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OVERVIEW AND 
PRE-REQUISITES



PUBLIC 2

Pre-requisites

• Experience of programming in C
• Watch the MCUXpresso tool suite overview video (<5 mins long)
• Using MCUXpresso SDK selection from within MCUXpresso IDE (7 mins long):
−See this video on nxp.com
−Using the tutorial as a guideline, install the SDK for the board you are using

https://www.youtube.com/watch?v=u4lA05MgGZQ
https://nxp1.sharepoint.com/teams/32/Ecosystem%20%26%20Tools/Shared%20Documents/Forms/AllItems.aspx?id=%2Fteams%2F32%2FEcosystem%20%26%20Tools%2FShared%20Documents%2FVideos%2FMCUXpresso%2Fmcux%5Fsdk%5Finstall%5F11%2E1%2Emp4&parent=%2Fteams%2F32%2FEcosystem%20%26%20Tools%2FShared%20Documents%2FVideos%2FMCUXpresso
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The MCUXpresso Ecosystem

Core Technologies from NXP:
• MCUXpresso IDE 
• MCUXpresso SDK
• MCUXpresso Config Tools
• MCUXpresso Secure Provisioning Tool

Enabling Software Technologies:
• Run time software libraries and middleware
• Enable customers to focus on differentiation
• From NXP and partners

Enabling Tools Technologies:
• Partner IDEs 
• Debug Probes
• Development Boards
• From NXP and partners
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Evaluation to proof of concept on NXP Evaluation Boards

● Import/clone one of a large range
of SDK examples

● Easy selection from with
MCUXpresso IDE

● Modify pin/clock settings for your application

● Simple, push button updates into IDE project

● Or use MCUXpresso IDE 
New project wizard and 
Peripheral config tool to select 
and configure drivers and middleware

● Visualize data in real time

● Implement debug control interfaces
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Transition to custom hardware and on to production

● Modify pin/clock settings for custom hardware

● Simply update then rebuild for custom board
● Encrypt/sign application images

● Setup provisioning and programming scripts

● Production

● Same visualization and control 
as on NXP evaluation board

● Options to choose different 
interfaces



PUBLIC 6

Lab Setup/Prerequisites (FRDM-K64, if available)
• MCUXpresso IDE 11.1.x
−https://www.nxp.com/mcuxpresso/ide

• FRDM-K64 SDK V2.6.0 or later
−http://mcuxpresso.nxp.com/

• FRDM-K64F Board with micro-USB Cable
−https://www.nxp.com/freedom

• FRDM-K64F Board with DAPlink/CMSIS-
DAP Firmware
−Bootloader rev0244 OpenSDA v2.2
−DAPLink rev0244 Firmware
−https://www.nxp.com/opensda

https://www.nxp.com/mcuxpresso/ide
http://mcuxpresso.nxp.com/
https://www.nxp.com/freedom
https://www.nxp.com/opensda
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Lab Setup/Prerequisites (LPCXpresso boards)
• Must be MCUXpresso SDK supported

− LPC54xxx, LPC55xx, LPC51U68
• MCUXpresso IDE 11.1.1

− https://www.nxp.com/mcuxpresso/ide
• SDK V2.7.x or later for board being used

− http://mcuxpresso.nxp.com/
• Board with micro-USB Cable (e.g. …)

− https://www.nxp.com/demoboard/LPC55S69-EVK
• Board may be pre-programmed with CMSIS-DAP or J-Link 

firmware, but not essential
• LPC8xx boards may also be used

− Other boards above are a better option due SWO support
− Will have LPC11U35, CMSIS-DAP debug probe
− Ensure version 1.0.7 or later (will be shown when probe discovered at 

start of debug session)

https://www.nxp.com/mcuxpresso/ide
http://mcuxpresso.nxp.com/
https://www.nxp.com/demoboard/LPC55S69-EVK
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Advanced Debug Course Sections
Introduction/pre-requisites

