
External Use

TM

Performance Monitoring

for Automotive MCUs

FTF-ACC-F1184

J U N E . 2 0 1 5

Randy Dees | Automotive MCU Applications

TM

External Use 1 #FTF2015

Abstract

• As microcontrollers become more complex, the use of debug

features becomes more important. While Nexus trace features can

be used for many types of application validation, the e200zx cores

on the MPC57xx devices also include a performance monitor that

allows additional capabilities

• This session will cover an overview of traditional system validation

use cases and includes an in-depth view of the performance

monitor including features, instructions, registers, overflow

operation, and predefined events that can be used for a more

robust system validation

TM

External Use 2 #FTF2015

Agenda

• Session Overview

• Nexus Overview

• Nexus and Debug Use Cases

• Performance Monitor Overview

• Performance Monitor Instructions

• Performance Monitor Registers

• Performance Monitor Events

• Performance Monitor Use Cases

• Summary

TM

External Use 3 #FTF2015

Session Overview

TM

External Use 4 #FTF2015

Agenda

• Session Overview

• Nexus Overview

• Nexus and Debug Use Cases

• Performance Monitor Overview

• Performance Monitor Instructions

• Performance Monitor Registers

• Performance Monitor Events

• Performance Monitor Use Cases

• Summary

TM

External Use 5 #FTF2015

Automotive Market Trends

• Exponential MCU performance demands

− Need 3–5x increase in performance to support
software and emission filtering

− Consolidation of external ASICs into MCU

− On-chip DSP to meet tighter emission regulations

− High speed inter-processor communications, tightly
coupled memory and Nexus Aurora allows 4x
faster debug/trace capability

• Emerging safety and security standards

− Enable ASIL-C or ASIL-D functional safety

Simplify ISO 26262 adoption

− Tamper detection and encryption to deter code
tampering

TM

External Use 6 #FTF2015

Automotive Requirements

• Traditionally, Powertrain MCUs have
required the most advanced debug
capabilities, but this is changing

• “Calibration” features (data collection and
application tuning) are becoming required
across the board
− RADAR applications require real-time access to

data for system confirmation

− All motor control applications

− Lighting controllers

− Even Gateway type applications are using
debug features for “tuning” of the system

• Software validation and qualification requires
debug/trace capabilities. Some specialized
testing requires the use of the core
performance monitors

• All of the debug features are required to help
insure safety systems (ISO 26262)

TM

External Use 7 #FTF2015

ISO 26262 — Introduction to the Basics

• ISO 26262 is the new functional safety standard for

series production passenger cars

• It is applicable to electric / electronic systems where

malfunctioning behavior of such systems can cause

harm

• The standard focuses on systems (“items”) consisting

of sensors, microprocessors and actuators

• Four Automotive Safety Integrity Levels (ASIL A to D)

determined through hazard analysis and risk

assessment at vehicle level

• The ASILs imply a specific set of requirements and

safety measures to be applied for avoiding an

unreasonable residual risk

• Smart microprocessor solutions & collateral can

significantly reduce the effort required to build

functional safe systems complying with ISO 26262

TM

External Use 8 #FTF2015

The Four Pillars

Safety process
• Integrating functional safety into product development process

• Select products defined and designed from the ground up to
comply with the standards

Safety hardware
• Built-in safety functions (self-testing, monitoring and hardware-

based redundancy) in Freescale microcontrollers (MCUs), power
management ICs and sensors

• Additional system-level safety functionality from Freescale
analog solutions (checking MCU timing, voltages and error
management)

Safety software
• A comprehensive set of automotive functional safety software,

including AUTOSAR OS and associated microcontroller
abstraction layer (MCAL) drivers, as well as core self-test
capabilities

• Partnerships with leading third-party software providers for
additional safety software solutions

Safety support
• From customer-specific training and system design reviews to

extensive safety documentation and technical support

TM

External Use 9 #FTF2015

Objective
Use the Performance Monitor included in many of the e200zx cores to

extend the system development capabilities provided by the Nexus

interface on the Freescale Automotive Power Architecture®

Microcontrollers.

