Software Design User Guide, Rev. 0, 31 May 2022
User Guide 47 / 122

Figure 42. Highlighted M1.SM HI_SPD state

4.3.8 Freewheel state (FREE)
Goal: Await Tfree period so the rotor can slow down before M1SM_RequestStart request can be received again.

Execution: Fast-loop FL and slow-loop SL.

Transitions:

• T.S – The STOP state is entered after Tfree period passes. All M1.SM internal state variables are cleared.

• T.FLT – The M1.DIAG fault was detected. The M1_PWM_PERIPH output is immediately disabled. All M1.SM internal state
variables are cleared.

Called M1.CTRL algorithm: none

Called M1.EST algorithm: none

Called M1.DIAG algorithm: M1.DIAG.TMP_MED, M1.DIAG.TMP_IPM, M1.DIAG.TMP_MCU, M1.DIAG.UV_OV,
M1.DIAG.SWOC, M1.DIAG.HWOC, M1.DIAG.EXTCMD

Details: The portion relevant to this state is highlighted in Figure 43. The PWM signals are disabled during this state. Once the
Tfree period after entering this state expires, the STOP state is entered via T.S transition.

NXP Semiconductors
Software description

Three-phase PMSM Pump Reference Safety Software Design User Guide, Rev. 0, 31 May 2022
User Guide 48 / 122

Figure 43. Highlighted M1.SM FREE state

4.4 Motor control software algorithms
This section describes notable individual motor-control algorithms. A detailed block diagram of implemented PMSM pump
Field-Oriented Control algorithm is in Figure 44. Software blocks, which participate in the motor-control are:

• APP.EXTCMD – The APP_EXTCMD_PERIPH driver responsible for the external pump rotor speed command acquisition.

• APP – The application layer called by MAIN module. By default, the external speed command (or command received by
FMSTR) and M1SM_RequestStart / M1SM_RequestStop command is passed to the M1.CTRL module via M1.CTRL.I2
API.

• M1.CTRL – The action control module, responsible for calculation of required stator voltage based on provided
measurements, estimations, and required values (commands). It is called via:

— M1.CTRL.I2 – Called by APP application layer to provide M1.SM state and to receive speed command (or current,
voltage or frequency command from FMSTR).

— M1.CTRL.I1 – Called by M1.SM to provide M1SM_RequestStart / M1SM_RequestStop request and required stator
voltage (execute internal current and speed controllers).

• M1.SM – The safe motor-control state-machine. It is responsible for following steps:

1. Measure (M1.MEAS) – M1.ADC driver is called so all quantities (phase currents, DC-bus voltage, temperatures) are
available. Safety relevant step.

2. Estimate (M1.EST) – The stator resistance and the rotor position and speed estimation algorithms are called. The
used algorithms differ based on the MC.SM state. Safety relevant step.

3. Diagnostics (M1.DIAG) – Measured and estimated quantities are analyzed by various algorithms so unsafe
conditions can be detected. The algorithm differs based on the MC.SM state. Safety relevant step.

NXP Semiconductors
Software description

Three-phase PMSM Pump Reference Safety Software Design User Guide, Rev. 0, 31 May 2022
User Guide 49 / 122

4. Control (M1.CTRL) – The control algorithm executed in M1.CTRL. The current and speed control loops are
executed to obtain required stator voltage. On top of the default closed loop speed FOC control algorithm
M1.CTRL.SPEED_CL, several other control modes are implemented to support development phase of the
customers software. This step is not safety relevant.

5. Actuate (M1.ACT) – The DC-bus ripple and dead-time compensations are applied and Space Vector Modulation
(SVM) algorithm calculates the required phase duty cycles for M1.PWM driver.

• M1.ADC – The M1_ADC_PERIPH and FS_ADC_PERIPH driver responsible for safe analog quantity sample acquisition. A
single-shunt current reconstruction algorithm is implemented.

• M1.PWM – The M1_PWM_PERIH driver responsible for three-phase shifted-PWM generation.

NXP Semiconductors
Software description

Three-phase PMSM Pump Reference Safety Software Design User Guide, Rev. 0, 31 May 2022
User Guide 50 / 122

Figure 44. Sensorless PMSM field-oriented control algorithm blocks

4.4.1 Measurement algorithms (M1.ADC, M1.MEAS)
This section describes notable analog measurement algorithms of M1.ADC and M1.SM modules.

NXP Semiconductors
Software description

Three-phase PMSM Pump Reference Safety Software Design User Guide, Rev. 0, 31 May 2022
User Guide 51 / 122

4.4.1.1 Single-shunt three-phase current reconstruction (M1.ADC)

Goal: Reconstruct three-phase currents based on a single-shunt voltage drop idcb_rc measurements.

Execution: In the fast loop FL during all M1.SM states.

Details: The M1.ADC peripheral connection and timing was already explained. This section explains the three-phase current
reconstruction principle from a single-shunt current measurement. The shifted-PWM generation, which is closely tied to the
phase current reconstruction, is explained in Section 4.4.5.1. The single-shunt phase-current reconstruction and shifted-PWM
algorithms were chosen to achieve a minimal hardware cost.

The M1.ADC driver was designed to allow acquisition of large number of variably placed ADC samples. Its benefits are minimal
CPU assistance, a large number of quantities in exact times can be acquired every TPWM period (including variably placed idcb_rc
samples for phase current reconstruction), and the fact that the second converter FS_ADC_PERIPH is free for safety compare
FS.CMP test. Total of Nsmpl = 10 quantities are sampled:

1. The first idcb_rc current sample – Used for phase current reconstruction. Sample position changes.

2. The second idcb_rc current sample - Used for phase current reconstruction. Sample position changes.

3. The idcb_rc current offset measurement - Used for online phase current offset calibration (see Section 4.4.1.2). Sample
is measured during V111 voltage vector.

4. Voltage reference VREFL – Used for FS.REF and FS.CMP tests.

5. Voltage reference VREFH – Used for FS.REF and FS.CMP tests.

6. Voltage reference band gap – Used for FS.REF and FS.CMP tests.

7. Inverter temperature ipm_temp_rc – Used for M1.DIAG.TEMP_IPM test.

8. Medium temperature medium_temp_rc – Used for M1.DIAG.TEMP_MED test.

9. MCU temperature mcu_temp – Used for M1.DIAG.TEMP_MCU test.

10. DC-bus voltage vdcb_rc – Used for control (DC-bus ripple compensation M1.ACT.DCBCMP) M1.DIAG.UV_OV tests.

As the block diagram in Figure 36 shows, the DC-bus current can be measured via voltage drop on the shunt resistor R52
connecting GND and bottom inverter MOSFTEs. Whenever at least one bottom MOSFET is enabled, the voltage drop idcb_rc
will increase or decrease from its default 1.65V value accordingly to the current flowing. When using standard Space Vector
Modulation for PWM signal generation, four voltage vectors will be applied to motor phases each PWM period:

• Inactive voltage vector V0 (000) – All bottom MOSFETs are enabled.

• Inactive voltage vector V7 (111) – All top MOSFETs are enabled.

• Two active vectors - See table in Figure 45.

Two phase currents are, therefore, normally available as DC-bus current (or idcb_rc voltage) during active voltage vectors

each PWM period. Therefore, it is possible to reconstruct all phase currents by measuring two different idcb_rc samples of

per PWM period and calculating the third phase current using Kirchoff’s law. The is zero during inactive voltage vectors V0
(000) and V7 (111). This is used for online calibration of measurement offsets.

NXP Semiconductors
Software description

Three-phase PMSM Pump Reference Safety Software Design User Guide, Rev. 0, 31 May 2022
User Guide 52 / 122

Figure 45. Single-shunt phase current reconstruction

4.4.1.2 Phase-current measurement calibration (M1.ADC.CALIB)

Goal: Remove unwanted bias from phase current measurement.

Execution: In the fast loop FL. Runtime calibration at all times, the startup calibration at the beginning of ALIGN state.

Details: Two phase current offset compensation methods are implemented:

• Runtime calibration: The phase current offset is measured at V7 (111) during each PWM period (third M1_ADC_PERIPH
sample each PWM period – see Section 4.4.1.1) and subtracted from both idcb_rc samples (the first and the second
M1_ADC_PERIPH sample each PWM period – see Section 4.4.1.1) during M1.ADC execution inf fast loop FL.

Startup calibration: Offsets are measured during ALIGN state of M1.SM for both idcb_rc samples (the first and the second
M1_ADC_PERIPH sample – see Section 4.4.1.1) for all SVM sectors. A 50% duty cycles are applied to Phase_A, Phase_B, and
Phase_C during this calibration so zero idcb_rc would be measured in ideal situation. This measured offsets are then subtracted
from idcb_rc samples during runtime and remain constant during the rest of operation (LO_SPD, MI_SPD, and HI_SPD states of
M1.SM). Correct offset to subtract is selected based on active SVM sector.

4.4.2 Estimations algorithms (M1.EST)
This section describes notable estimation algorithms of M1.SM module.

4.4.2.1 Alignment position generation (M1.EST.ALIGN)

Goal: Provide reliable initial electrical rotor position and speed.

NXP Semiconductors
Software description

Three-phase PMSM Pump Reference Safety Software Design User Guide, Rev. 0, 31 May 2022
User Guide 53 / 122

Execution: In fast-loop FL during ALIGN state of M1.SM.

Details: The two-step alignment algorithm is used to set SYS.E.MOT rotor into known 0° position no matter the previous rotor
position or speed and, therefore, ensure reliable motor startup. The stator voltage vector angle (electrical rotor position) is initially
set to 120° position and changed after 0.5Talign to 0° (see timing diagram in Figure 46). Unlike in case of single-step alignment,
this prevents misalignment in cases, when the rotor is ~180° from the forced position (little torque would be generated then).

Figure 46. Two-step alignment algorithm

4.4.2.2 Open-loop position and speed generation (M1.EST.LOSPD)

Goal: Provide electrical rotor position and speed at low speeds.

Execution: In fast-loop FL during LO_SPD state of M1.SM.

Details: A constant acceleration is applied to open-loop speed. The open loop position is generated using integrator (see block

diagram in Figure 47). The purpose of this algorithm is to accelerate the rotor until a minimal speed is reached when
position and speed observer M1.EST.HISPD can be started.

Figure 47. Open-loop position and speed generator

4.4.2.3 Position and speed merging (M1.EST.MISPD)

Goal: Merge M1.EST.LOSPD and M1.EST.HISPD position and speed estimations.

Execution: In fast-loop FL during MI_SPD state of M1.SM.

Details: The example of rotor speed during startup is shown in Figure 48. Both M1.EST.LOSPD and M1.EST.HISPD position
and speed estimators are active during MI_SPD state of M1.SM, however only M1.EST.LOSPD position is used by subsequent

algorithms. Once the is reached, it is assumed that M1.EST.HISPD output is reliable and transition to HI_SPD state
immediately occurs. Hence the merging is done by simply switching the used estimator.

NXP Semiconductors
Software description

Three-phase PMSM Pump Reference Safety Software Design User Guide, Rev. 0, 31 May 2022
User Guide 54 / 122

Figure 48. Position and speed merge

4.4.2.4 Position and speed observer (M1.EST.HISPD)

Goal: Provide electrical rotor position and speed at medium- to high-speeds.

Execution: In fast-loop FL during MI_SPD and HI_SPD state of M1.SM.

Details: The observer is implemented using the Advanced Motor-Control Library (AMCLIB) library routines of RTCESL (see
documentation at www.nxp.com/rtcesl). Observer is designed in synchronous reference frame, i.e. all observer quantities are DC
in steady state making the observer accuracy independent of rotor speed (see Figure 49).

Figure 49. Synchronous rotor frame

The block diagram of BEMF observer is in Figure 50. Because back-EMF term is not modeled, observer actually acts as a

back-EMF state filter. Saliency based back-EMF voltage is generated due to .

NXP Semiconductors
Software description

Three-phase PMSM Pump Reference Safety Software Design User Guide, Rev. 0, 31 May 2022
User Guide 55 / 122

http://www.nxp.com/rtcesl

Figure 50. BEMF observer block diagram

The rotor position and speed can be obtained using the phase-locked-loop mechanism (see Figure 51).

Figure 51. M1.EST.HISPD position and speed observer block diagram

4.4.2.5 Stator resistance estimation (M1.EST.REST)

Goal: Provide stator resistance estimation to support M1.DIAG.RES test.

Execution: In slow-loop SL during HI_SPD of M1.SM.

Details: Estimated stator resistance can provide information on current plausibility as well as motor winding heating and
DC-bus current measurement shunt resistance change. The BEMF-based Model Reference Adaptive System (MRAS) estimator
is used (see block diagram in Figure 52). [5] A dead-time compensation algorithm M1.ACT.DTCMOP is necessary, otherwise
the estimation will be highly inaccurate. Any other speed dependencies are compensated by the LUTR resistance bias and LUTω
speed gain constant compensation. These two tables are necessary to compensate for:

• Observer position estimation error.

• Current measurement distortion due to PWM shifting (see Section 4.4.5.1).

• Current and voltage scale errors

NXP Semiconductors
Software description

Three-phase PMSM Pump Reference Safety Software Design User Guide, Rev. 0, 31 May 2022
User Guide 56 / 122

Figure 52. Stator resistance estimation algorithm

4.4.3 Diagnostic algorithms
All diagnostic algorithms were described in Section 4.2.

4.4.4 Control algorithms
This section describes notable control algorithms of M1.CTRL module.

4.4.4.1 Idle control mode (M1.CTRL.IDLE)

Goal: Await valid command.

Execution:

• STOP – All M1_PWM_PERIPH outputs are disabled.

Command: none

Position feedback: none

Details: This is the only control mode, during which other control modes can be selected (M1.CTRL.SPEED_CL,
M1.CTRL.CURR_CL,…). Once the valid command (for given selected control mode M1.CTRL.SPEED_CL, M1.CTRL.CURR_CL,
…) is received, the M1SM_RequestStart request is generated for M1.SM. This control mode is also eventually entered when any
other control mode is changed during runtime.

4.4.4.2 Closed-loop speed control mode (M1.CTRL.SPEED_CL)

Goal: Control rotor speed.

Execution:

• ALIGN – Voltage controller M1.CTRL.VOLT in fast loop FL.

• LO_SPD, MI_SPD, HI_SPD - Current controller M1.CTRL.CURR in fast loop FL.

• HI_SPD – Speed controller M1.CTRL.SPD in slow loop SL.

Command: Required rotor speed from external pwm_in_mcu signal (APP.EXTCMD driver) or from FreeMASTER.

Position feedback: Estimated position and speed from M1.SM is used (closed-loop mode).

Details: The algorithm block diagram is shown in Figure 53. Direct and quadrature axis currents are controlled separately by two
PI controller (M1.CTRL.CURR), where direct axis current is kept zero and quadrature axis current setpoint is given by speed
controller (M1.CTRL.SPD). The speed command APP CMD Speed FOC is filtered by ramp algorithm. Default option used during
normal operation. If invalid command or control mode change is received by M1.CTRL when this control mode is actively running,
the rotor speed is slowed to a minimal speed and the M1SM_RequestStop request is generated for M1.SM.

