

Powering E/E Vehicle Architecture: System Power Management Solutions for Compute, Zonal and End Nodes

Jean-Philippe (JP) Meunier

Vehicle Compute & ADAS Product Line Manager APS May 2024

Navigation section

Agenda

- NXP Power Management Introduction
- General Introduction Vehicle
 Architecture
- Vehicle Compute Power Management Solution
- Zonal and Edge Power Management Solution
- Q&A

Navigation section

Agenda

- NXP Power Management Introduction
- General Introduction Vehicle
 Architecture
- Vehicle Compute Power Management Solution
- Zonal and Edge Power Management Solution
- Q&A

APS (Advanced Power Systems) Power Management System Play from the Plug to the Processor

System Power Solutions Safety PMIC "building block" portfolio

- VBAT up to 60V = + BAT Vpre 1 to 2 1,8V BUCK HV BUCK (controller) Safety Core 4.1V BUCK **HV PMIC/SBC** 1 to 3 5V LDO QM/ASIL B / ASIL D P.Up/Down Sync Sequencer Auto. 1 to 6 1.8V BUCK P.Up/Down Sequencer 4.1V BUCK LV#1 PMIC 2 to 4 5V LDO QM/ASIL B Safety Core Auto. Sync P.Up/Down LV#2 PMIC 1.8V BUCK 2 to 4 Sequencer QM/ASIL B 0 to 1 5V LDO Safety Core
- Scalable solution to support platform development strategy
- Pin 2 pin compatible PMIC from QM to ASIL D
- PMIC offered in same package with various number of rail
- Easy software portability
- Multiple PMIC combined, act as ONE with NXP dedicated feature

APS enable sustainable, safe and simplified power management solutions

_{ic} Find more information on: <u>PMICs and SBCs for Multi-Vendor Processors Web Page</u>

Agenda

- NXP Power Management Introduction
- General Introduction Vehicle
 Architecture
- Vehicle Compute Power Management Solution
- Zonal and Edge Power Management Solution
- Q&A

Automotive Megatrends

Autonomous New sensing, thinking

Software-Defined Vehicle Electric Connected from cloud to edge New energy management

E/E transformation needed

Processing Centralization

Networking Technology

Service Oriented

Zone I/O aggregation

System Power Solutions to Address Multiple Type of Vehicle Platforms

FROM CENTRALIZED TO ZONALIZED

System Power solutions	EV, Safety, Chassis	GTW, Compute, Zone	ADAS	IVI		
Battery Connected SBC	POWER THE ENTIRE SYSTEMS PROCESSOR AGNOSTIC					
5V PMIC Power Extender	BEST IN CLASS SAFETY CONCEPT – PROVEN, ROBUST & FLEXIBLE SIMPLIFY PLATFORM DESIGN – SCALABLE POWER, SW, SAFETY					
NXP MCU Association						
Others MCU Vendors Association	HIGH PERFORMANCE STSTEM LOW POWER					

Advanced Power Systems (APS) Powering new vehicle architecture

THE SOFTWARE-DEFINED CAR

THE ELECTRIC CAR

FS,VR Battery connected PMIC/SBC, 12V/24 V compliant **PF** Low Voltage PMICs, max Vin 5.5 V

Agenda

- NXP Power Management Introduction
- General Introduction Vehicle
 Architecture
- Vehicle Compute Power Management Solution
- Zonal and Edge Power Management Solution
- Q&A

NXP S32G3 – Poised to accelerate THE Software-defined Vehicle (SDV) and ADAS/Autonomous VEHICLE safety

S32G System Power Solutions Enabling the Software-Defined Vehicle

S32G Tailored PMIC System Solution

- Co-developed with NXP AP team for a HW/SW optimized system solution
- Scalable/Modular: Power & Safety (ASIL D)
- S32G Optimized Power, Safety, Features, and Interface

OPTIMIZED INTEROPERATBILITY

- Fully validated/tested system solution significantly reducing development risk
- PMIC safety concept & drivers developed, tested, and supported by NXP into lifetime of the program

POWER EFFICIENT

- 35uA in STANDBY mode
 → minimal battery
 drainage
- Higher current with extended efficiency

POWER MODE CONTROL

- Reliable power modes transition (shortest boot up and transition times)
- Multiple Power Modes with a dedicated standby scheme for \$32G
- Dedicated interface & optimized SW control

SAFE

- Co-Architected ASIL D
 safety S32G system
- Safe Communication & Interface
- Real time system monitoring