TM

External Use 10 #FTF2015

Nexus Overview

TM

External Use 11 #FTF2015

Agenda

• Session Overview

• Nexus Overview

• Nexus and Debug Use Cases

• Performance Monitor Overview

• Performance Monitor Instructions

• Performance Monitor Registers

• Performance Monitor Events

• Performance Monitor Use Cases

• Summary

TM

External Use 12 #FTF2015

Multi-Core Debug Overview

• Single debug interface for run control, trace, and
measurement data

• Supports IEEE 1149.1 (JTAG) and IEEE 1149.7
(cJTAG) for run control

− Freescale uses TAP sharing on the Automotive
Power Architecture MCUs to allow access to all
internal clients (processor cores, timer cores, and
other clients)

• Trace based on the IEEE-ISTO 5001 Nexus
debug standard

− Nexus inherently supports multi-core debug
information

− Class 2+ or Class 3+ support on most clients

− Parallel or high-speed Serial solutions depending
on requirements

TM

External Use 13 #FTF2015

Current Nexus Members

TM

External Use 14 #FTF2015

IEEE-ISTO 5001 Nexus Classes (MPC57xx Support)

Class 1

Run Time Control

Class 2

Dynamic Debug

Class 3

Data Trace

Class 4

Advanced Debug

• Start/stop code execution

• Read/write MCU registers / memory

• Breakpoints

• Single step instructions

• Read Nexus device ID

• Real-time process/task ownership tracing

• Trigger a nexus message on an event

• Real time, non-intrusive instruction trace

• Real-time access of registers / memory

(read/write)

• Real-time data trace (writes)
Optional features supported:

• Real-time data trace (reads)

• Data acquisition

• Watchpoint triggered trace event

• Message over-run control

TM

External Use 15 #FTF2015

Nexus Class Definition — Class 1

Class 1

Run Time Control

Class 2

Dynamic Debug

Class 3

Data Trace

Class 4

Advanced Debug

Class 1

• Read/write MCU registers / memory

• Set / clear breakpoints

• Stop / start code execution

• Control entry into / exit from debug mode

(from reset and user modes)

• Stop execution on hitting a breakpoint

and enter debug mode

• Single step instructions

• Read Nexus device ID

TM

External Use 16 #FTF2015

Nexus Class Definition — Class 2

Class 2

All Class 1 features plus:

• Ownership trace messages — Real

time process / task ownership tracing)

• Watchpoint messaging — Trigger a

Nexus message on an event

• Program trace messages — Real-time,

non-intrusive instruction trace

Optional Features:

• Port Replacement (of slow GPIO)

Class 1

Run Time Control

Class 2

Dynamic Debug

Class 3

Data Trace

Class 4

Advanced Debug

TM

External Use 17 #FTF2015

Class 1

Run Time Control

Class 2

Dynamic Debug

Class 3

Data Trace

Class 4

Advanced Debug

Class 3

All Class 2 features plus:

• Real time data access — Registers /

memory can be read/written in real time

• Real time data trace (WRITES)

Optional Features:

• Real time data trace (READS)

• Transmission of additional data used

for data acquisition

Nexus Class Definition — Class 3

Features that Freescale supports on many

automotive devices that support only Class 2

TM

External Use 18 #FTF2015

Nexus Class Definition — Class 4

Class 4

All class 3 features plus:

• Watchpoint Triggering — Allows a

watchpoint to trigger trace event

• Memory Substitution — MCU can run

code from memory in development tool

(ROM emulation)

• Over-Run Control — Allows nexus to

stop core if buffers will overflow.

Optional Features:

• Start memory substitution on

watchpoint

Class 1

Run Time Control

Class 2

Dynamic Debug

Class 3

Data Trace

Class 4

Advanced Debug

Features that Freescale supports on many

automotive devices that support only class 2 or 3

TM

External Use 19 #FTF2015

Nexus and Debug Use Cases

TM

External Use 20 #FTF2015

Agenda

• Session Overview

• Nexus Overview

• Nexus and Debug Use Cases

• Performance Monitor Overview

• Performance Monitor Instructions

• Performance Monitor Registers

• Performance Monitor Events

• Performance Monitor Use Cases

• Summary

TM

External Use 21 #FTF2015

Debug uses cases can be broken down into 2 basic types of debug feature
requirements.

Static debug: Static debug is also called stop-mode debug. These types of features allow
debug of an MCU by stopping and starting core operation by an external tool.

Dynamic debug: Dynamic debug require features that allow real-time access of the MCU and
real-time monitoring of internal MCU operations while the MCU is in operation.

