
PUBLIC

MARCH 2020

ADVANCED DEBUGGING WITH
MCUXPRESSO IDE V11.1

AMF-SOL-T4020

PUBLIC 1

OVERVIEW AND
PRE-REQUISITES

PUBLIC 2

Pre-requisites

• Experience of programming in C
• Watch the MCUXpresso tool suite overview video (<5 mins long)
• Using MCUXpresso SDK selection from within MCUXpresso IDE (7 mins long):
−See this video on nxp.com
−Using the tutorial as a guideline, install the SDK for the board you are using

https://www.youtube.com/watch?v=u4lA05MgGZQ
https://nxp1.sharepoint.com/teams/32/Ecosystem%20%26%20Tools/Shared%20Documents/Forms/AllItems.aspx?id=%2Fteams%2F32%2FEcosystem%20%26%20Tools%2FShared%20Documents%2FVideos%2FMCUXpresso%2Fmcux%5Fsdk%5Finstall%5F11%2E1%2Emp4&parent=%2Fteams%2F32%2FEcosystem%20%26%20Tools%2FShared%20Documents%2FVideos%2FMCUXpresso

PUBLIC 3

The MCUXpresso Ecosystem

Core Technologies from NXP:
• MCUXpresso IDE
• MCUXpresso SDK
• MCUXpresso Config Tools
• MCUXpresso Secure Provisioning Tool

Enabling Software Technologies:
• Run time software libraries and middleware
• Enable customers to focus on differentiation
• From NXP and partners

Enabling Tools Technologies:
• Partner IDEs
• Debug Probes
• Development Boards
• From NXP and partners

PUBLIC 4

Evaluation to proof of concept on NXP Evaluation Boards

● Import/clone one of a large range
of SDK examples

● Easy selection from with
MCUXpresso IDE

● Modify pin/clock settings for your application

● Simple, push button updates into IDE project

● Or use MCUXpresso IDE
New project wizard and
Peripheral config tool to select
and configure drivers and middleware

● Visualize data in real time

● Implement debug control interfaces

PUBLIC 5

Transition to custom hardware and on to production

● Modify pin/clock settings for custom hardware

● Simply update then rebuild for custom board
● Encrypt/sign application images

● Setup provisioning and programming scripts

● Production

● Same visualization and control
as on NXP evaluation board

● Options to choose different
interfaces

PUBLIC 6

Lab Setup/Prerequisites (FRDM-K64, if available)
• MCUXpresso IDE 11.1.x
−https://www.nxp.com/mcuxpresso/ide

• FRDM-K64 SDK V2.6.0 or later
−http://mcuxpresso.nxp.com/

• FRDM-K64F Board with micro-USB Cable
−https://www.nxp.com/freedom

• FRDM-K64F Board with DAPlink/CMSIS-
DAP Firmware
−Bootloader rev0244 OpenSDA v2.2
−DAPLink rev0244 Firmware
−https://www.nxp.com/opensda

https://www.nxp.com/mcuxpresso/ide
http://mcuxpresso.nxp.com/
https://www.nxp.com/freedom
https://www.nxp.com/opensda

PUBLIC 7

Lab Setup/Prerequisites (LPCXpresso boards)
• Must be MCUXpresso SDK supported

− LPC54xxx, LPC55xx, LPC51U68
• MCUXpresso IDE 11.1.1

− https://www.nxp.com/mcuxpresso/ide
• SDK V2.7.x or later for board being used

− http://mcuxpresso.nxp.com/
• Board with micro-USB Cable (e.g. …)

− https://www.nxp.com/demoboard/LPC55S69-EVK
• Board may be pre-programmed with CMSIS-DAP or J-Link

firmware, but not essential
• LPC8xx boards may also be used

− Other boards above are a better option due SWO support
− Will have LPC11U35, CMSIS-DAP debug probe
− Ensure version 1.0.7 or later (will be shown when probe discovered at

start of debug session)

https://www.nxp.com/mcuxpresso/ide
http://mcuxpresso.nxp.com/
https://www.nxp.com/demoboard/LPC55S69-EVK

