
Company Public – NXP, the NXP logo, and NXP secure connections for a smarter world are trademarks of NXP

B.V. All other product or service names are the property of their respective owners. © 2019 NXP B.V.

Software Architect & Technical Director

Marius Rotaru

Service Oriented Architecture:
Design and Implementation Using
Automotive Linux BSP

June 2019 | Session #AMF-AUT-T3657

Linux Software Architect
Catalin Udma

COMPANY PUBLIC 1COMPANY PUBLIC 1

• Introduction to Service Oriented

Architecture Frameworks

• NXP’s infrastructure for SoA

• Applications & Use Cases

Agenda

COMPANY PUBLIC 2

Introduction to Service Oriented

Architecture Frameworks

COMPANY PUBLIC 3

Vehicle Architectures
Mega Trends: Safe and Secure Mobility the semi value per car – today’s standard

car at $380Autonomy Electrification Connectivity

•Different sensor types

•Data fusion:

Safe Processing with

Integrated AI capabilities

• Fail operation

• Big Data

• Power Efficiency

• Battery Management

• Electrification Levels

Hybrid, full electric…

• Broad range of solution

• Need for standardization

•V2X, 5G, Digital Radio

•Diagnostics / Prognostic Health

Management

• OTA Update Management

• Analytics (edge to cloud)

•Software-centric solutions

•System security

Major Changes in Network Topology and E2E Architectures

COMPANY PUBLIC 4

Vehicle Architectures
Different networking models across the 4 options

Cameras

Central

Compute

Ethernet Mesh

Zonal

IO Control

Zonal

IO Control

Zonal

IO Control

Zonal

IO Control

e.g. CAN,

Ethernet
e.g. CAN,

Ethernet

e.g. CAN,

Ethernet
e.g. CAN,

Ethernet

Zonal Architecture

Body & Comfort Chassis & Safety Vehicle dynamics

NAD

Connectivity Infotainment

IVI

DC

Ethernet

CAN / LIN

CAN /

FlexRa

y

CAN /

Ethernet

Central Gateway ECU

Ethernet Ethernet

Central Gateway

ADAS

ADAS

Brain

DC

CAN, Ethernet

Infotainment

DC

CAN,

Ethernet

Vehicle

Dynamics

& Safety

DC

CAN,

Ethernet

Network

Control. Services

CAN,

Ethernet

OBDNAD

Ethernet Backbone

Network

Services

Domain Architecture

Central

Compute

e.g. CAN,

Ethernet

e.g. CAN,

Ethernet

e.g. CAN,

Ethernet

e.g. CAN,

Ethernet

Central Compute - Star

e.g. CAN,

Ethernet

COMPANY PUBLIC 5

Vehicle Architectures
Mega Trends: Embedded Software become Softwarethe semi value per car – today’s

standard car at $380

Technology Trends

AUTONOMY

ELECTRIFICATION

CONNECTIVITY

E/E Implication

• ECU Platform

• Topology

• Communication

• OSEK/VDX

• Signal Comm

• Static configuration

• Rich Operating Systems (e.g. Linux)

• Service Oriented Architecture

• Dynamic configuration

COMPANY PUBLIC 6

Signal vs Service Oriented Communication Paradigms

With signal-oriented data transmission information is sent

when the sender sees a need, such as when values are

updated or changed, independent of whether these data

are currently needed by a receiver in the network

Signal-oriented data transmission is used on classic bus

systems (CAN, LIN, FlexRay)

Service-oriented data transmission, a sender only sends

data when at least one receiver in the network needs this

data. The advantage of this procedure is that the network

and all connected nodes are not loaded by unnecessary

data.