Customer uses cases can then be traced back to the Nexus classes and
features.

Customer Debug Use Cases

TM

External Use 22 #FTF2015

Static Debug Use Cases

• Basic hardware debug

− The standard JTAG boundary scan is used for the testing on the initial

board design, board bring-up, and then production board testing

• Boot Loader development

− Development of boot code often requires stop mode debugging

• Driver development

− In new system development, peripherals require drivers to be developed

and tested. This will use many static debug features

• Application crash analysis

− The use of breakpoints and other debug features allow analysis of

unexpected program failures that result in exceptions that were not

anticipated

TM

External Use 23 #FTF2015

Static Debug Features

Use Case

JTAG Nexus Class 1

BSDL

Read/write

registers

Read/write

memory

Enter

debug

from

reset

Enter

debug

Exit

debug

mode

Single

step

instruction Breakpoint

Basic hardware

debug
✔

Board test ✔

Bootloader

development
✔ ✔ ✔ ✔ ✔ ✔ ✔

Driver development ✔ ✔ ✔ ✔ ✔ ✔ ✔

Application crash

analysis
✔ ✔ ✔ ✔ ✔ ✔

TM

External Use 24 #FTF2015

Customer Dynamic Debug Use Cases

• Real Time defect debug

− Many times to resolve software issues, advanced debug techniques are required to
determine the source of erroneous program execution. This requires the use of
program trace, data trace, watchpoint messaging and sometimes even real-time
access of memory to determine the source of the problem

• Execution (code) coverage

− For software quality, code coverage testing is required to determine which program
code was executed and which program code was not executed. This also uncovers
whether all conditions of conditional instructions are executed

• Execution profiling

− Execution (time) profiling can be used to can be used to determine performance
bottlenecks at the source code level. This information can be used to decide whether
functions require better optimization, better algorithms, or if techniques such as in-
lining would increase the performance of the system

• Function Profiling

− Function profiling is similar to the overall execution profiling, but looks at each
function individually

TM

External Use 25 #FTF2015

Customer Dynamic Debug Use Cases

• RTOS profiling

− Monitoring of the performance of the Real-time operating system is required
to identify sequences of tasks, interrupt service routines or other operating
system tasks to assist the software designer in determining optimum task
and interrupt priorities and to assist in allocating tasks, functions, or interrupt
servicing between cores in a multi-core environment

• Application data collection

− Many user applications require that data be collected from the application
code. This can then be used to analyze the system operation and
environmental performance criteria

• Shared resource profiling

− Data areas (variables) may be shared by multiple cores in an MCU or by
different functions. In some cases, synchronized access is required.
Therefore, it is necessary to be able to measure the use of these shared
resources to determine is system performance is degraded by a core or
process waiting for data to become available

TM

External Use 26 #FTF2015

Dynamic Debug Features

Use Case

Nexus Class 2 Nexus Class 3 Optional Notes

P
ro

g
ra

m

T
ra

c
e

W
a
tc

h
p
o
in

t

m
e

s
s
a

g
in

g

O
w

n
e

rs
h
ip

tr
a

c
e

D
a
ta

 T
ra

c
e

R
e
a

l
ti
m

e

m
e

m
o

ry

a
c
c
e

s
s

D
a
ta

A
c
q
u

is
it
io

n

(I
n

s
tr

u
m

e
n

ta
t

io
n

)

T
im

e
s
ta

m
p
s

Real Time defect tracking ✔ ✔ ✔ ✔ ✔

Execution (code) coverage ✔

Execution profiling ✔ ✔

Core performance monitor

can provide additional

information.

Function profiling ✔ ✔

Core performance monitor

can provide additional

information.

RTOS profiling ✔
1

✔
2

✔
1

✔

Application data collection ✔
3

✔ ✔

Shared resource profiling ✔ ✔

Cache profiling ✔ Core performance monitor

IRQ latency profiling ✔

Core loading ✔ ✔
4

Core performance monitor

1. Optional

2. Currently being used.

3. Only the address portion of the data trace is required,

the data values are not needed.