NXP Semiconductors
Software description

Three-phase PMSM Pump Reference Safety Software Design User Guide, Rev. 0, 31 May 2022
User Guide 57 / 122

Figure 53. Speed FOC control mode (M1.CTRL.SPEED_CL)

4.4.4.3 Closed-loop current control mode (M1.CTRL.CURR_CL)

Goal: Control stator current (rotor torque).

Execution:

• ALIGN – Voltage controller M1.CTRL.VOLT in fast loop FL.

• LO_SPD, MI_SPD, HI_SPD - Current controller M1.CTRL.CURR in fast loop FL.

Commands: Required dq-axis currents from FreeMASTER (APP Cmd Curr Id, APP Cmd Curr Iq)

Position feedback: Estimated position and speed from M1.SM is used (closed-loop mode).

Details: The algorithm block diagram is shown in Figure 54. Direct and quadrature axis currents are controlled separately by two
PI controller (M1.CTRL.CURR), where APP Cmd Curr Id and APP Cmd Curr Iq setpoints are directly set by FMSTR. Unlike in the
case of speed closed loop FOC, the speed controller is not engaged in HI_SPD state (basically torque control). This torque-control
mode is present to help with algorithm tuning process. If invalid command or control mode change is received by M1.CTRL when
this control mode is actively running, the M1SM_RequestStop request is generated for M1.SM.

NXP Semiconductors
Software description

Three-phase PMSM Pump Reference Safety Software Design User Guide, Rev. 0, 31 May 2022
User Guide 58 / 122

Figure 54. Closed-loop current control mode (M1.CTRL.CURR_CL)

4.4.4.4 Open-loop Current Control Mode (M1.CTRL.CURR_OL)

Goal: Control stator current vector.

Execution:

• ALIGN, LO_SPD, MI_SPD, HI_SPD - Current controller M1.CTRL.OL in fast loop FL.

Commands: Required dq-axis currents (APP Cmd Curr Id, APP Cmd Curr Iq), current vector position (APP Cmd PosEl) and
frequency (APP Cmd Freq) from FreeMASTER (FMSTR).

Position feedback: Position for inverse Park is generated from local integrator (open-loop mode).

Details: The algorithm block diagram is shown in Figure 55. Direct and quadrature axis currents are controlled separately by two PI
controller (M1.CTRL.OL), where APP Cmd Curr Id and APP Cmd Curr Iq setpoints are directly set by FMSTR. The current vector
frequency command APP CMD Freq is filtered by ramp algorithm. The control mode is useful for current controller tuning. If invalid
command or control mode change is received by M1.CTRL when this control mode is actively running, the M1SM_RequestStop
request is generated for M1.SM.

NXP Semiconductors
Software description

Three-phase PMSM Pump Reference Safety Software Design User Guide, Rev. 0, 31 May 2022
User Guide 59 / 122

Figure 55. Open-loop current control mode (M1.CTRL.CURR_OL)

4.4.4.5 Scalar control mode (M1.CTRL.SCALAR_OL)

Goal: Control stator voltage frequency and amplitude.

Execution:

• ALIGN, LO_SPD, MI_SPD, HI_SPD -Voltage controller M1.CTRL.OL in fast loop FL.

Commands: Required frequency from FreeMASTER (APP Cmd Freq).

Position feedback: Position for inverse Park is generated from local integrator (open-loop mode).

Details: The algorithm block diagram is shown in Figure 56. The stator voltage amplitude is proportional to the required voltage
vector frequency. The voltage vector frequency command APP CMD Freq is filtered by ramp algorithm. Useful for estimator tuning
because the position and speed from M1.SM is still available (the M1.EST.HISPD is still running). If invalid command or control
mode change is received by M1.CTRL when this control mode is actively running, the M1SM_RequestStop request is generated
for M1.SM.

NXP Semiconductors
Software description

Three-phase PMSM Pump Reference Safety Software Design User Guide, Rev. 0, 31 May 2022
User Guide 60 / 122

Figure 56. Scalar control mode (M1.CTRL.SCALAR_OL)

4.4.4.6 Closed-loop voltage control mode (M1.CTRL.VOLT_OL)

Goal: Control stator voltage vector.

Execution:

• ALIGN, LO_SPD, MI_SPD, HI_SPD -Voltage controller M1.CTRL.OL in fast loop FL.

Commands: Required dq-axis voltages (APP Cmd Volt Ud, APP Cmd Volt Uq), current vector position (APP Cmd PosEl) and
frequency (APP Cmd Freq) from FreeMASTER (FMSTR).

Position feedback: Position for inverse Park is generated from local integrator (open-loop mode).

Details: The algorithm block diagram is shown in Figure 57. The voltage vector frequency command APP CMD Freq is filtered by
ramp algorithm. Useful for HW debugging and tuning. If invalid command or control mode change is received by M1.CTRL when
this control mode is actively running, the M1SM_RequestStop request is generated for M1.SM.

NXP Semiconductors
Software description

Three-phase PMSM Pump Reference Safety Software Design User Guide, Rev. 0, 31 May 2022
User Guide 61 / 122

Figure 57. Open-loop voltage control mode (M1.CTRL.VOLT_OL)

4.4.5 Actuator algorithms
This section describes notable actuation algorithms of M1.SM and M1.PWM modules.

4.4.5.1 Space vector modulation (M1.ACT.SVM)

Goal: Generate updates for M1_DMA_TAB_DLY table and duty cycles and shifts for M1.PWM driver so single-shunt current
reconstruction is possible.

Execution: In fast-loop FL during ALIGN, LO_SPD, MI_SPD, and HI_SPD of M1.SM.

Details: The SVM algorithm is based on Advanced Motor-Control Library (AMCLIB) library routine of RTCESL (see documentation
at www.nxp.com/rtcesl), with the modification of providing additional outputs (PWM shifts and idcb_rc sample locations). The
reason why a modified algorithm is necessary is the fact that idcb_rc samples cannot be taken when:

1. Voltage vector is crossing SVM sector border. Only one sample can be taken then (see Figure 59-1).

2. Modulation index is low. Sampling intervals are too short and none of current samples can be taken (see Figure 59-2).

There are many solutions to these problems available, but for this project the shifted-PWM method was used. It is based on
modification (shifting) of the PWM ON/OFF times, while preserving duty cycles (applied stator voltage is the same).

NXP Semiconductors
Software description

Three-phase PMSM Pump Reference Safety Software Design User Guide, Rev. 0, 31 May 2022
User Guide 62 / 122

http://www.nxp.com/rtcesl

Figure 58. Need for shifted PWM

Different shifting strategy is applied for both critical cases:

1. Passing Active Vector: See Figure 59-top for example of PWM shifting for this case. Generally, following steps are
followed:

• Freeze center edge

• Move one critical edge

• Used for higher modulation indexes

2. Low modulation Indexes: See Figure 59-bottom for example of PWM shifting for this case. Generally, following steps
are followed:

• Freeze center edge

• Move both side edges in opposite direction

• Used low modulation indexes

The right method is selected within M1.ACT.SVM algorithm and shifts are applied by M1.PWM driver.

NXP Semiconductors
Software description

Three-phase PMSM Pump Reference Safety Software Design User Guide, Rev. 0, 31 May 2022
User Guide 63 / 122

Figure 59. Cases for PWM shifting

4.4.5.2 DC-bus ripple compensation (M1.ACT.DCBCOMP)

Goal: Compensate required stator voltage for DC-bus voltage changes.

Execution: In fast-loop FL during ALIGN, LO_SPD, MI_SPD, and HI_SPD of M1.SM.

Details: The DC-bus compensation algorithm is implemented using the Advanced Motor-Control Library (AMCLIB) library routines
of RTCESL (see documentation at www.nxp.com/rtcesl).

4.4.5.3 Dead-time compensation (M1.ACT.DTCOMP)

Goal: Compensate required stator voltage for inverter non-linearities.

Execution: In fast-loop FL during ALIGN, LO_SPD, MI_SPD, and HI_SPD of M1.SM.

Details: Each inverter introduces the total error voltage , which is caused by the dead-time, current clamping effect, and

transistor voltage drop. The actual inverter output voltage is, therefore, lower than the voltage required by the . The error

voltage amplitude depends on the actual phase current . The example of the inverter error characteristic is shown in

Figure 60, it can be seen, that it is not linear. The look-up table (LUT) compensation algorithm, which adds the voltage

to voltage vector is used (see block diagram in Figure 61).

NXP Semiconductors
Software description

Three-phase PMSM Pump Reference Safety Software Design User Guide, Rev. 0, 31 May 2022
User Guide 64 / 122

http://www.nxp.com/rtcesl

Figure 60. Dead-time voltage example

Figure 61. Dead-time compensation algorithm block diagram

4.4.5.4 PWM startup algorithm (M1.PWM.START)

Goal: Perform the IPM boot-strap circuit charging.

Execution: In fast-loop FL at the beginning of ALIGN state of M1.SM.

Details: The PWM enablement requires charging of the bootstrap circuit. This results in spikes on the DC-bus current idcb_rc (see
example in Figure 62), which would, however, normally cause over-current condition. To perform safe PWM start even in case of
actual over-current fault, the M1_PWM_PERIPH periphery is temporarily configured into automatic fault clearing mode and the
M1_CMP_OC_PERIPH based HW over-current fault protection feature then disables the PWM during the first idcb_rc spikes (see
algorithm flowchart in Figure 63).

NXP Semiconductors
Software description

Three-phase PMSM Pump Reference Safety Software Design User Guide, Rev. 0, 31 May 2022
User Guide 65 / 122

Figure 62. PWM startup sequence example

Figure 63. PWM startup sequence flowchart

4.4.6 Application algorithms (APP)
This section describes notable application algorithms of APP and APP.EXTCMD modules.

4.4.6.1 External command measurement (APP.EXTCMD)

Goal: Get the pump speed command from isolated pwm_in_mcu input signal.

Execution: In the fast-loop FL and slow-loop SL as part of APP application tasks.

Details: The speed command (passed as APP CMD Speed FOC to M1.CTRL.SPEED_CL algorithm in BG) is encoded in the

pwm_in_mcu signal via duty cycle (see conversion chart example in Figure 64). The signal is only valid when its frequency
fctrl is in range 200 Hz to 2 kHz. The APP_EXTCMD_PERIPH FlexTimer periphery with double-capture feature is used to

determine PWM signal frequency and duty cycle . Only measured duty cycle in range is accepted and it

corresponds to . A hysteresis is added near the corner values

NXP Semiconductors
Software description

Three-phase PMSM Pump Reference Safety Software Design User Guide, Rev. 0, 31 May 2022
User Guide 66 / 122

and to prevent repeated unwanted M1SM_RequestStart/M1SM_RequestStop requests. A parallel safety mechanism is
implemented via PORT raising edge rate reading to perform plausibility check (see M1.DIAG.EXTCMD in Section 4.1.9).

Figure 64. The APP.EXTCMD speed command conversion

NXP Semiconductors
Software description

Three-phase PMSM Pump Reference Safety Software Design User Guide, Rev. 0, 31 May 2022
User Guide 67 / 122

Chapter 5
Build and run application
This chapter provides a guide on how to build and run the mc_pmsm_safe example application using the supported IDEs. The
mc_pmsm_safe example application was verified for the IAR Embedded Workbench IDE v9.10.2 and the MCUXpresso v11.4.0.

5.1 IAR Embedded Workbench IDE
When using IAR IDE, please follow these steps:

• Ensure that you done steps in chapter 2.3.

• Open IAR project file mc_pmsm_safe.eww in \pack_pmsm_safe_hvpmc3phlite\iar\

• Check the required safety tests settings in source/safety_cfg.h. It is recommended to disable flash test during debugging
as the SW breakpoints corrupt the CRC calculation. Also it is recommended to disable clock test during debugging as
LPTMR counter is still running. If you are not using external command PWM input, please disable M1.DIAG.EXTCMD test
(using FS_CFG_ENABLE_TST_EXTCMD), otherwise the application will neter a fault state.

Figure 65. The safety test configuration file

• Click to download and debug button, or press “Ctrl + D”.

• After code is built and downloaded run the program in debugger by clicking to go button.

• If you don't want debug code, stop debugging by clicking stop button, od press “Ctrl+Shift+D”. Then reset the board.
(Unplug and plug power source)

• Open pmsm_safe.pmp FreeMASTER project file and establish FreeMASTER communication according to following
sections.

NXP Semiconductors

Three-phase PMSM Pump Reference Safety Software Design User Guide, Rev. 0, 31 May 2022
User Guide 68 / 122

5.2 MCUXpresso IDE
When using MCUXpresso, please ensure that you done steps in Chapter 2.3, open MCUXpresso IDE, and switch to the main IDE.
You will then be able to import the example by completing these steps:

• Plug pack_pmsm_safe_hvpmc3phlite package in Windows explorer and drop it in MCUXpresso Installed SDKs tab.

• Click to Import SDK example(s)… button located in left bottom corner.

• In SDK Import Wizard select hvpmc3phlite and click to Next button.

• Then select demo_apps and mc_pmsm_safe and click to Finish button.

Figure 66. MCUXpresso IDE – SDK Import Wizard

• If the project is successfully imported, it will appear in Project Explorer.

Once the example was imported, you can build and run the application. To do so, please follow this guide:

• Select build configuration to release, click to project -> build configuration -> Set Active -> Release.

• Check the required safety tests settings in source/safety_cfg.h. It is recommended to disable flash test during debugging
as the SW breakpoints corrupt the CRC calculation. Also it is recommended to disable clock test during debugging
because LPTMR counter is still running while in debug. If you are not using external command PWM input, please disable
M1.DIAG.EXTCMD test (using FS_CFG_ENABLE_TST_EXTCMD), otherwise the application will enter a fault state.

• Click to build project button in left bottom corner.

• If the Flash test is disabled in source/safety_cfg.h, click to Debug button.

• If the Flash safety test is enabled, you have to download modified hvpmc3phlite_mc_pmsm_safe file with postfix “_crc” to
the target (hvpmc3phlite_mc_pmsm_safe_crc.hex). Please, click to GUI Flash Tool to do so (see Figure 67). Then click the
Workspace button and find hvpmc3phlite_mc_pmsm_safe_crc.hex in output folder (see Figure 68).

Figure 67. GUI Flash Tool

NXP Semiconductors
Build and run application

Three-phase PMSM Pump Reference Safety Software Design User Guide, Rev. 0, 31 May 2022
User Guide 69 / 122

Figure 68. Modified hvpmc3phlite_mc_pmsm_safe.hex file

• Click the run button and wait while the code is being downloaded. Then reset the board.

For more information about importing projects to the MCUXpresso IDE, see the MCUXpresso IDE - Importing MCUXpresso SDK
video (https://www.nxp.com/video/mcuxpresso-ide-importing-mcuxpresso-sdk:MCUXPRESSO-IDE-IMPORTING-SDK).

