

i.MX35 3-Stack
Windows Embedded CE 6.0

Reference Manual

Part Number: 924-76370
 Rev. 2009.12

02/2010

Freescale and the Freescale logo are trademarks or registered trademarks
of Freescale Semiconductor, Inc. in the U.S. and other countries. All other
product or service names are the property of their respective owners. ARM
is the registered trademark of ARM Limited. ARMnnn is the trademark of ARM Limited.
Microsoft and Windows are either registered trademarks or trademarks of
Microsoft Corporation in the United States and/or other countries.

© Freescale Semiconductor, Inc., 2009. All rights reserved.

Information in this document is provided solely to enable system and software

implementers to use Freescale Semiconductor products. There are no express or

implied copyright licenses granted hereunder to design or fabricate any integrated

circuits or integrated circuits based on the information in this document.

Freescale Semiconductor reserves the right to make changes without further notice to

any products herein. Freescale Semiconductor makes no warranty, representation or

guarantee regarding the suitability of its products for any particular purpose, nor does

Freescale Semiconductor assume any liability arising out of the application or use of

any product or circuit, and specifically disclaims any and all liability, including without

limitation consequential or incidental damages. “Typical” parameters which may be

provided in Freescale Semiconductor data sheets and/or specifications can and do

vary in different applications and actual performance may vary over time. All operating

parameters, including “Typicals” must be validated for each customer application by

customer’s technical experts. Freescale Semiconductor does not convey any license

under its patent rights nor the rights of others. Freescale Semiconductor products are

not designed, intended, or authorized for use as components in systems intended for

surgical implant into the body, or other applications intended to support or sustain life,

or for any other application in which the failure of the Freescale Semiconductor product

could create a situation where personal injury or death may occur. Should Buyer

purchase or use Freescale Semiconductor products for any such unintended or

unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor

and its officers, employees, subsidiaries, affiliates, and distributors harmless against all

claims, costs, damages, and expenses, and reasonable attorney fees arising out of,

directly or indirectly, any claim of personal injury or death associated with such

unintended or unauthorized use, even if such claim alleges that Freescale

Semiconductor was negligent regarding the design or manufacture of the part.

How to Reach Us:
Home Page:
www.freescale.com

Web Support:
http://www.freescale.com/support

USA/Europe or Locations Not Listed:
Freescale Semiconductor, Inc.
Technical Information Center, EL516
2100 East Elliot Road
Tempe, Arizona 85284
+1-800-521-6274 or
+1-480-768-2130
www.freescale.com/support

Europe, Middle East, and Africa:
Freescale Halbleiter Deutschland GmbH
Technical Information Center
Schatzbogen 7
81829 Muenchen, Germany
+44 1296 380 456 (English)
+46 8 52200080 (English)
+49 89 92103 559 (German)
+33 1 69 35 48 48 (French)
www.freescale.com/support

Japan:
Freescale Semiconductor Japan Ltd.
Headquarters
ARCO Tower 15F
1-8-1, Shimo-Meguro, Meguro-ku
Tokyo 153-0064
Japan
0120 191014 or
+81 3 5437 9125
support.japan@freescale.com

Asia/Pacific:
Freescale Semiconductor China Ltd.
Exchange Building 23F
No. 118 Jianguo Road
Chaoyang District
Beijing 100022
China
+86 010 5879 8000
support.asia@freescale.com

For Literature Requests Only:
Freescale Semiconductor

Literature Distribution Center
P.O. Box 5405
Denver, Colorado 80217
+1-800 441-2447 or
+1-303-675-2140
Fax: +1-303-675-2150
LDCForFreescaleSemiconductor

@hibbertgroup.com

Windows Embedded CE 6.0 BSP Reference Manual

Freescale Semiconductor -iii

Contents
About This Book

Chapter 1
Introduction

1.1 Getting Started . 1-1
1.2 Windows Embedded CE 6.0 Architecture . 1-1

Chapter 2
Asynchronous Sample Rate Converter (ASRC) Driver

2.1 ASRC Driver Summary . 2-1
2.2 Supported Functionality . 2-1
2.3 Hardware Operation . 2-2
2.3.1 Conflicts with Other Peripherals and Catalog Items . 2-2
2.4 Software Operation . 2-2
2.4.1 Required Catalog Items . 2-2
2.4.2 ASRC Registry Settings . 2-2
2.4.3 DMA Support . 2-2
2.4.4 Power Management . 2-2
2.5 Unit Test . 2-3
2.5.1 Building the Unit Tests . 2-3
2.5.2 Running the Unit Tests . 2-3
2.6 ASRC Driver API Reference . 2-4
2.6.1 ASRC SDK Functions . 2-4
2.6.2 Example for Using SDK Functions . 2-4
2.6.3 Memory->ASRC->Memory->SSI Mode . 2-5

Chapter 3
ATA/ATAPI Driver

3.1 ATA/ATAPI Driver Summary . 3-1
3.2 Supported Functionality . 3-1
3.3 Hardware Operation . 3-2
3.3.1 Conflicts with Other Peripherals and Catalog Options. 3-3
3.3.2 Cabling . 3-4
3.4 Software Operation . 3-4
3.4.1 Application/User Interface to ATA/ATAPI drives. 3-4
3.4.2 ATA/ATAPI Driver Configuration . 3-4

Windows Embedded CE 6.0 BSP Reference Manual

-iv Freescale Semiconductor

3.4.3 Power Management . 3-5
3.4.4 Registry Settings . 3-6
3.4.5 DMA Support . 3-9
3.5 Unit Test . 3-9
3.5.1 Unit Test Hardware. 3-10
3.5.2 Unit Test Software . 3-10
3.5.3 Building the Storage Device Tests . 3-11
3.5.4 Running the Storage Device Tests . 3-11
3.6 Basic Elements for Driver Development . 3-13
3.6.1 BSP Environment Variables . 3-13
3.6.2 Mutual Exclusive Drivers . 3-13
3.6.3 Dependencies of Drivers. 3-13
3.7 Block Device API Reference . 3-14
3.7.1 IOCTL_DISK_DEVICE_INFO . 3-14
3.7.2 IOCTL_DISK_GET_STORAGEID. 3-14
3.7.3 IOCTL_DISK_GETINFO . 3-15
3.7.4 IOCTL_DISK_GETNAME . 3-15
3.7.5 IOCTL_DISK_READ . 3-15
3.7.6 IOCTL_DISK_SETINFO. 3-16
3.7.7 IOCTL_DISK_WRITE. 3-16
3.7.8 IOCTL_DISK_FLUSH_CACHE . 3-16
3.7.9 IOCTL_CDROM_DISC_INFO . 3-16
3.7.10 IOCTL_CDROM_EJECT_MEDIA . 3-17
3.7.11 IOCTL_CDROM_GET_SENSE_DATA. 3-17
3.7.12 IOCTL_CDROM_ISSUE_INQUIRY . 3-17
3.7.13 IOCTL_CDROM_PAUSE_AUDIO . 3-18
3.7.14 IOCTL_CDROM_PLAY_AUDIO_MSF. 3-18
3.7.15 IOCTL_CDROM_READ_SG . 3-18
3.7.16 IOCTL_CDROM_READ_TOC . 3-19
3.7.17 IOCTL_CDROM_RESUME_AUDIO. 3-19
3.7.18 IOCTL_CDROM_SEEK_AUDIO_MSF . 3-19
3.7.19 IOCTL_CDROM_STOP_AUDIO . 3-19
3.7.20 IOCTL_CDROM_TEST_UNIT_READY . 3-20
3.7.21 IOCTL_DVD_GET_REGION . 3-20

Chapter 4
Audio Driver

4.1 Audio Driver Summary . 4-1
4.2 Supported Functionality . 4-2
4.3 Hardware Operation . 4-2
4.3.1 Audio Hardware Design . 4-2
4.3.2 Audio Playback. 4-2
4.3.3 Audio Recording. 4-3
4.3.4 Required SoC Peripherals . 4-4

Windows Embedded CE 6.0 BSP Reference Manual

Freescale Semiconductor -v

4.3.5 Conflicts with SoC Peripherals. 4-4
4.3.6 Conflicts with Board Peripherals . 4-4
4.3.7 Known Issues . 4-5
4.4 Software Operation . 4-5
4.4.1 Audio Playback. 4-5
4.4.2 Audio Recording. 4-5
4.4.3 Audio Driver Compile-Time Configuration Options . 4-5
4.4.4 DMA Support . 4-6
4.4.5 Power Management . 4-7
4.4.6 Audio Driver Registry Settings. 4-8
4.5 Unit Test . 4-9
4.5.1 Unit Test Hardware. 4-9
4.5.2 Unit Test Software . 4-9
4.5.3 Building the Audio Driver CETK Tests . 4-10
4.5.4 Running the Audio Driver CETK Tests . 4-10
4.6 System Level Audio Driver Tests. 4-10
4.6.1 Checking for a Boot-Time Musical Tune . 4-11
4.6.2 Confirming Touchpanel Taps and Keypad Key Presses . 4-11
4.6.3 Playing Back Sample Audio and Video Files Using the Media Player 4-11
4.6.4 Using the SDK Sample Audio Applications for Testing . 4-11
4.7 Mixer Driver Tests . 4-11
4.8 Audio Driver API Reference . 4-11
4.9 Audio Driver Troubleshooting Guide. 4-12
4.9.1 Checking Build-Time Configuration Options . 4-12
4.9.2 Media Player Application Not Found. 4-12
4.9.3 Media Player Fails to Load and Play an Audio File . 4-12

Chapter 5
Backlight Driver

5.1 Backlight Driver Summary . 5-1
5.2 Supported Functionality . 5-1
5.3 Hardware Operation . 5-2
5.3.1 i.MX35-3DS Hardware Operation . 5-2
5.4 Software Operation . 5-2
5.4.1 Backlight Driver Registry Settings . 5-2
5.4.2 Power Management . 5-2
5.5 Unit Test . 5-3
5.5.1 Unit Test Hardware. 5-3
5.5.2 Unit Test Software . 5-3
5.5.3 Running the Backlight Application Test . 5-3
5.6 Backlight API Reference . 5-4

Chapter 6

Windows Embedded CE 6.0 BSP Reference Manual

-vi Freescale Semiconductor

Boot from Secure Digital/MultiMedia Card (SD/MMC)

6.1 Boot from SD/MMC Summary . 6-1
6.2 Supported Functionality . 6-2
6.3 Hardware Operation . 6-2
6.3.1 Conflicts with Other Peripherals and Catalog Items . 6-2
6.4 Software Operation . 6-2
6.4.1 Card Memory Layout . 6-3

Chapter 7
Camera Driver

7.1 Camera Driver Summary . 7-1
7.2 Supported Functionality . 7-2
7.3 Hardware Operation . 7-2
7.3.1 Conflicts with Other Peripherals and Catalog Items . 7-2
7.3.2 Conflicts with 3-Stack Peripherals . 7-3
7.4 Software Operation . 7-3
7.4.1 Communicating with the Camera . 7-3
7.4.2 Registry Settings . 7-3
7.5 Power Management . 7-4
7.5.1 Power Up . 7-4
7.5.2 Power Down . 7-4
7.5.3 IOCTL_POWER_SET . 7-5
7.6 Unit Test . 7-5
7.6.1 Unit Test Hardware. 7-5
7.6.2 Unit Test Software . 7-6
7.6.3 Building the Unit Tests . 7-6
7.6.4 Running the Unit Tests . 7-7
7.7 Camera Driver API Reference . 7-8

Chapter 8
Configurable Serial Peripheral Interface (CSPI) Driver

8.1 CSPI Driver Summary . 8-1
8.2 Supported Functionality . 8-1
8.2.1 Conflicts with Other Peripherals and Catalog Items . 8-2
8.2.2 Conflicts with 3-Stack Peripherals . 8-2
8.3 Software Operation . 8-2
8.3.1 Registry Settings . 8-2
8.3.2 Communicating with the CSPI . 8-2
8.3.3 Creating a Handle to the CSPI . 8-2
8.3.4 Data Transfer Operations . 8-3
8.3.5 Closing the Handle to the CSPI . 8-4
8.3.6 Power Management . 8-5
8.4 Restrictions . 8-5

Windows Embedded CE 6.0 BSP Reference Manual

Freescale Semiconductor -vii

8.5 Unit Test . 8-5
8.5.1 Building the Unit Tests . 8-5
8.6 CSPI Driver API Reference . 8-6
8.6.1 CSPI Driver IOCTLS . 8-6
8.6.2 CSPI Driver SDK Wrapper. 8-6
8.6.3 CSPI Driver Structures . 8-7

Chapter 9
Controller Area Network (CAN) Driver

9.1 CAN Driver Summary . 9-1
9.2 Supported Functionality . 9-1
9.3 Hardware Operation . 9-1
9.3.1 Conflicts with Other Peripherals and Catalog Items . 9-2
9.4 Software Operation . 9-2
9.4.1 Communicating with the CAN . 9-2
9.4.2 Creating a Handle to the CAN . 9-2
9.4.3 Configuring the CAN . 9-3
9.4.4 Data Transfer Operations . 9-3
9.4.5 Closing the Handle to the CAN . 9-5
9.4.6 Power Management . 9-5
9.4.7 CAN Registry Settings . 9-5
9.5 Unit Test . 9-6
9.5.1 Unit Test Hardware. 9-6
9.5.2 Unit Test Software . 9-6
9.5.3 Building the Unit Tests . 9-6
9.5.4 Running the Unit Tests . 9-7

Chapter 10
Chip Support Package Driver Development Kit (CSPDDK)