4. Data trace of performance monitor data (if available).

TM

External Use 27 #FTF2015

Performance Monitor Overview

TM

External Use 28 #FTF2015

Agenda

• Session Overview

• Nexus Overview

• Nexus and Debug Use Cases

• Performance Monitor Overview

• Performance Monitor Instructions

• Performance Monitor Registers

• Performance Monitor Events

• Performance Monitor Use Cases

• Summary

TM

External Use 29 #FTF2015

Concept

The e200zx core performance monitor provides the ability to count

predefined events and processor clocks associated with particular

operations, such as cache misses, miss-predicted branches, or the

number of cycles an execution unit stalls.

TM

External Use 30 #FTF2015

Goals

• Improve system performance by monitoring software execution and

then recoding algorithms for more efficiency. For example:

− Memory hierarchy behavior can be monitored and analyzed to optimize

task scheduling or data distribution algorithms

• Help system developers bring up and debug their systems

• Allow statistics on application code in production environment

TM

External Use 32 #FTF2015

Performance Monitor Features

• Four configurable 32-bit performance monitor counters each
capable of counting selected CPU subsystem events

• Performance Monitor interrupt

• Ability to configure performance monitor resources for debugger
use

• Hardware input signals for qualification of counting by individual
counters

• Hardware output signals to indicate counter overflows

• Dedicated watchpoint outputs for each counter with programmable
periodicity

• Trigger On/Off control for each counter based on subsystem events

• Can be used in conjunction with the Sequence Processing Unit
counters for additional flexibility (additional 16 32-bit counters)

TM

External Use 33 #FTF2015

Device Core Performance

Monitor version

SPU JTAG Access

MPC564xA e200z4 Generation 1 No No

MPC564xL e200z4 Gen 1 No No

MPC567xF e200z760 Gen 1 No No

MPC567xK e200z759 Gen 1 No No

MPC5676R e200z7 Gen 2 No No

MPC574xC e200z4 Gen 2 No Limited?

MPC574xG e200z4 Gen 2 No Limited?

MPC574xP e200z4 Gen 2 No Limited

MPC5746R e200z4 Gen 2 Yes Yes

MPC5777C e200z759 Gen 1 No No

MPC5777M e200z7/e200z4 Gen 2 Yes Limited

Performance Monitor Availability

TM

External Use 34 #FTF2015

Performance Monitor Instructions

TM

External Use 35 #FTF2015

Agenda

• Session Overview

• Nexus Overview

• Nexus and Debug Use Cases

• Performance Monitor Overview

• Performance Monitor Instructions

• Performance Monitor Registers

• Performance Monitor Events

• Performance Monitor Use Cases

• Summary

TM

External Use 36 #FTF2015

Special Purpose PM Instructions

• The performance monitor core registers are not memory mapped,

they are accessed via special instructions

− As such these are not a shared resource and cannot been accessed by

other cores in a multi-core system

• Special instructions for reading/writing PM registers

− mfpmr (move from performance monitor register)

− mtpmr (move to performance monitor register)

• Compiler version that includes these instructions is needed

TM

External Use 37 #FTF2015

Read / Write Example

void setup_pmu(void)

{

// PMLCa0 — event 2, clock count

__mtpmr(144, 0x00020000);

}

unsigned int get_pmc0(void)

{

return(__mfpmr(16));

}

TM

External Use 38 #FTF2015

Performance Monitor Registers

TM

External Use 39 #FTF2015

Agenda

• Session Overview

• Nexus Overview

• Nexus and Debug Use Cases

• Performance Monitor Overview

• Performance Monitor Instructions

• Performance Monitor Registers

• Performance Monitor Events

• Performance Monitor Use Cases

• Summary

TM

External Use 40 #FTF2015

Supervisor

registers

Supervisor

PMR Number

User

Registers1

User PMR

Number

Register

PMC0 16 UPMC0 0 (User) Performance Monitor counter 0

PMC1 17 UPMC1 1 (User) Performance Monitor counter 1

PMC2 18 UPMC2 2 (User) Performance Monitor counter 2

PMC3 19 UPMC3 3 (User) Performance Monitor counter 3

PMGC0 400 UPMGC0 384 (User) Performance Monitor global control

register 0

PMLCa0 144 UPMLCa0 128 (User) Performance monitor local control a0

PMLCa1 145 UPMLCa1 129 (User) Performance monitor local control a1

PMLCa2 146 UPMLCa2 130 (User) Performance monitor local control a2

PMLCa3 147 UPMLCa3 131 (User) Performance monitor local control a3

PMLCb0 272 UPMLCb0 256 (User) Performance monitor local control b0

PMLCb1 273 UPMLCb1 257 (User) Performance monitor local control b1

PMLCb2 274 UPMLCb2 258 (User) Performance monitor local control b2

PMLCb3 275 UPMLCb3 259 (User) Performance monitor local control b3

Performance Monitor Registers

1. Read only registers (in user mode)

TM

External Use 41 #FTF2015

Global Control Register 0 [gen 1]