NXP Semiconductors
Build and run application

Three-phase PMSM Pump Reference Safety Software Design User Guide, Rev. 0, 31 May 2022
User Guide 70 / 122

https://www.nxp.com/video/mcuxpresso-ide-importing-mcuxpresso-sdk:MCUXPRESSO-IDE-IMPORTING-SDK

Chapter 6
Remote control using FreeMASTER
This section provides information about the tools and recommended procedures to control the PMSM application using
FreeMASTER. The application contains the embedded-side driver of the FreeMASTER real-time debug monitor and data
visualization tool for communication with the PC. It supports non-intrusive monitoring, as well as the modification of target
variables in real time, which is very useful for the algorithm tuning. Besides the target-side driver, the FreeMASTER tool requires
the installation of the PC application as well. You can download FreeMASTER 3.0 at www.nxp.com/freemaster. To run the
FreeMASTER application, double-click the pmsm_safe.pmp file located directly in the pack_pmsm_safe_hvpmc3phlite package.

6.1 Establishing FreeMASTER communication
The remote operation is provided by FreeMASTER via the USB interface. Perform the following steps to control a PMSM motor
using FreeMASTER:

1. Download the project from your chosen IDE to the MCU and run it (see Section 5).

2. Open the FreeMASTER file pmsm_safe.pmp.

3. Insert right symbol file (located in output folder). Click to Project -> Options -> MAP Files and chose right output file (the
file will differ depending on the IDE).

Figure 69. Default symbol file in FreeMASTER Project - > Options -> MAP Files

4. Go to Project -> Options -> Comm, click to Configure button and then to Search Address Now button

NXP Semiconductors

Three-phase PMSM Pump Reference Safety Software Design User Guide, Rev. 0, 31 May 2022
User Guide 71 / 122

http://www.nxp.com/freemaster

Figure 70. Configure button in FreeMASTER Project - > Options -> Comm

Figure 71. Search Address Now button in FreeMASTER Packet Driven Communication window

5. If the communication buffer address has been found, the following windows will appear

NXP Semiconductors
Remote control using FreeMASTER

Three-phase PMSM Pump Reference Safety Software Design User Guide, Rev. 0, 31 May 2022
User Guide 72 / 122

Figure 72. Address has been successfully found

6. Then you can click to Test Connection button. Connection should be verified. Click to OK and close settings windows
(OK).

7. Start communication by clicking to communication GO button or press “Ctrl + G”

Figure 73. FreeMASTER Go button

If the communication is established successfully, the FreeMASTER communication status in the bottom right-hand
corner changes from “Not connected” to “Packet Driven JTAG/BDM Communication Plug-in…”. Also you should see
values of variables in Variable Watch instead question marks.

8. If you rebuild and download the new code to the target, turn the FreeMASTER application off and on.

NXP Semiconductors
Remote control using FreeMASTER

Three-phase PMSM Pump Reference Safety Software Design User Guide, Rev. 0, 31 May 2022
User Guide 73 / 122

6.2 FreeMASTER project file description

Figure 74. Default FreeMASTER layout

The FreeMASTER window consists of:

1. Control Page – The main page of the project, which displays selected scopes and recorders.

2. Variable Watch - Set of variables corresponding to the active subblock. See Comment for description of each variable.
Some variables have read-only value, but some variables can be edited at runtime. To help the user with orientation,
the following color-coding was used:

• Bright red font - Writeable variables intended for control (e.g. the motor required speed, required currents,…).

• Yellow background - Writeable variables intended for configuration (e.g. control fault thresholds, estimator
parameters,…).

• Blue background - variables are read only and serve as information to user.

• Dark red font - Used for variables showing pending and captured fault.

Project Tree - Shows the PMSM FOC Sensorless FreeMASTER project organization into subblocks, scopes, and recorders. The
subblock were created according to software division described in Section 4.3. Every subblock has several scopes and recorders
with predefined variables corresponding to its type. Every subblock has also its own variable watch.

6.3 PMSM FOC sensorless project
Figure below shows the "Variable Watch" window content of the "PMSM FOC Sensorless" root item in the "Project Tree"
window. Besides the set of basic control variables, it also contains application information. See figure below for description of
notable variables.

NXP Semiconductors
Remote control using FreeMASTER

Three-phase PMSM Pump Reference Safety Software Design User Guide, Rev. 0, 31 May 2022
User Guide 74 / 122

Figure 75. FreeMASTER PMSM FOC Sensorless subblock

The PMSM FOC Sensorless project is organized into the following subblocks:

• MCU Safety Diagnostics: Variable watch contains status of actual safety tests. See more details about implemented safety
algorithms in Section 4.1. See figure below for description of notable variables.

NXP Semiconductors
Remote control using FreeMASTER

Three-phase PMSM Pump Reference Safety Software Design User Guide, Rev. 0, 31 May 2022
User Guide 75 / 122

Figure 76. FreeMASTER MCU Safety Diagnostics subblock

• Motor-Control: This subblock groups motor-control-related scopes, recorders, and "Variable Watch" windows based on the
affiliation to the measurement (Meas), estimation (EST), diagnostics (DIAG), control (FOC), and actuator (ACT) parts of
the motor-control software (see Section 4.3). See figure below for description of notable variables.

NXP Semiconductors
Remote control using FreeMASTER

Three-phase PMSM Pump Reference Safety Software Design User Guide, Rev. 0, 31 May 2022
User Guide 76 / 122

Figure 77. FreeMASTER Motor-Control subblock

The Motor-Control subblock is further divided:

• Measure (Meas) - Variable watch contains all ADC measured variables like phase currents, voltages, temperatures,
and many others. The measurement filters can be configured here as well. See figure below for description of notable
variables.

NXP Semiconductors
Remote control using FreeMASTER

Three-phase PMSM Pump Reference Safety Software Design User Guide, Rev. 0, 31 May 2022
User Guide 77 / 122

Figure 78. FreeMASTER Measure subblock

• Estimate (EST) – This variable watch contains variables needed for estimation of position and speed (mainly for the
tracking observer and BEMF observer). Multiple algorithms are implemented (see Section 4.4.5), each used in the given
ALIGN, LOSPD, MISPD, and HISPD state-machine states (matches the zero-, low-, medium-, and high-speed regions).
See figure below for description of notable variables.

NXP Semiconductors
Remote control using FreeMASTER

Three-phase PMSM Pump Reference Safety Software Design User Guide, Rev. 0, 31 May 2022
User Guide 78 / 122

Figure 79. FreeMASTER Estimate subblock

• Diagnose Faults (DIAG) - Variable watch consists of motor-control diagnostics and all fault thresholds (e.g. over-voltage,
under-voltage, over-current,…). See more details about implemented motor control diagnostic algorithms in Section 4.2.
See figure below for description of notable variables.

NXP Semiconductors
Remote control using FreeMASTER

Three-phase PMSM Pump Reference Safety Software Design User Guide, Rev. 0, 31 May 2022
User Guide 79 / 122

Figure 80. FreeMASTER Diagnose Faults subblock

• Control (FOC) - Variable watch contains variables needed for running the motor using with implemented control
techniques (see Section 4.4.4). Multiple algorithms are implemented and used based on the state-machine state and
the control mode selected. See figure below for description of notable variables.

NXP Semiconductors
Remote control using FreeMASTER

Three-phase PMSM Pump Reference Safety Software Design User Guide, Rev. 0, 31 May 2022
User Guide 80 / 122

Figure 81. FreeMASTER Control (FOC) subblock

• Open-Loop Control - Besides the default Field-Oriented Control (FOC), which allows for fully decoupled speed and torque
control, other and simpler control modes are implemented as well (scalar control, open-loop current control, and so
on) to allow for easier debugging and tuning. See Section 4.4.4 for more information. To control and configure these
algorithms, see the Variable Watch window of the "Open-Loop Control" subblock. See figure below for description of
notable variables.

NXP Semiconductors
Remote control using FreeMASTER

Three-phase PMSM Pump Reference Safety Software Design User Guide, Rev. 0, 31 May 2022
User Guide 81 / 122

Figure 82. FreeMASTER Open-Loop Control subblock

• PWM Generation (ACT) – This subblock contains all variables related to the PWM generation (actuator). For more details
about implemented algorithms, see Section 4.4.5. See figure below for description of notable variables.

NXP Semiconductors
Remote control using FreeMASTER

Three-phase PMSM Pump Reference Safety Software Design User Guide, Rev. 0, 31 May 2022
User Guide 82 / 122

Figure 83. FreeMASTER PWM Generation subblock

• PWM input command – Variable watch contains FreeMASTER variables related to the measurement of external PWM
command frequency and duty cycle. See more details in Section 4.4.6.1. See figure below for description of notable
variables.

NXP Semiconductors
Remote control using FreeMASTER

Three-phase PMSM Pump Reference Safety Software Design User Guide, Rev. 0, 31 May 2022
User Guide 83 / 122

Figure 84. FreeMASTER PWM Input Command subblock

6.4 Control application
Application is controlled by writing values to variables in variable watch of the FreeMASTER project. To run application in chosen
control method follow next sections. To run the motor, no fault must be pending. To change fault settings, switch the FreeMASTER
Project Tree to Diagnose Faults subblock and perform required changes. To disable functional safety faults rewrite enable/disable
macros in safety_cfg.h. (e.g. use FS_CFG_ENABLE_TST_FLASH to disable flash test or FS_CFG_ENABLE_TST_CLOCK to disable clock
test). To disable motor control fault checks, modify enable/disable macros in m1_pmsm_appconfig.h.

6.4.1 Run motor in open-loop scalar control
Scalar control is very basic form of motor control that is using non-vector approach scheme. Main equations of the motor in time
domain are below:

In steady state regime, the flux linkage variation is zero, and for further simplification we are going to assume the stator winding
resistance is neglectable. Taking into consideration these simplifications and the flux linkage equation then the equations become:

At this point we can transform the electric speed in frequency and rewrite the equation as a ratio of V/F:

NXP Semiconductors
Remote control using FreeMASTER

Three-phase PMSM Pump Reference Safety Software Design User Guide, Rev. 0, 31 May 2022
User Guide 84 / 122

In V/F scalar control method the frequency of the stator magnetic flux is set according with the desired synchronous rotor speed
while the magnitude of the stator voltage is adjusted to keep the ratio between them constant. No control over the voltage or the
current vector angles is utilized, hence the name scalar control.

The V/F ratio is calculated from the nominal values of the PMSM voltage and frequency parameters. By maintaining a constant V/F
ratio between the amplitude and frequency of three-phase voltage waveforms, then the stator flux of the PMSM can be maintained
relatively constant in steady state.

The V/F scalar control is the most common control strategy used for induction motor drives. In case of PMSM, the V/F scalar
control is a good alternative in applications where good dynamic performance is not required (e.g. HVAC, fans, pumps or blowers).
In such cases the V/F scalar control is performed without the need of a position/speed sensor.

By using V/F scalar control there is no need for high capability CPU as in the case of FOC, but keep in mind that this kind of
simplicity also comes with some disadvantages:

• Instability of the system after exceeding a certain applied frequency

• Low dynamic performance, which limits the use of this control method

• Poor fault protection against stall detection and over-currents

Open-loop V/F scalar control is used in applications where system dynamic response is not a concern. For such use
cases, the frequency is determined based on the desired speed and the assumption that the rotor will ultimately follow the
synchronous speed.

To run motor in open-loop scalar control follow these steps:

1. Switch FreeMASTER Project Tree to Control (FOC) → Open-Loop Control

2. In FreeMASTER Variable Watch select scalar control technique OL SCALAR in APP Control Mode variable.

3. Set required scalar control frequency to App Cmd Freq variable (e.g. example 25 Hz). If the value is valid, APP Qty
Cmd Status variable shows VALID.

4. Select RUN in APP Command variable.

5. The motor should run in scalar control. You can observe electrical position, stator voltage, phase currents and next in
the relevant scopes and recorders. If some fault is pending or captured, you can modified fault thresholds in Diagnose
Faults (DIAG) subblock of Project Tree.

Figure 85. Scalar Control mode variables

NXP Semiconductors
Remote control using FreeMASTER

Three-phase PMSM Pump Reference Safety Software Design User Guide, Rev. 0, 31 May 2022
User Guide 85 / 122

6.4.2 Run motor in open-loop current control mode variables
The current controllers are engaged in this mode. Set the required amplitude of dq-axis currents, the current vector rotation
frequency, and the position bias. The BEMF and Tracking observers are running in the background, so this control mode can
be used for the parameter tuning of observers and current controllers. To enable the Open Loop Current control, perform the
following steps:

1. Switch FreeMASTER Project Tree to Control (FOC) → Open-Loop Control

2. In FreeMASTER Variable Watch select scalar control technique OL CURRENT in APP Control Mode variable.

3. Set the required amplitude of the dq-axis currents (APP Cmd Curr Id and APP Cmd Curr Iq variables), the current
vector open-loop frequency (APP Cmd Freq variable), and the position bias (APP Cmd PosEl variable).. If the value is
valid, APP Qty Cmd Status variable shows VALID.

4. Select RUN in APP Command variable.

6.4.3 Run motor in open-loop voltage control
The current controllers are disabled in this mode and the stator voltage is controlled directly. Set the required amplitude of dq-axis
voltages, the voltage vector rotation frequency, and the position bias. The BEMF and tracking observers are running in the
background, so this control mode can be used for parameter tuning of observers and basic debugging for the PWM generation.
To enable the Open Loop Voltage control, perform the following steps:

1. Switch FreeMASTER Project Tree to Control (FOC) → Open-Loop Control

2. In FreeMASTER Variable Watch select scalar control technique OL VOLTAGE in APP Control Mode variable.

3. Set the required amplitude of dq-axis voltages (APP Cmd Volt Ud and APP Cmd Volt Uq variables), the voltage vector
open-loop frequency (APP Cmd Freq variable), and the position bias (APP Cmd PosEl variable). If the value is valid,
APP Qty Cmd Status variable shows VALID.

4. Select RUN in APP Command variable.

6.4.4 Run motor in close-loop current (torque) FOC
High-performance motor control is characterized by smooth rotation over the entire speed range of the motor, full torque control
at zero speed, and fast acceleration/deceleration. To achieve such control, Field Oriented Control is used for PMSM motors.
The FOC concept is based on an efficient torque control requirement, which is essential for achieving a high control dynamic.
Analogous to standard DC machines, AC machines develop maximal torque when the armature current vector is perpendicular
to the flux linkage vector. Therefore, if only the fundamental harmonic of stator magnetomotive force is considered, the torque Te
developed by an AC machine, in vector notation, is given by

where pp is the number of motor pole-pairs, is stator current vector and ψs represents vector of the

stator flux. Constant 3/2 indicates a non-power invariant transformation form.

In instances of DC machines, the requirement to have the rotor flux vector perpendicular to the stator

current vector is satisfied by the mechanical commutator. Because there is no such mechanical

commutator in PMSM, the functionality of the commutator has to be substituted electrically by enhanced current control. This
reveal that stator current vector should be oriented in such a way that component necessary for magnetizing of the machine (flux
component) shall be isolated from the torque producing component. This can be accomplished by decomposing the current vector
into two components projected in the reference frame, often called the dq frame that rotates synchronously with the rotor. It has
become a standard to position the dq-axis reference frame such that the d-axis is aligned with the position of the rotor lux vector, so
that the current in the d-axis will alter the amplitude of the rotor flux linkage vector. The reference frame position must be updated
so that the d-axis should be always aligned with the rotor flux axis.