PUBLIC 8

Advanced Debug Course Sections
Introduction/pre-requisites

1. Part 1: Basic debugging and code flashing
− Creating/Cloning MCUXpresso SDK Projects in the IDE
− Building, Basic Debugging
− Startup, Connect, Disconnect, Attach
− GUI Flash Tool
2. Part 2: Accessing data and peripherals
− Global Variables, Variable Plots, Data
− Stack, Heap and Peripherals
− Hard faults
3. Part 3: Halting execution
− Breakpoints & Watchpoints
4. Part 4: Instruction trace*
5. Part 5: FreeRTOS Task Aware Debug
6. Part 6: SWO trace, profiling and ITM**

*Instruction trace requires Cortex M0+ with MTB support or Cortex M4 w/ ETM
**SWO profiling requires LPC55xx/54xxx/51U68, i.MX RT1060 or i.MX RT10x0 with LPC-Link2 probe

PUBLIC 9

PART 1: BUILDING,
DEBUGGING AND
DIRECT FLASHING

PUBLIC 10

About this tutorial and the board you are using

• All steps in the tutorial are the same for whatever board is being used, but debug
probes vary between boards
−FRDM boards use micro USB to OpenSDA, as do some i.MX RT 4-digit boards
−LPC54000 or LPC5500 series will have LPC-Link2 CMSIS-DAP probe
−LPC800 boards will have LPC11U35 CMSIS-DAP probe

• The IDE debug system discovers probe for any of these, but the probe name will
be different

PUBLIC 11

MCUXpresso IDE

• Start the IDE with Shortcut
• Select workspace
• Open MCUXpresso IDE User Guide

PUBLIC 12

Create LED Blinky Project

• Prerequisite:
− SDK_2.x_FRDM-K64F (or SDK for the board being used)

installed in IDE

• Use Quickstart Panel with “Import SDK example(s)…”
− Select frdmk64f board image (or board being used)
− Click “Next”
− Select “demo_apps > led_blinky”
− Click “Finish”

PUBLIC 13

Build and Debug (FRDM-K64F)

• Connect FRDM-K64F board (micro USB to OpenSDA)*
−Windows may need to enumerate USB connection

• Use IDE Quickstart Panel to:
−Clean
−Build
−Debug

• Debugger discovers probe
−Use SHIFT to force probe re-discovery

PUBLIC 14

Debug Info dialog

• Image info provides a range of
information on a built application

• Must load image info after selecting
project

• Memory usage: overall memory use by
region

• Memory contents: detailed breakdown of
all symbols by section

• Call graph: shows functions called by
each function, stack usage (“Cost”)
−Useful for code size optimization

PUBLIC 15

Debugger Run Control

• Resume/Run
• Suspend/Pause
• Terminate/Stop
• (Disconnect)
• Step Into
• Step Over
• Step Out
• Step through the code

PUBLIC 16

Debug Startup Breakpoint

• By default, target runs until main()
• Double-Click on Debug *.launch File in Project
−Opens Debug Configuration
−Stop at ResetISR

• Debug
• Can now debug startup code

PUBLIC 17

Debug Toolbar in Debug View, Assembly Stepping

• Enable debug toolbar
• Turn on instruction stepping
• Perform stepping
• Switch back to Source stepping

PUBLIC 18

Debug Quickstart Shortcuts

• Quick and fast way to
−Debug (default)
−Attach
−Program
−Erase

• Setting is persistent between sessions

PUBLIC 19

Debug Quickstart Shortcuts: Attach
• Use ‘Attach’ to running target
• Launch Configuration Icon has ‘A’

Decorator added:

• Subsequent use of Debug (instead of
Attach) will trigger a prompt to confirm
reversion to Debug