Power Management Solution for S32G2 and S32G3

VR5510 ⇔ S32G2

• VR5510 is the attached PMIC ensuring power supplies, low power mode transition and safety backbone with S32G2

- S32G3 Core and 1,8 V supplies are higher than S32G2
- PF53 PMIC must be implemented attached with VR5510 to ensure this higher power requirement
- Forward/Backward compatibility supported with board BOM options

VR5510 HV PMIC

- Differentiating Points
 - Low Power Mode (40uA in Key-Off (Standby) mode)
 - Directly connected to Battery up to 60 V
 - Proven & robust solution co-developed with MCU. BSP and reference designs provided.
 - Scalable supply & safety (Fit up to ASIL B & ASIL D)
 - Minimize EMC with spread spectrum, frequency tuning, frequency synchronization and multi-phase operation

Product Features

- Vin 2.7 V to 60 V
- Vpre: Synchronous Buck, 333 kHz to 2.5 MHz, ext. MOS
- Buck 1 & 2 (Single or Dual-Phase), 3.6 A Peak each,
- Buck 3, 3.6 A Peak,
- BOOST 4.5 V to 6 V, up to 800 mA, int. MOS
- LDO1, configurable 1.1 V to 5 V, up to 400 mA
- LDO2, configurable 1.5 V to 5 V, up to 400 mA (with load switch mode)
- LDO3, configurable 1.5 V to 5 V, up to 400 mA (with load switch mode)
- Low IQ HVLDO, configurable 0.8 V or 3.3 V, up to 10 mA in LDO Mode, 100 mA in switch mode, <15 μA in Deep Sleep Mode
- -40°C to 125°C Operating Ambient Temperature (150°C Tj)
- Safety scalable: QM, ASIL B, and ASIL D
- Package: 8x8mm 56-LD QFN-EP

VR5510 Functional Block Diagram

In Production

VR5510 Value Proposition

HW/SW Optimized S32G Power Solution with Functional Safety Scalability

Device scalability (proven robustness, lower risk & shorter time to market)

- Co-developed with MCU team for a HW/SW optimized system solution
- OTP configurability allows flexibility during development and scalability
- Highly scalable to fit S32G tiers and use cases
- Reduced BOM and overall system size/cost with a fully integrated solution

3rd generation of safety power management IC, reduced functional safety implementation complexity

- Scalable functional safety solution from QM to ASIL D
- Proven solution with Independent Safety Monitoring Unit fit for ASIL B & D (P/N selectable)
- Extended Safety Concept: Voltage Monitoring of System Rails

Extended low power capability allowing to manage different uses cases

- Seamless power management transition between S32G low power and normal modes
- Automatic processor supply voltage reduction during low power modes to minimize leakage
- Simple single pin interface and configuration to handle various power modes including DDR refresh

Mode	BUCK/LDO available	Quiescent current
Standby Mode	Vpre + HVLDO	35 µA
DDR Refresh Mode	Vpre + HVLDO + Buck3 + LDO2	85 µA
Deep Sleep Mode	HVLDO	15 μΑ

PF5300 – 15A Integrated FET Core Supply – S32G3 Attach

• Differentiating Points

- Functional safety up to ASIL D
- Low shutdown current: 1.5 µA
- High bandwidth DC-DC with programmable AVP
- Fast start up: 500 µs from shutdown to regulation
- Proven & robust solution co-developed with MCU. BSP and reference designs provided.
- Minimize EMC with Spread spectrum, frequency tuning, frequency synchronization
- Product Features
 - Vin: 2.7 V to 5.5 V; Vout: 0.5 V to 1.2 V
 - I2C with DVS capability can be offered as a variant
 - Programmable load-line (AVP) with up to 400kHz bandwidth for optimal transient response & reduced BOM cost (output capacitor reduced by 40%)
 - DC Accuracy: +/- 1% with differential remote voltage sensing
 - Programmable OV/UV monitoring with 1% accuracy
 - Watchdog timer
 - Integrated MOSFETs: 3 m Ω low side, 7.6 m Ω high side
 - High efficiency
 - -40 °C to 125 °C Operating Ambient Temperature (150°C Tj)
 - Package: 3.5 mm x 4.5 mm FC-QFN package
- 18 | NXP | Public

Key Focus Areas for PF5300 Development

DC Accuracy		For Regulator and Monitor			
	DC Accuracy	PF50/PF8x	PF5300		
	DC-DC Accuracy	+/- 2.0%	+/- 1.0 to 1.1%		
	VMON Accuracy	+/- 2.0%	+/- 1.0%		