Because the rotor flux axis is locked to the rotor position, when using PMSM machines, a mechanical

NXP Semiconductors
Remote control using FreeMASTER

Three-phase PMSM Pump Reference Safety Software Design User Guide, Rev. 0, 31 May 2022
User Guide 86 / 122

position transducer or position observer can be utilized to measure the rotor position and the position of

the rotor flux axis. When the reference frame phase is set such that the d-axis is aligned with the rotor

flux axis, the current in the q-axis represents solely the torque producing current component.

What further resulted from setting the reference frame speed to be synchronous with the rotor flux axis

speed is that both d-axis and q-axis current components are DC values. This implies utilization of simple

current controllers to control the demanded torque and magnetizing flux of the machine, therefore simplifying the control structure
design. The torque control method is generic and may be applicable to all sort of means of transportation: trains, buses, bikes,
scooters and modern day cars.

To run motor in close-loop current control follow these steps:

1. Switch FreeMASTER Project Tree to Control (FOC).

2. In FreeMASTER Variable Watch select current control technique CL CURRENT FOC in APP Control Mode variable.

3. Set required current in q-axis to APP Cmd Curr Iq variable (e.g. 0.05 A). If the value is valid, APP Qty Cmd Status
variable shows VALID.

4. Select RUN in APP Command variable.

5. The motor should run in close-loop current control. You can observe electrical position, stator voltage, phase currents,
speed and next in the relevant scopes and recorders. If some fault is pending or captured, you can modified fault
thresholds in Diagnose Faults (DIAG) subblock of the Project Tree.

Figure 86. Current FOC control mode variables

6.4.5 Run motor in sensorless speed FOC
To run motor in sensorless speed FOC we need add to the current (torque) control one more PI controller. Its output is required
current. Input to controller is difference between required speed (set by user) and actual rotor speed. In sensorless mode is the
actual rotor speed and position computed using back-EMF observer.

Back-EMF observer provides only relative position. To get absolute position, initial position must be known. Therefore application
uses mechanical rotor alignment when the rotor is moved from unknown to known position applying DC voltage.

The alignment algorithm applies DC voltage to d-axis resulting full DC voltage applied to phase A and negative half of the DC
voltage applied to phase B, C for a certain period. This will cause the rotor to move to "align" position, where stator and rotor fluxes
are aligned. The rotor position in which the rotor stabilizes after applying DC voltage is set as zero position. Motor is ready to
produce full startup torque once the rotor is properly aligned.

Application in sensorless mode must start with open loop start-up sequence to move the motor up to a speed value where the
observer provides sufficiently accurate speed and position estimations. As soon as the observer provides appropriate estimates,
application transits to closed-loop mode, when the rotor speed and position calculation is based on the estimation of a BEMF in the
stationary reference frame. Back-EMF observer is as a part of the NXP’s RTCESL (see documentation at www.nxp.com/rtcesl).

To run motor in sensorless speed FOC control follow these steps:

NXP Semiconductors
Remote control using FreeMASTER

Three-phase PMSM Pump Reference Safety Software Design User Guide, Rev. 0, 31 May 2022
User Guide 87 / 122

http://www.nxp.com/rtcesl

1. Switch FreeMASTER Project Tree to Control (FOC).

2. In FreeMASTER Variable Watch select speed FOC control technique CL SPEED FOC in APP Control Mode variable.

3. Set required speed to APP Cmd Speed FOC variable. For example 500rpm. If the value is valid, APP Qty Cmd Status
variable shows VALID.

4. Select RUN in APP Command variable.

5. The motor should run in sensorless speed control. You can observe electrical position, stator voltage, phase currents,
speed and next in the relevant scopes and recorders. If some fault is pending or captured, you can modified fault
thresholds in Diagnose Faults (DIAG) Project Tree.

Figure 87. Speed FOC control mode variables

6.4.5.1 Run motor in speed FOC using external PWM command

To run motor in sensorless speed FOC control using external PWM command follow these steps:

1. Switch FreeMASTER Project Tree to Control (FOC).

2. In FreeMASTER Variable Watch select speed control technique CL SPEED EXT in APP Control Mode variable.

3. Apply the control PWM to external command PWM input with duty cycle from 10 % to 90 % with base frequency from
200 Hz to 2 kHz.

4. Check PWM input command in PWM Input Command subblock of Project Tree in Speed Command scope. If the input
frequency is valid, the APP Qty Cmd Status variable shows VALID.

5. Select RUN in APP Command variable.

The motor should run in sensorless speed control. You can observe electrical position, stator voltage, phase currents, speed and
next in the relevant scopes and recorders. If some fault is pending or captured, you can modified fault thresholds in Diagnose
Faults (DIAG) in the Project Tree.

NXP Semiconductors
Remote control using FreeMASTER

Three-phase PMSM Pump Reference Safety Software Design User Guide, Rev. 0, 31 May 2022
User Guide 88 / 122

Chapter 7
Project files and IDE workspace structure
All the necessary files are included in one package, which simplifies the distribution and decreases the size of the final package.
The directory structure of this package is simple, easy to use, and organized in a logical manner. The folder structure used in the
IDE is different from the structure of the PMSM package installation, but it uses the same files. The different organization is chosen
due to a better manipulation with folders and files in workplaces and due to the possibility to add or remove files and directories.
The pack_pmsm_safe_hvpmc3phlite package includes mc_pmsm_safe project, all available functions and routines, scalar and
vector control of the motor and the FreeMASTER project file.

7.1 Directory structure
The directory tree of the pack_pmsm_safe_hvpmc3phlite package is shown in figure below.

Figure 88. Directory structure

The package pack_pmsm_safe_hvpmc3phlite contains these folders and files:

• Folder mcux – folder containing project files for the MCUXpresso IDE.

• Folder iar – folder containing project files including mc_pmsm_safe.eww for the IAR Embedded Workbench IDE.

• Folder middleware/motor_control/pmsm/pmsm_safe – contains main PMSM motor-control functions and drivers:

— Folder app_drivers contains the source and header files used to initialize and run motor application using external
PWM command.

— Folder mc_drivers contains the source and header files used to initialize and run motor-control applications.

— Folder mc_state_machine contains the software routines that are executed when the application is in a particular
state or state transition. In this folder are located also files with control methods.

NXP Semiconductors

Three-phase PMSM Pump Reference Safety Software Design User Guide, Rev. 0, 31 May 2022
User Guide 89 / 122

— Folder safety_routines contains the safety software routines.

• Folder periph_init consist from initialization files:

— app_periph_init.c and .h – The files contains initialization of the FTM1 periphery for PWM input control signal
measurement.

— m1_periph_init.c and .h - The files contains initialization of motor control peripherals.

— safety_periph_init.c and .h – The files contains clock and pins initialization.

• Folder source contains these files:

— m1_pmsm_appconfig.h – contains the definitions of constants for the application control processes, parameters of
the motor and regulators, and the constants for other vector-control-related algorithms.

— main.c and h – contains the basic application initialization, subroutines for accessing the MCU peripherals, and
interrupt service routines. The FreeMASTER communication is processed in the background infinite loop.

— application.c and h – contains the definitions of control variables and structures.

— freemaster_cfg.h – FreeMASTER configuration file

— hardware_cfg.h – The hardware configuration file containing hardware setup like ISRs, clocks, and pin-muxing.

— safety_cfg.h – The safety configuration file containing safety tests setup.

NXP Semiconductors
Project files and IDE workspace structure

Three-phase PMSM Pump Reference Safety Software Design User Guide, Rev. 0, 31 May 2022
User Guide 90 / 122

Chapter 8
Identifying parameters of user motor
Because the model-based control methods of the PMSM drives are the most effective and usable, obtaining an accurate model
of a motor is an important part of the drive design and control. For the implemented FOC algorithms, it is necessary to know
the value of the stator resistance Rs, direct inductance Ld, quadrature inductance Lq, and BEMF constant Ke. These motor
parameters are used for computing PI controllers, Tracking observer and BEMF observer parameters. The parameters are stored
in m1_pmsm_appconfig.h.

Identification of parameters of the user‘s motor is possible by several ways, which are described in the following sections.

8.1 Parameter identification using SDK example and MCAT
• The motor identification software is available just for floating point cores. For example, the NXP HVP-KV31F with M4F

core and HVP-MC3PH high-voltage platform is a suitable platform. Download SDK example for HVP-KV31F (2.9.0).

• Follow Motor Identification chapter 9.4 in SDK example documentation (MCUXpresso SDK 3-Phase PMSM Control with
IEC60730 Safety).

• Copy measured and computed parameters to m1_pmsm_appconfig.h.

Is possible use obsolete motor identification using MCAT in SDK example for HVP-KV11Z (2.10.0). Follow SDK
example documentation MCUXpresso SDK 3-Phase PMSM Control(KV) (rev3).

 NOTE

Motor control application tool (MCAT) from SDK example is possible use also without board, that mean offline.
This option is favorable if the motor parameters are known and we need just compute control parameters of PI
controllers, observers and filters.

 NOTE

8.2 Parameter identification using manual measurement
First, follow instructions in document PMSM Electrical Parameters Measurement to perform the measurements. To compute and
update the parameters in the software, use computing formulas described in Section 8.3.

8.3 Computing of control parameters
This approach assumes that the machine parameters were already obtained (e.g. from manufacturers documentation). To
completely configure the motor control application, the user must first summarize all the configured parameters (see Section
8.3.1 for summary example) and then calculate correct values, which shall then be entered into configuration defines in
m1_pmsm_appconfig.h (see Section 8.3.2 for the calculation script).

8.3.1 Example summary of configuration parameters
%Motor parameters

pp = 3; %[-] Motor number of pole-pairs

Rs = 55.94; %[Ohm] Stator phase resistance

Ld = 0.179701; %[H] Stator direct inductance

Lq = 0.184883; %[H] Stator quadrature inductance

J = 0.0000016; %[kg.m2] Drive inertia

Iph_nom = 0.45; %[A] Nominal motor current

Uph_nom = 250; %[V] Nominal motor voltage

NXP Semiconductors

Three-phase PMSM Pump Reference Safety Software Design User Guide, Rev. 0, 31 May 2022
User Guide 91 / 122

https://mcuxpresso.nxp.com/en/builder?hw=HVP-KV31F120M&rel=435
https://www.nxp.com/docs/en/user-guide/MCUXSDK3PPMSMCWSUG.pdf
https://www.nxp.com/docs/en/user-guide/MCUXSDK3PPMSMCWSUG.pdf
https://www.nxp.com/doc/AN4642
https://mcuxpresso.nxp.com/en/builder?hw=HVP-KV11Z75M
https://www.nxp.com/docs/en/user-guide/3PPMSMCKVUG_rev3.pdf
https://www.nxp.com/doc/AN4680

N_nom = 4400; %[rpm] Nominal motor speed

%Hardware scales

I_max = 1.65; %[A] Current sensing HW scale

U_DCB_max = 433; %[V] DC-bus voltage sensing HW scale

%Fault limits

U_DCB_trip = 346.4; %[V] DC-bus braking resistor threshold

U_DCB_under = 173.2; %[V] DC-bus under voltage fault threshold

U_DCB_over = 346.4; %[V] DC-bus over voltage fault threshold

N_over = 4180; %[rpm] Over speed fault threshold

N_min = 400; %[rpm] Minimal closed loop speed

E_block = 7; %[V] Blocked rotor detection BEMF voltage level

Scalar_Uq_min = 4; %[V] Scalar control voltage bias

%Application Scales

N_max = 4400; %[rpm] Application speed scale

E_max = 50; %[V] FOC BEMF maximum limit

kt = 0.01217; %[Nm/A] Torque constant

%Alignment

Align_voltage = 6; %[V] Voltage applied on d-axis for mechanical rotor alignment

Align_duration = 0.8; %[sec] Time of rotor alignment

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Current Control Loop - CL %

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%Loop Parameters

CL_SampleTime = 0.0001; %[sec] Current control loop sampling period

CL_F0 = 280; %[Hz] Current control loop bandwidth

CL_Ksi = 1; %[-] Current control loop attenuation

%Current PI Controller Limits

CL_OutputLimit = 90; %[%] Limit of current loop in percentage of DC-bus voltage

%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Speed Control Loop - SL %

%%%%%%%%%%%%%%%%%%%%%%%%%%%

%Loop Parameters

SL_SampleTime = 0.001; %[sec] Speed control loop sampling period

SL_F0 = 10; %[Hz] Speed control loop bandwidth

SL_Ksi = 1; %[-] Speed control loop attenuation

%Speed Ramp

SL_IncUp = 5000; %[rpm/sec] Speed ramp increment up

SL_IncDown = 5000; %[rpm/sec] Speed ramp increment down

NXP Semiconductors
Identifying parameters of user motor

Three-phase PMSM Pump Reference Safety Software Design User Guide, Rev. 0, 31 May 2022
User Guide 92 / 122

%Actual Speed Filter

SL_CutOffFreq = 100; %[Hz] Cut-off frequency of IIR speed measurement filter

%Speed PI Controller Limits

SL_UpperLimit = 2; %[A] Upper limit of speed loop

SL_LowerLimit = -2; %[A] Lower limit of speed loop

% Speed PI Controller Constants (manual settings)

SL_Kp = 0.0008; %[-] Speed controller proportional constant in time domain

SL_Ki = 0.0009; %[-] Speed controller integration constant in time domain

Manual_Constant_Tuning = 0; %[-] Switch between manual or automatic speed constant tunning

%%%%%%%%%%%%%%%%%%%%%%

% Sensorless - SNSLS %

%%%%%%%%%%%%%%%%%%%%%%

%BEMF Observer Parameters

SNSLS_BemfObsrvF0 = 280; %[Hz] BEMF DQ observer bandwidth

SNSLS_BemfObsrvKsi = 1; %[-] BEMF DQ observer attenuation

%Tracking Observer Parameters

SNSLS_TrackObsrvF0 = 25; %[Hz] Tracking observer bandwidth

SNSLS_TrackObsrvKsi = 1; %[-] Tracking observer attenuation

%Open Loop Start-up Parameters

SNSLS_StartupRamp = 1500; %[rpm/sec] Open loop start-up ramp increment up

SNSLS_StartupCurrent = 0.2; %[A] Open loop start-up current

SNSLS_MergingSpeed = 500; %[rpm] Speed where algorithm switches from open to closed loop

SNSLS_MergingCoeff = 100; %[%] Position weight merging coefficient

%Base constants - do not modify

k_factor = 100; %Scalar factor

UdcbIIRf0 = 100;

IIRxCoefsScaleType = 8;

UmaxCoeff=1.732050807568877;

DiscMethodFactor = 2.0; %Trapezoidal

ERRmax = 1;

Wmax = 2*pi*pp*N_max/60;

E_block_per = 2000;

CALIB_T=0.2;

FAULT_T=3;

FREEWHEEL_T=1;

