
PUBLIC

MODEL BASED DESIGN TOOLBOX

AND S32K TRAINING

GC AUTOMOTIVE FAE

XUEYU.CAO@NXP.COM

+86 18616552690

Mike Cao 曹学余

mailto:XUEYU.CAO@NXP.COM

1
PUBLIC

Agenda
• Overview

− Model Based Design Toolbox: Introduction and Objectives

− Model Based Design Toolbox: Toolchain Overview

− Model Based Design Toolbox: Library blocks, FreeMASTER,
and Bootloader

• Example: Read A/D and Toggle LED

− Motor Kit (Describe NXP 3-Phase Motor Kit)

− Convert simple model to run on Motor Kit with MBD Toolbox
and use FreeMASTER

• Model Based Design

− Model Based Design Steps: Simulation, SIL, PIL and ISO
26262

− Hands-On Demo SIL/PIL Step 2 & 3 of MBD

• Summary and Q&A

2
PUBLIC

Introduction: What Do We Do?

• One of the Automotive Tools Enablement &

Engineering group’s objectives is to

develop software enablement tools to assist

our customers with rapid prototyping and

accelerate algorithm development on their

target NXP MCU

• This includes software tools that

automatically generate peripheral

initialization code through GUI

configuration, to generating peripheral

driver code from a Model Based Design

environment like Simulink™

4
PUBLIC

Introduction: Model Based Design (MBD)

• Model Based Design is becoming more common during the normal course of software
development to explain and implement the desired behavior of a system. The challenge is
to take advantage of this approach and get an executable that can be simulated and
implemented directly from the model to help you get the product to market in less time and
with higher quality. This is especially true for electric motor controls development in this
age of hybrid/electric vehicles and the industrial motor control application space.

• Many companies model their controller algorithm and the target motor or plant so they can
use a simulation environment to accelerate their algorithm development.

• The final stage of this type of development is the integration of the control algorithm
software with target MCU hardware. This is often done using hand code or a mix of hand
code and model-generated code. NXP’s Model Based Design Toolbox allows this stage of
the development to generate 100% of the code from the model.

5
PUBLIC

Introduction: Reduce Development Time With MBD Toolbox

System

Requirements

Modeling/

Simulation

Rapid Prototype

Target MCU

Implementation

HIL Testing

Functional

Testing

Time

Use software-based model

vs. paper-based method,

and start testing at very

earliest stage.

Convert model to SIL

and now can test

ANSI-generated

software. Can also

use MDB library with

SIL testing.

With MC library

and MBD Toolbox,

test Model using

target MCU and

compiler through

PIL testing.

With MC Toolbox, auto-generate

code for direct interface of

peripherals for target hardware

without any manual hand code.

Now that more testing

on target has occurred

earlier in the process,

HIL testing time is

reduced.

Fewer defects found in

this phase of testing,

where finding defects is

expensive.

Using NXP’s Model Based Design Toolbox you can reduce development time from this.

Reduce Time

from This. . .

6
PUBLIC

Introduction: Reduce Development Time With MBD Toolbox

System

Requirements

Modeling/

Simulation

Rapid Prototype

Target MCU

Implementation

HIL Testing

Functional

Testing

Time

To This!

7
PUBLIC

Objectives

• Exposure to NXP’s hardware/software enablement

Signal Visualization

and Data Acquisition Tool

Model-based design

Driver configuration

Assignment to pins

Initialization setup

Model Based DesingToolbox

with Simulink ™

NXP S32K EVB Kit

RAppID Bootloader Utility

8
PUBLIC

Model Based Design Toolbox: Toolchain Overview:

Matlab

Simulink

Stateflow

Embedded Coder

Motor Control (MC)

9
PUBLIC

Overall Model Based Design Toolbox Environment

MATLAB

Simulink/Stateflow

Embedded Coder

MATLAB is the base tool environment: Very powerful and scriptable open

environment , allows access to everything you need.

Simulink is graphical environment for building controls algorithms as well as simulation of

these algorithms. Stateflow is a special case of Simulink block for state based design and

flow chart controls of execution. Simulink allows for a basic solver to execute either in

discrete time or continuous time modes.