• Using Attach option will result in persistent
Setting in Debug Configuration
− Will revert automatically in future releases

PUBLIC 20

Disconnect
• ‘Terminate’/Stop button disconnects

from Target
• Open Debug Configuration
−Double Click on *.launch file in Project
−nochange - will leave the target in its

current state
−stop - will leave the target in debug state

i.e. halted
−cont - the default, will either start the

image from its current PC value or leave
it running

− run cont - will reset the target and let it
run

• Change it to ‘stop’ and try it

PUBLIC 21

GUI Flash Tool

• Advanced Board flashing/programming
−Program, verify, erase, check, resurrect, ...
−Programming multiple boards

• Select GUI Flash Tool Icon
• Run Job
• Messages written to Console View
• Check Console View
• Can also be used for Mass Erase

PUBLIC 22

PART 2: ACCESSING DATA
AND PERIPHERALS

PUBLIC 23

About this section

• Screen shots shown are from a session with FRDM-K64F
• All operations also apply to any MCUXpresso SDK supported board

PUBLIC 24

Global Variables View Update

• Debug project
• Global Variables View
−Add global variables
−can use Filter for easier search, press OK

• Run target
• Variable is automatically updated
−Refresh rate defaults to every 1000ms

PUBLIC 25

Graphing variables

• Choose an example with data varying over time
−Examples in this tutorial use the “bubble” application example with FRDM-K64F
−Other options:
 emWin touch and draw example on boards with LCD panel (e.g. LPC546xx, i.MX RT1050)
 Any example reading on-board accelerometer or temperature sensor
 Use blinky application and monitor the systick variable

PUBLIC 26

Global variables: select symbols

• In variables dialog, click on the eyeglasses logo to open symbol selection dialog
− If you cant find the global variables dialog, type “global” in the Quick access box

• Use filter to narrow down list of available globals (example from bubble application)

Check these boxes to enable graphing of these variables

PUBLIC 27

• Press green “play” symbol to start live polling of variables
• With bubble application running, move the board around to see values

change
−Changed variables highlight yellow, variables begin plotting in Plot tab

Global variables: live value updates

PUBLIC 28

Global variables: Plotting controls

Autoscale (zooms
to full plot size)

Zoom in/out
Zooms continuously
while left mouse
button depressed

Zoom range,
Horizontally/vertically
Press and hold left mouse
to select range

Select to pan
Left/right or

Step back /
fwd through
operations

Show/hide
legend

Add/remove
Annotation points
on plot

Measure values
along vertical or
horizontal axis

Take/save
snapshot
(PNG format)

PUBLIC 29

Global variables: Trace and statistics tabs

Clicking the save icon with
any of the tabs active will
results in dialogs to save
PNG file for plot
.tsv files for Trace and Statistics

PUBLIC 30

Registers View

• Registers View for core registers
• If view not already open: Menu Window >

Show View > Other… > Debug > Registers
• Pseudo Registers for Cycle Counters
−cycleDelta: cycles since the last CPU stop

• Measure time of code execution between
two breakpoints

PUBLIC 31

Hard Fault – Faults view

• Add code writing to read-only memory

−Causes HardFault Exception
• Debug and let it fault
• vectpc pseudo register shows fault details

PUBLIC 32

Heap and Stack views

• Real-time polling of Heap usage
• Visual indication (Red/Orange/Green)

of usage vs limits
• Heap limit set in Project properties
• Stack cannot be read real time (as

target would have to be stopped)

PUBLIC 34

PART 3: CODE & DATA
BREAKPOINTS

PUBLIC 35

About this section

• Screen shots shown are from a session with FRDM-K64F
• All operations also apply to any MCUXpresso SDK supported board

PUBLIC 36

Breakpoints and Breakpoints View

• Add Breakpoint to source view
−Double-Click into ‘blue’ ribbon

• Breakpoints are listed in Breakpoints view
• Set/Enabled breakpoint have checkmark
• Be aware of ‘Skip All Breakpoints’!