Service-oriented data transmission is mainly using Ethernet

bus

Background

COMPANY PUBLIC 7

Service-oriented Architecture – SoA
All about Middleware

Source: AUTOSAR_GuidedTour.ppt

Source: ISITA_World_Summit_2015_FUERST_Simon__for_web_.pdf

Source: AUTOSAR_AdaptivePlatformFor_EXP_TechnicalOverview.pptx

COMPANY PUBLIC 8

Service-oriented Architecture (SoA)

Service-orientated Architecture (SoA) is a way of designing software where the participating

components provide and consume services over a predefined protocol over a network

Functionality

Separation

Units

Services

Functionality

Distribution

Ownership

domains

Interoperability

Interfaces

Protocols

Reusability

Combination

Integration

A service is a discrete unit of functionality which can be remotely accessed and independently

updated.

Functional

Unit

Self

Contained
Black-box Stateless

Standardized

interfaces
Reusable

COMPANY PUBLIC 9

Service-oriented Architecture (SoA)
Asynchronous Remote Procedure Calls

Return Call

Client

Unpack Pack

Client stub

RPC Runtime

Receive Send

Call Return

Server

Unpack Pack

Server stub

RPC Runtime

Receive Send

Call Packet

Result Packet

Client Machine Server Machine

execute

Implementation of RPC for SoA

Middleware

Client Middleware Middleware Server

ECU ECU

Ethernet

Asynchronous Remote Procedure Calls

COMPANY PUBLIC 10

Service Oriented Middleware – SOME/IP
SOME/IP = Scalable service-Oriented MiddlewarE over IP

➢ SOME/IP provides service oriented communication

over a network

➢ SOME/IP supports a wide range of middleware

features:

• Serialization

• Remote Procedure Call (RPC)

• Service Discovery (SD)

• Publish/Subscribe (Pub/Sub)

• Segmentation of UDP messages

➢ SOME/IP can be implemented on different operating

systems

➢ SOME/IP is used for inter-ECU Client/Server

Serialization

➢ SOME/IP allows applications to communicate.

Source: SOME-IPIntro.pdf

https://at.projects.genivi.org/wiki/download/.../SOME-IP Intro.pdf

COMPANY PUBLIC 11

Service Oriented Middleware – SOME/IP

• Request/Response – a method call with Request and Response

messages

• Fire&Forget – a method invocation with just a Request message

(does not support answers and errors)

• Event – a Fire&Forget callback, that is sent out by the Server

(e.g. cyclically or on change)

– Sent from Server to Client (Similar to regular CAN messages)

• Field – represents a remote accessible property that includes

Getter/Setter and/or Notification (similar to a property on MOST)

Services

COMPANY PUBLIC 12

Service Oriented Middleware – SOME/IP
Service Discovery - SD

SOME/IP-SD is used to:

• Locate service instances.

• Detect if service instances are running.

• Implement the Publish/Subscribe handling

Image source:
realtimeapi.io/hub/publishsubscribe-pattern/

COMPANY PUBLIC 13

Service Oriented Middleware – SOME/IP
Pros and Cons[1]

Recommended usage:

[1] https://www.slideshare.net/DaiYang/scalable-serviceoriented-middleware-over-ip

• Coexistence with existing system

> No functional Loss

• High Data Rate and Unicast

> Increase data transfer amount

• Low Transportation Overhead

• Dynamic IP Addressing

> Gain in maintainability and flexibility

• Computational Overhead due to

complex architectures

• Increase Storage Requirements

• Single Point of Failure (e.g. Switch

Malfunction)

Main Advantages: Possible Issues:

• Suitable for driver assistance and Infotainment systems

• Still to complex for Hard Real-time system (e.g motor control)

Several Open Source implementations (e.g. GENIVI vsomeip)

https://github.com/GENIVI/vsomeip

COMPANY PUBLIC 14

Service Oriented Middleware – DDS
DDS = Data Distribution Software

Images source:

http://www.slideshare.net/SumantTambe/communication-patterns-using-datacentric-publishsubscribe

https://www.rti.com/deep-dive-into-the-dds-opc-ua-gateway-specification

Standard-based Integration Infrastructure for Critical Applications Family of specifications

http://www.slideshare.net/SumantTambe/communication-patterns-using-datacentric-publishsubscribe
https://www.rti.com/deep-dive-into-the-dds-opc-ua-gateway-specification