AC Accuracy		ligh Bandwi	dth and AVP
	Loop Bandwidth	PF50/PF8x	PF5300
	Bandwidth with Cout = 44 uF	~250 kHz	~400 kHz
	Bandwidth with Cout = 400 uF	~ 90 kHz	~400 kHz

Efficiency

Flip Chip and 2 MHz Operation

BOM Reduction Significant L and C Savings

Agenda

- NXP Power Management Introduction
- General Introduction Vehicle
 Architecture
- Vehicle Compute Power Management Solution
- Zonal and end nodes Power Management Solution

• Q&A

S32K3: Expanding the S32 Platform

- NXP's S32 Automotive Platform enables software reuse across multiple applications, reducing development complexity and easing the burden for Tier 1s and carmakers
- S32K3 expands S32
 into zone control and edge nodes
- Extends S32K family into new applications
 - Advanced Body Electronics
 - Battery Management
 - Zone Control

Powering systems with S32K3 Portfolio – use case solutions

		тст		Memory	USE CASES			
	MCU	ASIL	Rails		DCDC OBC	BMS BMC	HV INVERTER	ZONAL & EDGE
Safety LS 320MHz 4 M7 cores	S32K37/9	D	1.1-1.5 V (1350 mA) – 4c 5.0 V (100 mA, 400 mA peak) 3.3 V (100 mA, 400 mA peak)	6M	FS2620D	FS2633D	FS2633D	х
Safety LS 320MHz 4 M7 cores	S32K388	D	1.1-1.5 V (1350 mA) – 4c 5.0 V (100 mA, 400 mA peak) 3.3 V (100 mA, 400 mA peak)	8M	х	х	Х	FS2633D
Safety LS M7 +1 M7 core 240MHz	S32K358	D	1.5 V (800 mA) 5.0 V (50 mA 280 mA peak) 3.3 V (50 mA 280 mA peak)	8M	х	FS2613D	х	FS2613D
Safety LS 160/240MHz 2 M7 cores	S32K344	D	1.5 V (500 mA) 5.0 V (50 mA 280 mA peak) 3.3 V (50 mA 280 mA peak)	4M	х	FS2613D	х	FS2613D
3 M7 cores 240MHz	S32K33x	В	1.5 V (800 mA) 5.0 V (50 mA 280 mA peak) 3.3 V (50 mA 280 mA peak)	8M	х	х	х	x
2 M7 cores	S32K32x	В	1.5 V (400 mA) 5.0 V (50 mA 280 mA peak) 3.3 V (50 mA 280 mA peak)	1/2/4M	х	FS2600B	Х	FS2600B
Single M7 core	S32K31x	В	3.3 V/5.0 V (200 mA)	1/2M	FS23	FS23	x	FS23

S32K3 + FS26 - safe, efficient, sticky

- ✓ *Fit for ASIL B / D Ready*
- ✓ SW Production Ready
- ✓ Reference Design Ready
- ✓ Application Note Ready
- ✓ Design for EMC
- ✓ *Family Platform Approach*

SAFE

- ASIL B / D backbone concept
- High availability & safe solution
 - ✓ Fail Silent System Solution
 - ✓ Fault Recovery Strategy
- Combined safety documentation
- Simplify safety assessment

EFFICIENT

- Power & sequencing optimized
- Efficient DCDC (up to 95% Vpre)
- Low power modes (25uA)
- System low power savings with PFM Mode

STICKY

- Production ready SW drivers
- Reference schematic & layout
- FAST prototyping cycle
- Ready to use

FS26 Attributes

- FS26 is the 3rd generation of FSBC Automotive System Power
- FS26 is already selected by more than 30 customers
- Already designed in
 - EV Applications (BMS, DCDC, BSG, INV., OBC)
 - VEA Applications (ZONAL, BCM)
 - Safety & Chassis Applications (EPS, Braking)
- Already designed with S32K3, TC3x, RH850, Cy
- FS26 ramp up in Q4 2022 at 3 OEMs
- FS26 is supporting extended mission profiles for EV