1. Part 1: Basic debugging and code flashing
− Creating/Cloning MCUXpresso SDK Projects in the IDE
− Building, Basic Debugging
− Startup, Connect, Disconnect, Attach
− GUI Flash Tool
2. Part 2: Accessing data and peripherals
− Global Variables, Variable Plots, Data
− Stack, Heap and Peripherals
− Hard faults
3. Part 3: Halting execution
− Breakpoints & Watchpoints
4. Part 4: Instruction trace*
5. Part 5: FreeRTOS Task Aware Debug
6. Part 6: SWO trace, profiling and ITM**

*Instruction trace requires Cortex M0+ with MTB support or Cortex M4 w/ ETM
**SWO profiling requires LPC55xx/54xxx/51U68, i.MX RT1060 or i.MX RT10x0 with LPC-Link2 probe
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PART 1: BUILDING, 
DEBUGGING AND 
DIRECT FLASHING
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About this tutorial and the board you are using

• All steps in the tutorial are the same for whatever board is being used, but debug 
probes vary between boards
−FRDM boards use micro USB to OpenSDA, as do some i.MX RT 4-digit boards
−LPC54000 or LPC5500 series will have LPC-Link2 CMSIS-DAP probe
−LPC800 boards will have LPC11U35 CMSIS-DAP probe

• The IDE debug system discovers probe for any of these, but the probe name will 
be different
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MCUXpresso IDE

• Start the IDE with Shortcut
• Select workspace
• Open MCUXpresso IDE User Guide
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Create LED Blinky Project 

• Prerequisite: 
− SDK_2.x_FRDM-K64F (or SDK for the board being used) 

installed in IDE

• Use Quickstart Panel with “Import SDK example(s)…”
− Select frdmk64f board image (or board being used)
− Click “Next”
− Select “demo_apps > led_blinky”
− Click “Finish”
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Build and Debug (FRDM-K64F)

• Connect FRDM-K64F board (micro USB to OpenSDA)*
−Windows may need to enumerate USB connection

• Use IDE Quickstart Panel to:
−Clean
−Build
−Debug

• Debugger discovers probe
−Use SHIFT to force probe re-discovery
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Debug Info dialog

• Image info provides a range of 
information on a built application

• Must load image info after selecting 
project

• Memory usage: overall memory use by 
region

• Memory contents: detailed breakdown of 
all symbols by section

• Call graph: shows functions called by 
each function, stack usage (“Cost”)
−Useful for code size optimization
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Debugger Run Control

• Resume/Run
• Suspend/Pause
• Terminate/Stop
• (Disconnect)
• Step Into
• Step Over
• Step Out
• Step through the code



PUBLIC 16

Debug Startup Breakpoint

• By default, target runs until main()
• Double-Click on Debug *.launch File in Project
−Opens Debug Configuration
−Stop at ResetISR

• Debug
• Can now debug startup code



PUBLIC 17

Debug Toolbar in Debug View, Assembly Stepping

• Enable debug toolbar
• Turn on instruction stepping
• Perform stepping
• Switch back to Source stepping
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Debug Quickstart Shortcuts

• Quick and fast way to
−Debug (default)
−Attach
−Program
−Erase

• Setting is persistent between sessions
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Debug Quickstart Shortcuts: Attach
• Use ‘Attach’ to running target
• Launch Configuration Icon has ‘A’ 

Decorator added:

• Subsequent use of Debug (instead of 
Attach) will trigger a prompt to confirm 
reversion to Debug

• Using Attach option will result in persistent 
Setting in Debug Configuration
− Will revert automatically in future releases
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Disconnect
• ‘Terminate’/Stop button disconnects 

from Target
• Open Debug Configuration
−Double Click on *.launch file in Project
−nochange - will leave the target in its 

current state 
−stop - will leave the target in debug state 

i.e. halted 
−cont - the default, will either start the 

image from its current PC value or leave 
it running 

− run cont - will reset the target and let it 
run

• Change it to ‘stop’ and try it
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GUI Flash Tool