COMPANY PUBLIC 15

Service Oriented Middleware – DDS
DDS Standard

Images source:

http://www.ieee802.org/1/files/public/docs2018/dg-leigh-

autosar-dds-tsn-use-case-1218-v02.pdf

OMG: Object Management Group

RTPS: Real-Time Publish/Subscribe

• DDS is the Proven Data Connectivity

Standard for the IoT

• OMG: world’s largest systems software

standards org

– UML, DDS, Industrial Internet

Consortium

• DDS: open and cross-vendor

– Open Standard and Open Source

– 12+ implementations

DDS Wire Protocol (RTPS)
• Peer to peer

• Transport-independent QoS-aware and Reliable

Communication

– Including multicast, for 1-many reliable communication

• Any data size over any transport.

• Automatic Discovery and Presence Plug and Play

• Decoupled

– Start applications in any order

• Support for Redundancy

– Multiple data sources

– Multiple network paths

• High performance native “wire” speeds

http://www.ieee802.org/1/files/public/docs2018/dg-leigh-autosar-dds-tsn-use-case-1218-v02.pdf

COMPANY PUBLIC 16

Service Oriented Middleware – DDS
Communication pattern based on Data-centric Publish/Subscribe

Images source: http://www.slideshare.net/SumantTambe/communication-patterns-using-datacentric-publishsubscribe

Provides a “Global Data Space” that is accessible to all

interested applications.

- Data objects addressed by Domain, Topic and Key

- Subscriptions are decoupled from Publications

- Contracts established by means of QoS

- Automatic discovery and configuration

http://www.slideshare.net/SumantTambe/communication-patterns-using-datacentric-publishsubscribe

COMPANY PUBLIC 17

Service Oriented Middleware
DDS as Core Connectivity Framework

Images source: http://www.slideshare.net/SumantTambe/communication-patterns-using-datacentric-publishsubscribe

http://www.slideshare.net/SumantTambe/communication-patterns-using-datacentric-publishsubscribe

COMPANY PUBLIC 18

• ara::com is the Communication

Management API for the AUTOSAR

Adaptive Platform.

• Aims to be communication framework

independent

• Was initially built around SOME/IP and

follows most of its principles

• Based on a proxy/skeleton SOA

architecture

• Especially tailored for Modern C++

(C++11 in External APIs, C++14 in

Internal APIs)

Source: AUTOSAR_AdaptivePlatformFor_EXP_TechnicalOverview

AUTOSAR Runtime for Adaptive Applications (ARA)

(Virtual) Machine / Container / Hardware

ara::exec

Execution Mgnt.

ara::com

Communication

Mgnt.

ara::rest

RESTful

ara::per

PersistencyS
O

M
E

/I
P

ara::crypto

Cryptography

ara::phm

Platform Health Mgnt.

ara::tsync

Time Synchronization

ara::log

Logging & Tracing

ara::sm service

State

Management

ara::diag service

Diagnostics

User Applications

Adaptive

Application

Adaptive

Application

Adaptive

Application

ASW::XYZ

Non-PF Service
ASW::ABC

Non-PF Service

IP
C

(l
o
c
a
l)

D
D

S

ara::s2s service

Signal to Service

Mapping

ara::nm service

Network

Management

ara::ucm service

Update and Configuration Management

POSIX PSE51 / C++ STL

Operating System

ara::core

Core Types

ara::iam

Identity Access Mgnt.

Adaptive

Application

API

Platform

Foundation FCs

SERVICE

Platfrom Service

FCs

SERVICE

Non-PF Service

Legend

API or Service Interface of a Functional Cluster.

AUTOSAR Runtime for Adaptive Applications = Σ of all Functional Cluster APIs /

Services

Adaptive AUTOSAR
as Service Oriented Communication Framework

COMPANY PUBLIC 19

Service Oriented Middleware – Adaptive AUTOSAR
ARA::COM - Service-oriented Communication – Proxy/Skeleton Paradigm

Source:

AUTOSAR_AdaptivePlatformFor_EXP_TechnicalOverview

Two code artifacts are generated from

AUTOSAR ARXML service description.