PUBLIC 37

Assembly Stepping and Breakpoints

• Turn on Instruction Stepping
• Add/Remove assembly instruction breakpoints

PUBLIC 38

Watchpoints

• Breakpoint on data read/write
• Debug
• Use Outline View
• Toggle Watchpoint
• Read/Write trigger condition
• Apply and Close
• Run Target  stops on access
• Use Breakpoint View to

create/update/delete watchpoints

PUBLIC 39

Watchpoint Properties

• Read/Write Access
change:
−Limitation of CDT: re-create

watchpoint
• Condition: only stops on

access if condition is true
• Ignore Count: counts down

to zero until it stops
• Actions & Filter
• Note: stops target for

condition evaluation!

PUBLIC 40

Watchpoints from Memory View

• View Memory on Global Variable
• In Memory View, select range
• Add Watchpoint (C/C++)
• Watchpoint on address range

PUBLIC 41

Stepping Return Value of Functions

• Problem
−How to see the calculated return value
−Usually calculated/returned in registers
−No local variable to inspect

• Solution
−Step-Return Value in Variable view

• Add code to application and build
(copy-paste or use snippet)

int computeValue(int i) {
return i*3;

}

int foo(int i) {
if (computeValue(i)!=0) {
return 1;

} else {
return 1;

}
}

PUBLIC 42

Step-Return Value

• Debug
• Perform a Step-Return

from Function which
returns value

PUBLIC 43

Step-Return Value

• After the Step-Return,
return value is shown in
Variables View

PUBLIC 44

PART 4:
INSTRUCTION TRACE

PUBLIC 45

About this section

• Screen shots shown are from a session with FRDM-K64F (for ETM/ETB) and an
LPC845 Breakout (BRK) board (for MTB)

• Instruction trace availability shown on the next slide

PUBLIC 46

Instruction Trace – Supported Targets in MCUXpresso IDE

• Cortex M3/M4/M7 MCUs
− Target MCU must implement both an Embedded Trace

Macrocell (ETM) AND an Embedded Trace Buffer (ETB).
✔Kinetis K, LPC18xx and LPC43xx parts

• Cortex M0+ LPC/Kinetis MCUs
− Target MCU must implement a Micro Trace Buffer (MTB)
✔LPC81x/82x/84x parts
✔LPC11U6x/11E6x parts
✔Kinetis L parts

• For parts with ETM only (LPC546xx/0xx, i.MX RT),
recommend debug probe and trace solutions from partners
− E.g. SEGGER, PE Micro, Arm Keil, IAR, Percepio, Lauterbach,

iSYSTEM

Processor

SRAM

MTB
controller

RAM interface

AHB interface

Program
execution info

Application
Data +

Trace Data

Microcontroller

D
eb

ug

co
nn

ec
to

r

Instruction Trace in MCUXpresso can be
carried out via any supported debug probe

PUBLIC 47

Instruction Trace
• Collects details of instructions being executed
• Allows complex program flow problems to be examined

− Gives insight into what happening in system before a fault was encountered
• <IDE Installation Path>\MCUXpresso_IDE_Instruction_Trace.pdf

Instruction
Trace View

Current
PC

Can be
linked to src
/ asm views

Code
coverage
counters

Code
coverage

PUBLIC 48

Instruction Trace

• Debug Application
−bubble demo application better than led_blinky

• Instruction Trace View
− If not visible, access by typing “Instruction trace in

Quick Access box (top right)
−Turn on ‘Record continuously’ Button

• Run the Target and then Suspend/Pause
• Download tracebuffer from target
• Turn on Link to Source & Disassembly
• Shows corresponding program location