• Advanced Board flashing/programming
−Program, verify, erase, check, resurrect, ...
−Programming multiple boards

• Select GUI Flash Tool Icon
• Run Job
• Messages written to Console View
• Check Console View
• Can also be used for Mass Erase
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PART 2: ACCESSING DATA 
AND PERIPHERALS
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About this section

• Screen shots shown are from a session with FRDM-K64F
• All operations also apply to any MCUXpresso SDK supported board
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Global Variables View Update

• Debug project
• Global Variables View
−Add global variables
−can use Filter for easier search, press OK

• Run target
• Variable is automatically updated
−Refresh rate defaults to every 1000ms
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Graphing variables

• Choose an example with data varying over time
−Examples in this tutorial use the “bubble” application example with FRDM-K64F
−Other options:
 emWin touch and draw example on boards with LCD panel (e.g. LPC546xx, i.MX RT1050)
 Any example reading on-board accelerometer or temperature sensor
 Use blinky application and monitor the systick variable
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Global variables: select symbols

• In variables dialog, click on the eyeglasses logo to open symbol selection dialog
− If you cant find the global variables dialog, type “global” in the Quick access box

• Use filter to narrow down list of available globals (example from bubble application)

Check these boxes to enable graphing of these variables
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• Press green “play” symbol to start live polling of variables
• With bubble application running, move the board around to see values 

change
−Changed variables highlight yellow, variables begin plotting in Plot tab

Global variables: live value updates
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Global variables: Plotting controls

Autoscale (zooms 
to full plot size)

Zoom in/out
Zooms continuously 
while left mouse
button depressed

Zoom range,
Horizontally/vertically
Press and hold left mouse
to select range

Select to pan
Left/right or

Step back /
fwd through 
operations

Show/hide
legend

Add/remove
Annotation points
on plot

Measure values
along vertical or
horizontal axis

Take/save
snapshot
(PNG format)
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Global variables: Trace and statistics tabs

Clicking the save icon with 
any of the tabs active will 
results in dialogs to save
PNG file for plot
.tsv files for Trace and Statistics
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Registers View

• Registers View for core registers
• If view not already open: Menu Window > 

Show View > Other… > Debug > Registers
• Pseudo Registers for Cycle Counters
−cycleDelta: cycles since the last CPU stop

• Measure time of code execution between 
two breakpoints
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Hard Fault – Faults view

• Add code writing to read-only memory

−Causes HardFault Exception
• Debug and let it fault
• vectpc pseudo register shows fault details
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Heap and Stack views

• Real-time polling of Heap usage
• Visual indication (Red/Orange/Green) 

of usage vs limits
• Heap limit set in Project properties
• Stack cannot be read real time (as 

target would have to be stopped)
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PART 3: CODE & DATA 
BREAKPOINTS
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About this section

• Screen shots shown are from a session with FRDM-K64F
• All operations also apply to any MCUXpresso SDK supported board
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Breakpoints and Breakpoints View

• Add Breakpoint to source view
−Double-Click into ‘blue’ ribbon

• Breakpoints are listed in Breakpoints view
• Set/Enabled breakpoint have checkmark
• Be aware of ‘Skip All Breakpoints’!
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Assembly Stepping and Breakpoints

• Turn on Instruction Stepping
• Add/Remove assembly instruction breakpoints
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Watchpoints

• Breakpoint on data read/write
• Debug
• Use Outline View
• Toggle Watchpoint
• Read/Write trigger condition
• Apply and Close
• Run Target  stops on access
• Use Breakpoint View to 

create/update/delete watchpoints
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Watchpoint Properties

• Read/Write Access 
change:
−Limitation of CDT: re-create 

watchpoint
• Condition: only stops on 

access if condition is true
• Ignore Count: counts down 

to zero until it stops
• Actions & Filter
• Note: stops target for 

condition evaluation!
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Watchpoints from Memory View