• Service Proxy: facade: an instance of a

generated class, which provides methods for

all functionalities the service provides.

• Service Skeleton: instance of a generated

class which allows to connect the service

implementation to the Communication

Management transport layer

• Bindings can be implemented for REST, DDS or other Middleware Transport Layers that support

publish / subscribe / event patterns

• SOMEIP is the default transport layer available on the shelf for ARA::COM

• Transport Layer is not necessary network, it can be shared memory or direct function calls if client and

service are running the same ECU / address space

COMPANY PUBLIC 20

Source:

AUTOSAR_AdaptivePlatformFor_EXP_TechnicalOverview

AUTOSAR Adaptive – Architectural Overview
ARA::COM – Language and Network Binding

Adaptive AUTOSAR Foundation

Application layer

SOME/IP

Communication

Middleware

DDS Communi-
cation Binding

Language Binding

Operating

system

API

Execution

Management

API

Not standardized

- analog to

Com_SendSignal()

SOME/IP Communi-
cation Binding

DDS

Communication

Middleware

• An Adaptive Application

may use different

communication bindings

underneath the ara::com

common API.

• DDS is placed parallel to

other network bindings

such as SOME/IP.

ARA::COM API

IPC

Middlew

are

IPC
Binding

Executable

COMPANY PUBLIC 21

Service Oriented Middleware – ROS

Node 1

Laser Scanning

Node 2:

Map Building

Node 3:

Planning

(C) File-system level: ROS Tools for managing source code, build

instructions, and message definitions.

Node

4
(B) Computation Graph: Peer-to-Peer Network of

ROS nodes

(processes).

Node

5

Node

6

Node7

Carnegie Mellon

(A) ROS Community: ROS Distributions, Repositories

COMPANY PUBLIC 22

SW Environment: SoA

Definition

• SoA: Service Oriented Architecture

− Applications built with ‘service’ layer of

abstraction

− SoA App is not bound to specific OS,

SOC, or even ECU

− SoA Apps also referred to as

‘Services’

− Framework that will transform how

vehicle features are built and deployed

– portability at forefront (static or

dynamic)

• SoA Framework examples:

− Adaptive AUTOSAR

− MQTT

− ROS

HLOS

CPU

(e.g. Cortex-A)

SoA

App

Service Oriented Arch

Middleware

SoA

App

Why

• Motivation

− Ease of development, deployment
& integration

▪ OEMs move away from deploy
features by ECU, to features by
SoA Apps.

▪ Tier1 moves to deliver SoA Apps
to OEMs, rather than ECUs.

▪ Simplifies the OTA deployment

• Challenges for SOC Arch

− Difficult to HW enforce isolation of
SoA Apps for security / safety

− SoA Framework dictates
performance, security & safety.
Framework provider & SOC
provider need to work closely to
make use of hardware features.

e.g. Adaptive

ASAR, ROS,

MQTT?

e.g. Linux,

QNX

Hypervisors

(Containers)

e.g. XEN

(LXC)

COMPANY PUBLIC 23

NXP’s Infrastructure for SoA

Automotive Linux BSP

COMPANY PUBLIC 24

Overview of Automotive Linux BSP

• A Linux BSP for all NXP Automotive

Platforms

• Targeting ADAS, C&S and Disty Market

• Integrated with SDKs (Vision, Radar,

Ethernet)

• Quarterly Releases

• A single package for multiple SOCs

Automotive
Linux BSP

Open
Source

Optimized

New
Platforms
& Boards

Ubuntu

MulticoreSecurity

Benchmarks

Documentation

Samples

COMPANY PUBLIC 25

Automotive Linux BSP – Ready for SOA Prototyping

Safe RTOS

Actuators
VisionRadar FusionAI Security

Computational Cores (A)

Safe Hypervisor

Linux Ecosystem

Communication

Cores (R, M)