FS26 ASIL B & ASIL D Safety SBC with low power modes

EV, safety, and zonal architecture sbc

Power Management Solution

- Input supply up to 40 V DC
- HVBUCK, adjustable step-down DC/DC converter 3.2 V to 6.35 V up to 1.5 A DC,
 - 450 kHz or 2.25 MHz Synch. Buck with integrated MOSFETs, up to 92% efficiency
- VCORE, adjustable step-down DC/DC converter 0.8 V to 3.3 V
 - Option with 0.8A DC (to supply S32K3, and other Safety MCUs) and option with 1.65A DC core supply
 - 2.25 MHz Fully-Integrated Synchronous Buck, up to 85 % efficiency
- BOOST Controller 5.5 V to 17 V, external LS MOS
- LDOI and LDO2, configurable 3.3 V or 5.0 V, up to 400 mA DC output current capability.
- VREF, accurate voltage reference 3.3 V or 5 V, 1 %, 30 mA DC output current capability
- 2 TRACKERS, 10 mV offset, 150 mA DC output current capability (Option P/N with 1 tracker only)

System Features

- Long duration timer (with dedicated part number) configurable from few sec up to 6 months
- Low Power Mode :
 - Target 30 μA in LPOFF and 25 μA in STANDBY (MCU powered)
 - Wake up via GPIOs, and Long Duration Timer (LDT) feature and CSN (standby mode)
 - Support S32K3 standby mode
- AMUX: Battery, Internal Voltages, VREF and Temperature, WAKEs, GPIOs
- General Purpose I/O: Wake up or HS/LS Driver (HS 20 mA, LS 2 mA capability)

Safety Features

- 3rd Generation Fail Safe State Machine with Independent Safety Monitoring Unit
 - Fit for ASIL B and ASIL D with Extended Voltage Monitoring
 - ABIST On Demand and Fault Recovery Strategy (combined with S32K3 common platform)
 - 2 x FS outputs. 1 with configurable time delay (FS1b with dedicated part number)
- 32 bits SPI (including CRC)
- 25 | NXP | Public

FS26 Functional Block Diagram

Package : LQFP48eP PPAP Available Achieve ECU Energy Management target < 100 microamp in standby mode

 At system level: HV Buck conversion ratio in LPON/standby (DC/DC used in PFM mode) allows to reach quiescent current < 100µA including SoC, PMIC and peripherals HVBUCK conversion ratio allows 67% reduction of load at VBAT

FS26 ENABLEMENT AVAILABLE ITEMS

Product	Туре	Status
Data Sheet ★	Document	Available
Safety Manual ★	Document	Available
FMEDA ★	Document	Available
AN12995 : NXP FS26 Hardware guidelines ★	Document	Available
AN13850 : NXP FS26 Implementation and Behaviors	Document	Available
AN13323 : Safety Application Guide (FS26 +S32K3) 🖈	Document	Available
AN13494 : NXP Solution to attach FS26 to S32K3 and SJA1110 ★	Document	Available
AN13322: NXP Solution for Infineon AURIX TC2xx/TC3xx serie	Document	Available
AN 13020: NXP Power solutions for RH850 series MCU	Document	Available
AN13748: NXP Power solution for Cypress Traveo II series MCU	Document	Available
AN13431: NXP PMIC solution for TI TMS570 series MCU	Document	Available
SPMS compensation settings calculator ★	Document	Available
Socket EVB schematic & Layout	Hardware	Available
Soldered EVB schematic & layout	Hardware	Available
FS26 + S32K3 EVB	Hardware	Available
EVB GUI	Software	Available
Power dissipation calculator ★	Document	Available
Real Time Drivers AUTOSAR ISO26262	Software	Available

★ Available on NXP Secure Files portal only

Powering systems with S32K3 Portfolio – use case solutions

		тат		Memory	USE CASES			
	MCU	ASIL	Rails		DCDC OBC	BMS BMC	HV INVERTER	ZONAL & EDGE
Safety LS 320MHz 4 M7 cores	S32K37/9	D	1.1-1.5 V (1350 mA) – 4c 5.0 V (100 mA, 400 mA peak) 3.3 V (100 mA, 400 mA peak)	6M	FS2620D	FS2633D	FS2633D	x
Safety LS 320MHz 4 M7 cores	S32K388	D	1.1-1.5 V (1350 mA) – 4c 5.0 V (100 mA, 400 mA peak) 3.3 V (100 mA, 400 mA peak)	8M	x	x	X	FS2633D
Safety LS M7 +1 M7 core 240MHz	S32K358	D	1.5 V (800 mA) 5.0 V (50 mA 280 mA peak) 3.3 V (50 mA 280 mA peak)	8M	x	FS2613D	X	FS2613D
Safety LS 160/240MHz 2 M7 cores	S32K344	D	1.5 V (500 mA) 5.0 V (50 mA 280 mA peak) 3.3 V (50 mA 280 mA peak)	4M	x	FS2613D	x	FS2613D
3 M7 cores 240MHz	S32K33x	В	1.5 V (800 mA) 5.0 V (50 mA 280 mA peak) 3.3 V (50 mA 280 mA peak)	8M	x	x	x	x
2 M7 cores	S32K32x	В	1.5 V (400 mA) 5.0 V (50 mA 280 mA peak) 3.3 V (50 mA 280 mA peak)	1/2/4 M	x	FS2600B	x	FS2600B
Single M7 core	S32K31x	В	3.3 V/5.0 V (200 mA)	1/2M	FS23	FS23	Х	FS23