Link to source Link to
disassembly

Profiling

PUBLIC 49

Instruction Trace Triggers

• Debug and Suspend
• Show Instruction Trace Configuration
• Refresh from target
• Address of global variable
−Expressions View
−Add Expression
−Address: &<variableName>
−Copy-Paste address

PUBLIC 50

Instruction Trace Trigger Configuration

• Trace enabled
• Stall if only some free

bytes in buffer
• Data write on address

and value written
• Trigger on comparator 2
• Records some words

before and after trigger
• Save Configuration

PUBLIC 51

PART 5:
FREERTOS

TASK AWARE DEBUG

PUBLIC 52

About this section

• Screen shots shown are from a session with FRDM-K64F
• All operations also apply to any MCUXpresso SDK supported board that includes

FreeRTOS support

PUBLIC 53

FreeRTOS TAD

• Thread Aware Debugging
−Show and switch between threads in Debug View
−Views to inspect status of the RTOS

• Views read RTOS data structures while target is halted
• Debugger needs extra information:

<IDE Installation Path>\MCUXpresso_IDE_FreeRTOS_Debug_Guide.pdf
−SDK projects should be updated for this

PUBLIC 54

Creating FreeRTOS Project

• Quickstart Panel
• Import SDK example(s)
• Select Board (FRDM-K64F)
• rtos_example > freertos_generic
• Finish to create project
• Build project

PUBLIC 55

Debug Probe Connection

• Configure to use All-Stop
−Allows thread aware debug view
−Otherwise only current thread is shown

• Resume, then Pause

PUBLIC 56

Thread Aware Debug View

• Lists all FreeRTOS tasks with stacks
−Switch debug context to thread
−Context, registers, stack

• Click on function (top) of a thread
• Debug it (step out, step over)
• Switch to another thread

PUBLIC 57

Task List

• Lists FreeRTOS Tasks in the System
• Menu FreeRTOS > Task List
• Pause Button: do not update data when target is stopped
• Save Button: Store information as .csv file

PUBLIC 58

Queue List

• Lists all FreeRTOS Queues
• Menu FreeRTOS > Queue List
• Pause Button: do not update data when target is stopped
• Save Button: Store information as .csv file

PUBLIC 59

Queue Timer

• Lists all FreeRTOS Software Timer
• Menu FreeRTOS > Timer List
• Pause Button: do not update data when target is stopped
• Save Button: Store information as .csv file

PUBLIC 60

Heap Usage

• Status of FreeRTOS Heap and Memory Allocation
• Menu FreeRTOS > Queue List
• Pause Button: do not update data when target is stopped
• Save Button: Store information as .csv file

PUBLIC 61

PART 6: SWO TRACE

PUBLIC 62

Single Wire Output
• SWO: Single Wire Output
• ARM Cortex-M Hardware Feature (1 pin)
• Requires that the SWO pin is routed to debug headers
− Present on Tower (TWR) and LPCXpresso V2/V3 boards
− Freedom (FRDM) boards do not have SWO pin available

• Debug Features with SWO
− SWO Console
− SWO Interrupt tracing/logging
− SWO Profiling
−via LPC-Link2 with NXP CMSIS-DAP firmware
−Using SEGGER J-Link and PE Micro probes

• Documentation
− <IDE Installation Path>\MCUXpresso_IDE_SWO_Trace.pdf

PUBLIC 63

Enabling SWO use

• To use SWO, the SWO function must be enabled on the device, and clock set up
to associated logic

• MCUXpresso SDK examples usually do not have this by default, but setup via pin
and clock configuration tools is typically quite simple

PUBLIC 64

SWO Trace Config

• Dedicated view to configure SWO
• SWO Clock speed setting
• (+) opens other views

PUBLIC 65

SWO Trace – Profile View

• Displays statistical profile of application activity
−Based on PC sampling, typically at ~50kHz
−Non-intrusive – does not affect application