NXP NG HW

Safe

RTOS

Safety

Critical

IPCF

OTC

IPCF IPCF

APD

We are building an Infrastructure leveraging huge open source ecosystem and various communities targeted

automotive software

COMPANY PUBLIC 26

Automotive Linux BSP - Product Architecture

MIDDLEWARE APPLICATIONS TOOLS

SOC

YOCTO
COMMUNICATION

UART

ENET

CAN

PCIEXPRESS

I2C

DSPI

STORAGE

SD

EMMC

QSPI

GRAPHICS

DCU

FRAMEBUFFER

GPU

VIU

ENCODERS

SECURITY

CRYPTO

SECUREBOOT

SOC

TIMERS

PINMUX

GPIO

CLOCKS

INTERRUPTS

WDG

SAMPLES

IPCF

UBUNTU

DOCUMENTATION

BOOTLOADERS

UBOOT

UEFI

BENCHMARKS

SERVICES

KERNEL

SoC1 SoC2 SoC3 SoC4 BlueBox S32X…

Provided

by SDKs

Customer

Applications NXP GCC

Hypervisor (XEN)

COMPANY PUBLIC 27

Adaptive AUTOSAR Foundation

Adaptive AUTOSAR – Reference Implementation

Adaptive Application

OS Abstraction Layer (OSAL)

OS (+ BSP)

ara::exec

Execution Mgnt.

ara::com

Communication Mgnt.
ara::rest

RESTful

ara::per

PersistencyS
O

M
E

/I
P

ara::crypto

Cryptography

ara::phm

Platform Health Mgnt.

ara::tsync

Time Synchronization

ara::log

Logging & Tracing

ara::sm service

State

Management

ara::diag service

Diagnostics

IP
C

(l
o
c
a
l)

D
D

S

ara::s2s service

Signal to Service

Mapping

ara::nm service

Network

Management

ara::ucm service

Update and Configuration Management

POSIX PSE51 / C++ STL

Operating System

ara::core

Core Types
ara::iam

Identity Access Mgnt.

Linux BSP QNX BSP

Linux QNX Integrity

NXP Develop

NXP and/or 3rd party

3rd party

Adaptive AUTOSAR ready to use/build ecosystem

Adaptive Platform

Demonstrator

COMPANY PUBLIC 28

Inter-Platform Communication Framework (IPCF)

• Multiple homogeneous or
heterogeneous processing cores

• Located on a single chip or on
multiple chips in a circuit board

• Running multiple OSes

• Communicating over various
interfaces:
− Ethernet

− PCIe

− USB

− UART, SPI

− Shared memory

Processor 1

Shared Memory

Processor 2

2 x

Cortex-A53

QNX

2 x

Cortex-M4

AutosarOS

4 x

Cortex-A53

Linux

Processor 3

2 x

Cortex-R5

Other OS

Ethernet

PCIe

COMPANY PUBLIC 29

IPCF

API

IPCF lib

Transport Abstraction Layer

SoC Abstraction Layer

OS Abstraction Layer

CORE IPCF

MCAPI

ISO26262

FIFO
FIFO

FIFO Nodes

Endpoints

Drivers

VETH / VTTY

Shared

mem
UART ETHPCIeUSB

COMPANY PUBLIC 30

MEMORY

Linux

kernel

SHM driver

Linux

userspace

IPCF – Linux2AUTOSAR over Shared Memory

Zero-copy API

Virtual ETH

device

TCP/IP stack

POSIX socket API

IPCF lib

MCAPIvSomeIP,

OpenSSL,

IPsec

Customer Apps

Customer

module

AUTOSAR

SHM CDD

Zero-copy API

Customer Apps (SW-C)

IPCF CDD

MCAPI SomeIP,

SSL/TLS,

SecOC

Virtual ETH

CDD

Customer

CDD

Com Stack

[PduR/TcpIp]

COMPANY PUBLIC 31

Virtual Ethernet

LS2 S32V

PCIe Driver (RC)

S32V

Interfaces in LS Linux

pcie0

veth

Virtual Eth Instances

$ ifconfig pcie0 192.168.1.1

PCIe Driver (EP)

RC

Interfaces in S32V Linux

pcie0

veth

Virtual Eth Instances

$ ifconfig pcie0 192.168.1.2

BlueBox

PCIe

Communication

Standard Ethernet Linux interface

Implementation:

- Virtual Ethernet Network Device

- PCIe driver

BlueBox

$ ping 192.168.1.2

PING 192.168.1.2 56(84) bytes of data.