10.1 CSPDDK Driver Summary. 10-1
10.2 Supported Functionality . 10-1
10.3 Hardware Operation . 10-2
10.3.1 Conflicts with Other Peripherals and Catalog Items . 10-2
10.4 Software Operation . 10-2
10.4.1 Communicating with the CSPDDK . 10-2
10.4.2 Compile-Time Configuration Options . 10-2
10.4.3 Registry Settings . 10-3
10.4.4 Power Management . 10-3
10.5 Unit Test . 10-4
10.5.1 Unit Test Hardware. 10-4
10.5.2 Unit Test Software . 10-4
10.5.3 Building the Unit Tests . 10-4
10.5.4 Running the Unit Tests . 10-4
10.6 CSPDDK DLL Reference. 10-5

Windows Embedded CE 6.0 BSP Reference Manual

-viii Freescale Semiconductor

10.6.1 CSPDDK DLL System Clocking (DDK_CLK) Reference . 10-5
10.6.2 CSPDDK DLL GPIO (DDK_GPIO) Reference. 10-8
10.6.3 CSPDDK DLL IOMUX (DDK_IOMUX) Reference . 10-11
10.6.4 CSPDDK DLL SDMA (DDK_SDMA) Reference . 10-14

Chapter 11
Display Driver for IPUv1

11.1 Display Driver Summary . 11-1
11.2 Supported Functionality . 11-1
11.3 Hardware Operation . 11-2
11.3.1 Conflicts with Other Peripherals and Catalog Items . 11-2
11.3.2 Rotation Control . 11-2
11.4 Software Operation . 11-3
11.4.1 Communicating with the Display . 11-3
11.4.2 Configuring the Display . 11-4
11.4.3 Power Management . 11-6
11.5 Unit Test . 11-6
11.5.1 Unit Test Hardware. 11-7
11.5.2 Unit Test Software . 11-7
11.5.3 Building the Unit Tests . 11-8
11.5.4 Running the Unit Tests . 11-8
11.6 Display Driver API Reference . 11-9

Chapter 12
Dynamic Voltage and Frequency Control (DVFC) Driver

12.1 DVFC Driver Summary . 12-1
12.2 Supported Functionality . 12-1
12.3 Hardware Operation . 12-2
12.3.1 Conflicts with Other Peripherals and Catalog Items . 12-2
12.3.2 i.MX35 3-Stack Configuration . 12-2
12.4 Software Operation . 12-2
12.4.1 i.MX35 Registry Settings . 12-2
12.4.2 Loading and Initialization . 12-2
12.4.3 Operation . 12-3
12.4.4 DDK Interface. 12-4
12.4.5 Power Management . 12-5
12.5 Unit Test . 12-5

Chapter 13
Enhanced Secure Digital Host Controller (eSDHC) Driver

13.1 eSDHC Driver Summary . 13-1
13.2 Supported Functionality . 13-1
13.3 Hardware Operation . 13-2

Windows Embedded CE 6.0 BSP Reference Manual

Freescale Semiconductor -ix

13.3.1 Conflicts with Other Peripherals and Catalog Options. 13-2
13.4 Software Operation . 13-2
13.4.1 Required Catalog Items . 13-3
13.4.2 eSDHC Registry Settings . 13-3
13.4.3 DMA Support . 13-4
13.4.4 Power Management . 13-4
13.5 Unit Test . 13-4
13.5.1 Unit Test Hardware. 13-5
13.5.2 Unit Test Software . 13-5
13.5.3 Building the Unit Tests . 13-5
13.5.4 Running the Unit Tests . 13-6
13.5.5 System Testing . 13-7
13.6 Secure Digital Card Driver API Reference. 13-7

Chapter 14
Enhanced Serial Audio Interface (ESAI) Driver

14.1 ESAI Driver Summary . 14-1
14.2 Supported Functionality . 14-1
14.3 Hardware Operation . 14-2
14.3.1 Conflicts with Other Peripherals and Catalog Items . 14-2
14.3.2 Hardware Limitation. 14-2
14.4 Software Operation . 14-3
14.4.1 Required Catalog Items . 14-3
14.4.2 ESAI Registry Settings . 14-3
14.4.3 Supported Wave Data Format. 14-4
14.4.4 DMA Support . 14-4
14.4.5 Power Management . 14-4
14.5 Unit Test . 14-5
14.5.1 Building the Unit Test. 14-5
14.5.2 Hardware Setup. 14-5
14.5.3 Running the Unit Test. 14-5
14.5.4 Known Issues . 14-6

Chapter 15
Fast Ethernet Controller (FEC) Driver

15.1 Fast Ethernet Driver Summary . 15-1
15.2 Supported Functionality . 15-1
15.3 Hardware Operations . 15-2
15.3.1 Conflicts with Other Peripherals and Catalog Items . 15-2
15.4 Software Operations . 15-2
15.4.1 FEC Driver Registry Settings . 15-2
15.5 Unit Tests . 15-3
15.5.1 Unit Test Hardware. 15-3
15.5.2 Unit Test Software . 15-4

Windows Embedded CE 6.0 BSP Reference Manual

-x Freescale Semiconductor

15.5.3 Building the Unit Tests . 15-4
15.5.4 Running the Unit Tests . 15-5
15.6 Fast Ethernet Driver API Reference . 15-7

Chapter 16
FM Radio Driver

16.1 Radio Driver Summary. 16-1
16.2 Supported Functionality . 16-1
16.3 Hardware Operation . 16-1
16.3.1 Conflicts with Other Peripherals and Catalog Items . 16-2
16.4 Software Operation . 16-2
16.4.1 Registry Settings . 16-2
16.5 Power Management . 16-2
16.5.1 Power Up . 16-2
16.5.2 Power Down . 16-2
16.5.3 IOCTL_POWER_SET . 16-2
16.6 Unit Test . 16-3
16.6.1 Unit Test Hardware. 16-3
16.6.2 Unit Test Software . 16-3
16.6.3 Building the Unit Tests . 16-3
16.6.4 Running the Unit Tests . 16-4
16.7 Radio Driver API Reference. 16-4
16.7.1 Radio Driver IOCTLS . 16-4
16.7.2 Radio Driver Structures . 16-7

Chapter 17
General Purpose Timer (GPT) Driver

17.1 GPT Driver Summary. 17-1
17.2 Supported Functionality . 17-1
17.3 Hardware Operation . 17-2
17.3.1 Conflicts with Other Peripherals and Catalog Items . 17-2
17.4 Software Operation . 17-2
17.4.1 GPT Registry Settings . 17-2
17.4.2 Communicating with the GPT . 17-2
17.4.3 DMA Support . 17-4
17.5 Power Management . 17-4
17.5.1 PowerUp . 17-4
17.5.2 PowerDown . 17-5
17.5.3 IOCTL_POWER_SET . 17-5
17.6 Unit Test . 17-5
17.6.1 Unit Test Hardware. 17-5
17.6.2 Unit Test Software . 17-5
17.6.3 Building the Unit Tests . 17-5
17.6.4 Running the Unit Tests . 17-6

Windows Embedded CE 6.0 BSP Reference Manual

Freescale Semiconductor -xi

17.7 GPT SDK API Reference . 17-6
17.7.1 GPT SDK Functions . 17-6
17.7.2 GPT Driver Structures . 17-9

Chapter 18
Global Positioning System (GPS) Driver

18.1 GPS Driver Summary . 18-1
18.1.1 Application Layer . 18-2
18.1.2 GPS Core Driver Layer. 18-3
18.1.3 GPS HAL Driver Layer . 18-3
18.2 Supported Functionality . 18-3
18.3 Hardware Operation . 18-3
18.3.1 Conflicts with Other Peripherals and Catalog Items . 18-3
18.3.2 i.MX35 Hardware Operation . 18-4
18.4 Software Operation . 18-4
18.4.1 Communicating with the GPS Module . 18-4
18.4.2 Power Management . 18-4
18.4.3 GPS Driver Registry Settings . 18-5
18.5 Unit Test . 18-5

Chapter 19
Graphics Processing Unit (GPU)

19.1 GPU Driver Summary . 19-1
19.2 Supported Functionality . 19-1
19.3 Hardware Operation . 19-2
19.3.1 Conflicts with Other Peripherals and Catalog Items . 19-2
19.4 Software Operation . 19-2
19.4.1 Communicating with the GPU . 19-2
19.4.2 GPU Driver Files . 19-2
19.4.3 Power Management . 19-3
19.4.4 GPU Registry Settings . 19-3
19.5 Float Pointing Acceleration using the ARM Vector Floating Point (VFP) Library 19-3
19.6 Unit Test . 19-3
19.6.1 Unit Test Hardware. 19-3
19.6.2 Unit Test Software . 19-3
19.7 GPU Driver API Reference . 19-4

Chapter 20
Inter-Integrated Circuit (I2C) Driver

20.1 I2C Driver Summary. 20-1
20.2 Supported Functionality . 20-1
20.3 Hardware Operation . 20-2
20.3.1 Conflicts with Other Peripherals and Catalog Items . 20-2

Windows Embedded CE 6.0 BSP Reference Manual

-xii Freescale Semiconductor

20.4 Software Operation . 20-2
20.4.1 Registry Settings . 20-2
20.4.2 Communicating with the I2C . 20-2
20.4.3 Creating a Handle . 20-2
20.4.4 Configuring the I2C . 20-3
20.4.5 Data Transfer Operations . 20-4
20.4.6 Closing the Handle . 20-5
20.4.7 Power Management . 20-5
20.5 Unit Test . 20-6
20.5.1 Unit Test Hardware. 20-6
20.5.2 Unit Test Software . 20-6
20.5.3 Building the Unit Tests . 20-7
20.5.4 Running the Unit Tests . 20-7
20.6 Hardware Limitations . 20-7
20.7 I2C Driver API Reference. 20-7
20.7.1 I2C Driver IOCTLS . 20-7
20.7.2 I2C Driver SDK Encapsulation. 20-10
20.7.3 I2C Driver Structures . 20-15

Chapter 21
MediaLB Device Module (MLB)

21.1 MLB Summary . 21-1
21.2 Supported Functionality . 21-1
21.3 Hardware Operation . 21-2
21.3.1 Conflicts with Other Peripherals and Catalog Items . 21-2
21.4 Software Operation . 21-2
21.4.1 Compile-Time Configuration Options . 21-2
21.4.2 Registry Settings . 21-2
21.4.3 DMA Support . 21-2
21.4.4 IOCTL. 21-2
21.5 Power Management . 21-3
21.5.1 i.MX35 Power Management. 21-3
21.6 Unit Test . 21-3
21.6.1 Unit Test Hardware. 21-3
21.6.2 Unit Test Software . 21-4
21.6.3 Building the Unit Tests . 21-4
21.6.4 Running the Unit Tests . 21-4

Chapter 22
Micro Controller Unit (MCU) Driver

22.1 MCU Driver Summary . 22-1
22.2 Supported Functionality . 22-1
22.3 Hardware Operation . 22-2
22.3.1 Conflicts with Other Peripherals and Catalog Items . 22-2

Windows Embedded CE 6.0 BSP Reference Manual

Freescale Semiconductor -xiii

22.4 Software Operation . 22-2
22.4.1 MCU Driver Function. 22-3
22.4.2 MCU RTC Function . 22-3
22.4.3 Registry Settings . 22-3
22.5 Power Management . 22-4
22.5.1 PowerUp . 22-4
22.5.2 PowerDown . 22-4
22.5.3 IOCTL_POWER_CAPABILITIES . 22-4
22.5.4 IOCTL_POWER_SET . 22-4
22.5.5 IOCTL_POWER_GET. 22-4
22.6 Unit Test . 22-4
22.6.1 RTC Function . 22-4

Chapter 23
NAND Flash Driver

23.1 Flash Driver Summary . 23-1
23.2 Supported Functionality . 23-2
23.3 Hardware Operation . 23-2
23.3.1 Conflicts with Other Peripherals and Catalog Items . 23-2
23.4 Software Operation . 23-2
23.4.1 MDD/PDD Layer Overview. 23-2
23.4.2 Definitions . 23-4
23.4.3 Adding New Flash Configurations . 23-5
23.4.4 Registry Settings . 23-6
23.4.5 DMA Support . 23-6
23.4.6 Power Management . 23-6
23.5 Unit Test . 23-6
23.5.1 CETK Testing . 23-6
23.5.2 System Testing . 23-7

Chapter 24
Power Management IC (PMIC)

24.1 PMIC Summary . 24-1
24.2 Supported Functionality . 24-1
24.3 Hardware Operation . 24-2
24.3.1 Conflicts with Other On-Chip Peripherals . 24-2
24.3.2 Conflicts with Other 3-Stack Peripherals . 24-2
24.4 Software Operation . 24-2
24.4.1 Configuring the PMIC . 24-2
24.4.2 Creating a Handle to the PMIC. 24-3
24.4.3 Write Operations. 24-3
24.4.4 Read Operations . 24-3
24.4.5 Closing the Handle to the PMIC. 24-3
24.4.6 Power Management . 24-3

Windows Embedded CE 6.0 BSP Reference Manual

-xiv Freescale Semiconductor

24.4.7 PMIC Registry Settings . 24-4
24.4.8 DMA Support . 24-4
24.5 Unit Test . 24-4
24.5.1 Unit Test Hardware. 24-4
24.5.2 Unit Test Software . 24-5
24.5.3 Running the PMIC Tests. 24-5
24.6 PMIC Driver API Reference. 24-5
24.6.1 PMIC Driver IOCTLS . 24-5
24.6.2 Interrupt Handling. 24-7
24.6.3 Register Access API . 24-10
24.6.4 Power Control Reference . 24-11
24.6.5 Buck Switchers and Linear Regulators. 24-13
24.6.6 Backlight and Led. 24-13
24.6.7 ADC and Touch Controller. 24-14
24.6.8 Battery Charger. 24-15