• View Memory on Global Variable
• In Memory View, select range
• Add Watchpoint (C/C++)
• Watchpoint on address range
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Stepping Return Value of Functions

• Problem
−How to see the calculated return value
−Usually calculated/returned in registers
−No local variable to inspect

• Solution
−Step-Return Value in Variable view

• Add code to application and build
(copy-paste or use snippet)

int computeValue(int i) {
return i*3;

}

int foo(int i) {
if (computeValue(i)!=0) {
return 1;

} else {
return 1;

}
}
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Step-Return Value

• Debug
• Perform a Step-Return 

from Function which 
returns value
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Step-Return Value

• After the Step-Return, 
return value is shown in 
Variables View
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PART 4: 
INSTRUCTION TRACE



PUBLIC 45

About this section

• Screen shots shown are from a session with FRDM-K64F (for ETM/ETB) and an 
LPC845 Breakout (BRK) board (for MTB)

• Instruction trace availability shown on the next slide
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Instruction Trace – Supported Targets in MCUXpresso IDE

• Cortex M3/M4/M7 MCUs
− Target MCU must implement both an Embedded Trace 

Macrocell (ETM) AND an Embedded Trace Buffer (ETB). 
✔Kinetis K, LPC18xx and LPC43xx parts 

• Cortex M0+ LPC/Kinetis MCUs
− Target MCU must implement a Micro Trace Buffer (MTB)
✔LPC81x/82x/84x parts
✔LPC11U6x/11E6x parts
✔Kinetis L parts

• For parts with ETM only (LPC546xx/0xx, i.MX RT), 
recommend debug probe and trace solutions from partners
− E.g. SEGGER, PE Micro, Arm Keil, IAR, Percepio, Lauterbach, 

iSYSTEM

Processor
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MTB 
controller

RAM interface

AHB interface

Program 
execution info

Application 
Data + 

Trace Data
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Instruction Trace in MCUXpresso can be 
carried out via any supported debug probe
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Instruction Trace
• Collects details of instructions being executed
• Allows complex program flow problems to be examined

− Gives insight into what happening in system before a fault was encountered
• <IDE Installation Path>\MCUXpresso_IDE_Instruction_Trace.pdf

Instruction 
Trace View

Current 
PC

Can be 
linked to src
/ asm views

Code 
coverage 
counters

Code 
coverage
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Instruction Trace

• Debug Application 
−bubble demo application better than led_blinky

• Instruction Trace View
− If not visible, access by typing “Instruction trace in 

Quick Access box (top right)
−Turn on ‘Record continuously’ Button

• Run the Target and then Suspend/Pause
• Download tracebuffer from target
• Turn on Link to Source & Disassembly
• Shows corresponding program location

Link to source Link to 
disassembly

Profiling
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Instruction Trace Triggers

• Debug and Suspend
• Show Instruction Trace Configuration
• Refresh from target
• Address of global variable
−Expressions View
−Add Expression
−Address: &<variableName>
−Copy-Paste address
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Instruction Trace Trigger Configuration

• Trace enabled
• Stall if only some free 

bytes in buffer
• Data write on address 

and value written
• Trigger on comparator 2
• Records some words 

before and after trigger
• Save Configuration
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PART 5:
FREERTOS

TASK AWARE DEBUG
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About this section

• Screen shots shown are from a session with FRDM-K64F
• All operations also apply to any MCUXpresso SDK supported board that includes 

FreeRTOS support
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FreeRTOS TAD

• Thread Aware Debugging
−Show and switch between threads in Debug View
−Views to inspect status of the RTOS

• Views read RTOS data structures while target is halted
• Debugger needs extra information:

<IDE Installation Path>\MCUXpresso_IDE_FreeRTOS_Debug_Guide.pdf
−SDK projects should be updated for this
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Creating FreeRTOS Project

• Quickstart Panel
• Import SDK example(s)
• Select Board (FRDM-K64F)
• rtos_example > freertos_generic
• Finish to create project
• Build project
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Debug Probe Connection