• Global configuration

− Freeze all counters

− Enable/disable interrupt

− Freeze counters on enabled condition

− Time base select

− Time base Enable

TM

External Use 42 #FTF2015

PM Global Control Register 0 [gen 2]

• Performance Monitor Global control register

− Freeze all counters (FAC)

− PM interrupt enable/disable (PMIE)

− Freeze counters on enabled condition or event (FCECE)

− Use debug interrupt (UDI)

− Trigger-On Control Class (TRIGONCTL)*

− Trigger-Off Control Class (TRIGOFFCTL)*

− Trigger-On select (TRIGONSEL)*

− Trigger-Off select (TRIGOFFSEL)*

*new for c55 generation — MPC57xx

TM

External Use 43 #FTF2015

TRG{on/off}CTRL Setting Description

0b000 Trigger on/off control is disabled if TRIGONSEL/TRIGOFFSEL is 0b0000

(counting not affected by triggers)

0b001 Reserved

0b010 Trigger-on/off based on selected processor interrupt (TRIGxxSEL=0b0000)

[xx=ON or OFF

0b011 Trigger-on/off based on selected hardware signal (selected by TRIGxxxSEL)

0b100 Trigger-on/off based on selected watchpoint occurrence (watchpoint #0-15

selected in TRIGxxxSEL)

0b101 Trigger-on/off based on selected watchpoint occurrence (extension for

watchpoint #16-31 selected in TRIGxxxSEL)

0b11x Reserved

Trigger On/Off Control Class

No triggering will occur while PMGC0FAC or PMLCanFC is set to ‘1’.

TM

External Use 44 #FTF2015

Local Control A Registers (gen 1/gen2)

• The local control A registers (PMLCa0-PMLCa3) function as event

selectors and give local control for the corresponding performance

monitor counters

• Individual event configuration

− Freeze counter (FC)

− Freeze counter in Supervisor mode (FCS)

− Freeze counter in User state (FCU)

− Freeze counter while Mark is set (FCM1) or cleared (FCM0)

− Overflow condition enable (CE)

− Event selection (EVENT)

− Performance monitor watchpoint periodicity (PMP)

TM

External Use 45 #FTF2015

Local Control B Registers (gen1/gen2)

• Local control B registers PMLCb0-PMLCb3) specify triggering

condition for the corresponding performance monitor counter.

PMLCb is used in conjunction with the corresponding PMLCa

register. When triggering is used to enable and/or disable a

counter, and the trigger condition is generated by an instruction-

based watchpoint, the instruction which generates a trigger-on

condition will not generally be counted for most events it generates.

An instruction which generates a trigger-off condition will generally

still have it’s events counted.

• Trigger on/off control class, overflow trigger control, and trigger

state

TM

External Use 46 #FTF2015

Counter Registers

• The performance monitor counter registers are 32-bit counters that

can be programmed to generate overflow event signals when they

overflow. Each counter can be configured to count selected

processor events

• Event counter and overflow

TM

External Use 47 #FTF2015

Overflow

• Bit 0 used for overflow indication

• It is not a sticky bit!!

• Optional interrupt can be generated when bit is set

• Events 97–100 can be used to count overflows to build a 64-bit
counter

− In this case the range is twice the range of interrupt detection

TM

External Use 48 #FTF2015

Performance Monitor Events

TM

External Use 49 #FTF2015

Agenda

• Session Overview

• Nexus Overview

• Nexus and Debug Use Cases

• Performance Monitor Overview

• Performance Monitor Instructions

• Performance Monitor Registers

• Performance Monitor Events

• Performance Monitor Use Cases

• Summary

TM

External Use 51 #FTF2015

Event

types

Event

number

Event Include

Speculative

Counts?

Description

General

Event s

0 Nothing No Register counter holds current value

1 Number of processor cycles No Every processor cycle not in Waiting,

Halted, or Stopped states and not in a

debug session.