Embedded Coder is production code generation environment from MATLAB/Simulink models

basic code generator that generates ANSI C source code.

10
PUBLIC

MATLAB/Simulink/Embedded Coder

MBD Toolbox – Embedded Target MCU Specific Interface

MBD Toolbox – Simulink Blocks

MBD Toolbox – Processor In Loop (Combination of Target +

Bootloader)

Basic MATLAB Environment Tools MDB Toolbox sits on top of.

Embedded Target, basic main function + MCU specific infrastructure code and make

file generation to build .elf file/s-record on back end of code generation process.

Simulink Blocks – Simulation Blocks for algorithm components, place holders

for peripheral drivers, and other functional utility block interfaces.

Processor In Loop – Combination of embedded target and bootloader

Overall Model Based Design Toolbox Environment

11
PUBLIC

Overall Model Based Design Toolbox Environment

• Simple equation of adding an input to a counter

multiplying by a gain value of 2

• output = (counter + input)* 2;

Simulink Environment

12
PUBLIC

Overall Model Based Design Toolbox Environment

Stateflow – state machines, flow chart logic, combination of both.
Simulink Environment

13
PUBLIC

Overall Model Based Design Toolbox Environment

• Optimization and code configuration options that extend MATLAB Coder and
Simulink Coder to generate code for processor specific targets.

• Storage class, type, and alias definition using Simulink® data dictionary capabilities.

Embedded Coder

• Processor-specific code
optimization

• Code verification, including SIL
and PIL testing, custom
comments, and code reports
with tracing of models to and
from code and requirements

• Standards support, including
ASAP2, AUTOSAR, DO-178,
IEC 61508, ISO 26262, and
MISRA C® in Simulink

http://www.mathworks.com/simulink/

14
PUBLIC

Embedded Target Code Generation Requirements

• Model Code Generation Requirements

− Must be discrete time solver

− Must NOT contain any continuous/special blocks

− Code Generation Add-on :To Build Target Executable Must have embedded target

selected (MBD Toolbox provides this for the S32K).

− May generate code only or generate code and compile for a target environment .exe, .dll,

.s19, .elf…).

15
PUBLIC

Embedded Target Code Generation Requirements

Discrete

Continuous

Controller Model

Electric Motor Plant Model

Analog

Device ModelAnalog

Sensor Model

PI

Filter

PI

Filter

Reverse

Park

Transform

PWM

Modulation

PWM A

PWM B

PWM C

Zero

+

-

+

-

Torque

Control

IQ

loop

ID

loop

IQ

cmd

ID

cmd

ID

Va

cmd

Vb

cmd

Forward

Park

Transform

Forward

Clark

Transform

IA

IB

IC

Va

Vb

Motor Position

IQ

ADC

A/D

Conversion

Application Algorithm

Gate

Driver

Control System Anatomy

16
PUBLIC

Embedded Target Code Generation Requirements

• Start from Idealized model (double precision unconstrained mathematics).

• Need to move to target constrained model (integer code, fixed point mathematics, or single precision

mathematics).

• Tradeoffs are made in this process depending on how the customer chooses to implement the controller on the

target MCU.

• The simulation environment supports simulation in any of the target data types also code generation is

supported when targeting the MCU.

• What is executed in simulation should be exactly the same as on the embedded target.

Embedded Target Requirements for Application Algorithm

17
PUBLIC

Embedded Target Code Generation Considerations

• Data Type Selection

− Target Based Data Typing

− Target MCU data sizes

− Consider compilers options

• Consider Data use scenarios

− Local reuse of data vs global memory data

− Consider parameter passing

− Consider constant data use (calibration data variables)

− True Constant Data Use

18
PUBLIC

Embedded Target Code Generation Considerations

• Two Kinds of Data

− Simulink Signals

 Generally are RAM Memory Variables

 Dynamic in execution

− Simulink Parameters

 Constants in execution

 Can be code generated as a calibration variable

 Can be code generated as an inline numeric as well

• Full Control of Data Attributes

− Naming of variables for simulation and code generation

− Full control over data type in simulation and code generation

− Data Size

− Data “C” Constructs used in code generation

Data in Simulink

19
PUBLIC

Embedded Target Code Generation Considerations

Each signal line represents a RAM variable.

