

Introducing the Superscalar Version 5 ColdFire[®] Core

Microprocessor Forum October 16, 2002

Joe Circello

Chief ColdFire Architect Motorola Semiconductor Products Sector

Joe Circello, Chief ColdFire Architect V5_ColdFire_MPF2002, Rev 1.0 MOTOROLA and the Stylized M Logo are registered in the US Patent & Trademark Office. All other product or service names are the property of their respective owners. © Motorola, Inc. 2002.

Presentation Outline

- **–Design Goals**
- **–Overview and Core Roadmap**
- -Architecture Definition and Core Microarchitecture
- **–Measured Performance**
- -Summary

V5 ColdFire Design Goals

- Next-generation on ColdFire core performance roadmap
 - Performance Targets
 - 1.3x 1.4x V4{e} core performance in same process technology
 - 2x V4{e} system-level performance in next-generation process
 - Maintain attributes of family heritage
 - Fully-synthesizable, highly-configurable designs for SoC
 - Compiled RAMs for cache and local memories
 - Provide SoC designers with access to key price/performance variables
 - Backward binary compatibility to preserve software investment

ColdFire Overview

- Compatible family of cores architected for SoC and reuse
 - 100% synthesizable and technology-independent designs
 - Strong embedded debug architecture
 - Common developer tool set for std products + SoC designs
- Family of cores, software compatible with M68000 legacy
 - Generations of microarchitectures are named "versions" (Vx, CFx)
 - Executing on core performance roadmap made public in 1996
 - 4 generations have provided a 24x performance increase in 7 years
 - CF2Core
 25 MIPS @ 33 MHz (0.80 um) in 1995

 CF5{e}Core
 610 MIPS @ 333 MHz (0.13 um) in 2002
- Excellent price/performance options across the family
 - 134 610 MIPS, 0.5 mm² 5.2 mm² in 0.13μm
- Configurable designs: Options in cost / performance / function
- Application areas: imaging, connectivity, audio, std products

ColdFire Core Roadmap

ColdFire Microarchitecture Definitions

- Version 2 (V2) Core: Single-Issue
 - Two independent, decoupled 2-stage pipelines
 - Single-cycle local bus with unified cache, RAM, ROM

• Version 3 (V3) Core: Single-Issue + Pipelined Local Bus

- Two independent, decoupled (4-stage/2-stage) pipelines
- 2-stage pipelined local bus with unified cache, RAM, ROM
- Version 4 (V4) Core: Limited Superscalar
 - Two independent, decoupled (4-stage/5-stage) pipelines
 - Harvard architecture with split I and D-caches: greater bandwidth
 - Instruction folding on conditional branches + moves
- Version 5 (V5) Core: Full Superscalar
 - Same basic pipeline organization as V4
 - Dual execution pipelines + larger branch cache with better prediction
- Version 6 (V6) Core: Superpipelined

V5 ColdFire Core

Architectural Features

- Implements ISA_C, DEBUG_E
- Independent, decoupled pipelines
 - 4-stage Instruction Fetch Pipeline (IFP)
 - Dual 5-stage Operand
 Execution Pipelines
 ({pri, sec}OEP)
- Harvard memory architecture for expanded core and memory bandwidth
 - SoC-sized Cache, RAM, ROM
- Enhanced two-level branch acceleration
- Superscalar EMAC
- Optional MMU + FPU = V5e

V5 ColdFire Architecture

- Instruction Set Architecture, Revision C (ISA_C)
 - Small number of new instructions added to ISA_C for specific embedded application areas
 - Improved bit manipulation and interrupt processing
 - bitrev, byterev, ff1, stldsr
 - Multiply-accumulate: single-multiply, dual-accumulate
 - One instruction: Raccx = Raccx +/- Ry * Rx

Raccw = Raccw + / - Ry * Rx

with optional 32-bit operand load

- $-m{a|s}{a|s}a|s}aC Ry,Rx,Raccx,Raccw,{<mem>y,Rx}$
- Useful in certain types of signal processing algorithms
 - » Examples: FFT processing, Discrete Cosine Transforms (DCT)

V5 ColdFire Architecture Cont'd.