2 Instructions completed No Completed instructions. 0 or 1 per cycle.

3 Processor cycles with 0

instructions issued

No Cycles with no instructions entering

execution.

4 Processor cycles with 1 instruction

issued

No Cycles with one instruction entering

execution.

5 Processor cycles with 2 instruction

issued 1
No Cycles with two instruction entering

execution.

6 Instructions fetched Yes Fetched instruction words. 0, 1, or 2 per

cycle. (note that an instruction word may

hold 1 or 2 instructions, or 2 partial

instructions when fetching from a VLE

region)

Event Categories — General Events

1. Dual issue CPUs only

TM

External Use 52 #FTF2015

Event Categories — General Events

Event

types

Event

number

Event Include

Speculative

Counts?

Description

General

Events

7 PM event transitions - 0 to 1 transitions on the p_pm_event input.

8 PM cycles during event - Processor cycles that occur when the

p_pm_event input is asserted

1. Dual issue CPUs only

TM

External Use 53 #FTF2015

Event types Event

Number

Event Include

Speculative

Counts?

Description

Instruction

Types

Completed

10 Branch instructions

completed

No Completed branch instructions, includes branch

and link type instructions

11 Branch and link type

instructions completed

No Completed branch and link type instructions

12 Conditional branch

instructions completed

No Completed conditional branch instructions

13 Taken Branch

instructions completed

No Completed branch instructions which were

taken. Includes branch and link type

instructions.

14 Taken Conditional

Branch instructions

completed

No Completed conditional branch instructions

which were taken.

15 Load instructions

completed

No Completed load, load-multiple type

instructions

Event Categories — Instruction Types Completed

TM

External Use 54 #FTF2015

Event types Event

Number

Event Include

Speculative

Counts?

Description

16 Store instructions

completed

No Completed store, store-multiple type

instructions

Instruction

Types

Completed

(continued 1)

17 Integer instructions

completed

No Completed integer instructions (not a

load-type/store-type/branch/mul/div, EFPU)

18 Multiply instructions

completed

No Completed Multiply instructions (non-EFPU)

19 Divide instructions

completed

No Completed Divide instructions (non-EFPU)

20 Divide instruction

execution cycles

No Cycles of execution for all Divide instructions

(non-EFPU)

21 EFPU FP instructions

completed

No Completed EFPU FP instructions

Event Categories — Instruction Types Completed

TM

External Use 55 #FTF2015

Event types Event

Number

Event Include

Speculative

Counts?

Description

Instruction

Types

Completed

(continued 2)

62 EFPU instructions

completed

No Completed EFPU instructions. Does not

include load and store instructions.

63 Number of return from

interrupt instructions

No Includes all types of return from interrupts

(i.e. se_rfi, se_rfci, se_rfdi, se_rfmci)

Event Categories — Instruction Types Completed

TM

External Use 56 #FTF2015

Event Categories

Event types Event

number

Event Include

Speculative

Counts?

Description

Pipeline Stalls 22 Cycles decode stalled

due to no instructions

available

Yes No instruction available to decode

23 Cycles issue stalled, not

due to empty instruction

buffer

Yes Cycles the issue buffer is not empty but 0

instructions issued

Load/Store

Events

24 Store buffer full stalls Yes Stall cycles due to store buffer full

Data Cache,

and Data Line

Fill Events

25 Dcache linefills Yes Counts dcache reloads for any reason,

including touch-type reloads. Typically used

to determine approximate data cache miss

rate (along with loads/stores completed).

26 Dcache load hits Yes

TM

External Use 57 #FTF2015

Event Categories

Event types Event

Number

Event Include

Speculative

Counts?

Description

Fetch,

Instruction

Cache,

Instruction

Line Fill, and

Instruction

Prefetch

Events

27 Icache linefills Yes Counts icache reloads due to demand fetch.

Used to determine instruction cache miss rate

(along with instructions completed)

28 Number of Instruction

fetches

Yes Counts fetches that write at least one

instruction to the instruction buffer. (With

instruction words fetched (com:6), can used to

compute instruction words-per-fetch, or with

icache linefills, can compute icache hit rate)

BIU

Interface

Usage

29 BIU instruction-side

transfers

Yes instruction-side transaction beats

30 BIU instruction-side

cycles

Yes instruction-side transaction clock cycles

31 BIU data-side transfers Yes data-side transaction beats

32 BIU data-side cycles Yes data-side transaction clock cycles

33 BIU single-beat write

cycles

Yes single beat write transaction clock cycles

TM

External Use 58 #FTF2015

Event Categories

Event

types

Event

Number

Event Include

Speculative

Counts?