Naming is done through signal name label.

Data typing is done directly on signal line or through use

of a data object.

Data type, storage class, memory section location, and

“C” data definition are all user controllable.

Data in Simulink

20
PUBLIC

Embedded Target Code Generation Considerations

• Must have modeling style guidelines that takes into account code generation and
target software architecture

• Plan code generation to meet target software architecture

• Use of an interface Data Dictionary to minimize software integration issues is
industry best practice

• Design/Refine models for code generation to target MCU

− Learn and understand code generator optimizations (Know the Tools)

− Optimize model for code generation with target MCU in mind

 Data Types

 Optimize Function/File Partitions

 Utilize target optimized functions for key bottlenecks (custom)

 Utilize target optimized block sets whenever possible

• Utilize MCU attributes as much as possible in your model refinement

Before you start to model for Code Generation

21
PUBLIC

Conclusion – Model Based Development

• MBD is popular in Automotive/Aerospace/Industrial Space especially for Motor Control
Applications.

• MBD Automatic Code Generation is another level of abstraction above C-Code since
algorithm, architecture, data typing and optimizations occur at the model level.

• MBD Code Generation requires planning and process to meet target executions goals.

• Target required execution times requires model refinement.

• Best to target code generation of the model to the software architecture of embedded
controller environment.

22
PUBLIC

Any Questions?

23
PUBLIC

Model Based Design Toolbox Overview

24
PUBLIC

Introduction: Model Based Design Toolbox

• The Model Based Design Toolbox includes an embedded target supporting NXP MCUs and Simulink™ plug-in libraries

which provide engineers with an integrated environment and tool chain for configuring and generating the necessary

software, including initialization routines, device drivers, and a real-time scheduler to execute algorithms specifically for

controlling motors.

• The toolbox also includes an extensive Automotive Math and Motor Control Function Library developed by NXP’s renowned

Motor Control Center of Excellence. The library provides dozens of blocks optimized for fast execution on NXP MCUs with

bit-accurate results compared to Simulink™ simulation using single-precision math.

• The toolbox provides built-in support for Software and Processor-in-the-Loop (SIL and PIL), which enables direct comparison

and plotting of numerical results.

MathWorks products required for MBD Toolbox:

− MATLAB (32-Bit or 64-Bit)*

− Simulink

− MATLAB Coder

− Simulink Coder

− Embedded Coder

*Earlier released products only support 32-bit

25
PUBLIC

MBDToolbox

Library for S32K

MBDToolbox

Peripheral block

library

Simulink

Libraries

MBD Toolbox: Toolbox Library Contents

26
PUBLIC

Peripherals

MBD Toolbox: Toolbox Library Contents

• General

− ADC conversion

− Digital I/O

− PIT timer

− ISR

• Communication Interface

− CAN driver

− SPI driver

− I2C

• Motor Control Interface

− Cross triggering unit

− PWM

− eTimer block(s)

− Sine wave generation

− ADC Command List

− GDU (Gate Drive Unit)

− PTU (Prog Trigger Unit)

− TIM Hall Sensor Port

− FTM (Flex Timer Module)

− PDB (Programmable Delay Block)

Configuration/Modes

• Compiler Options

− CodeWarrior

− Wind River DIAB

− Green Hills

− Cosmic

− IAR

− GCC

− RAM/FLASH targets

• Simulation Modes

− Normal

− Accelerator

− Software in the Loop (SIL)

− Processor in the Loop (PIL)

• MCU Option

− Multiple packages

− Multiple Crystal frequencies

Utility

• FreeMASTER Interface

• Data acquisition / Calibration

• Customize GUI

• Profiler Function

• Exec. time measurement

• Available in PIL

• Available in standalone

• Memory Read and Write

• MPC5643L

• MPC567xK

• MPC574xP

• S12ZVM

• S32K

MCUs Supported

NOTE: Peripheral Block and compiler availability is dependant on which MCU is use.