Chapter 25
Serial Driver

25.1 Serial Driver Summary . 25-1
25.2 Supported Functionality . 25-2
25.3 Hardware Operation . 25-2
25.3.1 Conflicts with Other Peripherals and Catalog Items . 25-2
25.4 Software Operation . 25-2
25.4.1 Registry Settings . 25-2
25.4.2 Power Management . 25-3
25.5 Unit Test . 25-3
25.5.1 Unit Test Hardware. 25-3
25.5.2 Unit Test Software . 25-3
25.5.3 Building the Unit Tests . 25-4
25.5.4 Running the Unit Tests . 25-4
25.6 Serial Driver API Reference . 25-5
25.6.1 Serial PDD Functions . 25-5
25.6.2 Serial Driver Structures . 25-6

Chapter 26
Sony/Philips Digital Interface (SPDIF) Driver

26.1 SPDIF Driver Summary . 26-1
26.2 Supported Functionality . 26-1
26.2.1 Conflicts with Other Peripherals and Catalog Items . 26-2
26.2.2 Known Issues . 26-2
26.3 Software Operation . 26-2
26.3.1 SPDIF Transmitter (TX). 26-2
26.3.2 SPDIF Receiver (RX) . 26-2
26.3.3 Compile-Time Configuration Options . 26-3

Windows Embedded CE 6.0 BSP Reference Manual

Freescale Semiconductor -xv

26.3.4 Registry Settings . 26-3
26.3.5 DMA Support . 26-3
26.4 Power Management . 26-4
26.4.1 PowerUp . 26-5
26.4.2 PowerDown . 26-5
26.5 Unit Test . 26-5
26.5.1 Unit Test Hardware. 26-5
26.5.2 Unit Test Software . 26-6
26.5.3 Building the Unit Tests . 26-6
26.5.4 Running the Unit Tests . 26-6
26.6 System Testing . 26-6
26.7 SPDIF Driver API Reference . 26-7

Chapter 27
Touch Panel Driver

27.1 Touch Panel Driver Summary . 27-1
27.2 Supported Functionality . 27-1
27.3 Hardware Operations . 27-2
27.3.1 Conflicts with SOC Peripherals . 27-2
27.4 Software Operations . 27-2
27.4.1 Touch Driver Registry Settings . 27-2
27.5 Unit Tests . 27-3
27.5.1 Unit Test Hardware. 27-3
27.5.2 Unit Test Software . 27-3
27.5.3 Running the Touch Panel Tests . 27-4
27.6 Touch Panel API Reference . 27-4

Chapter 28
Universal Serial Bus (USB) OTG Driver

28.1 USB OTG Driver Summary . 28-1
28.1.1 USB OTG Client Driver Summary. 28-1
28.1.2 OTG Host Driver Summary . 28-2
28.1.3 OTG Transceiver Driver Summary (For High-Speed Only) . 28-3
28.2 USB Host Driver Summary . 28-4
28.2.1 FS Host2 Driver Summary . 28-4
28.3 Supported Functionality . 28-4
28.4 Hardware Operation . 28-5
28.4.1 Conflicts with Other Peripherals and Catalog Items . 28-5
28.5 Software Operation . 28-6
28.5.1 USB OTG Host Controller Driver . 28-6
28.5.2 USB Client Driver . 28-14
28.5.3 USB Transceiver Driver (ID Pin Detect Driver—XCVR) . 28-18
28.5.4 Power Management . 28-23
28.5.5 Function Drivers . 28-25

Windows Embedded CE 6.0 BSP Reference Manual

-xvi Freescale Semiconductor

28.5.6 Class Drivers. 28-28
28.6 Basic Elements for Driver Development . 28-30
28.6.1 BSP Environment Variables . 28-30
28.6.2 Dependencies of Drivers. 28-31

Chapter 29
USB Boot and KITL

29.1 USB Boot and KITL Summary . 29-1
29.2 Supported Functionality . 29-1
29.3 Hardware Operation . 29-1
29.3.1 Conflicts with Other Peripherals and Catalog Items . 29-2
29.4 Software Operation . 29-2
29.4.1 Software Architecture . 29-2
29.4.2 Source Code Layout . 29-3
29.4.3 Power Management . 29-3
29.4.4 Registry Settings . 29-3
29.4.5 DMA Support . 29-3
29.5 Unit Test . 29-4
29.5.1 Building the USB Boot and KITL . 29-4
29.5.2 Testing USB Boot and KITL on i.MX35 3-Stack . 29-4

Windows Embedded CE 6.0 BSP Reference Manual

Freescale Semiconductor -xvii

About This Book
This reference manual describes the requirements, implementation details, and testing for each module
included in the Freescale software development kit (SDK) for Microsoft® Windows® CE 6.0.

Audience
This document is intended for device driver developers, application developers, and software test
engineers who plan to use the product. This document is also intended for people who want to know more
about Freescale’s software development kit (SDK) for Microsoft Windows CE 6.0.

Suggested Reading
The Freescale manuals can be found at the Freescale Semiconductor, Inc. World Wide Web site listed on
the back of the front cover of this document. These manuals can be downloaded directly from the Web site,
or printed versions can be ordered. The Microsoft Platform Builder Help may be viewed from within the
Platform Builder application.

• i.MX35 Applications Processor Reference Manual
• i.MX35 3-Stack Release Notes for Windows Embedded CE 6.0
• i.MX35 3-Stack User’s Guide for Windows Embedded CE 6.0
• Microsoft Platform Builder for Windows Embedded CE 6.0 Help

Conventions
This document uses the following notational conventions:

• Courier indicates directory or file names and code examples.
• Bold indicates the menu options or buttons the user can select. Cascaded menu options are

delimited with the > symbol.
• Italic indicates a reference to another document.

Definitions, Acronyms, and Abbreviations
Table i contains acronyms and abbreviations used in this document.

Table i. Acronyms and Abbreviated Terms

Term Meaning

API Application programming interface

BSP Board support package

CSP Chip support package

Windows Embedded CE 6.0 BSP Reference Manual

-xviii Freescale Semiconductor

CSPI Configurable serial peripheral interface

D3DM Direct 3D Mobile

DHCP Dynamic host configuration protocol

DPTC Dynamic power and temperature control

DVFC Dynamic voltage and frequency control

DVFS Dynamic voltage and frequency scaling

EBOOT Ethernet bootloader

EVB Platform evaluation board

FAL Flash abstraction layer

FIR Fast infrared

FMD Flash media driver

GDI Graphics display interface

GPT General purpose timer

I2C Inter-integrated circuit

IDE Integrated development environment

IST Interrupt service thread

IPU Image processing unit

KITL Kernel independent transport layer

LVDS Low-voltage differential signaling

MAC Media access control

MMC Multimedia cards

OAL OEM adaptation layer

OEM Original equipment manufacturer

OS Operating system

OTG On-the-go

PMIC Power management IC

PQOAL Production quality OEM adaptation layer

PWM Pulse-width modulator

SD Secure digital cards

SDC Synchronous display controller

SDHC Secure digital host controller

SDIO Secure digital I/O and combo cards

SDRAM Synchronous dynamic random access memory

Table i. Acronyms and Abbreviated Terms (continued)

Term Meaning

Windows Embedded CE 6.0 BSP Reference Manual

Freescale Semiconductor -xix

SDK Software development kit

SIM Subscriber identification module

SOC System on a chip

UART Universal asynchronous receiver transmitter

USB Universal serial bus

Table i. Acronyms and Abbreviated Terms (continued)

Term Meaning

Windows Embedded CE 6.0 BSP Reference Manual

-xx Freescale Semiconductor

Windows Embedded CE 6.0 BSP Reference Manual

Freescale Semiconductor 1-1

Chapter 1
Introduction
This Freescale board support package (BSP) is based on the Microsoft Windows® Embedded CE 6.0
operating system. This BSP supports the following Freescale platform(s):

• i.MX35 3-Stack Development System

This kit supports the Microsoft Windows Embedded CE 6.0 operating system, and requires the use of the
Microsoft Platform Builder, which is an integrated development environment (IDE) for building
customized embedded operating system designs. To view feature information, study the BSP Release
Notes.

NOTE
Use this guide in conjunction with the Microsoft Windows Platform Builder
Help (or the identical Platform Builder User Guide).

• To view the Platform Builder Help, click Help from within the Platform
Builder application.

• To view the online Windows Embedded CE 6.0 documentation, visit:
http://msdn2.microsoft.com/en-us/library/bb159115.aspx

1.1 Getting Started
For instructions on installing this software release, building, downloading and running the OS image on
the hardware board, refer to the appropriate User Guide.

1.2 Windows Embedded CE 6.0 Architecture
The Windows Embedded CE 6.0 architecture is a variation of the Windows operating system for
minimalistic computers and embedded systems. The architecture of the operating system and sub-systems
(for example, power management or DirectDraw) are described in several locations in the Help. Begin at
the following location in Help:

Welcome to Windows Embedded CE 6.0 > Windows Embedded CE Architecture

Introduction

Windows Embedded CE 6.0 BSP Reference Manual

1-2 Freescale Semiconductor

Windows Embedded CE 6.0 BSP Reference Manual

Freescale Semiconductor 2-1

Chapter 2
Asynchronous Sample Rate Converter (ASRC) Driver
The Asynchronous Sample Rate Converter (ASRC) converts the sampling rate of as signal associated to
an input clock into a signal associated to a different output clock. The ASRC supports concurrent sample
rate conversion of up to 10 channels. The ASRC supports up to three sampling rate pairs, each pair should
only have even number of channels.

2.1 ASRC Driver Summary
Table 2-1 provides a summary of source code location, library dependencies and other BSP information.

2.2 Supported Functionality
The ASRC driver enables the 3-Stack board to provide the following software and hardware support:

1. Supports standard stream interface for application usage.
2. For hardware limitation, supports only 24-bit wave format for both input and output. 24-bit audio

data packed in 32-bit with LSB aligned, bit0–bit 23 are valid and bit24–bit31 are ignored by
hardware.

3. Supports input sample rate range: 8K–96K
4. Supports output sample rate range: 32K–96K

Table 2-1. ASRC Driver Summary

Driver Attribute Definition

Target Platform iMX35-3DS-PDK1_7

Target SOC MX35_FSL_V2_PDK1_7

SOC Common Path ..\PLATFORM\COMMON\SRC\SOC\COMMON_FSL_V2_PDK1_7\ASRC

SOC Specific Path ..\PLATFORM\COMMON\SRC\SOC\<Target SOC>\ASRC

Platform Specific Path ..\PLATFORM\<Target Platform>\SRC\DRIVERS\ASRC

Driver DLL asrc.dll

SDK Library asrcbase_common_fsl_v2_PDK1_7.lib, asrc_common_fsl_v2_PDK1_7.lib,
asrcbase_<Target SOC>.lib

Catalog Item Third Party > BSP > Freescale <Target Platform>: ARMV4I > Device Drivers > ASRC

SYSGEN Dependency N/A

BSP Environment Variables BSP_NOAUDIO=
BSP_ASRC=1

Asynchronous Sample Rate Converter (ASRC) Driver

Windows Embedded CE 6.0 BSP Reference Manual

2-2 Freescale Semiconductor

5. One conversion pair (with two channels) is available for application usage (only for stereo wave
conversion), other pairs are reserved for further audio driver usage.

2.3 Hardware Operation
ASRC is a 24-bit hardware module. Refer to the chapter on the Asynchronous Sample Rate Converter
(ASRC) in the hardware specification document for detailed operation and programming information.

2.3.1 Conflicts with Other Peripherals and Catalog Items
No conflicts.

2.4 Software Operation
The ASRC driver follows the Microsoft standard stream interface driver architecture.

2.4.1 Required Catalog Items
N/A

2.4.2 ASRC Registry Settings
N/A

2.4.3 DMA Support

2.4.3.1 DMA Support
For the stream interface driver, two SDMA channels are allocated for data transfer: one for data transfer
from memory to ASRC input fifo, and the other for data transfer from ASRC output fifo to memory. For
both the input and output DMA, dual-buffer is used for chain operation.

2.4.4 Power Management
No power management is implemented yet in the ASRC driver.

2.4.4.1 PowerUp
This function is not implemented

2.4.4.2 PowerDown
This function is not implemented

Asynchronous Sample Rate Converter (ASRC) Driver

Windows Embedded CE 6.0 BSP Reference Manual

Freescale Semiconductor 2-3

2.4.4.3 IOCTL_POWER_CAPABILITIES
N/A

2.4.4.4 IOCTL_POWER_GET
N/A

2.4.4.5 IOCTL_POWER_SET
N/A

2.5 Unit Test
Because the supported wave format by ASRC is different from general wave file, the wave file used for
ASRC test must be converted to the specified format (24-bit packed in 32-bit package, bit0–bit23 valid).
The ASRC driver function can be tested by converting the wave file through the ASRC stream interface,
and the output wave file can be verified by stereo audio playback function.

2.5.1 Building the Unit Tests
The source code for the ASRC test case be found under the directory:

\WINCE600\SUPPORT_PDK1_7\TEST\ASRC\

And there are three sub-directory in this directory:
\WINCE600\SUPPORT_PDK1_7\TEST\ASRC\FILE_CONVERT
\WINCE600\SUPPORT_PDK1_7\TEST\ASRC\ASRC_TEST
\WINCE600\SUPPORT_PDK1_7\TEST\ASRC\ASRC_PLAYER

To build each application, select “Open Release Directory in Build Window” in the IDE menu, enter the
source code directory in the command prompt window, and type “build -c” to build the program.

2.5.2 Running the Unit Tests
Three simple applications are available for ASRC unit test: file_convert.exe, asrc_test.exe,
asrc_player.exe.

• File_convert.exe can be used to convert general 16-bit wave file to the specific 24-bit wave file
supported by ASRC.
Example: file_convert temp\input_16bit.wav temp\output_24bit.wav

• Asrc_test.exe is used for the ASRC function test.
Example: asrc_test temp\input.wav temp\output.wav 48000
In this case, the test program reads data from the file input.wav, sends the audio data to ASRC
module, reads back the data processed by ASRC and writes the output data to file output.wav. The
sample rate is converted to 48K.