- Debug Architecture, Revision E (DEBUG_E)
 - Processor Status (PST) encoding expanded to 5 bits for RTT
 - PST/DebugData output speed reduced to 0.25 x Core MHz
 - Compression of PST values: Output 1 PST value indicating execution of *n* insts, rather than *n* PSTs each signaling 1 inst
 - 4 more PC breakpoint registers added
 - Total of 8 PC breakpoints + 2 sets of address ranges with optional data values
 - Support for 2 data trace regions: automatic capture and precise display of address + data within region and no restrictions on the region (cacheable, non-cacheable, local RAM)
 - Optional periodic display of current PC for emulator synchronization

V5 Instruction Fetch Pipeline

- 4-stage, 64-bit Instruction Fetch Pipeline
 - Instruction Address Generation
 - Instruction Fetch Cycle 1
 - Instruction Fetch Cycle 2
 - Instruction Early Decode
- 16-entry FIFO Instruction Buffer: 1 inst/entry
- Branch Prediction
 - 256-entry, 2-way set-associative branch cache (BCU)
 - Local (2-bit state) and 128-entry global predictors
 - Folding on predicted-taken branches for 0-cycle execution time
 - 2nd-level Branch Acceleration Table used for BCU misses
 - 128-entries, hashed address, 2-bit prediction state
- 4-entry LIFO Hardware Return Stack

digitaldna

V5 Operand Execution Pipelines

• 5-stage, 64-bit Superscalar Operand Execution Pipeline

– priOEP, secOEP: Each with two 2-stage compute engines

- Decode/Select, evaluation of dispatch algorithm
- Operand Address Generation
- Operand Fetch Cycle 1
- Operand Fetch Cycle 2
- Execute
- Optional Data Writeback for stores to memory

• Efficient Evaluation of Superscalar Dispatch Algorithm

- Instruction resources determined by IFP's early decode stage
- 6 tests evaluated: all must pass to allow secOEP inst dispatch
- Optimizations to maximize superscalar dispatches
 - Result forwarding within instruction pairs if load + store
 - Dynamic execution selection: @ top or bottom of pipelines

priOperand

Execution

Pipeline

Address

Generation

secOperand

Execution

EMAC

Integer

Execution

EMAC

V5 Operand Execution Pipeline Cont'd

- Superscalar EMAC (Enhanced Multiply-Accumulate)
 - 2 instantiations (priOEP, secOEP) of 4-stage pipelined EMAC
 - Capable of dispatching two MAC instructions in single cycle with an optional 32-bit operand load on one instruction
 - Same programming model as original EMAC
 - Four 48-bit accumulators
 - Word/longword, signed/unsigned, integer/fractional data
 - Support for various product and store rounding, saturation
 - 32-bit accumulator results returned to integer register file
- Optional Floating-Point Unit in priOEP
 - Single-cycle, 64-bit data interface to local operand memories

V5 Measured Performance

- Relative Performance of V5 versus V4 (MCF5407)
 - V5 Dhrystone 2.1 Performance = 1.83 DMIPS/MHz (vs. V4's 1.54)
 - Configurations
 - V5: 333/111 MHz, 32K I-/32K D-Cache
 - V4: 220/ 55 MHz, 16K I-/ 8K D-Cache
 - Connected to equivalent 32-bit external SDRAM memory
 - Same object files executed on both cores (70 programs total)

ColdFire Embedded Suite= 2.05xEEMBC Auto/Industrial= 2.00xEEMBC Consumer= 1.97xEEMBC Networking= 2.52xEEMBC Office Automation= 2.05xEEMBC Telecomm= 2.02x

Total Geometric Mean = 2.05x

V5 Microarchitecture Metrics

- Internal Pipeline Metrics
 - Measured on our complete benchmark suite, including EEMBC

• Comparison of V5 and V4 Pipelines

<u>Unit</u>	<u></u>	<u>V5</u>
cycles/inst	1.42	1.05
cycles/inst	1.32	1.03
(pairs+triplets)/inst	0.28	0.64
Bcc/inst	0.14	0.14
wwBcc/Bcc	0.11	0.08
cycles/inst	0.14	0.12
cycles/inst	0.07	0.07
nst	0.02	0.02
nst	0.05	0.03
	<u>Unit</u> cycles/inst cycles/inst (pairs+triplets)/inst Bcc/inst wwBcc/Bcc cycles/inst cycles/inst nst	Unit $V4$ cycles/inst1.42cycles/inst1.32(pairs+triplets)/inst0.28Bcc/inst0.14wwBcc/Bcc0.11cycles/inst0.14cycles/inst0.07nst0.02nst0.05

where BaseCPI is a measure of performance assuming an infinitelylarge local memory, I.e., no cache misses, etc.

Version 5 ColdFire Core Summary

- Implementations in 0.13 micron
 - 300 366 MHz, 549 670 Dhrystone 2.1 MIPS
 - 5.2 mm² V5e core-only, 9.6 mm² V5e core + 32K I-/32K D- + 4K
- Innovative architectural solutions meeting varied customer demands and achieving superior system performance through optional feature integration
- Continuing to reap the benefits of 100% synthesizability, easily moving to new, higher performance technologies
- Building on the ColdFire legacy of low-cost, high performance solutions and extending the family in both performance and integration