64 bytes from 192.168.1.2: time=0.34 ms

64 bytes from 192.168.1.2: time=0.35 ms

COMPANY PUBLIC 32

Linux BSP Delivery: Easy of Use Using Yocto

- Linux Kernel

- U-boot

- Kernel modules

(eth, PCIe)

- Linux Userspace

NXP source

code NXP Yocto

BSP

Yocto Upstream

Layers

- Poky

- Open embedded

- Virtualization

Yocto Upstream

Yocto BSP

NXP Specific

layers

Depends on NXP

source code

Depends on

Yocto Upstream NXP Delivery:

Flexera & CAF

Flexera:

- Documentation

- Yocto Binaries

- Quality package

Testing and

Validation

Yocto

testing

Yocto Project: An open source collaboration

project that provides templates, tools and

methods to help you create custom Linux-

based systems for embedded products

CAF:

Open-Source Code

COMPANY PUBLIC 33

Ubuntu Delivery

- Linux Kernel

- U-boot

- Kernel modules

(eth, PCIe)

- Linux Userspace

NXP source code

NXP Yocto BSP

Yocto Upstream

Layers

- Poky

- Open

embedded

- Virtualization

Yocto Upstream

Yocto BSP

NXP Specific

layers

Depends on NXP

source code

Depends on

Yocto Upstream
NXP Delivery:

Flexera

Testing and

Validation

- Ubuntu

package

repository

- Ubuntu scripts

- Ubuntu

toolchain

Ubuntu

Yocto

testing

Ubuntu Delivery – The same delivery mechanism as for Yocto

• The Ubuntu is generated from Yocto build, with Yocto/bitbake commands. This includes

- Getting the Ubuntu packages

- Building the NXP specific source code

Ubuntu specific

layer

Depends on Yocto

NXP specific layers

that further depend on

NXP source code

Depends on public

Ubuntu resources

Ubuntu

Testing

CAF:

Open-Source Code

Ubuntu:
- Documentation

- No Ubuntu Binaries

- Quality Package

- CAF: Open-source

Flexera:

- Documentation

- Yocto Binaries

- Quality

package

COMPANY PUBLIC 34

Customer Flow

nxp.com->Flexera

Flexera:

- Documentation

- Yocto Binaries

- Quality package

- No Open Source

Archive

GPU User-space

Libraries

Start Here:

$ repo init -u https://source.codeaurora.org/external/autobsps32/auto_yocto_bsp

$ repo sync

GIT repository for

Open Source

components

- Linux

- U-boot

- Yocto

- Drivers & Apps

$ # Download and enable GPU support in Yocto

$ bitbake gpu

Install Open Source

Linux BSP using repo

commands
Open Source components

automatically downloaded

from CAF

Non-Open Source support:

Manually Download from Flexera

Example: GPU (Vivante)

Separate locations for Open Source code

(CAF) and proprietary (Flexera)

https://source.codeaurora.org/external/autobsps32/auto_yocto_bsp

COMPANY PUBLIC 35

Service Oriented Architectures enabled

by NXP’s Automotive Linux BSP

COMPANY PUBLIC 36

Highly Optimized Sensor Fusion

Security

• Various sensor data streams: Radar, Vision, LiDAR, V2X

• S32V234 automotive vision and sensor fusion processor

• LS2084A embedded compute processor

• S32R27 radar microcontroller

• CSE and ARM® TrustZone ® technology

High Performance per Power
• Up to 90,000 DMIPS at < 40 W

• Complete situational assessment

• Supporting classification

• Object detection and localization

• Mapping

Ease of Development
• ROS Space

• Open ROS Space Linux®-based

system

• Programmable in linear C

• Easily customizable

• Development environment for

mainstream vehicles

• Global Path Planning

• Behavior Planning

• Motion Planning

Decision Making

NXP Automated Drive Kit

▪ Computing: NXP BlueBox 2.0

▪ Vision: Front Camera Software with MIPI CSI2

Camera

▪ LiDAR: Selection of Lidars supported

▪ RADAR

▪ Inertial Measurement Unit & Integrated GPS

▪ Operating System

▪ Middleware: ROS (Robot Operating System)