Description

Chaining

Events

34 PMC0 rollover No PMC0OV transitions from 1 to 0.

35 PMC1 rollover No PMC1OV transitions from 1 to 0.

36 PMC2 rollover No PMC2OV transitions from 1 to 0.

37 PMC3 rollover No PMC3OV transitions from 1 to 0.

Interrupt

Events

38 Interrupts taken No -

39 External input interrupts

taken

No -

40 Critical input interrupts

taken

No -

41 Cycles in which

MSREE=0

No -

42 Cycles in which

MSRCE=0

No -

TM

External Use 59 #FTF2015

Event Categories — Watchpoint Events

Event types Event

Number

Event Include

Speculative

Counts?

Description

Watchpoint

Events

43–58 Watchpoint #0 to 15 occurs No Assertion of watchpoint 0 to 15 detected

59 Watchpoint #27 occurs No Assertion of watchpoint 27 detected

TM

External Use 60 #FTF2015

Event Categories — Cache Array Events

Event

types

Event

Number

Event Include

Speculative

Counts?

Description

Cache

Array

Events

64 Cycles Dcache data array enabled for a read

65 Cycles Icache data array enabled for a read

66 Cycles DMEM array enabled for a read

67 Cycles IMEM array enabled for a read

68 Cycles DMEM array and Dcache data array both

enabled for a read

69 Cycles IMEM array and Icache data array both

enabled for a read

70 Cycles data access is stalled due to Dcache

latewrite buffer

71 Cycles data access is stalled due to full DMEM write

buffer

72 Cycles data access is recycled Dcache recycled lookup

73 Cycles instruction access is recycled Icache recycled lookup

TM

External Use 61 #FTF2015

Performance Monitor Use Cases

TM

External Use 62 #FTF2015

Agenda

• Session Overview

• Nexus Overview

• Nexus and debug Use Cases

• Performance Monitor Overview

• Performance Monitor Instructions

• Performance Monitor Registers

• Performance Monitor Events

• Performance Monitor Use Cases

• Summary

TM

External Use 63 #FTF2015

Instructions Per Clock (IPC)

• Use counter 0 & 1 to build a 64-bit counter to count processor

clocks

− PMLCa0 set to event 1 (processor cycles)

− PMLCa1 set to event 34 (overflow of counter 0)

• Use counter 2 & 3 to build 64-bit counter to count instructions

completed

− PMLCa2 set to event 2 (instructions completed)

− PMLCa3 set to event 36 (overflow of counter 2)

IPC = Instructions / Processor clocks

TM

External Use 64 #FTF2015

Lauterbach TRACE32 BenchMarkCounter

• TRACE32 has a GUI for assigning the Performance Monitor

events to the PM counters.

• Type “BMC” to get a simple interface for collecting data.

• In addition to the standard PM use cases, these can be combined

with trace and monitoring the PM registers during runtime for more

capabilities
Freeze stops the counters in debug mode

AutoInit clears the counters when exiting debug mode

TM

External Use 65 #FTF2015

myPerformanceBenchmark:

Optimization, Cache, and –SDA effects on performance

 Measure Execution Time and IPC

0.00

0.50

1.00

1.50

2.00

2.50

ipc time (us) ipc time (us) ipc time (us)

 -Onone -Onone, -sda -Ospeed, -sda

Optimizing myBenchmark Loop

non-cached cached

See FTF-ACC-F1185 Performance Optimization Tips and Hints for Automotive Power Architecture

TM

External Use 66 #FTF2015

General Performance indicator

Get a feel for general performance of code and compiler. Must be
careful no overflows occur. Shows how well single/dual issue is
working and when stalled.