• Asrc_player is used for output wave file verification. This application directly plays back 24-bit
wave file through stereo audio codec.

Asynchronous Sample Rate Converter (ASRC) Driver

Windows Embedded CE 6.0 BSP Reference Manual

2-4 Freescale Semiconductor

Example: asrc_player temp\output.wav

NOTE
These three applications are mainly used for simple function test and API
demo usage. Users might encounter wave file format related failures (like
wave format chunk length and fact chunk is not well handled). Editing the
source code can resolve these problems.

2.6 ASRC Driver API Reference
The API follows the standard stream interface API. This section lists the SDK function for ASRC
application interface.

2.6.1 ASRC SDK Functions
HANDLE ASRCOpenHandle(DWORD* pPairIndex);
BOOL ASRCCloseHandle(HANDLE hASRC, DWORD dwPairIndex);
BOOL ASRCOpenPair(HANDLE hASRC,PASRC_OPEN_PARAM pOpenParam);
BOOL ASRCGetCapability(HANDLE hASRC,PASRC_CAP_PARAM pCapParam);
BOOL ASRCClosePair(HANDLE hASRC,DWORD dwPairIndex);
BOOL ASRCConfig(HANDLE hASRC, PASRC_CONFIG_PARAM pConfigParam);
BOOL ASRCAddInputBuffer(HANDLE hASRC, PASRCHDR pHdrIn);
BOOL ASRCAddOutputBuffer(HANDLE hASRC, PASRCHDR pHdrOut);
BOOL ASRCStart(HANDLE hASRC, DWORD dwPairIndex);
BOOL ASRCStop(HANDLE hASRC, DWORD dwPairIndex);

Important note for using the SDK functions:
• Both input and output buffer length (number of bytes) must be a multiple of the internal ASRC

DMA buffer size (which can be attained by ASRCGetCapability,
ASRC_CAP_PARAM.dwInputBlockSize and ASRC_CAP_PARAM.dwOutputBlockSize), or
driver failure may occur.

• Do not call ASRCStop until the entire wave file has been processed. Because the ASRC internal
memory might not be cleared, stopping the ASRC and re-starting it introduces noise.

• The ASRC hardware module continues procession after it is started. So input buffer under-run
causes noise and more output data numbers than expected.

2.6.2 Example for Using SDK Functions
Below is some sample code for using the SDK functions, refer to the demo test application and design
document for more details.

#include “asrc_sdk.h”
......
// request the asrc pair first
g_hASRC = ASRCOpenHandle(&g_dwPairIndex);

//qurery the capability
ASRCGetCapability(g_hASRC,&capParam);
// the input buffer size should be multiple of capParam.dwInputBlockSize, same for
output buffer.

Asynchronous Sample Rate Converter (ASRC) Driver

Windows Embedded CE 6.0 BSP Reference Manual

Freescale Semiconductor 2-5

// open the pair for operation
openParam.inputChnNum = 2; // for application usage, set this value as 2 now
openParam.outputChnNum = 2; //for application usage, set this value as 2 now
openParam.pairIndex = (ASRC_PAIR_INDEX)g_dwPairIndex;
openParam.hEventInputDone = g_hInputEvent;
openParam.hEventOutputDone = g_hOutputEvent;
ASRCOpenPair(g_hASRC,&openParam);

// config the pair for conversion
configParam.clkMode = ASRC_CLK_NONE_SRC;
configParam.inputBitClkRate = g_dwInputSampleRate*2*24;
configParam.outputBitClkRate= g_dwOutputSampleRate*2*24;
configParam.inputSampleRate = g_dwInputSampleRate;
configParam.outputSampleRate = g_dwOutputSampleRate;
ASRCConfig(g_hASRC,&configParam);
.......
//add input buffers
for(i=0;i<INPUT_BUF_NUM;i++){
 ASRCAddInputBuffer(g_hASRC, &g_hdrInput[i]);
}
......
//add output buffers
for(i=0;i<OUTPUT_BUF_NUM;i++){
 ASRCAddOutputBuffer(g_hASRC, &g_hdrOutput[i]);
}
//start conversion
ASRCStart(g_hASRC,g_dwPairIndex);
......
// wait for the input event
WaitForSingleObject(g_hInputEvent, INFINITE);
// handle the input buffer here
......
//wait for the output event
WaitForSingleObject(g_hOutputEvent, INFINITE);
//handle the output buffer here
......
//when all the input data is processed, and output data has been received as expected,
stop it
ASRCStop(g_hASRC,g_dwPairIndex);
// close pair
ASRCClosePair(g_hASRC,g_dwPairIndex);
// release the pair
ASRCCloseHandle(g_hASRC, g_dwPairIndex);

2.6.3 Memory->ASRC->Memory->SSI Mode
In the general mode, ASRC is used for Memory->ASRC->Memory audio data transfer, which means the
user data from memory buffer (audio file) is send to ASRC, converted and then put back into memory
(audio file). In this mode, ASRC will chose the fast working clock for transfer. But in quite a lot application
cases, users may want to send the data converted by asrc directly to the waveform audio device for
playback instead of store them in files. To do this ,users need to use the Memory->ASRC->Memory->SSI
mode. In this mode ,the ASRC working clock is synchronous to the wave device clock, so during the same
interval, the audio data produced by ASRC can be just comsumed by wave device, and it will be easy for
users to manager the data buffers.

Asynchronous Sample Rate Converter (ASRC) Driver

Windows Embedded CE 6.0 BSP Reference Manual

2-6 Freescale Semiconductor

To use this mode, users need to set different clkMode while config converstion pair, and outputSampleRate
must be set correctly according to the wave device:
...

configParam.clkMode = ASRC_CLK_ONE_SRC_OUTPUT__AUTO_SEL;

...

configParam.outputSampleRate = g_dwOutputSampleRate;

ASRCConfig(g_hASRC,&configParam);

...

In this mode, clk Mode is set as ASRC_CLK_ONE_SRC_OUTPUT__AUTO_SEL, while in general mode it
is set as ASRC_CLK_NONE_SRC. The others are same.

Also, another two SDK functions are provided to support this working mode:

BOOL ASRCSuspend(HANDLE hASRC, DWORD dwPairIndex);
BOOL ASRCResume(HANDLE hASRC, DWORD dwPairIndex);

The suspend function can be used to halt the conversion when there is the risk that the buffers
used to keep the data produced by ASRC might be overrunned. And the resume function is then
called to continue the converstion when the buffer level becomes normal.

Windows Embedded CE 6.0 BSP Reference Manual

Freescale Semiconductor 3-1

Chapter 3
ATA/ATAPI Driver
ATA/ATAPI driver in WinCE 6.0 is a block driver, used as the lower layer for File Systems and USB mass
storage, for example. It is constructed as a stream interface driver that exposes I/O control codes
(IOCTL_DISK_XXX, DISK_IOCTL_XXX, IOCTL_CDROM_XXX, IOCTL_DVD_XXX). The file
system uses these I/O control codes to access the ATA/ATAPI devices.

ATAPI driver uses the ATA bus and interface to send command packets to ATAPI device.

3.1 ATA/ATAPI Driver Summary
Table 3-1 provides a summary of source code location, library dependencies and other BSP information.

3.2 Supported Functionality
The ATA driver enables the 3-Stack board to provide the following software and hardware support:

1. Provides standard Microsoft Block Storage Device API, including disk information management,
formatting, block data read/write with full scatter-gather buffer support

Table 3-1. ATA/ATAPI Driver Summary

Driver Attribute Definition

Target Platform iMX35-3DS-PDK1_7

Target SOC MX35_FSL_V2_PDK1_7

SOC Common Path ..\PLATFORM\COMMON\SRC\SOC\COMMON_FSL_V2_PDK1_7\ATA

SOC Specific Path ..\PLATFORM\COMMON\SRC\SOC\<Target SOC>\ATA

Platform Specific Path ..\PLATFORM\<Target Platform>\SRC\DRIVERS\BLOCK\ATA (ATA driver)
..\PLATFORM\<Target Platform>\SRC\DRIVERS\BLOCK\ATAPI (ATAPI driver)

Driver DLL ata.dll (ATA driver)
mxatapi.dll (ATAPI driver)

SDK Library N/A

Catalog Item Third Party > BSP > Freescale i.MX35 3DS PDK1_7: ARMV4I > Storage Drivers > ATA (ATA
driver)
Third Party > BSP > Freescale i.MX35 3DS PDK1_7: ARMV4I > Storage Drivers > ATAPI (ATAPI
driver)

SYSGEN Dependency SYSGEN_ATADISK,SYSGEN_STOREMGR_CPL,SYSGEN_MSPART,SYSGEN_FATFS,SYSG
EN_EXFAT (ATA driver)
SYSGEN_UDFS (ATAPI driver)

BSP Environment Variable BSP_NOATA= (for ATA driver)
BSP_NOATAPI= (for ATAPI driver)

ATA/ATAPI Driver

Windows Embedded CE 6.0 BSP Reference Manual

3-2 Freescale Semiconductor

2. Supports two power management modes, full on and full off
3. Driver reuse buffers allocated by upper layer by using DMA scatter/gather list to improve

performance by reducing data copies
4. Supports FAT file system
5. Supports exFAT file system
6. Supports TFAT file system
7. Supports standard bus timing mode for UDMA mode 5 (optional support other modes such as PIO

modes 0-4, MDMA modes 0-2, and UDMA modes 0-4)
8. Supports full sustained (media) data throughput capacity of Hitachi TravelStar C4K40 (or

equivalent) at UDMA mode 5

NOTE
UDMA5 mode requires 80MHz bus clock or above.

This mode can apply to i.MX35 (133MHz bus clock).

The ATAPI driver enables the 3-Stack board to provide the following software and hardware support:
1. Provides standard Microsoft Block Storage Device API, including disk information management,

block data read with full scatter-gather buffer support
2. Supports two power management modes, full on and full off
3. Supports standard bus timing mode for PIO mode 0-4 (currently DMA mode is not supported).
4. Supports full sustained (media) data throughput capacity of SAMSUNG DVD-ROM DRIVE

SH-D162D(TS-H352D) (or equivalent) at PIO mode 4.

3.3 Hardware Operation
The i.MX SOC contains an on-chip ATA controller. Refer to the chapter on the ATA in the hardware
specification document for detailed operation and programming information. Data transfers on the ATA
bus can take place through:

• CPU programmed data transfers via ATA controller registers. (Programmed I/O (PIO) modes
modes 0-4)

• Multi-word DMA (MDMA modes 0-2)
• Ultra DMA (UDMA modes 0-5)

Within the types of ATA-bus data transfer (PIO or xDMA), the various modes (0-n) refer only to specified
combinations of timing parameters, as supported by industry standard hardware. The ATA DMA modes
transport data between the ATA peripheral (disk) and the system bus, via the i.MX SOC ATA peripheral
data FIFO.

ATA/ATAPI Driver

Windows Embedded CE 6.0 BSP Reference Manual

Freescale Semiconductor 3-3

Figure 3-1. ATA Hardware Block Diagram

The i.MX SOC also contains a Host DMA controller which acts as a third-party bus mastering DMA, for
transporting data between the ATA data FIFO and system memory. Host DMA controller support is built
in to the ATA driver, and is automatically configured and used when UDMA or MDMA modes are selected
for data transport on the ATA bus. The default block/sector size is 512 bytes. With these sector sizes, far
greater efficiency in processor/bus usage is gained by setting UDMA or MDMA modes, instead of PIO
modes. The PIO modes are provided for functional compatibility with legacy hardware which may not
support fastest current data rates.

The appropriate ATA-specific mode (PIO, MDMA or UDMA) must be selected based on the capabilities
of the specific attached ATA peripheral.

NOTE
For i.MX35, the DMA controller can be Smart DMA controller (SDMA) or
Advanced DMA controller (ADMA).

3.3.1 Conflicts with Other Peripherals and Catalog Options

3.3.1.1 Conflicts with SoC Peripherals

3.3.1.1.1 i.MX35 Peripheral Conflicts
• The ATA driver conflicts with ATAPI driver and can not be used together.
• When the ATA driver works in UDMA5 by ADMA controller in MX35 TO1, screen flickers due

to memory bus bandwidth.

ARM CPU

Memory Management
Unit

Host DMA
Controller

System
Memory System Bus

ATA Data
FIFO

ATA DMA
Controller

ATA Control
Registers

Interrupt

MDMA UDMA

Transaction
Parameters,
PIO data,
Interrupts.

ATA Bus

ATA/ATAPI Driver

Windows Embedded CE 6.0 BSP Reference Manual

3-4 Freescale Semiconductor

3.3.1.2 Conflicts with 3-Stack Peripherals

3.3.1.2.1 i.MX35 3-Stack Peripheral Conflicts

An ATAPI daughter board must be used to connect to CD/DVD ATAPI device.

3.3.2 Cabling
The ATA/ATAPI specification requires an 80-conductor cable when used in UDMA modes 3 or greater,
otherwise read/write failures may occur. This requirement may be relaxed for cables shorter than the
maximum defined in the specification.

3.4 Software Operation

3.4.1 Application/User Interface to ATA/ATAPI drives
The ATA/ATAPI device exports a standard streams interface to the Windows File System.
Application-level access to ATA/ATAPI disks is via the Windows File System, using functions such as
CreateFile() and CloseHandle().

The File System, or user software which requires block device access to the ATA/ATAPI, does so through
the standard Windows CE Block Device IOCTLs. These provide functions to acquire disk information and
to read and write blocks (disk sectors) of data.