8.3.2 Macro calculation procedure
M1_MOTOR_PP = pp

NXP Semiconductors
Identifying parameters of user motor

Three-phase PMSM Pump Reference Safety Software Design User Guide, Rev. 0, 31 May 2022
User Guide 93 / 122

M1_I_MAX = I_max

M1_U_DCB_MAX = U_DCB_max

M1_U_MAX = Uph_nom

M1_N_MAX = N_max

FREQ_MAX = N_max/60*pp

M1_E_MAX = E_max

M1_U_DCB_TRIP = U_DCB_trip/U_DCB_max

M1_U_DCB_UNDERVOLTAGE = U_DCB_under/U_DCB_max

M1_U_DCB_OVERVOLTAGE = U_DCB_over/U_DCB_max

M1_N_OVERSPEED = N_over/N_max

M1_N_MIN = N_min/N_max

M1_N_NOM = N_nom/N_max

M1_I_PH_NOM = Iph_nom/I_max

M1_UDCB_IIR_B0 = 4/IIRxCoefsScaleType * (2 * pi * UdcbIIRf0 * CL_SampleTime)

/ (2 + (2 * pi * UdcbIIRf0 * CL_SampleTime))

M1_UDCB_IIR_B1 = 4/IIRxCoefsScaleType * (2 * pi * UdcbIIRf0 * CL_SampleTime)

/ (2 + (2 * pi * UdcbIIRf0 * CL_SampleTime))

M1_UDCB_IIR_A1 = 4/IIRxCoefsScaleType * (-(2 * pi * UdcbIIRf0 * CL_SampleTime - 2)

/ (2 + (2 * pi * UdcbIIRf0 * CL_SampleTime)))

M1_ALIGN_DURATION = Align_duration/CL_SampleTime

M1_ALIGN_VOLTAGE = Align_voltage/Uph_nom

M1_FAULT_DURATION = FAULT_T/SL_SampleTime

M1_FREEWHEEL_DURATION = FREEWHEEL_T/SL_SampleTime

M1_E_BLOCK_TRH = E_block/E_max

M1_E_BLOCK_PER = E_block_per

M1_CLOOP_SAMPLE_TIME = CL_SampleTime

M1_CLOOP_LIMIT = CL_OutputLimit/100

M1_D_KP_GAIN = ((2 * CL_Ksi * 2 * pi * CL_F0 * Ld) - Rs) * I_max/Uph_nom

M1_D_KI_GAIN = ((2 * pi * CL_F0)^2 * Ld * CL_SampleTime / DiscMethodFactor)

* I_max/Uph_nom

M1_Q_KP_GAIN = ((2 * CL_Ksi * 2 * pi * CL_F0 * Lq) - Rs) * I_max/Uph_nom

M1_Q_KI_GAIN = ((2 * pi * CL_F0)^2 * Lq * CL_SampleTime / DiscMethodFactor)

* I_max/Uph_nom

M1_SLOOP_SAMPLE_TIME = SL_SampleTime

if(Manual_Constant_Tuning == 1)

M1_SPEED_PI_PROP_GAIN = SL_Kp * (2 * pi* pp * N_max)/(60 * I_max)

M1_SPEED_PI_INTEG_GAIN = SL_Ki * SL_SampleTime * (2 * pi* pp * N_max)

/(60 * I_max)

NXP Semiconductors
Identifying parameters of user motor

Three-phase PMSM Pump Reference Safety Software Design User Guide, Rev. 0, 31 May 2022
User Guide 94 / 122

else

M1_SPEED_PI_PROP_GAIN = (2 * pi / 60)*(4 * SL_Ksi * pi * SL_F0 * J / kt)

* pp * N_max/I_max

M1_SPEED_PI_INTEG_GAIN= (2 * pi / 60)*((2 * pi * SL_F0)^2 * SL_SampleTime

* J / kt) * pp * N_max/I_max

end

M1_SPEED_LOOP_HIGH_LIMIT = SL_UpperLimit/I_max

M1_SPEED_LOOP_LOW_LIMIT = SL_LowerLimit/I_max

M1_SPEED_RAMP_UP = SL_IncUp*SL_SampleTime/N_max

M1_SPEED_RAMP_DOWN = SL_IncDown*SL_SampleTime/N_max

M1_SPEED_IIR_B0 = 4/IIRxCoefsScaleType * (2*pi*SL_CutOffFreq*SL_SampleTime)

/(2+(2*pi*SL_CutOffFreq*SL_SampleTime))

M1_SPEED_IIR_B1 = 4/IIRxCoefsScaleType * (2*pi*SL_CutOffFreq*SL_SampleTime)

/(2+(2*pi*SL_CutOffFreq*SL_SampleTime))

M1_SPEED_IIR_A1 = -4/IIRxCoefsScaleType * (2*pi*SL_CutOffFreq*SL_SampleTime

-2)/(2+(2*pi*SL_CutOffFreq*SL_SampleTime))

M1_I_SCALE = (Ld / (Ld + CL_SampleTime * Rs))

M1_U_SCALE = (CL_SampleTime / (Ld + CL_SampleTime * Rs)) * Uph_nom/I_max

M1_E_SCALE = (CL_SampleTime / (Ld + CL_SampleTime * Rs)) * E_max/I_max

M1_WI_SCALE = (2 * pi / 60)*(Lq * CL_SampleTime / (Ld + CL_SampleTime * Rs))

* pp * N_max

M1_BEMF_DQ_KP_GAIN = ((2 * SNSLS_BemfObsrvKsi * 2 * pi * SNSLS_BemfObsrvF0 *

Ld - Rs)) * I_max/E_max

M1_BEMF_DQ_KI_GAIN = (Ld * (2 * pi * SNSLS_BemfObsrvF0)^ 2 * CL_SampleTime)

* I_max/E_max

TO_Kps = 2*SNSLS_TrackObsrvKsi*2*pi*SNSLS_TrackObsrvF0*(ERRmax/Wmax);

TO_Kis = ((2*pi*SNSLS_TrackObsrvF0)^2)*CL_SampleTime*(ERRmax/Wmax);

TO_Kpz = TO_Kps;

TO_Kiz = TO_Kis*CL_SampleTime;

TO_Kpz_f = TO_Kpz*(ERRmax/Wmax);

TO_Kiz_f = TO_Kiz*(ERRmax/Wmax);

if(TO_Kpz_f<1)

M1_TO_KP_SHIFT = -ceil(log(abs(1/TO_Kpz_f))/log(2)-1)

else

M1_TO_KP_SHIFT = ceil(log(abs(TO_Kpz_f))/log(2))

end

M1_TO_KP_GAIN = round(TO_Kpz_f*2^(-M1_TO_KP_SHIFT)*1000000000000)/1000000000000

if(TO_Kiz_f<1)

NXP Semiconductors
Identifying parameters of user motor

Three-phase PMSM Pump Reference Safety Software Design User Guide, Rev. 0, 31 May 2022
User Guide 95 / 122

M1_TO_KI_SHIFT = -ceil(log(abs(1/TO_Kiz_f))/log(2)-1)

else

M1_TO_KI_SHIFT = ceil(log(abs(TO_Kiz_f))/log(2))

end

M1_TO_KI_GAIN = round(TO_Kiz_f*2^(-M1_TO_KI_SHIFT)*1000000000000)/1000000000000

TO_Theta_f = CL_SampleTime*Wmax/pi;

if(TO_Theta_f<1)

M1_TO_THETA_SHIFT = -ceil(log(abs(1/TO_Theta_f))/log(2)-1)

else

M1_TO_THETA_SHIFT = ceil(log(abs(TO_Theta_f))/log(2))

end

M1_TO_THETA_GAIN = round(TO_Theta_f*2^(-M1_TO_THETA_SHIFT)

*1000000000000)/1000000000000

TO_W_IIR_cutoff_freq = 1 / (2 * SL_SampleTime) * 0.8;

TO_W_IIR_B0_fl = (2*pi*TO_W_IIR_cutoff_freq*CL_SampleTime)

/(2+(2*pi*TO_W_IIR_cutoff_freq*CL_SampleTime));

TO_W_IIR_B1_fl = (2*pi*TO_W_IIR_cutoff_freq*CL_SampleTime)/

(2+(2*pi*TO_W_IIR_cutoff_freq*CL_SampleTime));

TO_W_IIR_A1_fl = (2*pi*TO_W_IIR_cutoff_freq*CL_SampleTime-2)

/(2+(2*pi*TO_W_IIR_cutoff_freq*CL_SampleTime));

M1_TO_SPEED_IIR_B0 = 4.0*TO_W_IIR_B0_fl/IIRxCoefsScaleType

M1_TO_SPEED_IIR_B1 = 4.0*TO_W_IIR_B1_fl/IIRxCoefsScaleType

M1_TO_SPEED_IIR_A1 = -4.0*TO_W_IIR_A1_fl/IIRxCoefsScaleType

M1_OL_START_RAMP_INC = SNSLS_StartupRamp/60*pp*2*pi/Wmax*CL_SampleTime

M1_OL_START_I = SNSLS_StartupCurrent/I_max

M1_MERG_SPEED_TRH = (SNSLS_MergingSpeed / N_max)

M1_MERG_COEFF = ((SNSLS_MergingCoeff / 100) * (60 / (pp * SNSLS_MergingSpeed))

/ CL_SampleTime / 2 / 32768)

k_rate_gain = Uph_nom*k_factor/100/(N_nom*pp*2*pi/60);

k_rate_sc = k_rate_gain*Wmax/(U_DCB_max/UmaxCoeff);

if(k_rate_sc == 1.000000000000)

k_rate_sc = k_rate_sc + 0.0000001;

end

if(k_rate_sc >1)

SCALAR_VHZ_FACTOR_SHIFT = ceil(log(abs(k_rate_sc))/log(2))

else

SCALAR_VHZ_FACTOR_SHIFT = 0

end

NXP Semiconductors
Identifying parameters of user motor

Three-phase PMSM Pump Reference Safety Software Design User Guide, Rev. 0, 31 May 2022
User Guide 96 / 122

M1_SCALAR_VHZ_FACTOR_GAIN = Uph_nom*k_factor/100/(N_nom*pp/60)

M1_SCALAR_INTEG_GAIN = (2*pi*pp*N_max/60*CL_SampleTime)/pi

M1_SCALAR_RAMP_UP = SL_IncUp/60*pp*2*pi/Wmax*CL_SampleTime

M1_SCALAR_RAMP_DOWN = SL_IncDown/60*pp*2*pi/Wmax*CL_SampleTime

NXP Semiconductors
Identifying parameters of user motor

Three-phase PMSM Pump Reference Safety Software Design User Guide, Rev. 0, 31 May 2022
User Guide 97 / 122

Chapter 9
Acronyms
Table 6. Acronyms

Acronym Meaning

ADC ADC Analog-to-Digital Converter

AN AN Application Note

AR After-reset

BEMF Back Electromotive Force

BR Background

CCM CCM Clock Controller Module

CFCSS Control Flow Checking by Software Signatures

CPU CPU Central Processing Unit

CRC Cyclic Redundancy Check

DAC Digital-to-Analog Converter

DC DC Direct Current

DRM DRM Design Reference Manual

FL Fast Loop

FLL Frequency Locked-Loop

FMEA Failure Mode and Effect Analysis

FMSTR FreeMASTER

FOC FOC Field-Oriented Control

FS Functional Safety

FTM FlexTimer

GPIO GPIO General-Purpose Input/Output

GUI Graphical User Interface

HVAC Heating, Ventilation, and Air Conditioning

HW Hardware

Table continues on the next page...

NXP Semiconductors

Three-phase PMSM Pump Reference Safety Software Design User Guide, Rev. 0, 31 May 2022
User Guide 98 / 122

Table 6. Acronyms (continued)

Acronym Meaning

IDE Integrated Development Environment

LPIT LPIT Low-power Periodic Interrupt Timer

LPTMR Low-Power Timer

LPUART LPUART Low-power Universal Asynchronous

LUT Look-up Table

MC Motor Control

MCAT MCAT Motor Control Application Tuning

MCAT Motor Control Application Tool

MCDRV MCDRV Motor Control Peripheral Drivers

MCU MCU Microcontroller

PDB PDB Programmable Delay Block

PDB Programmable Delay timer

PI PI Proportional Integral controller

PLL PLL Phase-Locked Loop

PMSM PMSM Permanent Magnet Synchronous

PWM PWM Pulse-Width Modulation

SL Slow Loop

SW Software

TMR TMR Quad Timer

USB USB Universal Serial Bus

USB Universal Serial Bus

V/F Volte-per-Hertz (scalar) control

XBAR XBAR Inter-Peripheral Crossbar Switch

NXP Semiconductors
Acronyms

Three-phase PMSM Pump Reference Safety Software Design User Guide, Rev. 0, 31 May 2022
User Guide 99 / 122

Chapter 10
List of symbols
Table 7. List of symbols

Symbol Unit Description

B Nm·s/rad Viscous friction coefficient.

Dabc % Three-phase PWM duty cycles.

f Hz Frequency.

fPWM Hz PWM frequency.

fctrl Hz The pwm_in_mcu signal frequency.

iabc A Three-phase stator currents.

Idcb A Inverter DC-bus current.

iαβ A Stator current vector in the two-phase stator coordinate frame.

iα A Stator current in the α-axis.

iβ A Stator current in the β-axis.

idq A Stator current in the two-phase rotating synchronous coordinate frame.

id A Stator current in the direct axis.

iq A Stator current in the quadrature axis.

J Kgm2 Rotor moment of inertia.

k - Discrete sample number.

Ld H Direct axis inductance.

Lq H Quadrature axis inductance.

Ne rpm Electrical rotor speed.

Nm rpm Mechanical rotor speed.

Nsmpl - Number of analog samples acquired per Ts

p - Laplace operator.

P W Real inverter electrical input power.

Pp - Number of machine pole pairs.

Table continues on the next page...

NXP Semiconductors

Three-phase PMSM Pump Reference Safety Software Design User Guide, Rev. 0, 31 May 2022
User Guide 100 / 122

Table 7. List of symbols (continued)

Symbol Unit Description

Pout W Output mechanical power.

R Ω Stator resistance.

t s Time.

Talign s The alignment duration.

Tfault s Fault/error recovery time.

Tfree s The rotor deceleration wait time.

Tfs_ctrl s The software fault/error control response time.

Tfs_det s The software fault/error detection time.

TDT s PWM dead-time.

Te Nm Machine electrical output torque.

Tl Nm Load torque.

Ts s Fast (current) control loop sampling period.

Ts-slow s Slow (speed) control loop sampling period.

Udcb V Inverter DC-bus voltage.

uαβ V Stator voltage vector in the two-phase stator coordinate frame.

uα V Stator voltage in the α-axis.

uβ V Stator voltage in the β-axis.

udq V Stator voltage vector in the two-phase rotating synchronous frame.

ud V Stator voltage in the direct axis

uq V Stator voltage in the quadrature axis

Ψαβ Wb Stator flux vector in the two-phase stator coordinate frame

Ψα Wb Stator flux in the α-axis

Ψβ Wb Stator flux in the β-axis

Ψdq Wb Stator flux in the two-phase rotating synchronous coordinate frame

Ψd Wb Stator flux in the direct axis

Table continues on the next page...