Adaptive AUTOSAR

NXP Bluebox: Central Processing Unit For Autonomous Driving

COMPANY PUBLIC 37

Virtual Ethernet

LS2 S32V

PCIe Driver (RC)

S32V

Interfaces in LS Linux

pcie0

veth

Virtual Eth Instances

$ ifconfig pcie0 192.168.1.1

PCIe Driver (EP)

RC

Interfaces in S32V Linux

pcie0

veth

Virtual Eth Instances

$ ifconfig pcie0 192.168.1.2

BlueBox

PCIe

Communication

Standard Ethernet Linux interface

Implementation:

- Virtual Ethernet Network Device

- PCIe driver

BlueBox

$ ping 192.168.1.2

PING 192.168.1.2 56(84) bytes of data.

64 bytes from 192.168.1.2: time=0.34 ms

64 bytes from 192.168.1.2: time=0.35 ms

COMPANY PUBLIC 38

Heterogenous multi-core processing
• Real-time + high-performance applications

Automotive meets enterprise networking
• CAN FD, LIN, FlexRay™ interfaces

• Up to 10 Gigabit Ethernet with packet acceleration

End-to-end security from vehicle to cloud
• Embedded Hardware Security Module for cryptography and

secure key management

MPC-LS Vehicle Network Processing

Chipset for Service-oriented Gateways

MPC5748G LS1043A

MPC-LS

Chipset

COMPANY PUBLIC 39

Vehicle Service-oriented Gateway Enables Opportunities

The NXP MPC-LS chipset enables service-oriented gateways

COMPANY PUBLIC 40

SW Environment: ‘Potential’ Use Case

ARM

Trusted f/w

XEN Hypervisor

(Type 1)

Linux OS

CPU

(e.g. Cortex-A)

HLOS User

Space App
Adaptive

AUTOSAR

Framwork

e.g. Netcom

e.g. Connected

services
e.g. Safety

services
e.g. OTA

Manager

e.g. Fixed

function (e.g.

PCIE Manager)

e.g. ECU

integration

features

e.g.

CAN

Gateway

CPU

(e.g. Cortex-A)

Bare-metal App
(w/ lightweight

OS)

QNX OS

C
o

n
ta

in
e
r

A
p

p

LXC

Framework

C
o

n
ta

in
e
r

A
p

p

Linux OS

S
o

A
A

p
p

S
o

A
A

p
p

CPU

(e.g. Cortex-A)

ProvenCore

OS

S
e

c
u
re

A
p

p

XEN Hypervisor

(Type 1)

S
e

c
u
re

A
p
p

Classic

AUTOSAR OS

CPU

(e.g. Cortex-M/R)

RTOS

App

RTOS

App

H
ig

h
 B

W
 E

th

H
ig

h
 B

W
 P

C
IE

Prevent hypervisor bottlenecks.

- HW support for Hypervisor,

IOMMU, Virtual IRQs.

- Careful assignment of I/O to

Guests.

Provides each container with

own network stack (i.e. IP Addr)

Provides each SoA App with

network abstraction using

SOME/IP (service IDs)

COMPANY PUBLIC 41

Automotive Linux BSP – Ready Solution for SOA Prototyping

Optimized BSP items and the

communication path to better leverage

NXP’s HW resources

(e.g. DDS Security offload using the

Security and Ethernet)

Productize strategic SW items

Strategic partnership for Production ready

solution

Service-orientated Architecture (SoA) is driving change in SW architecture across the vehicle

Moving to scalable, abstracted platforms

NXP and the NXP logo are trademarks of NXP B.V. All other product or service names are the property of their respective owners. © 2019 NXP B.V.