3.4.2 ATA/ATAPI Driver Configuration
The driver is configured into the BSP build by check the catalog item listed in Table 3-1. This defines the
environment variable/configuration option: BSP_NOATA for ATA driver, BSP_NOATAPI for ATAPI
driver. Configuration for the ATA/ATAPI is then provided through registry settings imported from
platform.reg. These settings can be modified to select timing and transfer mode, and if necessary the device
prefix and index.

3.4.2.1 Transfer Mode and Timing
The mode by which data is transported on the ATA bus (TransferMode) is configured by a registry setting
defined in Section 3.4.4, “Registry Settings”.

3.4.2.1.1 i.MX35 Timing
The ATA bus timings are based on the AHB bus clock, as defined in the hardware reference manual. The
ATA/ATAPI driver requires a clock period of 7.5 ns (133 MHz).

3.4.2.2 Prefix and Index
The default device prefix is “DSK”.

ATA/ATAPI Driver

Windows Embedded CE 6.0 BSP Reference Manual

Freescale Semiconductor 3-5

When no Index is configured for the ATA/ATAPI block device, the bus enumerator assigns an index
according to the order of block device loading. When removable storage is attached to USB host ports (as
mass storage class), or when RAMDISK is included, the index assigned to these other block devices can
influence any Index automatically assigned by the bus enumerator.

3.4.2.3 IOMUX and Pinout
The internal ATA signals can be multiplexed to a choice of pins on IC, as described for the IOMUX in the
hardware reference manual.

3.4.2.4 Defaults

3.4.2.4.1 i.MX35 Defaults
The following defaults are selected by the default platform.reg file supplied for the build

• The default mode for the ATA driver is transfer mode UDMA mode 5 by ADMA controller.
• The default mode for the ATAPI driver is transfer mode PIO mode 0.

3.4.3 Power Management
The ATA/ATAPI supports two power management modes, ON (D0) and OFF (D4). These modes are
managed via the standard Windows Power Manager. Power Manager uses IOCTL_POWER_SET to
switch the disk power state, according to inactivity settings configured in Power Manager. As for standard
block drivers, PowerUp and PowerDown functions are called by the Device Manager.

The primary method for limiting power consumption in the ATA/ATAPI module is to gate off all clocks to
the module when those clocks are not needed. This is accomplished through the
DDKClockSetGatingMode function call. The clock is turned on during initialization process and the clock
is turned off after initialization is completed. Data transfer operations are handled in DSK_IOCTL function
to process the IOCTL calls from the File System. The ATA/ATAPI driver turns ON the clock and enables
the ATA/ATAPI module before processing any data transfer. After the block of data has been processed,
the ATA/ATAPI module is disabled and the clock is turned OFF.

3.4.3.1 PowerUp
This function called by Device Manager sets a flag to indicate power is up.

3.4.3.2 PowerDown
This function called by Device Manager ensures volatile data is stored in RAM and sets a flag to indicate
power is down.

3.4.3.3 IOCTL_POWER_SET
This IOCTL handles the request to change disk power state (D0 or D4), called by Power Manager (or
SetDevicePower() API).

ATA/ATAPI Driver

Windows Embedded CE 6.0 BSP Reference Manual

3-6 Freescale Semiconductor

3.4.4 Registry Settings
The ATA driver settings are taken from platform.reg, which can be customized for each particular build.
These registry values are located under the registry key:
[HKEY_LOCAL_MACHINE\Drivers\BuiltIn\ATA]

The values under that registry key should be defined in platform.reg. These can be qualified with the
BSP_NOATA system variable for configurable catalog item support.

As indicated in the above table, the following settings should be combined:

For PIO modes:
"InterruptDriven"=dword:01 ; 01-enable interrupt driven I/O, 00-disable
"DMA"=dword:00 ; disable DMA
"TransferMode"=dword:0c ; 08-PIO mode 0, ..., 0C-PIO mode 4
"IORDYEnable"=dword:01 ; enable Host IORDY for PIO mode 3, 4

For MWDMA modes:
"InterruptDriven"=dword:01 ; enable interrupt driven I/O
"DMA"=dword:01 ; enable DMA
"TransferMode"=dword:20 ; 20-MWDMA mode 0, ..., 22-MWDMA mode 2
"IORDYEnable"=dword:01 ; enable Host IORDY for PIO mode 3, 4

Table 3-2. ATA Driver Registry Setting Values

Value Type Content Description

Dll sz ata.dll Driver dynamic link library

IClass sz "{A4E7EDDA-E575-4252-9D6B-4195D48BB865}" GUID for a power-manageable block device

TransferMode dword 08 PIO mode 0

09 PIO mode 1

... ...

0C PIO mode 4

20 MDMA mode 0

21 MDMA mode 1

22 MDMA mode 2

40 UDMA mode 0

... ...

45 UDMA mode 5

InterruptDriven dword 01
(00)

enable interrupt driven I/O use for PIO or MDMA/UDMA modes
(disable interrupt; not used normally)

DMA dword 00
01

disable DMA (always disable for PIO mode)
enable DMA (always enable for MDMA or UDMA modes)

IORDYEnable dword 01 enable Host IORDY for PIO mode 3 and 4

ATA/ATAPI Driver

Windows Embedded CE 6.0 BSP Reference Manual

Freescale Semiconductor 3-7

For UDMA modes:
"InterruptDriven"=dword:01 ; enable interrupt driven I/O
"DMA"=dword:01 ; enable DMA
"TransferMode"=dword:43 ; 40-UDMA mode 0, ..., 45-UDMA mode 5
"IORDYEnable"=dword:01 ; enable Host IORDY for PIO mode 3, 4

Standard registry entries also to be included for the ATA device under the above key are shown in
Table 3-3.

In addition to these values, the ATA makes use of the HDProfile information from the StorageManager
registry keys. Default/sample values are as below:
[HKEY_LOCAL_MACHINE\System\StorageManager\Profiles\HDProfile]
"Name"="ATA Hard Disk Drive"
"Folder"="Hard Disk"

[HKEY_LOCAL_MACHINE\System\StorageManager\Profiles\HDProfile\FATFS]
"EnableCacheWarm"=dword:00000000

3.4.4.1 i.MX35 Registry Settings
There are more registry settings for ATA driver SDMA/ADMA selection and for ATAPI driver:

3.4.4.1.1 ATA Driver SDMA/ADMA Selection
[HKEY_LOCAL_MACHINE\Drivers\BuiltIn\ATA]

Table 3-3. ATA Driver Registry Setting Values

Value Type Content Description

Prefix sz “DSK” Device identifier (combined with Index for DSK1 for example)

Index dword 1 Instance of ATA drive (if not configured in the registry, autoumatically
assigned when driver loads)

Order dword 10 Early, to allow file system loading

DoubleBufferSize dword 10000 128 sectors

DrqDataBlockSize dword 200 Each data request is one sector, always 512 bytes

WriteCache dword 01 disk internal cache is enabled within drive

LookAhead dword 01 disk read-ahead to internal is enabled within drive

DeviceId dword 00 primary device ID

HDProfile sz “HDProfile” Storage Manager profile to be used in GetDeviceInfo (see below)

Table 3-4. i.MX35 ATA Registry Settings

Value Type Content Description

DMAMode dword 0 SDMA

1 ADMA

ATA/ATAPI Driver

Windows Embedded CE 6.0 BSP Reference Manual

3-8 Freescale Semiconductor

3.4.4.1.2 ATAPI Driver

The ATAPI driver settings are taken from platform.reg, which can be customized for each particular build.
These registry values are located under the registry key:
[HKEY_LOCAL_MACHINE\Drivers\BuiltIn\ATAPI]

The values under that registry key should be defined in platform.reg. These can be qualified with the
BSP_NOATAPI system variable for configurable catalog item support.

As indicated in the above table, the following settings should be combined for PIO modes:
"InterruptDriven"=dword:01 ; 01-enable interrupt driven I/O, 00-disable
"TransferMode"=dword:0c ; 08-PIO mode 0, ..., 0C-PIO mode 4
"IORDYEnable"=dword:01 ; enable Host IORDY for PIO mode 3, 4

Standard registry entries also to be included for the ATAPI device under the above key as shown in
Table 3-6.

Table 3-5. i.MX35 ATAPI Registry Settings

Value Type Content Description

Dll sz mxatapi.dll Driver dynamic link library

IClass sz "{A4E7EDDA-E575-4252-9D6B-4195D48BB865}"
GUID for a power-manageable block device

TransferMode dword 08 PIO mode 0

09 PIO mode 1

... ...

0C PIO mode 4

InterruptDriven dword 01

(00)

enable interrupt driven I/O use for PIO or MDMA/UDMA modes
(disable interrupt; not used normally)

IORDYEnable dword 01 enable Host IORDY for PIO mode 3 and 4

Table 3-6. ATAPI Registry Settings

Value Type Content Description

Prefix sz “DSK” Device identifier (combined with Index for DSK1 for example)

Index dword 1 Instance of ATAPI drive (if not configured in the registry, autoumatically
assigned when driver loads)

Order dword 10 Early, to allow file system loading

DoubleBufferSize dword 10000 128 sectors

DrqDataBlockSize dword 200 Each data request is one sector, always 512 bytes

WriteCache dword 01 disk internal cache is enabled within drive

LookAhead dword 01 disk read-ahead to internal is enabled within drive

DeviceId dword 00 primary device ID

CDProfile sz “CDProfile” Storage Manager profile to be used in GetDeviceInfo (see below)

ATA/ATAPI Driver

Windows Embedded CE 6.0 BSP Reference Manual

Freescale Semiconductor 3-9

In addition to these values, the ATAPI makes use of the CDProfile information from the StorageManager
registry keys. Default/sample values are as below:
[HKEY_LOCAL_MACHINE\System\StorageManager\Profiles\CDProfile]
"Name"="IDE CDROM/DVD Drive"
"Folder"="CDROM Drive"

[HKEY_LOCAL_MACHINE\System\StorageManager\Profiles\CDProfile\CDRom]
 "UseLegacyReadIOCTL"=dword:1

3.4.5 DMA Support
ATA driver supports DMA mode and non-DMA mode of transfer. The driver defaults to DMA mode of
transfer. ATA supports three transfer-types: UDMA, MDMA and PIO mode. PIO mode works in
non-DMA mode of operation while other modes work in DMA mode. To change the mode of transfer,
change the value of TransferMode from the registry. When ATA driver operates by host DMA controller,
it always uses the scatter gather method.

The driver does not allocate or manage DMA buffers internally. All buffers are allocated and managed by
the upper layers, the details of which are given in the request submitted to the driver. For every request
submitted to it, the driver attempts to build a DMA Scatter Gather Buffer Descriptor list for the buffer
passed to it by the upper layer.

For the driver to attempt to build the Scatter Gather DMA Buffer Descriptors, the upper layer should
ensure that the buffer meets the following criteria.

• Start of the buffer should be a cache-line (32 byte) aligned address.
• Number of bytes to transfer should be cache-line (32 byte) aligned.

3.4.5.1 i.MX35 DMA Support
• For the ATA driver, the Host DMA controller can be SDMA controller or ADMA controller.
• For the ATAPI driver, DMA mode is not supported.

3.5 Unit Test
The ATA driver is tested using the Storage Device test cases included as part of the Windows Embedded
CE Test Kit (CETK). There are no custom CETK test cases for ATA driver. The Storage Device test cases
used to test ATA driver include:

• File System Driver Test cases
• Storage Device Block Driver API Test cases
• Storage Device Block Driver Read/Write Test cases
• Storage Device Block Driver Benchmark Test cases
• Storage Device Block Driver Performance Test cases

The ATAPI driver is tested using the Storage Device test cases included as part of the Windows Embedded
CE Test Kit (CETK). There are no custom CETK test cases for ATAPI driver. The Storage Device test
cases used to test ATAPI driver include:

ATA/ATAPI Driver

Windows Embedded CE 6.0 BSP Reference Manual

3-10 Freescale Semiconductor

• Audio CD Driver Test cases
• CD/DVD-ROM Block Driver Test cases
• CD/DVD-ROM File System Driver Test cases

3.5.1 Unit Test Hardware
Table 3-7 lists the required hardware to run the ATA driver unit tests.

Table 3-8 lists the required hardware to run the ATAPI driver unit tests.

3.5.2 Unit Test Software
Table 3-9 lists the required software to run the Storage Device Tests.

Table 3-7. ATA Driver Hardware Requirements

Requirement Description

i.MX SOC and attached HITACHI hard disk C4K40. Other drives supporting up to UDMA mode 3 may be used.

Table 3-8. ATAPI Driver Hardware Requirements

Requirement Description

i.MX SOC and attached SAMSUNG DVD-ROM DRIVE
SH-D162D(TS-H352D).

Other drives supporting up to PIO mode 4 may be used.

Table 3-9. Software Requirements

Requirement Description

Tux.exe Tux test harness, which is needed for executing the test.

Kato.dll Kato logging engine, which is required for logging test data.

Tooltalk.dll Library required by Tux.exe and Kato.dll. Handles the transport between the target device and the
development workstation.

Table 3-10. ATA Driver Software Requirements

Requirement Description

fsdtst.dll Test .dll file used to perform File System Driver Test cases.

disktest.dll Test .dll file used to perform Storage Device Block Driver API Test cases.

rw_all.dll Test .dll file used to perform Storage Device Block Driver Benchmark Test cases.

rwtest.dll Test .dll for various read/write options, including multi-threading and various block sizes.

Disktest_perf.dll Test .dll file used to perform Storage Device Block Driver Performance Test cases.

ATA/ATAPI Driver

Windows Embedded CE 6.0 BSP Reference Manual

Freescale Semiconductor 3-11

3.5.3 Building the Storage Device Tests
The Storage Device Tests come pre-built as part of the CETK. No steps are required to build these tests.
All the test .dll files can be found alongside the other required CETK files in the following location:
\Program Files\Microsoft Platform Builder\6.00\cepb\wcetk\ddtk\armv4I

3.5.4 Running the Storage Device Tests
The tests can be launched from command line or CE Target Control window in Platform Builder.