FS23 – System power for ENTRY ev AND EDGE SDV

S32K1

S32K+FS23 - System Solution

Scalable System Solution

- ✓ Easy Design FS23 S32K Family
- ✓ *Reduce complexity Hardware + Software*
- ✓ Family Platform Approach

Low power modes strategy with MCU core monitoring in standby

Low system quiescent current

Configurable voltages & power

30 | NXP | Public

Cypress Traveo II

IFX Aurix TC2/3

Renesas RH850Dx/Fx

SAFE

Functional safety by design and process and product behavior

Highest level of monitoring integration

Advanced safety monitoring

BOM Cost advantages of FS23 vs Discrete: examples

FS23 One page: FS230x and FS232x S32K31x Attach for Body market

Power Management - Fit to S32K31x

- Input supply up to 40V DC
- HVBUCK, configurable 3.3V or 5V, 2%, 400mA, 450kHz or 2.2MHz.
 - Or **HVLDO1** configurable 3.3V or 5V, up to 100mA with internal PMOS and 250mA with external PNP
- HVLDO2, configurable 3.3V or 5V, 2%, up to 100mA. System or off board sensor with ext diode
- HVLDO3, configurable 3.3V or 5V, 2%, up to 150mA. CAN PHY and/or system
- LP modes: in LPOFF 30μA. In LPON 40μA (HVLDOI) or 20μA (HVBUCK) with MCU powered
- HVBUCK UV in LPON, HVLDO1/2 available on demand in LPON mode

System Featuring - Fit for Body Market

- **32-bit SPI/I2C with CRC** (same SPI as FS26 to target SW compatibility over FS2x family)
- Long Duration Timer with wake-up strategies from few seconds to several weeks
- AMUX to sense temperature, battery voltage, internal voltages, ...
- 2x HV and 4x LV configurable IOs with wake-up capability
- **4x HS Drivers** (150mA current limit) with cyclic sensing in LP and PWM capability (200Hz / 400Hz)
- **1x CAN FD** transceiver 2 Mb/s for operation (5 Mb/s max bit rate) with WUP (Wake-Up Pattern) capability
- 1x LIN with wake-up capability

Safety level - Fit for ASIL B

- OV and UV internal monitoring for all FS23 regulators + 1 external VMON
- Windowed WD in Normal mode and Timeout WD in LPON
- FCCU monitoring, ABIST on demand
- 3x FS outputs (FSOB low by default, LIMPO high by default, LIMP1/2 with PWM capability 1.25Hz/100Hz)

FS23 Functional Block Diagram

HVBUCK - 3.3V or 5.0V 400mA - 700mA or HVLDO1 - 3.3V or 5V up to 100mA/300mA

HVLDO2 - 3.3 or 5V up to 100mA (Protection optional)

Package: QFN48EP with wettable flank Samples: Available PPAP: Available

SDV Power Management solutions attached to NXP MCUs

Agenda

- NXP Power Management Introduction
- General Introduction Vehicle
 Architecture
- Vehicle Compute Power Management Solution
- Zonal and Edge Power Management Solution
- Q&A

Technical Session Survey

Thank you for your feedback.

Tour our immersive all-digital technology showroom from anywhere in the world, in just one click.

Journeys | focus

Automotive Industrial & IoT Mobile Communication Infrastructure Smart city Smart home

Journeys | engagement

Self-guided tour Live-streaming at set times Guided tours

showroom.nxp.com

Journeys | enabling technologies

Edge & Al/ML Safety & security Connectivity Advanced analog Sustainability Low power innovations

40+ virtual demos

Focus on system solutions Set up along NXP verticals

Get in touch

Jean-Philippe, Meunier JP.Meunier@nxp.com +33 06 87 60 51 51

nxp.com

| Public | NXP and the NXP logo are trademarks of NXP B.V. All other product or service names are the property of their respective owners. \circledast 2024 NXP B.V.

nxp.com

| Public | NXP and the NXP logo are trademarks of NXP B.V. All other product or service names are the property of their respective owners. © 2024 NXP B.V.