• Benefits – Identify hotspots

PUBLIC 66

SWO Trace – Interrupt Views

PUBLIC 67

SWO Trace – Interrupt Views

• Interrupts Stats
−Continuous count (and other stats) of all interrupts

• Benefits
−Determine time spent in interrupt handlers
−Optimization of interrupt handlers

PUBLIC 68

SWO Interrupt Stats
• Capturing Interrupt Trace also populates an SWO Int Stats View
• Switch to the SWO Int Stats View and compare the Stats with our measured values

− Note that for linear functions the Min (time in) and Max (time in) will be the same
 this is not true for time spent in Main (which is the interrupted code)

− Note the Min (time between) and Max (time between) is not guaranteed to be same
 This relates to interrupt default priorities and pre-emption

PUBLIC 69

SWO Trace – DataWatch

• Dynamic memory accesses
• Read and write to target memory without stopping

CPU
• Non-intrusive
• Reads done on periodic basis (by default)
• Unlimited number of addresses
• Allows modifications to parameters in real

time

• Datawatch Trace
− Capture all accesses to memory location,

without stopping CPU

• Benefits
− Monitor and analyse memory accesses
− Identify ‘rogue’ memory accesses

PUBLIC 70

SWO Trace – ITM Printf
• Instrumentation Trace Macrocell (ITM) block provides a mechanism for sending data from your

target to the debugger via the SWO trace stream
• MCUXpresso IDE allows user to redirect printf/scanf data by reimplementing low level Redlib

function __sys_write / __sys_readc
− Newlib reimplementation also possible

• Unlike normal semihosting, this scheme is both low bandwidth and does not halt the MCU to
transfer data

	�Advanced Debugging with MCUXpresso IDE v11.1
	Overview and �pre-requisites
	Pre-requisites
	The MCUXpresso Ecosystem
	Evaluation to proof of concept on NXP Evaluation Boards
	Transition to custom hardware and on to production
	Lab Setup/Prerequisites (FRDM-K64, if available)
	Lab Setup/Prerequisites (LPCXpresso boards)
	Advanced Debug Course Sections
	Part 1: building, debugging and direct flashing
	About this tutorial and the board you are using
	MCUXpresso IDE
	Create LED Blinky Project
	Build and Debug (FRDM-K64F)
	Debug Info dialog
	Debugger Run Control
	Debug Startup Breakpoint
	Debug Toolbar in Debug View, Assembly Stepping
	Debug Quickstart Shortcuts
	Debug Quickstart Shortcuts: Attach
	Disconnect
	GUI Flash Tool
	Part 2: accessing data and peripherals
	About this section
	Global Variables View Update
	Graphing variables
	Global variables: select symbols
	Global variables: live value updates
	Global variables: Plotting controls
	Global variables: Trace and statistics tabs
	Registers View
	Hard Fault – Faults view
	Heap and Stack views
	Part 3: Code & Data �Breakpoints�
	About this section
	Breakpoints and Breakpoints View
	Assembly Stepping and Breakpoints
	Watchpoints
	Watchpoint Properties
	Watchpoints from Memory View
	Stepping Return Value of Functions
	Step-Return Value
	Step-Return Value
	Part 4: �Instruction Trace��
	About this section
	Instruction Trace – Supported Targets in MCUXpresso IDE
	Instruction Trace
	Instruction Trace
	Instruction Trace Triggers
	Instruction Trace Trigger Configuration
	Part 5:�FreeRTOS �Task Aware Debug�
	About this section
	FreeRTOS TAD
	Creating FreeRTOS Project
	Debug Probe Connection
	Thread Aware Debug View
	Task List
	Queue List
	Queue Timer
	Heap Usage
	Part 6: SWO TRACE
	Single Wire Output
	Enabling SWO use
	SWO Trace Config
	SWO Trace – Profile View
	SWO Trace – Interrupt Views
	SWO Trace – Interrupt Views
	SWO Interrupt Stats
	SWO Trace – DataWatch
	SWO Trace – ITM Printf