• Configure to use All-Stop
−Allows thread aware debug view
−Otherwise only current thread is shown

• Resume, then Pause
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Thread Aware Debug View

• Lists all FreeRTOS tasks with stacks
−Switch debug context to thread
−Context, registers, stack

• Click on function (top) of a thread
• Debug it (step out, step over)
• Switch to another thread
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Task List

• Lists FreeRTOS Tasks in the System
• Menu FreeRTOS > Task List
• Pause Button: do not update data when target is stopped
• Save Button: Store information as .csv file
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Queue List

• Lists all FreeRTOS Queues
• Menu FreeRTOS > Queue List
• Pause Button: do not update data when target is stopped
• Save Button: Store information as .csv file
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Queue Timer

• Lists all FreeRTOS Software Timer
• Menu FreeRTOS > Timer List
• Pause Button: do not update data when target is stopped
• Save Button: Store information as .csv file
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Heap Usage

• Status of FreeRTOS Heap and Memory Allocation
• Menu FreeRTOS > Queue List
• Pause Button: do not update data when target is stopped
• Save Button: Store information as .csv file
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PART 6: SWO TRACE
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Single Wire Output
• SWO: Single Wire Output
• ARM Cortex-M Hardware Feature (1 pin)
• Requires that the SWO pin is routed to debug headers
− Present on Tower (TWR) and LPCXpresso V2/V3 boards
− Freedom (FRDM) boards do not have SWO pin available

• Debug Features with SWO
− SWO Console
− SWO Interrupt tracing/logging
− SWO Profiling
−via LPC-Link2 with NXP CMSIS-DAP firmware
−Using SEGGER J-Link and PE Micro probes

• Documentation
− <IDE Installation Path>\MCUXpresso_IDE_SWO_Trace.pdf
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Enabling SWO use

• To use SWO, the SWO function must be enabled on the device, and clock set up 
to associated logic

• MCUXpresso SDK examples usually do not have this by default, but setup via pin 
and clock configuration tools is typically quite simple
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SWO Trace Config

• Dedicated view to configure SWO
• SWO Clock speed setting
• (+) opens other views
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SWO Trace – Profile View

• Displays statistical profile of application activity
−Based on PC sampling, typically at ~50kHz
−Non-intrusive – does not affect application

• Benefits – Identify hotspots
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SWO Trace – Interrupt Views



PUBLIC 67

SWO Trace – Interrupt Views

• Interrupts Stats
−Continuous count (and other stats) of all interrupts

• Benefits
−Determine time spent in interrupt handlers
−Optimization of interrupt handlers
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SWO Interrupt Stats
• Capturing Interrupt Trace also populates an SWO Int Stats View
• Switch to the SWO Int Stats View and compare the Stats with our measured values

− Note that for linear functions the Min (time in) and Max (time in) will be the same
 this is not true for time spent in Main (which is the interrupted code)

− Note the Min (time between) and Max (time between) is not guaranteed to be same
 This relates to interrupt default priorities and pre-emption
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SWO Trace – DataWatch

• Dynamic memory accesses
• Read and write to target memory without stopping 

CPU
• Non-intrusive
• Reads done on periodic basis (by default)
• Unlimited number of addresses
• Allows modifications to parameters in real 

time

• Datawatch Trace
− Capture all accesses to memory location, 

without stopping CPU

• Benefits
− Monitor and analyse memory accesses
− Identify ‘rogue’ memory accesses
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SWO Trace – ITM Printf
• Instrumentation Trace Macrocell (ITM) block provides a mechanism for sending data from your 

target to the debugger via the SWO trace stream
• MCUXpresso IDE allows user to redirect printf/scanf data by reimplementing low level Redlib

function __sys_write / __sys_readc
− Newlib reimplementation also possible

• Unlike normal semihosting, this scheme is both low bandwidth and does not halt the MCU to 
transfer data
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