3.5.4.1 ATA Driver
These CETK tests destroy any information residing on the hard disk.

The command line for running the File System Driver Test is:
 tux –o –d fsdtst -x 1001-1010,5001-5031 -c "-p HDProfile –zorch”

This performs file system tests which cover all required File System API functions. Excluded are those
tests which manipulate disk partitions.

The command line option HDProfile refers to the registry setting used to establish storage device profile
information to the Storage Manager:
[HKEY_LOCAL_MACHINE\System\StorageManager\Profiles\HDProfile]
"Name"="ATA Hard Disk Drive"
"Folder"="Hard Disk"

NOTE
Format and create partition on disk before test. The command line option
“-zorch” is case sensitive (help message within the test .dll is not correct)
and is used to confirm over-writing of all information on the hard disk. Test
cases 5019, 5022 can be safely skipped.

The command line for running the Storage Device Block Driver API Test is:
tux -o -d disktest -c "-p HDProfile -zorch -sectors 65536"

NOTE
The free program memory to be adjusted to be larger than 64 Mbytes in
control panel, CETK cases 4021 can be safely skipped.

Table 3-11. ATAPI Driver Software Requirements

Requirement Description

cddatest.dll Test .dll file used to perform Audio CD Driver Test cases.

cdromtest.dll Test .dll file used to perform CD/DVD-ROM Block Driver Test cases.

udftest.dll Test .dll file used to perform CD/DVD-ROM File System Driver Test cases.

ATA/ATAPI Driver

Windows Embedded CE 6.0 BSP Reference Manual

3-12 Freescale Semiconductor

The command line for running the Storage Device Block Driver Read/Write Test is:
tux -o -d rwtest -c "-p HDProfile -zorch"

NOTE
Do not include NANDFlash driver or SD driver in the image, the CETK
open DSK1 as default to test which may be NANDFlash or SD card instead
of hard disk.

The command line for running the Storage Device Block Driver Performance Test is:
tux -o -d disktest_perf -c "-profile HDProfile -zorch"

The command line for running the Storage Device Block Benchmark Test is:
tux -o -d rw_all –x 1006 –c "-p HDProfile -zorch"

NOTE
Do not include NANDFlash driver or SD driver in the image, the CETK
open DSK1 as default to test which may be NANDFlash or SD card instead
of hard disk.

This includes only the benchmark test for 128 contiguous sectors. The test reads and writes all sectors of
the drive in 128 block (64 kByte) chunks. When drive read-ahead is enabled, this allows the drive to
provide maximum sustained data rate from the media, to ensure ATA driver supports the same. It is not
necessary for all drive sectors to be tested, but the pre-compiled test does not have options to limit the
portion tested, and all components are not publicly available for test customization. The test takes
approximately four hours to execute on a 40 Gbyte drive. Tests using smaller contiguous chunks take even
longer, and are not necessary for driver characterization.

For detailed information on the ATA Storage Device CETK test cases, refer to:
• Windows Embedded CE Test Kit > CETK Tests and Test Tools > CETK Tests > Storage

Device Tests > File System Driver Test
• Windows Embedded CE Test Kit > CETK Tests and Test Tools > CETK Tests > Storage

Device Tests > Storage Device Block Driver API Test
• Windows Embedded CE Test Kit > CETK Tests and Test Tools > CETK Tests > Storage

Device Tests > Storage Device Block Driver Read/Write Test
• Windows Embedded CE Test Kit > CETK Tests and Test Tools > CETK Tests > Storage

Device Tests > Storage Device Block Benchmark Test

3.5.4.2 ATAPI Driver
The command line for running the Audio CD Driver Test is:
tux -o -d cddatest

Assesses the functionality of a CD-ROM block driver that supports the audio CD format

NOTE
Put audio CD into the CDROM drive

ATA/ATAPI Driver

Windows Embedded CE 6.0 BSP Reference Manual

Freescale Semiconductor 3-13

The command line for running the CD/DVD-ROM Block Driver Test is:
tux -o -d cdromtest

NOTE
A complete image of the CD or DVD media needs to be used for testing. The
image is stored on the development workstation in a file named
Cdsector.dat. To create Cdsector.dat for media in the CD-ROM drive or
CD/DVD-ROM drive, run test case 6101.

The command line for running the CD/DVD-ROM File System Driver Test is:
tux -o -d udftest

For detailed information on the ATAPI Storage Device CETK test cases, refer to:
• Windows Embedded CE Test Kit > CETK Tests and Test Tools > CETK Tests > Other Tests

> Audio CD Driver Test
• Windows Embedded CE Test Kit > CETK Tests and Test Tools > CETK Tests > Other Tests

> CD/DVD-ROM Block Driver Test
• Windows Embedded CE Test Kit > CETK Tests and Test Tools > CETK Tests > Other Tests

> CD/DVD-ROM File System Driver Test

3.6 Basic Elements for Driver Development
This chapter provides details of the basic elements for driver development in the <TGTPLAT> BSP.

3.6.1 BSP Environment Variables

3.6.2 Mutual Exclusive Drivers

3.6.2.1 i.MX35 Mutual Exclusive Drivers
The ATA driver conflicts with ATAPI driver and they cannot be used together.

3.6.3 Dependencies of Drivers

Table 3-13 summarizes the Microsoft defined environment variables used in the BSP.

Table 3-12. BSP Environment Variables

Name Definition

BSP_NOATA Set to disable ATA device driver

BSP_NOATAPI Set to disable ATAPI device driver

Table 3-13. Microsoft Defined Environment Variables

Names Definition

SYSGEN_STOREMGR Set to support storage manager

ATA/ATAPI Driver

Windows Embedded CE 6.0 BSP Reference Manual

3-14 Freescale Semiconductor

3.7 Block Device API Reference
The primary interface to the ATA/ATAPI block device is through the standard Windows CE Block Device
IOCTLs as described in the following sections. Application-level access to ATA/ATAPI disks should be
through the Windows File System.

For reverse compatibility deprecated DISK_IOCTL* are also supported but not documented here. See
CE 6.0 Help for further details.

The driver also supports the standard XXX_Init, XXX_Deinit, XXX_Open and XXX_Close routines, as
used by Device Manager and the bus enumerator to load the driver. When the registry settings for
ATA/ATAPI are correct, these functions are handled automatically, and need no further documentation
here.

3.7.1 IOCTL_DISK_DEVICE_INFO
This DeviceIoControl request returns storage information to block device drivers.

Parameters
lpInBuffer [in] Pointer to a STORAGEDEVICEINFO structure.
nInBufferSize [in] Specifies the size of the STORAGEDEVICEINFO structure.
lpBytesReturned [out] Pointer to a DWORD to receive the total number of bytes returned.

3.7.2 IOCTL_DISK_GET_STORAGEID
This DeviceIoControl request returns the current STORAGE_IDENTIFICATION structure for a particular
storage device.

Parameters

SYSGEN_STOREMGR_CPL Set to support storage manager in control panel

SYSGEN_MSPART Set to support partition driver.

Table 3-14. ATA Driver Environment Variables

Names Definition

SYSGEN_FATFS Set to support FAT32 file system

SYSGEN_EXFAT Set to support EXFAT file system

Table 3-15. ATAPI Driver Environment Variables

Names Definition

SYSGEN_UDFS Set to support CDFS/UDFS file system

Table 3-13. Microsoft Defined Environment Variables

ATA/ATAPI Driver

Windows Embedded CE 6.0 BSP Reference Manual

Freescale Semiconductor 3-15

hDevice [in] Handle to the block device storage volume, which can be obtained by opening
the FAT volume by its file system entry. The following code example shows how
to open a PC Card storage volume.
hVolume = CreateFile(TEXT("\Storage Card\Vol:"),
GENERIC_READ|GENERIC_WRITE, 0, NULL, OPEN_EXISTING, 0,
NULL);

lpOutBuffer [out] Set to the address of an allocated STORAGE_IDENTIFICATION structure.
This buffer receives the storage identifier data when the IoControl call returns

nOutBufferSize [out] Set to the size of the STORAGE_IDENTIFICATION structure and also
additional memory for the identifiers. For Advanced Technology Attachment
(ATA) disk devices, the identifiers consist of 20 bytes for a manufacturer identifier
string, and also 10 bytes for the serial number of the disk.

lpBytesReturned [out] Pointer to a DWORD to receive the total number of bytes returned.

3.7.3 IOCTL_DISK_GETINFO
This DeviceIoControl request returns notifies the block device drivers to return disk information.

Parameters
lpOutBuffer [out] Pointer to a DISK_INFO structure.
nOutBufferSize [out] Specifies the size of the DISK_INFO structure.
lpBytesReturned [out] Pointer to a DWORD to receive the total number of bytes returned.

3.7.4 IOCTL_DISK_GETNAME
This DeviceIoControl request services the request from the FAT file system for the name of the folder that
determines how users access the block device. If the driver does not supply a name, the FAT file system
uses the default name passed to it by the file system.

Parameters
lpOutBuffer [out] Specifies a buffer allocated by the file system driver. The device driver fills

this buffer with the folder name. The folder name must be a Unicode string.
nOutBufferSize [out] Specifies the size of lpOutBuffer. Always set to MAX_PATH where

MAX_PATH includes the terminating NULL character.
lpBytesReturned [out] Set by the device driver to the length of the returned string and also the

terminating NULL character.

3.7.5 IOCTL_DISK_READ
This DeviceIoControl request services FAT file system requests to read data from the block device.

Parameters
lpInBuffer [in] Pointer to a SG_REQ structure.

ATA/ATAPI Driver

Windows Embedded CE 6.0 BSP Reference Manual

3-16 Freescale Semiconductor

nInBufferSize [in] Specifies the size of the SG_REQ structure.
lpBytesReturned [out] Pointer to a DWORD to receive total bytes returned. Set to NULL if you do

not need to return this value.

3.7.6 IOCTL_DISK_SETINFO
This DeviceIoControl request services FAT file system requests to set disk information.

Parameters
lpInBuffer [in] Pointer to a DISK_INFO structure.
nInBufferSize [in] Specifies the size of DISK_INFO.
lpBytesReturned [out] Pointer to a DWORD to receive total bytes returned.

3.7.7 IOCTL_DISK_WRITE
This DeviceIoControl request services FAT file system requests to write data to the block device.

Parameters
lpInBuffer [in] Pointer to an SG_REQ structure.
nInBufferSize [in] Specifies the size of SG_REQ.
lpBytesReturned [out] Pointer to a DWORD to receive total bytes returned.

3.7.8 IOCTL_DISK_FLUSH_CACHE
This DeviceIoControl request issues the ATA FLUSH CACHE command to the disk.
Parameters [No parameters]

3.7.9 IOCTL_CDROM_DISC_INFO
This IOCTL retrieves disk information to fill the CDROM_DISCINFO structure.
Parameters
dwIoControlCode [in] Set to IOCTL_CDROM_DISC_INFO to retrieve disk information and fill the

CDROM_DISCINFO structure.
lpInBuf [in] Set to NULL.
nInBufSize [in] Set to zero.
lpOutBuf [in, out] On input, set to the address of an allocated CDROM_DISCINFO

structure. This is the memory needed for the structure and information storage. On
output, a filled CDROM_DISCINFO structure.

nOutBufSize [in] Set to the size of the CDROM_DISCINFO.
lpBytesReturned [in, out] On input, address of a DWORD that receives the size in bytes of the data

returned. On output, set to the number of bytes written to the supplied buffer.

ATA/ATAPI Driver

Windows Embedded CE 6.0 BSP Reference Manual

Freescale Semiconductor 3-17

3.7.10 IOCTL_CDROM_EJECT_MEDIA
The IOCTL ejects the CD-ROM.
Parameters
dwIoControlCode [in] Set to IOCTL_CDROM_EJECT_MEDIA to eject the CD-ROM.
lpInBuf [in] Set to NULL.
nInBufSize [in] Set to zero.
lpOutBuf [in] Set to NULL.
nOutBufSize [in] Set to zero.
lpBytesReturned [in] Set to NULL.

3.7.11 IOCTL_CDROM_GET_SENSE_DATA
This IOCTL specifies retrieval of CD-ROM sense information contained in a CD_SENSE_DATA
structure.
Parameters
dwIoControlCode [in] Set to IOCTL_CDROM_GET_SENSE_DATA to retrieve CD-ROM sense

information and fill the CD_SENSE_DATA structure.
lpInBuf [in] Set to NULL.
nInBufSize [in] Set to zero.
lpOutBuf [in, out] On input, set to the address of an allocated CD_SENSE_DATA structure.

On output, a filled CD_SENSE_DATA structure.
nOutBufSize [in] Set to the size of the CD_SENSE_DATA.
lpBytesReturned [in, out] On input, address of a DWORD that receives the size in bytes of the data

returned. On output, set to the number of bytes written to the supplied buffer.

3.7.12 IOCTL_CDROM_ISSUE_INQUIRY
This IOCTL retrieves information used in the INQUIRY_DATA structure.
Parameters
dwIoControlCode [in] Set to IOCTL_CDROM_ISSUE_INQUIRY to retrieve information and fill

the INQUIRY_DATA structure.
lpInBuf [in] Set to NULL.
nInBufSize [in] Set to zero.
lpOutBuf [in, out] On input, set to the address of an allocated INQUIRY_DATA structure.

On output, a filled INQUIRY_DATA structure.
nOutBufSize [in] Set to the size of the INQUIRY_DATA.
lpBytesReturned [in, out] On input, address of a DWORD that receives the size in bytes of the data

returned. On output, set to the number of bytes written to the supplied buffer.