27
PUBLIC

General Motor

Control Library

General Function

Library

General Digital

Filters Library

Mathematical

Library

MBD Toolbox: Auto Math and Motor Control Library Contents

28
PUBLIC

MBD Toolbox: Auto Math and Motor Control Library Contents

MLIB

• Trigonometric Functions

• GFLIB_Sin, GFLIB_Cos,

GFLIB_Tan

• GFLIB_Asin, GFLIB_Acos,

GFLIB_Atan,

GFLIB_AtanYX

• GFLIB_AtanYXShifted

• Limitation Functions

• GFLIB_Limit,

GFLIB_VectorLimit

• GFLIB_LowerLimit,

GFLIB_UpperLimit

• PI Controller Functions

• GFLIB_ControllerPIr,

GFLIB_ControllerPIrAW

• GFLIB_ControllerPIp,

GFLIB_ControllerPIpAW

• Interpolation

• GFLIB_Lut1D,

GFLIB_Lut2D

• Hysteresis Function

• GFLIB_Hyst

• Signal Integration Function

• GFLIB_IntegratorTR

• Sign Function

• GFLIB_Sign

• Signal Ramp Function

• GFLIB_Ramp

• Square Root Function

• GFLIB_Sqrt

GFLIB

• Finite Impulse Filter

• GDFLIB_FilterFIR

• Moving Average Filter

• GDFLIB_FilterMA

• 1st Order Infinite Impulse

Filter

• GDFLIB_FilterIIR1init

• GDFLIB_FilterIIR1

• 2nd Order Infinite Impulse

Filter

• GDFLIB_FilterIIR2init

• GDFLIB_FilterIIR2

GDFLIB

• Clark Transformation

• GMCLIB_Clark

• GMCLIB_ClarkInv

• Park Transformation

• GMCLIB_Park

• GMCLIB_ParkInv

• Duty Cycle Calculation

• GMCLIB_SvmStd

• Elimination of DC Ripples

• GMCLIB_ElimDcBusRip

• Decoupling of PMSM Motors

• GMCLIB_DecouplingPMSM

GMCLIB

• Absolute Value, Negative

Value

• MLIB_Abs, MLIB_AbsSat

• MLIB_Neg, MLIB_NegSat

• Add/Subtract Functions

• MLIB_Add, MLIB_AddSat

• MLIB_Sub, MLIB_SubSat

• Multiply/Divide/Add-multiply

Functions

• MLIB_Mul, MLIB_MulSat

• MLIB_Div, MLIB_DivSat

• MLIB_Mac, MLIB_MacSat

• MLIB_VMac

• Shifting

• MLIB_ShL, MLIB_ShLSat

• MLIB_ShR

• MLIB_ShBi, MLIB_ShBiSat

• Normalisation, Round

Functions

• MLIB_Norm, MLIB_Round

• Conversion Functions

• MLIB_ConvertPU,

MLIB_Convert

29
PUBLIC

MBD Toolbox: RAppID Bootloader Utility

The RAppID Bootloader works with the built-in Boot Assist Module (BAM) included in the NXP Qorivva and also

supports S12 MagniV, Kinetis, and DSCs family of parts. The Bootloader provides a streamlined method for

programming code into FLASH or RAM on either target EVBs or custom boards. Once programming is complete, the

application code automatically starts.

Modes of Operation

The Bootloader has two modes of operation: for use as a stand-alone PC desktop GUI utility, or for integration with

different user required tools chains through a command line interface (i.e. Eclipse Plug-in, MATLAB/Simulink, …)

MCUs Supported

MPC5534, MPC5601/2D, MPC5602/3/4BC, MPC5605/6/7B, MPC564xB/C, MPC567xF, MPC567xK, MPC564xL,

MPC5604/3P, MPC574xP, S12ZVM, S32K, KV10, KV3x, KV4x, KV5x, 56F82xx and 56F84xx.