• PMLCa0 set to event 1 (processor cycles)

• PMLCa1 set to event 3 (cycles with 0 instructions issued)

• PMLCa2 set to event 4 (cycles with 1 instruction issued)

• PMLCa3 set to event 5 (cycles with 2 instructions issued)

TM

External Use 67 #FTF2015

myPerformanceBenchmark:

Before and After Compiler Optimization

 measure instructions issued, IPC and exec time

0%

20%

40%

60%

80%

100%

120%

140%

160%

180%

200%

0 issued 1 issued 2 issued ipc Execution Time

no opt

opt

9
5

 u
s

1
8

3
 u

s
See FTF-ACC-F1185 Performance Optimization Tips and Hints for Automotive Power Architecture

TM

External Use 68 #FTF2015

Number of loads versus stores

• In the below snapshot, Counter1 was set up to handle overflows of

Counter0. (it was not needed in this example.)

TM

External Use 69 #FTF2015

Interrupt Performance

• Use counter 0 & 1 to build a 64-bit counter to count processor
clocks

− PMLCa0 set to event 1 (processor cycles)

− PMLCa1 set to event 34 (overflow of counter 0)

• Use counter 2 to measure the number of interrupts taken

− PMLCa2 set to event 38 (interrupts taken)

• Use counter 3 to measure the number of critical interrupts taken

− PMLCa3 set to event 40 (cycles with external [core] interrupts disabled)

TM

External Use 70 #FTF2015

Code Segment

• Use counter 0 & 1 to build a 64-bit counter to count processor

clocks

− PMLCa0 set to event 1 (processor cycles)

− PMLCa1 set to event 34 (overflow of counter 0)

• Use counter 2 & 3 to build 64-bit counter to count processor clocks

− PMLCa2 set to event 1 (processor cycles)

− PMLCa3 set to event 36 (overflow of counter 2)

− Use PMLCa2[FC] bit to control the counting of specific code segment(s)

TM

External Use 71 #FTF2015

Supervisor / User Mode

• Use counter 0 & 1 to build a 64-bit counter to count processor

clocks

− PMLCa0 set to event 1 (processor cycles)

− PMLCa1 set to event 34 (overflow of counter 0)

• Use counter 2 & 3 to build 64-bit counter to count processor clocks

− PMLCa2 set to event 1 (processor cycles)

− PMLCa3 set to event 36 (overflow of counter 2)

− Use PMLCa2[FCS]/[FCU] bit to control the counting of specific code

segment(s)

TM

External Use 72 #FTF2015

Summary

TM

External Use 73 #FTF2015

Agenda

• Session Overview

• Nexus Overview

• Nexus and debug Use Cases

• Performance Monitor Overview

• Performance Monitor Instructions

• Performance Monitor Registers

• Performance Monitor Events

• Performance Monitor Use Cases

• Summary

TM

External Use 74 #FTF2015

Generation 1 (primarily c90/MPC56xx) to Gen 2

(c55/MPC67xx) differences

• Global configuration register changes, adding debug interrupt

capability and control of registers via the JTAG port

• Events change

− Not all events can be used with all counters

− Event numbers have changed

C90 overflow was events 97–100, in c55 they are events 34–37

− Reduced number of events

C90 event numbers go up to 158

C55 event numbers go up to 73

− JTAG/ONcE register access added during runtime

TM

External Use 75 #FTF2015

Considerations

• Be careful when comparing events against each other

− For example, you cannot add up the different stall events to get total

cycles stalled. Different types of stalls can happen in same cycle

• Overflow mechanism in non-traditional

• Don’t be bogged down in details. Customer should be controlling

engines not worrying about Dcache stream hit rates

• Beware on differences between c90 and c55 versions of the PM

TM

External Use 76 #FTF2015

Session Summary

• The e200zx core Performance Monitor can enhance the MCU

system development capabilities above the capabilities provided by

the IEEE 5001 Nexus trace interface.

These features can be used to enhance software quality and

performance.

TM

External Use 77 #FTF2015

Now Start Developing Your MCU

Software

TM

External Use 78 #FTF2015

FTF Recommended Sessions
FTF-ACC-F1185 Performance Optimization Tips and Hints for

Automotive Power Architecture

TM

© 2015 Freescale Semiconductor, Inc. | External Use

www.Freescale.com

http://www.freescale.com/
http://www.freescale.com/
https://twitter.com/Freescale
https://twitter.com/Freescale
https://twitter.com/Freescale
https://twitter.com/Freescale
https://www.facebook.com/freescale
https://www.facebook.com/freescale
https://www.facebook.com/freescale
https://www.facebook.com/freescale