ATA/ATAPI Driver

Windows Embedded CE 6.0 BSP Reference Manual

3-18 Freescale Semiconductor

3.7.13 IOCTL_CDROM_PAUSE_AUDIO
This IOCTL suspends audio play.
Parameters
dwIoControlCode [in] Set to IOCTL_CDROM_PAUSE_AUDIO to pause audio playback if it was

playing.
lpInBuf [in] Set to NULL.
nInBufSize [in] Set to zero.
lpOutBuf [in] Set to NULL.
nOutBufSize [in] Set to zero.
lpBytesReturned [in] Set to NULL.

3.7.14 IOCTL_CDROM_PLAY_AUDIO_MSF
This IOCTL plays audio from the specified range of the medium.
Parameters
dwIoControlCode [in] Set to IOCTL_CDROM_PLAY_AUDIO_MSF to play audio based on the

information in the CDROM_PLAY_AUDIO_MSF structure.
lpInBuf [in] Set to the address of an allocated CDROM_PLAY_AUDIO_MSF structure.
nInBufSize [in] Set to the size of the CDROM_PLAY_AUDIO_MSF structure.
lpOutBuf [in] Set to NULL.
nOutBufSize [in] Set to zero.
lpBytesReturned [in, out] On input, address of a DWORD that receives the size in bytes of the data

sent. On output, set to the number of bytes written from the supplied buffer.

3.7.15 IOCTL_CDROM_READ_SG
This IOCTL reads scatter buffers from the CD-ROM and the information is stored in the CDROM_READ
structure.
Parameters
dwIoControlCode [in] Set to IOCTL_CDROM_READ_SG to read scatter buffers from the

CD-ROM and store the information in the CDROM_READ structure.
lpInBuf [in] Set to the address of an allocated SGX_BUF structure.
nInBufSize [in] Set to the size of the SGX_BUF.
lpOutBuf [in, out] On input, set to the address of an allocated CDROM_READ structure.

This is the memory needed for the structure and info storage. On output, a filled
CDROM_READ structure.

nOutBufSize [in] Set to the size of the CDROM_READ.
lpBytesReturned [in, out] On input, address of a DWORD that receives the size in bytes of the data

returned. On output, set to the number of bytes written to the supplied buffer.

ATA/ATAPI Driver

Windows Embedded CE 6.0 BSP Reference Manual

Freescale Semiconductor 3-19

3.7.16 IOCTL_CDROM_READ_TOC
This I/O control returns the table of contents of the medium.
Parameters
dwIoControlCode [in] Set to IOCTL_CDROM_READ_TOC to retrieve the table of contents

information and store it into the CDROM_TOC structure.
lpInBuf [in] Set to NULL.
nInBufSize [in] Set to zero.
lpOutBuf [in, out] On input, set to the address of an allocated CDROM_TOC structure. On

output, a filled CDROM_TOC structure.
nOutBufSize [in] Set to the size of the CDROM_TOC.
lpBytesReturned [in, out] On input, address of a DWORD that receives the size in bytes of the data

returned. On output, set to the number of bytes written to the supplied buffer.

3.7.17 IOCTL_CDROM_RESUME_AUDIO
This IOCTL resumes a suspended audio operation.
Parameters
dwIoControlCode [in] Set to IOCTL_CDROM_RESUME_AUDIO to resume audio playback if it

was paused.
lpInBuf [in] Set to NULL.
nInBufSize [in] Set to zero.
lpOutBuf [in] Set to NULL.
nOutBufSize [in] Set to zero.
lpBytesReturned [in] Set to NULL.

3.7.18 IOCTL_CDROM_SEEK_AUDIO_MSF
This IOCTL moves the heads to the specified minutes, seconds, and frames on the medium.
Parameters
dwIoControlCode [in] Set to IOCTL_CDROM_SEEK_AUDIO_MSF.
lpInBuf [in] Set to NULL.
nInBufSize [in] Set to zero.
lpOutBuf [in] Set to NULL.
nOutBufSize [in] Set to zero.
lpBytesReturned [in] Set to NULL.

3.7.19 IOCTL_CDROM_STOP_AUDIO
This IOCTL stops audio play.

ATA/ATAPI Driver

Windows Embedded CE 6.0 BSP Reference Manual

3-20 Freescale Semiconductor

Parameters
dwIoControlCode [in] Set to IOCTL_CDROM_STOP_AUDIO to stop audio playback.
lpInBuf [in] Set to NULL.
nInBufSize [in] Set to zero.
lpOutBuf [in] Set to NULL.
nOutBufSize [in] Set to zero.
lpBytesReturned [in] Set to NULL.

3.7.20 IOCTL_CDROM_TEST_UNIT_READY
This IOCTL retrieves disc ready information and fills the CDROM_TESTUNITREADY structure.
Parameters
dwIoControlCode [in] Set to IOCTL_CDROM_TEST_UNIT_READY to retrieve disc ready

information and fill the CDROM_TESTUNITREADY structure.
lpInBuf [in] Set to NULL.
nInBufSize [in] Set to zero.
lpOutBuf [in, out] On input, set to the address of an allocated

CDROM_TESTUNITREADY structure. This is the memory needed for the
structure and info storage. On output, a filled CDROM_TESTUNITREADY
structure.

nOutBufSize [in] Set to the size of the CDROM_TESTUNITREADY.
lpBytesReturned [in, out] On input, address of a DWORD that receives the size in bytes of the data

returned. On output, set to the number of bytes written to the supplied buffer.

3.7.21 IOCTL_DVD_GET_REGION
This IOCTL returns DVD disk and drive regions.
Parameters
hDevice [in] Set to a handle to a block device.
dwIoControlCode [in] Specifies this IOCTL.
lpInBuffer Not used.
nInBufferSize Not used.
lpOutBuffer [out] Pointer to a DVD_REGIONCE structure.
nOutBufferSize Not used.
lpBytesReturned Not used.
lpOverlapped Not used.

Windows Embedded CE 6.0 BSP Reference Manual

Freescale Semiconductor 4-1

Chapter 4
Audio Driver
The audio driver module provides audio playback and recording functions. For information about
accessing an application with the audio driver using the methods and functions associated with the
WaveOut/WaveIn functionality, see the Platform Builder Help topic:

Windows Embedded CE Features > Audio > Waveform Audio > Waveform Audio Application
Development

4.1 Audio Driver Summary
Table 4-1 provides the source code location, library dependencies, and other BSP information.

NOTE
The selection and use of the Windows Media Player and the various
software codecs is beyond the scope of the audio driver and is not discussed
in this document. For information about these items, see the Platform
Builder Help topic: Windows Embedded CE Features > Audio

Table 4-1. Audio Driver Summary

Driver Attribute Definition

Target Platform iMX35-3DS-PDK1_7

Target SOC MX35_FSL_V2_PDK1_7

SOC Common Path ..\PLATFORM\COMMON\SRC\SOC\COMMON_FSL_V2_PDK1_7\WAVEDEV2

SOC Specific Path ..\PLATFORM\COMMON\SRC\SOC\<Target SOC>\WAVEDEV2

Platform Specific Path ..\PLATFORM\<Target Platform>\SRC\DRIVERS\WAVEDEV2\SGTL5000

Driver DLL wavedev2_sgtl5000.dll

SDK Library N/A

Catalog Item Third Party > BSP > Freescale i.MX35-3DS:ARMV4I > Device Drivers > Audio > SGTL5000
Stereo Audio

SYSGEN Dependency SYSGEN_AUDIO

BSP Environment Variables BSP_NOAUDIO=
BSP_AUDIO_SGTL5000=1

Audio Driver

Windows Embedded CE 6.0 BSP Reference Manual

4-2 Freescale Semiconductor

4.2 Supported Functionality
The audio driver enables the system to provide the following software and hardware support:

1. Conforms to the audio driver architecture as defined for Windows Embedded CE 6.0 and all related
operating systems

2. Double-buffered DMA operations to transfer audio data between memory and the hardware FIFO
3. Two power management modes: full on and full off
4. Full duplex playback and record
5. Minimizes power consumption at all times by using clock gating and by disabling all audio-related

hardware components that are not actively being used
6. 8–96 KHz for both recording and playback
7. Mono and stereo 16-bit sample, and stereo 24-bit sample

4.3 Hardware Operation

4.3.1 Audio Hardware Design
This section describes of the connection between the SoC audio peripherals and the external audio codec,
the access interface of audio codec, and the audio input/output device connections.

4.3.1.1 i.MX35 3-Stack Audio Hardware Design
As the Synchronous Serial Interface is a full-duplex serial port, i.MX35 SoC uses instance 2 (SSI2) for
both audio playback and recording. The external stereo codec SGTL5000 is connected to AUDMUX port
4 (external) while SSI2 is internally connected to AUDMUX port 2 (internal) by i.MX35 SoC design. Both
ports are configured to operate in synchronous 4-wire mode.

The i.MX35 uses the I2C bus interface to access SGTL5000 control registers, so that SGTL5000 can be
configured by i.MX35 as per hardware design and software configuration.

The stereo codec SGTL5000 on i.MX35 3-Stack supports output to Headphone or Line Out, input from
Microphone or Line In. The Line Out is designed to support speaker output, but there is currently no
speaker device available on board, so only Headphone output is supported.

For operation and programming, see the chapters in the i.MX35 Reference Manual for the SSI, SDMA,
AUDMUX, and IOMUX components, and see SGTL5000 Datasheet for Stereo Audio Codec SGTL5000.

4.3.2 Audio Playback
By default, the following hardware configuration options are enabled for the playback operation (based on
the default audio driver configuration):

• The audio driver is configured to use SSI2 for I2S mode and a sampling rate of 44.1 KHz
— The first two time slots transmit the left and right audio channel data words, respectively

Audio Driver

Windows Embedded CE 6.0 BSP Reference Manual

Freescale Semiconductor 4-3

— Each audio data word is 16 bits long
— SSI2 is also configured to operate in slave mode
— The SSI2 transmitter watermark level is set to support SDMA transfers during audio playback

• The stereo codec is also configured for I2S mode using a 44.1 KHz sample rate in master mode
• The Digital Audio MUX is configured to connect internal port 2 (which is assigned to SSI2) with

one external port, which is used to communicate with the Stereo DAC. At the same time, the
appropriate IOMUX pins are configured so that the Audio MUX external port signals can be routed
off-chip to the Stereo Codec. The external port 4 is used to connect the Stereo Codec on the i.MX35
System.

• The SDMA channel supports 16-bit data transfers between the application memory buffers and the
SSI2 TX FIFO0. The SSI2 TX FIFO0 is pre-filled with audio data at this point along with the DMA
buffers.

• Finally, the SSI2 transmitter is enabled, which begins the transmission of the audio data stream.

The hardware repeatedly performs the following functions while audio playback is being performed:
• The SSI2 issues a new DMA request when the transmitter FIFO0 level reaches the empty

watermark level. The SDMA controller then refills FIFO0 using data from the DMA buffers, until
the DMA buffer is empty.

• An interrupt is generated when a DMA buffer is empty and this interrupt is handled by the audio
driver. The audio driver refills the DMA buffer and returns it to the SDMA controller for
processing.

• Due to the double-buffering scheme, the SDMA controller simply uses the other DMA buffer to
continue refilling the SS12 transmitter FIFO0 while the previous DMA buffer is being refilled.

The following hardware changes are made at the completion of each playback operation:
• When the entire audio stream is transmitted, there is no more data available to refill the empty

DMA buffers. Therefore, the output DMA channel is disabled when both output DMA buffers are
empty and there is no additional data available to refill them.

• The audio components that were used for playback are disabled to minimize power consumption.
This step is done before disabling SSI2 to avoid any extraneous noise or “pop” that may be heard
over the headphones.

• Finally, gate SSI2 is disabled and clocked if receiver is not working.

4.3.3 Audio Recording
The following hardware configuration steps are performed just prior to each recording operation (based
upon the default audio driver configuration):

• As SSI2 is used in both playback and recording path, the audio recording shares the SSI
configuration with playback configuration.

• The SDMA channel is fully configured to support 16-bit data transfers between the application
memory buffers and the SSI2 RX FIFO0.

• The SSI2 receiver is enabled and ready to receive data from the stereo codec.

Audio Driver

Windows Embedded CE 6.0 BSP Reference Manual

4-4 Freescale Semiconductor

The hardware repeatedly performs the following functions while audio recording is being performed:
• The SSI2 issues a new DMA request whenever the receive FIFO0 level reaches the full watermark

level. The SDMA controller then transfers the data from the receiver FIFO0 to an input DMA
buffer until the DMA buffer is full.

• The SDMA controller generates an interrupt that is handled by the audio driver. The audio driver
is responsible for copying the data from the full input DMA buffer into application-supplied
buffers and then returning the empty input DMA buffer back to the SDMA controller. Any data
which cannot be transferred to an application-supplied buffer (for example, due to insufficient
space) is simply discarded.

• Since a double-buffering scheme is being used, the SDMA controller simply uses the other DMA
buffer to continue recording the data from the SSI2 receiver FIFO0 while the previous DMA buffer
is being copied to application-supplied buffers.

The following hardware changes are made at the completion of each recording operation:
• Terminate the recording process by having the application close the audio input stream. At this

point, disable audio components that were used for recording to minimize power consumption.
• Disable and clock gate SSI2, if transmitter is not working.
• Disable the input DMA channel to completely terminate the audio recording operation.

4.3.4 Required SoC Peripherals
Table 4-2 shows the SoC hardware components required by the audio driver.

4.3.5 Conflicts with SoC Peripherals
No conflicts.

4.3.6 Conflicts with Board Peripherals

4.3.6.1 i.MX35 3-Stack Peripherals Conflicts
The TVIN and FM modules use SGTL5000 loopback mode to support audio output through headphone.
Thus SGTL5000 stereo audio driver stops working when either TVIN or FM application is running.