Graphical User Interface Command

Line

Status given in two stages:

Bootloader download, then

application programming

30
PUBLIC

FreeMASTER — Run Time Debugging Tool

• User-friendly tool for real-time debug monitor
and data visualization

− Completely non-intrusive monitoring of variables
on a running system

− Display multiple variables changing over time on
an oscilloscope-like display, or view the data in
text form

− Communicates with an on-target driver via USB,
BDM, CAN, UART

• Establish a Data Trace on Target

− Set up buffer (up to 64 KB), sampling rate and
trigger

− Near 10-µs resolution

http://www.nxp.com/freemaster

USB

BDM

CAN

UART

JTAG

Ethernet

31
PUBLIC

MBD Toolbox: Summary of Application Support

External HardwareSystem Infrastructure

On-Chip

Peripherals

PINS

External

Connections

Application SW

Drivers

Drivers
Efficient

Reflecting the chip features

FreeMaster
Support

D
o

c
u

m
e

n
ta

ti
o

n

SYSTEM APPLICATION

T
a

rg
e

t
P

la
tf

o
rm

API

MC library set

Algorithm

Libraries

GFLIB
General functions

GDFLIB
Digital filtering

G
M

C
L

IB
M

o
to

r
C

o
n
tr

o
l

API

Bootloader
Support

User Application

Software

32
PUBLIC

Model Based Design Toolbox Overview
Any Questions?

33
PUBLIC

Example: Read A/D and Toggle LED Simple Model

34
PUBLIC

Example: Read A/D and Toggle LED Simple Model

35
PUBLIC

Example: Read A/D and Toggle LED Simple Model

Using FreeMASTER

36
PUBLIC

Example: Read A/D and Toggle LED Simple Model

Using FreeMASTER with Example

You will notice that there is dither in the A2D reading as you change the Potentiometer. This is

because the system tick time in the model is too slow. To change this, go to the model and select

the Simulation pull down menu. Then select Configuration parameters. Change the Fixed-step size

from “auto” to “.001”

37
PUBLIC

Example: Read A/D and Toggle LED Simple Model

Using FreeMASTER with Hands-On Demo

Disconnect FreeMASTER by pressing the STOP button. Then rebuild the model and have the

bootloader download the software to the MCU. Re-Connect FreeMASTER and turn the Pot. You

should see the following:

38
PUBLIC

Insert demo video here – Simple A/D demo

39
PUBLIC

Example: Read A/D and Toggle LED Simple Model
Any Questions?

40
PUBLIC

Model Based Design Steps

41
PUBLIC

Model Based Design Steps: Step 1 (Simulation)

Idealized simulation of the controller and

the motor to refine the control technique.

Done on host PC without regard for

embedded controller. Can optionally add

analog device models for fault detection

and signal control.

Controller Model

Electric Motor Model

Analog

Device ModelAnalog

Sensor Model

PI

Filter

PI

Filter

Reverse

Park

Transform

PWM

Modulation

PWM A

PWM B

PWM C

Zero

+

-

+

-

Torque

Control

IQ

loop

ID

loop

IQ

cmd

ID

cmd

ID

Va

cmd

Vb

cmd

Forward

Park

Transform

Forward

Clark

Transform

IA

IB

IC

Va

Vb

Motor Position

IQ

ADC

A/D

Conversion

Simulation in PC environment

Gate

Driver

PC Environment

42
PUBLIC

Model Based Design Steps: Step 2 (SIL)

Still done on host PC without regard for

embedded controller. Instead using

generated C code that is compiled using

a PC-based compiler. Run same test

vectors as in simulation for C Code

Coverage analysis and verify functionality.

(SIL) Generated code executes as atomic unit on PC(SIL) Generated code executes as atomic unit on PC

Gate

Driver

ADC

A/D

Conversion

Electric Motor Model

PI

Filter

PI

Filter

Reverse

Park

Transform

PWM

Modulation

PWM A

PWM B

PWM C

Zero

+

-

+

-

Torque

Control

IQ

loop

ID

loop

IQ

cmd

ID

cmd

ID

Va

cmd

Vb

cmd

Forward

Park

Transform

Forward

Clark

Transform

IA

IB

IC

Va

Vb

Motor Position

IQ

Controller Model

Analog

Device ModelAnalog

Sensor Model

PC Environment

43
PUBLIC

Model Based Design Steps: Step 3 (PIL)

Execute the model on the target MCU and

perform numeric equivalence testing. Co-

execution with MCU and Model Based Design

working together while collecting execution

metrics on the embedded controller of the

control algorithm. Validate performance on

the MCU.