NXP Semiconductors
List of symbols

Three-phase PMSM Pump Reference Safety Software Design User Guide, Rev. 0, 31 May 2022
User Guide 101 / 122

Table 7. List of symbols (continued)

Symbol Unit Description

Ψq Wb Stator flux in the quadrature axis

ΨPM Wb Permanent magnet stator flux

ωe rad/s Electrical rotor angular velocity

ωm rad/s Mechanical rotor angular velocity

NXP Semiconductors
List of symbols

Three-phase PMSM Pump Reference Safety Software Design User Guide, Rev. 0, 31 May 2022
User Guide 102 / 122

Chapter 11
Useful links
[1] Sensorless PMSM Field-Oriented Control (Design Reference Manual DRM148)

[2] MCUXpresso SDK for Motor Control

NXP Semiconductors

Three-phase PMSM Pump Reference Safety Software Design User Guide, Rev. 0, 31 May 2022
User Guide 103 / 122

https://www.nxp.com/security/login?TARGET=https%3A%2F%2Fwww.nxp.com%2Fwebapp%2Fsecure%2Flogin.SAMLSecuredController.sp%3Faction%3DforwardToDestination
https://www.nxp.com/design/designs/mcuxpresso-sdk-for-motor-control:MCUXPRESSO-SDK-MOTOR-CONTROL

Chapter 12
Referenced documents
[1] Requirement Specification and Risks (RS), rev 1.0.0. Internal NXP document.

[2] Motor-Control Pump Reference Design Confluence page. Internal NXP document.

[3] KV10 Sub-Family Reference Manual, rev 7. (Document number KV10P48M75RM).

[4] Kinetis CM0+ Safety Example, Rev 3. (Document number IEC60730BKCM0EUG)

[5] S. S. Badini and V. Verma, "A New Stator Resistance Estimation Technique for Vector-Controlled PMSM Drive," in IEEE
Transactions on Industry Applications, vol. 56, no. 6, pp. 6536-6545, Nov.-Dec. 2020, doi: 10.1109/TIA.2020.3025265.

NXP Semiconductors

Three-phase PMSM Pump Reference Safety Software Design User Guide, Rev. 0, 31 May 2022
User Guide 104 / 122

http://www.nxp.com/docs/KV10P48M75RM
https://www.nxp.com/docs/en/user-guide/IEC60730BKCM0EUG.pdf

Chapter 13
Revision history
Table 8. Revision history

Revision number Date Substantive changes

0 31 May 2022 Initial release.

NXP Semiconductors

Three-phase PMSM Pump Reference Safety Software Design User Guide, Rev. 0, 31 May 2022
User Guide 105 / 122

Chapter 14
Failure mode and effect analysis
Table 9. Failure mode and effect analysis

Power Stage (SYS.E.PWRSTG)

Module Element Failure mode Failure effect Root cause SW
safety mechanism

IPM PWM
generation

M1_PWM_PERIP
H(15) → PWM_AT
signal →
FSB5060B

-M1_PWM_PERIPH output
drives always LOW

-PWM_AT signal is
always LOW

-Transistor impedance is
always HIGH

SYS.E.MOT
might
overheat due
to unpowered
Phase_A

-M1.PWM issue

-M1_PWM_PERIPH
issue

-PWM_AT signal
stuck-at LOW

-Transistor
stuck OPEN

-Boot-strap
circuit problem

The phase-loss
detection algorithm
M1.DIAG.PHLOSS
to be implemented
(analysis of
idcb_rc signal).

-M1_PWM_PERIPH output
drives always HIGH

-PWM_AT signal is
always HIGH

-Transistor impedance is
always LOW

FSB5060B
might
overheat due
to short of
DC-bus

-M1.PWM issue

-M1_PWM_PERIPH
issue

-PWM_AT signal
stuck-at HIGH

-Transistor
stuck SHORT

Over-current
detection algorithms
M1.DIAG.HWOC+
M1.DIAG.SWOC to
be implemented
(analysis of
idcb_rc signal).

-M1_PWM_PERIPH drives
PWM_AT output HIGH when
PWM_BT is driven HIGH too
(insufficient deadtime TDT).

FSB5060B
might
overheat

-M1.PWM issue

-M1_PWM_PERIPH
issue

The FSB5060B
IPM over-temperature
detection algorithm
M1.DIAG.TMP_IPM
to be implemented.

M1_PWM_PERIP
H(48) → PWM_AB
signal →
FSB5060B

-M1_PWM_PERIPH output
drives always LOW

-PWM_BT signal is
always LOW

-Transistor impedance is
always HIGH

FSB5060B
might
overheat due
to short of
DC-bus

-M1.PWM issue

-M1_PWM_PERIPH
issue

-PWM_BT signal
stuck-at LOW

-Transistor
stuck OPEN

The phase-loss
detection algorithm
M1.DIAG.PHLOSS
to be implemented
(analysis of
idcb_rc signal).

-M1_PWM_PERIPH output
drives always HIGH

-PWM_AT signal is
always HIGH

FSB5060B
might
overheat due
to short of
DC-bus

-M1.PWM issue

-M1_PWM_PERIPH
issue

Over-current
detection algorithms
M1.DIAG.HWOC+
M1.DIAG.SWOC to

Table continues on the next page...

NXP Semiconductors

Three-phase PMSM Pump Reference Safety Software Design User Guide, Rev. 0, 31 May 2022
User Guide 106 / 122

Table 9. Failure mode and effect analysis (continued)

Power Stage (SYS.E.PWRSTG)

Module Element Failure mode Failure effect Root cause SW
safety mechanism

-Transistor impedance is
always LOW

-PWM_BT signal
stuck-at HIGH

-Transistor
stuck SHORT

be implemented
(analysis of
idcb_rc signal).

M1_PWM_PERIP
H(38) → PWM_BT
signal →
FSB5060B

See PWM_AT& PWM_AB analysis above.

M1_PWM_PERIP
H(37) → PWM_BB
signal →
FSB5060B

M1_PWM_PERIP
H(45) → PWM_CT
signal →
FSB5060B

M1_PWM_PERIP
H(46) → PWM_CB
signal →
FSB5060B

Input stage
and DC-
bus

F1→ D2,D3,D5,D6
→ C6 DC-bus voltage is LOW

-Cannot
generate
PWM due to
missing 15V

-Cannot
generate
necessary
stator voltage

-Fuse F1 his OPEN

-D2,D3,D5, or
D6 OPEN

-LOW or OPEN DC­
bus capacity C6

-Under-voltage
diagnostics
M1.DIAG.UV_OV

DC-bus voltage is NEGATIVE -C6 capacitor
destroyed

-D2,D3,D5, or
D6 SHORTED

Cannot be covered
by SW.

DC-bus voltage is HIGH

-
D2,D3,D5,D6
, or C6
capacitor
destroyed
when surge
current
occurs

-Varistor RV1 OPEN Cannot be covered
by SW.

Table continues on the next page...

NXP Semiconductors
Failure mode and effect analysis

Three-phase PMSM Pump Reference Safety Software Design User Guide, Rev. 0, 31 May 2022
User Guide 107 / 122

Table 9. Failure mode and effect analysis (continued)

Power Stage (SYS.E.PWRSTG)

Module Element Failure mode Failure effect Root cause SW
safety mechanism

-C6 capacitor
destroyed

-Motor
SYS.E.MOT braking

-Over-voltage
diagnostics
M1.DIAG.UV_OV

Input current is HIGH
-Fuse F1
becomes
OPEN

-Varistor RV1
is SHORT

Not safety related

Relay
control

GPIO(16)
→ RELAY

Inrush circuit impedance is
always LOW

In-rush
current

-Relay K1 stuck ON.

-Signal REALY is
stuck at HIGH.

-Thermistor RT1
is shorted

Not safety related

In-rush current limiting
NTC thermistor RT1 won
be bypassed

-Thermistor
RT1
overheating.

-Increased
output
impedance of
DC-bus
(wont trigger
OC)

-Relay K1
stuck OFF.

-Signal REALY is
stuck at LOW.

Not safety related

Inrush circuit impedance is
always HIGH

DC-bus won’t
be powered

-Thermistor RT1
has HIGH-Z.

Not safety related

Digital
voltage
source

+15V → +3.3V →
VDD1(1),VDD2(2
2)

Voltage is LOW The program
execution
might be
corrupted.

-+3.3V power circuit
supply issue

-+3.3VA
disconnected from
MCU pins

-Internal MCU brown­
out detector to be
properly enabled.

Voltage is HIGH MCU might
be damaged

-3V3 power circuit
supply issue

Cannot be covered
by SW.

Voltage drifts N/A N/A Not safety related

Voltage raise is SLOW The program
execution
might be
corrupted.

-/RESET signal not
LOW on power-up
(C20 disconnected)

-3V3 power circuit
supply issue

-Internal MCU brown­
out detector to be
properly enabled.

Table continues on the next page...

NXP Semiconductors
Failure mode and effect analysis

Three-phase PMSM Pump Reference Safety Software Design User Guide, Rev. 0, 31 May 2022
User Guide 108 / 122

Table 9. Failure mode and effect analysis (continued)

Power Stage (SYS.E.PWRSTG)

Module Element Failure mode Failure effect Root cause SW
safety mechanism

Analog
voltage
source

+15V → +3.3VA →
VREFH(10),
VDDA(9)

Voltage is LOW The program
execution
might be
corrupted.

-+3.3V power circuit
supply issue

-+3.3VA
disconnected from
MCU pins

-Internal MCU brown­
out detector to be
properly enabled.

Voltage is HIGH MCU might
be damaged

-+3.3V power circuit
supply issue

Cannot be covered
by SW.

Voltage drifts Analog
measuremen
ts drift too
and no longer
math
physical
quantities

-All algorithms
relying on analog
measurements
might not provide
correct results

-A stable voltage band
gap 1.0V reference
to be measured and
compared to expected
value (FS.REF).

Voltage raise is SLOW N/A N/A Not safety related

15V power
source

DCB_Pos → +15V Voltage is LOW IPM cannot
generate
PWM

-Capacitor C6 OPEN

-15V branch current
consumption HIGH

The phase-loss
detection algorithm
M1.DIAG.PHLOSS
to be implemented
(analysis of
idcb_rc signal).

IPM cannot
generate
PWM

-DC-bus voltage
too LOW

-Under-voltage
diagnostics
M1.DIAG.UV_OV

Voltage is HIGH -3.3V digital
source is
destroyed

-15V IC U5
is shorted
or malfunctioning

Cannot be covered
by SW.

Voltage drifts N/A N/A Not safety related

Voltage raise is SLOW N/A N/A Not safety related

System Control Interface (SYS.I.CTRL)

Module Element Failure mode Failure effect Root cause SW
safety mechanism

Table continues on the next page...

NXP Semiconductors
Failure mode and effect analysis

Three-phase PMSM Pump Reference Safety Software Design User Guide, Rev. 0, 31 May 2022
User Guide 109 / 122

Table 9. Failure mode and effect analysis (continued)

Power Stage (SYS.E.PWRSTG)

Module Element Failure mode Failure effect Root cause SW
safety mechanism

External
command

pwm_in_mcu(28)
→
APP_EXTCMD_P
ERIPH

-The pwm_in_mcu is
permanently HIGH

-APP_EXTCMD_PERIPH
reports high frequency fctrl

Inverter is
not powered

Signal pwm_in_mcu
stuck at HIGH (R44
LOW impedance) or
APP_EXTCMD_PE
RIPH issue

Not safety related

-The pwm_in_mcu is
permanently LOW

-APP_EXTCMD_PERIPH
reports low/none frequency fctrl

Inverter is
not powered

Signal pwm_in_mcu
stuck at LOW (U3
output short to GND)
or
APP_EXTCMD_PE
RIPH issue

Not safety related

-The APP_EXTCMD_PERIPH
incorrectly reports valid
pwm_in_mcu fctrl frequency

Inverter is
powered
when it
should not
(Phase_A,
Phase_B, or
Phase_C
signals
become live)

The
APP_EXTCMD_PE
RIPH issue.

The
M1.DIAG.EXTCMD
safety mechanism to
be implemented.

System Debug Interface (SYS.I.DBG)

Module Element Failure mode Failure effect Root cause SW
safety mechanism

SWCLK →
SWD_CLK(17),
SWDIO
→ SWD_DIO(20),

Signal unwanted HIGH
or LOW

N/A N/A Not safety related

/RESET
→ RESET(26),

Signal unwanted HIGH
or LOW

N/A N/A Not safety related

Electronic Pump Control Unit (SYS.E.EPCU)

Module Element Failure mode Failure effect Root cause SW
safety mechanism

Debug
MCU pins

GPIO(41) →
dbg_1 (TP19)

Signal unwanted HIGH
or LOW

Not safety related

Table continues on the next page...

NXP Semiconductors
Failure mode and effect analysis

Three-phase PMSM Pump Reference Safety Software Design User Guide, Rev. 0, 31 May 2022
User Guide 110 / 122

Table 9. Failure mode and effect analysis (continued)

Power Stage (SYS.E.PWRSTG)

Module Element Failure mode Failure effect Root cause SW
safety mechanism

GPIO(42) →
dbg_2 (TP20)

Signal unwanted HIGH
or LOW

Not safety related

GPIO(18)
→ user_led

Signal unwanted HIGH
or LOW

Incorrect
LED
signaling

Signal or GPIO
stuck-at LO or HI

Not safety related

Signal at HI-Z LED wont
enable

Disconnected
MCU pin

Not safety related

GPIO(14) →
dacout (TP21)

Signal unwanted HIGH
or LOW

N/A N/A Not safety related

Misc. MCU
pins

(21) → NMI -Signal unwanted LOW MCU enters
NMI ISR

Signal stuck-at LO NMI ISR to be
safely handled.

-Signal at HI-Z None Not safety related

GPIO(6, 7, 8, 24,
25, 29, 31, 32, 33,
36, 40, 43, 44) →
Any GND

Signal unwanted strong
output HIGH

MCU might
overheat,
causing
incorrect
program
execution

-Unwanted write
to GPIO caused
by corrupted
software execution.

-The MCU
over-temperature
detection algorithm
M1.DIAG.TMP_MCU
to be implemented.

-See SW part
of FMEA.

Signal unwanted strong
output LOW

N/A N/A Not safety related

Analog
Interface

ipm_temp_rc →
ADC0_SE8,ADC1
_SE8

Voltage at pin does not match
physical quantity value

IPM
overheats,
but program
does not
react

- FSB5060B thermal
sensor damaged

-ipm_temp_rc signal
shorted to
other signal

-ipm_temp_rc
signal disconnected
from pin

-Measured signal
range check FS.REF

medium_temp_rc
→ ADC1_SE2

Voltage at pin does not match
physical quantity value

Pump motor
overheats,
but program
does not
react

-Pump/medium
thermal
sensor damaged

-medium_temp_rc
signal shorted to
other signal

-Measured signal
range check FS.REF

-Motor stator
resistance
check M1.DIAG.RES

Table continues on the next page...