(PIL) Executes generated code on the target MCU

PC Environment + MCU

Gate

Driver

ADC

A/D

Conversion

Electric Motor Model

PI

Filter

PI

Filter

Reverse

Park

Transform

PWM

Modulation

PWM A

PWM B

PWM C

Zero

+

-

+

-

Torque

Control

IQ

loop

ID

loop

IQ

cmd

ID

cmd

ID

Va

cmd

Vb

cmd

Forward

Park

Transform

Forward

Clark

Transform

IA

IB

IC

Va

Vb

Motor Position

IQ

Controller Model

Analog

Device ModelAnalog

Sensor Model

44
PUBLIC

Model Based Design Steps: Step 3 (PIL)

Verification and Validation at Code Level

• This step allows:

− Translation validation through systematic testing

− To demonstrate that the execution semantics of the model are being preserved during

code generation, compilation, and linking with the target MCU and compiler

• Numerical Equivalence Testing:

− Equivalence Test Vector Generation

− Equivalence Test Execution

− Signal Comparison

45
PUBLIC

PIL testing using MC Toolbox PIL Mode Support**

Real-Time Workshop Embedded

Coder traceability report or

model vs. code coverage

comparison

Simulation (model testing),

model coverage, RMI

Model advisor, modeling

standards checking

Simulink / Stateflow / Simulink Fixed Point Real-Time Workshop Embedded Coder

*Workflow from The MathworksTM

Presentation Material Model-Based

Design for IEC 61508 and ISO 26262

Example IEC 61508 and ISO 26262 Workflow for

Model-Based Design with MathWorks Products*

** NXP MC Toolbox is part of Mathworks

Workflow outlined in The MathworksTM

Material Model-Based Design for IEC 61508 and

ISO 26262 as well as part of certification

qualification tool suite.

46
PUBLIC

Model Based Design Steps: Step 4 (Target MCU)*

Generate production code to run on embedded MCU with real

motor while collecting execution metrics on the embedded

controller of control algorithm. Validate performance on MCU

and use FreeMASTER to tune control parameters

and perform data logging.

* I/O peripheral driver blocks

can be included in the model,

providing the analog driver

interfaces needed to directly

interface to devices external

from the MCU.

Execute on Target MCU on ECM/EVB

Controller Model

Electric Motor

Output

Drivers*Input

Drivers*

PI

Filter

PI

Filter

Reverse

Park

Transform

PWM

Modulation

PWM A

PWM B

PWM C

Zero

+

-

+

-

Torque

Control

IQ

loop

ID

loop

IQ

cmd

ID

cmd

ID

Va

cmd

Vb

cmd

Forward

Park

Transform

Forward

Clark

Transform

IA

IB

IC

Va

Vb

Motor Position

IQ

Gate

Driver

ADC

A/D

Conversion

MCU with

Embedded Control

Module (ECM)

47
PUBLIC

Model Based Design Steps: Summary

Step 1 — System Requirements:

MBD Simulation Only

Software requirements

Control system requirements

Overall application control strategy

Step 2 — Modeling/Simulation:

MBD Simulation with ANSI C Code using SIL

Control algorithm design

Code generation preparation

Control system design

Overall application control strategy design

Start testing implementation approach

Step 3 — Rapid Prototype:

MBD Simulation with ANSI C Code using PIL

Controller code generation

Determine execution time on MCU

Verify algorithm on MCU

See memory/stack usage on MCU

Start testing implementation approach

Target testing controls algorithm on MCU

Step 4 — Target MCU Implementation

ANSI C Code Running on Target Hardware

and MCU

Validation/verification phase

Controller code generation

Determine execution time on MCU

Start testing implementation on target ECM

Code generate control algorithm +

I/O drivers. Complete implementation on

ECM. Test system in target environment

Utilize calibration tools for data logging and

parameter tuning

Execute code on target MCU

Functional testing in target environment

Ensure execution on target is correct as well

as code generation on target is performing as

desired.

PC Environment PC Environment
PC Environment

+ MCU

MCU with

Embedded Control

Module (ECM)

Modeling style guidelines applied

Algorithm functional partitioning

Interfaces are defined here Testing of functional components of algorithm

Test harness to validate all requirements

Test coverage of model here

Creates functional baseline of model

Refine model for code generation

Function/File partitioning

Data typing to target environment done here

Scaling for fixed point simulation and code gen

Testing of functional components of algorithm

Test harness to validate all requirements

Test coverage of model here

Creates functional baseline of model

Equivalence testing

Controller Model

Electric Motor Model

PI

Filter

PI

Filter

Reverse

Park

Transform

PWM

Modulation

PWM A

PWM B

PWM C

Zero

+

-

+

-

Torque

Control

IQ

loop

ID

loop

IQ

cmd

ID

cmd

ID

Va

cmd

Vb

cmd

Forward

Park

Transform

Forward

Clark

Transform

IA

IB

IC

Va

Vb

Motor Position

IQ

Controller Model

Electric Motor Model

PI

Filter

PI

Filter

Reverse

Park

Transform

PWM

Modulation

PWM A

PWM B

PWM C

Zero

+

-

+

-

Torque

Control

IQ

loop

ID

loop

IQ

cmd

ID

cmd

ID

Va

cmd

Vb

cmd

Forward

Park

Transform

Forward

Clark

Transform

IA

IB

IC

Va

Vb

Motor Position

IQ

Controller Model

Electric Motor Model

PI

Filter

PI

Filter

Reverse

Park

Transform

PWM

Modulation

PWM A

PWM B

PWM C

Zero

+

-

+

-

Torque

Control

IQ

loop

ID

loop

IQ

cmd

ID

cmd

ID

Va

cmd

Vb

cmd

Forward

Park

Transform

Forward

Clark

Transform

IA

IB

IC

Va

Vb

Motor Position

IQ

Gate

Driver

Controller Model

Electric Motor

PI

Filter

PI

Filter

Reverse

Park

Transform

PWM

Modulation

PWM A

PWM B

PWM C

Zero

+

-

+

-

Torque

Control

IQ

loop

ID

loop

IQ

cmd

ID

cmd

ID

Va

cmd

Vb

cmd

Forward

Park

Transform

Forward

Clark

Transform

IA

IB

IC

Va

Vb

Motor Position

IQ

Gate

Driver

48
PUBLIC

How to get it and where to find support

49
PUBLIC

Download and Support

• Download MBD Toolbox: www.nxp.com/mctoolbox

• MATLAB: www.mathworks.com

• Support: https://community.nxp.com/community/mbdt

http://www.nxp.com/mctoolbox
http://www.mathworks.com/
https://community.nxp.com/community/mbdt

50
PUBLIC

Summary

51
PUBLIC

Summary: Publications

MathWorks Announces Simulink Code Generation Targets in New Freescale(now NXP) Motor Control Development Toolbox

www.mathworks.com

• Simulink and Embedded Coder enable engineers to generate production code for Freescale(now NXP) MCUs in IEC 61508

(SIL3) and ISO 26262 (ASIL-D) compliant systems.

Freescale likes model-based design, says MathWorks

www.ElectronicsWeekly.com

• MathWorks says Freescale(now NXP) has made a major commitment to model-based design methodologies by adopting

Simulink code generation targets in its motor control development toolbox. The toolbox, consisting of Simulink motor control

blocks and target-ready …

A model-based tool to support rapid application development for Freescale(now NXP) MCUs

www.NXP.com — Beyond Bits—Issue VIII

• Model-based design (MBD) is becoming the standard methodology for developing embedded systems that implement the
desired behavior of a control system. MBD is a graphical method …

http://www.nxp.com/

52
PUBLIC

NXP Automotive FAE interface for TW customer

Mike Cao 曹学余
Xueyu.cao@nxp.com
Control&Network, Automotive Customer Application Solution and Support
NXP (China) Management Co.,Ltd
Mobile: +86 186 1655 2690
Tel: +86 21 2205 2745
地址: 中国上海市裕通路100号宝矿洲际商务中心20层 邮编: 200070
Add: 20F, BM InterContinental Business Center, 100 Yu Tong Road, Shanghai, P.R.C 200070