NXP Semiconductors
Failure mode and effect analysis

Three-phase PMSM Pump Reference Safety Software Design User Guide, Rev. 0, 31 May 2022
User Guide 111 / 122

Table 9. Failure mode and effect analysis (continued)

Power Stage (SYS.E.PWRSTG)

Module Element Failure mode Failure effect Root cause SW
safety mechanism

-medium_temp_rc
signal disconnected
from pin

vdcb_rc
→ ADC1_SE6

Voltage at pin does not match
physical quantity value

-Generated
PWM no-
longer valid

-R3, R7, R9, or R13
resistance changed

-vdcb_rc signal
shorted to
other signal

-vdcb_rc signal
disconnected
from pin

-Measured signal
range check FS.REF

-Motor stator
resistance
check M1.DIAG.RES

-Under and over-
voltage range
diagnostics
M1.DIAG.UV_OV

-Motor input power vs
speed range check
M1.DIAG.UP_OP

-Voltage value above
MCU maximum

MCU
destroyed

-R3,R7,R9 shorted
or bypassed

-MCU destroyed.
Cannot be covered
by SW.

idcb_rc →
ADC1_SE3,
ADC0_SE11

Voltage at pin does not match
physical quantity value

-Number of
diagnostic
algorithms
not able to
operate
correctly

-
Unnecessaril
y large
currents
generated

-Control
algorithm
instability

-R52 resistance
changed
or bypassed

-idcb_rc signal
shorted to
other signal

-idcb_rc signal
disconnected
from pin

-Measured signal
offset range check
FS.REF during zero­
vector V7(111)

-Motor stator
resistance
check M1.DIAG.RES

-Over-current
diagnostics
M1.DIAG.SWOC

-Motor input power vs
speed range check
M1.DIAG.UP_OP

-Motor input-power
stability check
M1.DIAG.PWR_STA
B

vdcb_rc →
CMP1_IN5,CMP0
_IN5

Voltage at pin does not match
physical quantity value

N/A N/A Not safety related

Table continues on the next page...

NXP Semiconductors
Failure mode and effect analysis

Three-phase PMSM Pump Reference Safety Software Design User Guide, Rev. 0, 31 May 2022
User Guide 112 / 122

Table 9. Failure mode and effect analysis (continued)

Power Stage (SYS.E.PWRSTG)

Module Element Failure mode Failure effect Root cause SW
safety mechanism

idcb_rc →
ADC1_SE3,
ADC0_SE11

Voltage at pin does not match
physical quantity value

-Fast
hardware
over-current
FS.HWOC
protection no
longer
operational
(IPM might
be damaged
by fast
current
spikes)

-idcb_rc signal
disconnected
from pin

Software-based over­
current protection
M1.DIAG.SWOC to
be implemented

Internal MCU Hardware

Module Element Failure mode Failure effect Root cause SW
safety mechanism

Memories Flash -Incorrect safety-related data/
instructions are read/accessed

-Program
cannot be
safely
executed

-Memory
cell STUCK-AT

-Address
bus STUCK-AT

-Data-bus STUCK­
AT

-Flash test FS.FLASH
to be implemented

-Program flow
check FS.FLOW to
be implemented

-Hard-fault to
be safely
handled (FS.ISR)

RAM -Incorrect safety-related data
are read/accessed

-Program
cannot be
safely
executed

-Memory
cell STUCK-AT

-Address
bus STUCK-AT

-Data-bus STUCK­
AT

-RAM test FS.RAM to
be implemented

-Program flow
check FS.FLOW to
be implemented

-Hard-fault to
be safely
handled (FS.ISR)

Clocks Clocks
(PMC,MCG→SIM)

-Clock generator provides
unexpected clock value

-Timing fails
(routines not
executed in
time)

-Peripherals
fail to operate

-Incorrect
clock division

-Incorrect
clock multiplication

-Clock test FS.CLK to
be implemented

Table continues on the next page...

NXP Semiconductors
Failure mode and effect analysis

Three-phase PMSM Pump Reference Safety Software Design User Guide, Rev. 0, 31 May 2022
User Guide 113 / 122

Table 9. Failure mode and effect analysis (continued)

Power Stage (SYS.E.PWRSTG)

Module Element Failure mode Failure effect Root cause SW
safety mechanism

with high
clocks

-Incorrect
clock routing

-Interrupt rate
test FS.ISR to
be implemented

CPU

Program
Counter register

-Incorrect instruction executed -Program
cannot be
safely
executed

-PC register STUCK­
AT

-PC register
test (FS.PC)

-Unknown
instruction executed

-Program
enters hard-
fault

-PC register STUCK­
AT

-Hard-fault to
be safely
handled (FS.ISR)

R8-R11,
PRIMASK,
CONTROL, R0­
R7, R12, LR,
APSR, MSP, and
PSP registers

-CPU result/operation is
not correct

-Program
cannot be
safely
executed

-Register STUCK­
AT

-Core register
test (FS.CORE)

-Program
enters hard-
fault

-Incorrect instruction -Hard-fault to
be safely
handled (FS.ISR)

-Unexpected
IRQ
executed

-Incorrect
ISR processing

-Unexpected IRQ
to be safely
handled (FS.ISR)

Watchdog

WDOG

-Watchdog unable to
cause reset

-Corrupted
program
continuous to
run

-Internal WDOG
issue (i.e.
counter stuck-at)

-Watchdog after-reset
Test (FS.WDOG)

Trigger
chain

M1_PWM_PERIP
H →
M1_PDB_PERIP
H →
M1_ADC_PERIP
H →
M1_DMA_PERIP
H

-The TRGF trigger not
generated in time

-Fast-loop (FL) ISR
not executed

-All FL control
and safety
algorithms
not timely
executed

-M1_TMR_PERIPH
issue (i.e.
counter stuck-at)

-Interrupt rate
test FS.ISR to
be implemented

-Watchdog starvation
reset (FS.WDOG)

-M1_ADC_PERIPH triggers
TRGM1 not acquired at
correct time

-Timing
sensitive
samples
(idcb_rc) not
acquired

-The
M1_DMA_TAB_DLY
table delays
corrupted or not
applied to
M1_PDB_PERIPH

-The
M1_DMA_TAB_DLY
table checksum
test (FS.DMA)

-Measured signal
offset range check
FS.REF during zero­
vector V7(111)

Table continues on the next page...

NXP Semiconductors
Failure mode and effect analysis

Three-phase PMSM Pump Reference Safety Software Design User Guide, Rev. 0, 31 May 2022
User Guide 114 / 122

Table 9. Failure mode and effect analysis (continued)

Power Stage (SYS.E.PWRSTG)

Module Element Failure mode Failure effect Root cause SW
safety mechanism

-M1_PDB_PERIPH
issue (i.e.
counter stuck-at)

-Motor stator
resistance
check M1.DIAG.RES

-Over-current
diagnostics
M1.DIAG.SWOC

-Motor input power vs
speed range check
M1.DIAG.UP_OP

-Motor input-power
stability check
M1.DIAG.PWR_STA
B

M1_TMR_PERIP
H

-The TRGS trigger not
generated in time

-Slow-loop (SL) ISR
not executed

-All SL
control and
safety
algorithms
not timely
executed

-M1_TMR_PERIPH
issue (i.e.
counter stuck-at)

-Clock test FS.CLK to
be implemented

-Interrupt rate
test FS.ISR to
be implemented

Analog
measurem
ent

PORT → AMUX →
M1_ADC_PERIP
H →
M1_DMA_PERIP
H

-Incorrect analog
measurement is stored in
the M1_DMA_TAB_RSLT

-All
diagnostic
and safety
mechanisms
using analog
measuremen
ts might fail

-Incorrect M1
control action

-Incorrect
PORT configuration

-Incorrect quantity
routed via analog
multiplexer AMUX

-Incorrect
M1_ADC_PERIPH
conversion result

-Analog conversion
result corrupted
during DMA transfer

-Analog compare
test (FS.CMP)

-Flash test FS.FLASH
to check
M1_DMA_TAB_ACH
N table

DMA

M1_DMA_PERIP
H

-M1_DMA_PERIPH
stores outside
of M1_DMA_TAB_RSLT

-Safety
related
memory gets
corrupted

-DMA TCD memory
is corrupted (stuck­
at)

-Address bus stuck­
at.

-TCD memory
test using
pattern (FS.DMA)

-Checksum
calculation of DMA
TCDs during
TTST_UI_MAX
(FS.DMA)

Table continues on the next page...

NXP Semiconductors
Failure mode and effect analysis

Three-phase PMSM Pump Reference Safety Software Design User Guide, Rev. 0, 31 May 2022
User Guide 115 / 122

Table 9. Failure mode and effect analysis (continued)

Power Stage (SYS.E.PWRSTG)

Module Element Failure mode Failure effect Root cause SW
safety mechanism

-DMA error IRQ
to be safely
handled (FS.ISR)

Software

Element Failure mode Failure effect Root cause SW
safety mechanism

Stack Stack over-flow/under-flow -Safety
related
memory gets
corrupted

-Corrupted program
behavior (i.e. too
many function calls)

-Stack under/
overflow pattern
check (FS.STACK)

-Proper separation of
safety-related RAM
and FLASH memory
(FS.DESIGN)

Program flow

Program stall

-Safety
mechanisms
not executed

-Motor
control action
not updated
(might cause
over-current)

-Infinite loop
cycle entered

(i.e. incorrect
instruction, data
or address)

-Watchdog starvation

-Hardware over-
current diagnostics
(M1.DIAG.HWOC)

Incorrect execution order -Safety
mechanisms
not executed

-Motor
control action
not updated
(might cause
over-current)

-Function is skipped

(i.e. incorrect
instruction, data
or address;
corrupted non-safety
program part)

-Program flow
check (FS.FLOW)

-Safety-related
function might be
called only by other
safety-related
function
(FS.DESIGN)

-Proper separation of
safety-related RAM
and FLASH memory
(FS.DESIGN)

Unexpected ISR invoked -Program
flow is
corrupted

-Corrupted
vector table

-Incorrect instruction
executed (i.e.

-Unknown ISRs
to be safely
handled (FS.ISR)

Table continues on the next page...

NXP Semiconductors
Failure mode and effect analysis

Three-phase PMSM Pump Reference Safety Software Design User Guide, Rev. 0, 31 May 2022
User Guide 116 / 122

Table 9. Failure mode and effect analysis (continued)

Power Stage (SYS.E.PWRSTG)

Module Element Failure mode Failure effect Root cause SW
safety mechanism

corrupted non-safety
program part)

-The Flash test
FS.FLASH to cover
vector table as well

Peripheral or program module
initialization fails

-Program
flow is
corrupted

-Periphery or
software module (i.e.
motor-control state
machine M1.SM)
not initialized

-M1_ADC_PERIPH
calibration failed

-Program flow
check (FS.FLOW)

-Unexpected SW
paths
(M1_ADC_PERIPH
calibration result,
initialized M1.SM
state,…) to be safely
handled
(FS.DESIGN)

M1.CTRL Unstable control action -Some safety
mechanisms
might not
operate
properly

-Motor might
overheat

-Corrupted non­
safety program part

-Motor input-power
stability check
M1.DIAG.PWR_STA
B

-Over-current
diagnostics
M1.DIAG.SWOC

-Motor input power vs
speed range check
M1.DIAG.UP_OP

M1.SM Incorrect speed or position
information estimated

-Some safety
mechanisms
might not
operate
properly

-Motor might
overheat

-Motor parameters
no longer match
(motor issue)

-Motor stator
resistance
check M1.DIAG.RES

-Over-current
diagnostics
M1.DIAG.SWOC

-Motor input power vs
speed range check
M1.DIAG.UP_OP

-Motor input-power
stability check
M1.DIAG.PWR_STA
B

Electrical Pump Motor (SYS.E.MOT)

Element Failure mode Failure effect Root cause SW
safety mechanism

Table continues on the next page...

NXP Semiconductors
Failure mode and effect analysis

Three-phase PMSM Pump Reference Safety Software Design User Guide, Rev. 0, 31 May 2022
User Guide 117 / 122

Table 9. Failure mode and effect analysis (continued)

Power Stage (SYS.E.PWRSTG)

Module Element Failure mode Failure effect Root cause SW
safety mechanism

Rotor

Blocked rotor

Motor over-
heats

Pump rotor blockage -The blocked-rotor
detection algorithm
M1.DIAG.BLCKROT
to be implemented

Dry-run

Motor over-
heats,
excessive
bearings
stress

Pump
medium missing

-Motor input power vs
speed range check
M1.DIAG.UP_OP (no
medium will result
in low motor
input power)

Over-speed
Motor
damage by
over-speed

Incorrect
M1.CTRL action

-Motor range speed
check
M1.DIAG.US_OS

Under-speed

Estimated
rotor speed
no longer
reliable

Incorrect M1.CTRL
action or external
command set
tool low

-Motor range speed
check
M1.DIAG.US_OS

Over-load

Motor over-
heats

Pump rotor blockage -The over-load
detection algorithm
M1.DIAG.LOAD to
be implemented

Stator
Over-voltage

Stator
isolation
damage

Excessive
motor braking

-DC-bus voltage
range check
M1.DIAG.UV_OV

Over-current

Stator
winding
damage

Inverter or M1.CTRL
control action issue

-Over-current
diagnostics
M1.DIAG.SWOC
and M1.DIAG.HWOC

Over-power

Motor over-
heats

-Pump
medium issue

-Damaged bearings

-M1.CTRL control
action issue

-Motor input power vs
speed range check
M1.DIAG.UP_OP (no
medium will result
in low motor
input power)

Over-temperature of
motor windings

Motor over-
heats

-Pump
medium issue

-Damaged bearings

-Medium and IPM
temperature range to
be checked

Table continues on the next page...

NXP Semiconductors
Failure mode and effect analysis

Three-phase PMSM Pump Reference Safety Software Design User Guide, Rev. 0, 31 May 2022
User Guide 118 / 122

Table 9. Failure mode and effect analysis (continued)

Power Stage (SYS.E.PWRSTG)

Module Element Failure mode Failure effect Root cause SW
safety mechanism

-M1.CTRL control
action issue

(M1.DIAG.TMP_MED
, M1.DIAG.TMP_IPM)

Disconnected phase

Motor over-
heats

-Disconnected
Phase_A, Phase_B,
or Phase_C signal

-Phase-loss detection
algorithm
M1.DIAG.PHLOSS

-Motor stator
resistance
check M1.DIAG.RES

-Motor input power vs
speed range check
M1.DIAG.UP_OP

-Motor input-power
stability check
M1.DIAG.PWR_STA
B

Windings shorted

Motor over-
heats

Internal stator
problem (i.e.
windings short)

-Motor stator
resistance
check M1.DIAG.RES

-Over-current
diagnostics
M1.DIAG.SWOC

-Motor input power vs
speed range check
M1.DIAG.UP_OP

-Motor input-power
stability check
M1.DIAG.PWR_STA
B

NXP Semiconductors
Failure mode and effect analysis

Three-phase PMSM Pump Reference Safety Software Design User Guide, Rev. 0, 31 May 2022
User Guide 119 / 122

Legal information
Definitions
Draft — A draft status on a document indicates that the content is still
under internal review and subject to formal approval, which may result
in modifications or additions. NXP Semiconductors does not give any
representations or warranties as to the accuracy or completeness of
information included in a draft version of a document and shall have no
liability for the consequences of use of such information.

Disclaimers
Limited warranty and liability — Information in this document is believed
to be accurate and reliable. However, NXP Semiconductors does not give
any representations or warranties, expressed or implied, as to the accuracy
or completeness of such information and shall have no liability for the
consequences of use of such information. NXP Semiconductors takes no
responsibility for the content in this document if provided by an information
source outside of NXP Semiconductors.

In no event shall NXP Semiconductors be liable for any indirect, incidental,
punitive, special or consequential damages (including - without limitation -
lost profits, lost savings, business interruption, costs related to the removal or
replacement of any products or rework charges) whether or not such damages
are based on tort (including negligence), warranty, breach of contract or any
other legal theory.

Notwithstanding any damages that customer might incur for any reason
whatsoever, NXP Semiconductors’ aggregate and cumulative liability towards
customer for the products described herein shall be limited in accordance with
the Terms and conditions of commercial sale of NXP Semiconductors.

Right to make changes — NXP Semiconductors reserves the right to make
changes to information published in this document, including without limitation
specifications and product descriptions, at any time and without notice. This
document supersedes and replaces all information supplied prior to the
publication hereof.

Suitability for use — NXP Semiconductors products are not designed,
authorized or warranted to be suitable for use in life support, life-critical
or safety-critical systems or equipment, nor in applications where failure or
malfunction of an NXP Semiconductors product can reasonably be expected
to result in personal injury, death or severe property or environmental damage.
NXP Semiconductors and its suppliers accept no liability for inclusion and/or
use of NXP Semiconductors products in such equipment or applications and
therefore such inclusion and/or use is at the customer’s own risk.

Applications — Applications that are described herein for any of these
products are for illustrative purposes only. NXP Semiconductors makes no
representation or warranty that such applications will be suitable for the
specified use without further testing or modification.

Customers are responsible for the design and operation of their applications
and products using NXP Semiconductors products, and NXP Semiconductors
accepts no liability for any assistance with applications or customer product
design. It is customer’s sole responsibility to determine whether the NXP
Semiconductors product is suitable and fit for the customer’s applications and
products planned, as well as for the planned application and use of customer’s
third party customer(s). Customers should provide appropriate design and
operating safeguards to minimize the risks associated with their applications
and products.

NXP Semiconductors does not accept any liability related to any default,
damage, costs or problem which is based on any weakness or default in the
customer’s applications or products, or the application or use by customer’s
third party customer(s). Customer is responsible for doing all necessary testing
for the customer’s applications and products using NXP Semiconductors
products in order to avoid a default of the applications and the products or of the
application or use by customer’s third party customer(s). NXP does not accept
any liability in this respect.

Terms and conditions of commercial sale — NXP Semiconductors products
are sold subject to the general terms and conditions of commercial sale,
as published at http://www.nxp.com/profile/terms, unless otherwise agreed
in a valid written individual agreement. In case an individual agreement
is concluded only the terms and conditions of the respective agreement
shall apply. NXP Semiconductors hereby expressly objects to applying the
customer’s general terms and conditions with regard to the purchase of NXP
Semiconductors products by customer.

Export control — This document as well as the item(s) described herein may be
subject to export control regulations. Export might require a prior authorization
from competent authorities.

NXP Semiconductors
Legal information

Three-phase PMSM Pump Reference Safety Software Design User Guide, Rev. 0, 31 May 2022
User Guide 120 / 122

Suitability for use in non-automotive qualified products — Unless this
data sheet expressly states that this specific NXP Semiconductors product
is automotive qualified, the product is not suitable for automotive use.
It is neither qualified nor tested in accordance with automotive testing
or application requirements. NXP Semiconductors accepts no liability for
inclusion and/or use of non-automotive qualified products in automotive
equipment or applications.

In the event that customer uses the product for design-in and use in automotive
applications to automotive specifications and standards, customer (a) shall use
the product without NXP Semiconductors’ warranty of the product for such
automotive applications, use and specifications, and (b) whenever customer
uses the product for automotive applications beyond NXP Semiconductors’
specifications such use shall be solely at customer’s own risk, and (c) customer
fully indemnifies NXP Semiconductors for any liability, damages or failed
product claims resulting from customer design and use of the product for
automotive applications beyond NXP Semiconductors’ standard warranty and
NXP Semiconductors’ product specifications.

Translations — A non-English (translated) version of a document, including
the legal information in that document, is for reference only. The English
version shall prevail in case of any discrepancy between the translated and
English versions.

Security — Customer understands that all NXP products may be subject to
unidentified vulnerabilities or may support established security standards or
specifications with known limitations. Customer is responsible for the design
and operation of its applications and products throughout their lifecycles
to reduce the effect of these vulnerabilities on customer’s applications
and products. Customer’s responsibility also extends to other open and/or
proprietary technologies supported by NXP products for use in customer’s
applications. NXP accepts no liability for any vulnerability. Customer should
regularly check security updates from NXP and follow up appropriately.

Customer shall select products with security features that best meet rules,
regulations, and standards of the intended application and make the
ultimate design decisions regarding its products and is solely responsible
for compliance with all legal, regulatory, and security related requirements
concerning its products, regardless of any information or support that may be
provided by NXP.

NXP has a Product Security Incident Response Team (PSIRT) (reachable
at PSIRT@nxp.com) that manages the investigation, reporting, and solution
release to security vulnerabilities of NXP products.

Trademarks
Notice: All referenced brands, product names, service names, and
trademarks are the property of their respective owners.

NXP — wordmark and logo are trademarks of NXP B.V.

AMBA, Arm, Arm7, Arm7TDMI, Arm9, Arm11, Artisan, big.LITTLE, Cordio,
CoreLink, CoreSight, Cortex, DesignStart, DynamIQ, Jazelle, Keil, Mali,
Mbed, Mbed Enabled, NEON, POP, RealView, SecurCore, Socrates, Thumb,
TrustZone, ULINK, ULINK2, ULINK-ME, ULINK-PLUS, ULINKpro, μVision,
Versatile — are trademarks or registered trademarks of Arm Limited (or its
subsidiaries) in the US and/or elsewhere. The related technology may be
protected by any or all of patents, copyrights, designs and trade secrets. All
rights reserved.

Airfast — is a trademark of NXP B.V.

Bluetooth — the Bluetooth wordmark and logos are registered trademarks
owned by Bluetooth SIG, Inc. and any use of such marks by NXP
Semiconductors is under license.

Cadence — the Cadence logo, and the other Cadence marks found at
www.cadence.com/go/trademarks are trademarks or registered trademarks of
Cadence Design Systems, Inc. All rights reserved worldwide.

CodeWarrior — is a trademark of NXP B.V.

ColdFire — is a trademark of NXP B.V.

ColdFire+ — is a trademark of NXP B.V.

EdgeLock — is a trademark of NXP B.V.

EdgeScale — is a trademark of NXP B.V.

EdgeVerse — is a trademark of NXP B.V.

elQ — is a trademark of NXP B.V.

FeliCa — is a trademark of Sony Corporation.

Freescale — is a trademark of NXP B.V.

HITAG — is a trademark of NXP B.V.

ICODE and I-CODE — are trademarks of NXP B.V.

Immersiv3D — is a trademark of NXP B.V.

I2C-bus — logo is a trademark of NXP B.V.

Kinetis — is a trademark of NXP B.V.

Layerscape — is a trademark of NXP B.V.

Mantis — is a trademark of NXP B.V.

MIFARE — is a trademark of NXP B.V.

MOBILEGT — is a trademark of NXP B.V.

NTAG — is a trademark of NXP B.V.

Processor Expert — is a trademark of NXP B.V.

QorIQ — is a trademark of NXP B.V.

SafeAssure — is a trademark of NXP B.V.

SafeAssure — logo is a trademark of NXP B.V.

StarCore — is a trademark of NXP B.V.

Synopsys — Portions Copyright © 2021 Synopsys, Inc. Used with permission.
All rights reserved.

Tower — is a trademark of NXP B.V.

UCODE — is a trademark of NXP B.V.

VortiQa — is a trademark of NXP B.V.

NXP Semiconductors
Legal information

Three-phase PMSM Pump Reference Safety Software Design User Guide, Rev. 0, 31 May 2022
User Guide 121 / 122

mailto:PSIRT@nxp.com
http://www.cadence.com/go/trademarks

Please be aware that important notices concerning this document and the product(s) described
herein, have been included in section 'Legal information'.

© NXP B.V. 2022. All rights reserved.

For more information, please visit: http://www.nxp.com
For sales office addresses, please send an email to: salesaddresses@nxp.com

Date of release: 31 May 2022
Document identifier: PMSMSAFEUG

	Contents
	1 Introduction
	1.1 Hardware setup
	1.2 Inverter HVP3PH_LITE
	1.2.1 Medium temperature sensor

	2 External command PWM input 10 V
	2.1 Reference permanent magnet synchronous motor
	2.2 Hardware assembling

	3 MCU features and peripheral settings
	3.1 Kinetis KV1x family
	3.2 Peripheral settings
	3.2.1 PWM generation - FTM0 (M1_PWM_PERIPH)
	3.2.2 Analog sensing – ADC1 (M1_ADC_PERIPH) and ADC0 (FS_ADC_PERIPH)
	3.2.3 PWM and ADC synchronization (M1_PDB_PERIPH)
	3.2.4 Over-current and over-temperature check – CMP1 (M1_CMP_OC_PERIPH) and CMP0 (M1_CMP_OT_PERIPH)
	3.2.5 DMA for ADC results reading – DMA0 (M1_DMA_PERIPH)
	3.2.6 Slow-loop interrupt generation – FTM2 (M1_TMR_PERIPH)
	3.2.7 External control signal measurement – FTM1 (APP_EXTCMD_PERIPH)

	3.3 Peripheral connection
	3.4 Hardware timing and synchronization

	4 Software description
	4.1 Safety tests implemented using IEC60730 Class B library
	4.1.1 Program counter register test (FS.PC)
	4.1.2 Core register test (FS.CORE)
	4.1.3 Watchdog test (FS.WDOG)
	4.1.4 Interrupt handling test (FS.ISR)
	4.1.5 Analog compare test (FS.CMP)
	4.1.6 Analog reference check (FS.REF)
	4.1.7 M1_DMA_PERIPH Safety Function (FS.DMA)
	4.1.8 Program flow check (FS.FLOW)
	4.1.9 External command check (M1.DIAG.EXTCMD)
	4.1.10 Safety flash test (FS.FLASH)
	4.1.11 Safety RAM Test (FS.RAM)
	4.1.12 Stack over-/under-flow test (FS.STACK)
	4.1.13 Clock test (FS.CLK)

	4.2 Motor control faults
	4.2.1 Blocked rotor test (M1.DIAG.BCLKROT)
	4.2.2 Disconnected phase test (M1.DIAG.PHLOSS)
	4.2.3 Rotor over-load test (M1.DIAG.LOAD)
	4.2.4 Over-temperature of medium (M1.DIAG.TMP_MED)
	4.2.5 Over-temperature of inverter (M1.DIAG.TMP_IPM)
	4.2.6 Over-temperature of MCU (M1.DIAG.TMP_MCU)
	4.2.7 Under-/over-voltage test (M1.DIAG.UV_OV)
	4.2.8 Hardware over-current test (M1.DIAG.HWOC)
	4.2.9 Software over-current test (M1.DIAG.SWOC)
	4.2.10 Under-/over-power test (M1.DIAG.UP_OP)
	4.2.11 Under-/over-speed test (M1.DIAG.US_OS)
	4.2.12 Stator resistance test (M1.DIAG.RES)
	4.2.13 Power stability test (M1.DIAG.PWRSTAB)

	4.3 State machine
	4.3.1 Uninitialized state (NO_INIT)
	4.3.2 Idle state (STOP)
	4.3.3 Fault state (FAULT)
	4.3.4 Alignment state (ALIGN)
	4.3.5 Low-speed state (LO_SPD)
	4.3.6 Medium-speed state (MI_SPD)
	4.3.7 High-speed State (HI_SPD)
	4.3.8 Freewheel state (FREE)

	4.4 Motor control software algorithms
	4.4.1 Measurement algorithms (M1.ADC, M1.MEAS)
	4.4.1.1 Single-shunt three-phase current reconstruction (M1.ADC)
	4.4.1.2 Phase-current measurement calibration (M1.ADC.CALIB)

	4.4.2 Estimations algorithms (M1.EST)
	4.4.2.1 Alignment position generation (M1.EST.ALIGN)
	4.4.2.2 Open-loop position and speed generation (M1.EST.LOSPD)
	4.4.2.3 Position and speed merging (M1.EST.MISPD)
	4.4.2.4 Position and speed observer (M1.EST.HISPD)
	4.4.2.5 Stator resistance estimation (M1.EST.REST)

	4.4.3 Diagnostic algorithms
	4.4.4 Control algorithms
	4.4.4.1 Idle control mode (M1.CTRL.IDLE)
	4.4.4.2 Closed-loop speed control mode (M1.CTRL.SPEED_CL)
	4.4.4.3 Closed-loop current control mode (M1.CTRL.CURR_CL)
	4.4.4.4 Open-loop Current Control Mode (M1.CTRL.CURR_OL)
	4.4.4.5 Scalar control mode (M1.CTRL.SCALAR_OL)
	4.4.4.6 Closed-loop voltage control mode (M1.CTRL.VOLT_OL)

	4.4.5 Actuator algorithms
	4.4.5.1 Space vector modulation (M1.ACT.SVM)
	4.4.5.2 DC-bus ripple compensation (M1.ACT.DCBCOMP)
	4.4.5.3 Dead-time compensation (M1.ACT.DTCOMP)
	4.4.5.4 PWM startup algorithm (M1.PWM.START)

	4.4.6 Application algorithms (APP)
	4.4.6.1 External command measurement (APP.EXTCMD)

	5 Build and run application
	5.1 IAR Embedded Workbench IDE
	5.2 MCUXpresso IDE

	6 Remote control using FreeMASTER
	6.1 Establishing FreeMASTER communication
	6.2 FreeMASTER project file description
	6.3 PMSM FOC sensorless project
	6.4 Control application
	6.4.1 Run motor in open-loop scalar control
	6.4.2 Run motor in open-loop current control mode variables
	6.4.3 Run motor in open-loop voltage control
	6.4.4 Run motor in close-loop current (torque) FOC
	6.4.5 Run motor in sensorless speed FOC
	6.4.5.1 Run motor in speed FOC using external PWM command

	7 Project files and IDE workspace structure
	7.1 Directory structure

	8 Identifying parameters of user motor
	8.1 Parameter identification using SDK example and MCAT
	8.2 Parameter identification using manual measurement
	8.3 Computing of control parameters
	8.3.1 Example summary of configuration parameters
	8.3.2 Macro calculation procedure

	9 Acronyms
	10 List of symbols
	11 Useful links
	12 Referenced documents
	13 Revision history
	14 Failure mode and effect analysis
	Legal information