Table 4-2. Required SoC Peripherals

Component Use

SSI2 Playback and recording

Digital Audio MUX Connects the SSI2 to the IO MUX to access off-chip peripherals

IO MUX Pins Connects the Digital Audio MUX external port to the external stereo codec

SDMA Controller Manages the DMA channels that are used for playback and recording

Audio Driver

Windows Embedded CE 6.0 BSP Reference Manual

Freescale Semiconductor 4-5

4.3.7 Known Issues

4.3.7.1 i.MX35 Known Issues
If both the SGTL5000 stereo audio driver and S/PDIF driver occurs, the default audio device might be
SPDIF. The default audio device may be chosen by AudioRouting application.

4.4 Software Operation
The audio driver follows the Microsoft-recommended architecture for audio drivers. For information
about the architecture and operation, see the Platform Builder Help:

Developing a Device Driver > Windows CE Drivers > Audio Drivers > Audio Driver Development
Concepts

4.4.1 Audio Playback
The software operation of the audio driver for playback is similar to the hardware configuration. Once the
hardware components are configured, the audio driver only handles the output DMA buffer empty
interrupts. This is done by the interrupt handler, which refills each of the output DMA buffers with new
audio data that has been supplied by the application, and then returns the DMA buffer to the DMA
controller.

4.4.2 Audio Recording
The operation of the audio driver for recording is similar to the hardware configuration. Once the hardware
components are configured, then the audio driver handles the input DMA buffer full interrupts. This is
done by the interrupt handler, which copies the contents of each input DMA buffer to an
application-supplied buffer, and then returns the empty DMA buffer to the DMA controller. If the
application-supplied buffer does not have enough space for all of the new data, any extra data is discarded.
The application is signaled using a callback function when the application-supplied buffer is full.

4.4.3 Audio Driver Compile-Time Configuration Options
The audio driver can be configured for a wide variety of operating modes depending on the hardware and
software requirements.

NOTE
Do not change the audio driver configuration settings without a detailed
understanding of the platform hardware configuration and operating
characteristics. Selecting invalid or incorrect configuration settings may
result in the audio driver not loading or operating properly. Conversely, the
audio driver performance and resource usage may be fine-tune by adjusting
these configuration settings. For further information about the configuration
options, see the corresponding source files.

Audio Driver

Windows Embedded CE 6.0 BSP Reference Manual

4-6 Freescale Semiconductor

4.4.3.1 i.MX35 Audio Driver Configuration Options
Table 4-3 gives the compile-time configuration options of i.MX35 stereo audio driver.

4.4.4 DMA Support
The audio driver uses the DMA controller to transfer digital audio data between the audio application and
the audio FIFOs. This minimizes the processing required by the ARM core and can also reduce the power
consumption during audio playback and recording operations. This section describes the audio driver
DMA implementation issues and trade-offs, and the available compile-time DMA-related configuration
options.

To use DMA transfers, the following items must be properly allocated, managed, and deallocated by the
device driver:

• The DMA data buffers where the application data is kept
• The DMA buffer descriptors, which are used by the DMA hardware to manage the state of each

DMA buffer

The DMA data buffers can be allocated from either internal memory (which is provided by on-chip
internal RAM) or external memory (which is provided by off-chip external DRAM). Table 4-4 describes
the issues and considerations for the type of memory to use for the DMA data buffers.

Table 4-3. i.MX35 Audio Driver Configuration Options (oemsettings.h)

Configuration Setting
Name Description

INCHANNELS Defines the number of input/recording channels that are available. Can be set to either 1 or 2.
Default is 2.

OUTCHANNELS Defines the number of output/playback channels that are available. Can be set to either 1 or 2.
Default is 2.

HWSAMPLE A typedef that defines the size of each audio data word. This must match the BITSPERSAMPLE
and AUDIO_SAMPLE_MAX/AUDIO_SAMPLE_MIN values. Default is 16.

USE_MIX_SATURATE Enable a check in the software mixer code to guard against saturation. Default is 1.

AUDIO_SAMPLE_MAX
and AUDIO_SAMPLE_MIN

The valid range of each audio data word. Values that are outside of this range is clipped to the
max/min value by the saturation protection code if USE_MIX_SATURATE is set to 1. Default is
32767 and -32768.

ENABLE_MIDI If set to 1, MIDI code is included in the driver (~4k).

USE_OS_MIXER If set to 1, the driver does not do any internal mixing and relies on the OS mixer.

BITSPERSAMPLE The number of data bits per audio sample. If set to 16, support 16bit sample; If set to 24, support
24bit sample (in sgtl5000codec.h)

Audio Driver

Windows Embedded CE 6.0 BSP Reference Manual

Freescale Semiconductor 4-7

Table 4-5 describes how to configure the build so that the audio driver allocates its DMA data buffers from
either internal or external memory. The DMA buffer descriptors can also be allocated from either internal
or external memory. However, the choice is made automatically through the use of the CSPDDK APIs,
specifically DDKSdmaAllocChain(). See Chapter 10, “Chip Support Package Driver Development Kit
(CSPDDK),” for additional information about the DDKSdmaAllocChain() API.

4.4.4.1 i.MX35 Audio DMA Buffer Use
The i.MX35 audio driver supports both playback and recording. Playback function always uses internal
memory as DMA buffer, while recording function allocates DMA buffer from external memory.

4.4.5 Power Management
The primary method for limiting power consumption in the audio driver is to gate off all clocks to the SSI
when those clocks are not needed, and to turn off all audio hardware components at the end of each audio
stream. This is accomplished through the DDKClockSetGatingMode function call and the various PMIC
audio APIs. In the BSP, the audio module can be disabled, and its clocks turned off whenever there are no
active audio I/O operations. The clock gating and the disabling of related audio hardware components is
handled automatically within the audio module and requires no additional configuration or code changes.

The audio driver operates correctly when resuming after the power down mode.

Table 4-4. DMA Memory Allocation Issues and Considerations

Memory
Region Memory Usage Issues and Considerations

Internal • Allows the external memory to be placed in a low power mode while the DMA data buffers are being
processed to reduce system power consumption (as long as nothing else on the system requires access to
external memory)

 • Less power is required to access the internal RAM
 • The total size of the internal memory region is limited
 • The limited amount of internal memory may have to be shared by multiple device drivers
 • The entire internal memory region must be manually managed with predefined addressed ranges being

reserved for each specific use

External • The total size of the external memory is typically much greater than the size of the internal memory. This
provides much greater flexibility in selecting the size of the DMA data buffers.

 • There is typically no need to worry about the possible impact and memory requirements of any other device
driver.

 • Memory allocation is handled using the standard Windows Embedded CE 6.0 system calls
 • The external memory cannot be placed into a low power mode while the DMA is active

Table 4-5. Configuration Options for Internal/External Memory DMA Data Buffer Allocation

Memory
Region Required Configuration Options

Internal Set the BSP_AUDIO_DMA_BUF_ADDR macro in bsp_cfg.h to an address within the internal memory region.
Set BSP_AUDIO_DMA_BUF_SIZE to the total size (in bytes) for all DMA data buffers that is allocated.

External Make sure that the BSP_AUDIO_DMA_BUF_ADDR macro is commented out in bsp_cfg.h

Audio Driver

Windows Embedded CE 6.0 BSP Reference Manual

4-8 Freescale Semiconductor

4.4.5.1 PowerUp
This function resumes an audio I/O operation that was previously terminated by calling the PowerDown()
API. It begins by restoring power and re-enabling all of the required audio hardware components. Then
this function restarts the audio DMA transfers to complete the powerup process for the audio driver.

This function is intended to be called only by the Power Manager and must not block or depend on any
hardware interrupts. Therefore, all required timed delays must be handled by using a polling loop instead
of any of the normal “wait for an event to be signalled” functions. This functionality is currently handled
by IOCTL_POWER_SET and the function is just a stub.

4.4.5.2 PowerDown
This function suspends all currently active audio I/O operations just before the entire system enters the low
power state. This function is intended to be called only by the Power Manager and must not block or
depend on any hardware interrupts. Therefore, the first thing that this function must do is to signal all of
the possible wait events that the normal audio driver thread may currently be waiting on. If this function
does not signal all waiting events, the PowerDown thread may be blocked waiting for a critical section that
is currently being held by the normal audio driver thread. This deadlocks the entire system and prevent it
from properly entering the low power state.

When all waiting events are signalled, the normal audio thread is guaranteed (because of priority
inversion) to run to the point where it releases the required critical section and allows the PowerDown
thread to proceed without the possibility of deadlocking.

When the normal audio thread is not executing inside any critical section, the PowerDown thread can
safely proceed to disable all active audio DMA operations and to power down the associated audio
hardware components. Once this is done, the audio driver remains in a low power state until the PowerUp
function is called by the Power Manager. This functionality is currently handled by IOCTL_POWER_SET
and the function is just a stub.

4.4.5.3 IOCTL_POWER_SET
This Power Manager IOCTL is implemented for the audio driver. All system suspend and resume
functions are handled by the IOCTL, which manages the PowerDown and PowerUp functionality. For all
platforms, the following registry entry must be defined:
[HKEY_LOCAL_MACHINE\Drivers\BuiltIn\Audio]

"IClass"="{A32942B7-920C-486b-B0E6-92A702A99B35}" ; PMCLASS_GENERIC_DEVICE

This registry entry is required for proper power management functionality.

4.4.6 Audio Driver Registry Settings
At least one registry key must be properly defined so that the Device Manager loads the audio driver when
the system is booted. Additional registry keys may also be defined and changed at runtime, to configure
the operation of the audio driver.

Audio Driver

Windows Embedded CE 6.0 BSP Reference Manual

Freescale Semiconductor 4-9

4.4.6.1 i.MX35 Audio Driver Registry Settings
The following registry keys are required in order for the Device Manager to properly load the i.MX35
audio device driver during the device normal boot process. These registry settings should typically not be
modified. If they are missing or incorrectly defined, then the audio driver may not be loaded and all audio
functions are disabled.
[HKEY_LOCAL_MACHINE\Drivers\BuiltIn\Audio]
"Prefix"="WAV"
 "Dll"="wavedev2_sgtl5000.dll"
 "Index"=dword:1
 "Order"=dword:4
 "Priority256"=dword:95
 "IClass"=multi_sz:"{A32942B7-920C-486b-B0E6-92A702A99B35}",

"{37168569-61C4-45fd-BD54-9442C7DBA46F}"

; Override wave API load order to follow audio driver
[HKEY_LOCAL_MACHINE\Drivers\BuiltIn\WAPIMAN]
 "Order"=dword:5
[HKEY_LOCAL_MACHINE\Drivers\BuiltIn\WAPIMAN_ACM]
 "Order"=dword:5

4.5 Unit Test
The audio driver is tested using the Waveform Audio Driver Test suite included with the Windows
Embedded CE 6.0 Test Kit (CETK). The test suite includes automated and interactive tests used to test
playback and recording functions.

4.5.1 Unit Test Hardware
Table 4-6 identifies the hardware needed to run the unit tests.

4.5.2 Unit Test Software
Table 4-7 lists the software required to run the unit tests.

Table 4-6. Hardware Requirements

Requirement Description

Stereo headphones or
earphones

This is required to confirm that audio playback is working. The headphones or earphones
should have a 3.5 mm jack

Mono microphone —

Table 4-7. Software Requirements

Requirement Description

Tux.exe Tux test harness, which is needed for executing the test

Kato.dll Kato logging engine, which is required for logging test data

Audio Driver

Windows Embedded CE 6.0 BSP Reference Manual

4-10 Freescale Semiconductor

4.5.3 Building the Audio Driver CETK Tests
The audio driver tests come pre-built as part of the CETK. No steps are required to build these tests. The
wavetest.dll file is included with the CETK files in the following location:

[Drive]:\Program Files\Microsoft Platform Builder\6.00\cepb\wcetk\ddtk\armv4I

4.5.4 Running the Audio Driver CETK Tests
The command line for running the audio driver test is:
tux –o –d wavetest

Alternatively, use the CETK interface in the Platform Builder. If the full-duplex operation is not supported,
the command line is:
tux -o -d wavetest -c “-e”

NOTE
Some test cases may fail with default parameters or settings, such as

• Playback Mixing Test (Test ID 6000). The thread number should be
limited or the case fails. This is a known issue from MSFT. Using the
command : tux -o -d wavetest -x 6000 -c “-t 5”

• Capture Mixing Test (Test ID 6001). The thread number should be
limited or the case fails. This is a known issue from MSFT. Using the
command : tux -o -d wavetest -x 6001 -c “-t 5”

• Verify Device ID Validation Test (Test ID 8001). If SPDIF or ESAI
driver is in the system, the case may fail as this case is not well supported
by these drivers. Test with the image without SPDIF and ESAI driver.

For detailed information about the audio driver tests, see the Platform Builder Help:

Windows Embedded CE Test Kit > CETK Tests and Test Tools > CETK Tests > Audio Tests >
Waveform Audio Driver Test

4.6 System Level Audio Driver Tests
In addition to running the audio driver tests in the CETK, various system-level tests that involve the use
of the audio driver can be performed. The following sections describe how to test the audio driver without
using the CETK.

Tooltalk.dll Library required by Tux.exe and Kato.dll. Handles the transport between the target device and the
development workstation

wavetest.dll Test .dll file

Table 4-7. Software Requirements (continued)

Audio Driver

Windows Embedded CE 6.0 BSP Reference Manual

Freescale Semiconductor 4-11

4.6.1 Checking for a Boot-Time Musical Tune
The normal Windows Embedded CE 6.0 boot procedure includes playing a short musical tune just before
displaying the touch panel calibration screen. At this point, the audio driver should already have
successfully loaded and the tune should be heard if a headset is attached to the stereo output jack.

4.6.2 Confirming Touchpanel Taps and Keypad Key Presses
The normal Windows Embedded CE 6.0 system configuration includes the ability to playback a short
tapping sound when the stylus makes contact with the touchpanel. These taps should be heard when a
headset is attached to the stereo output jack. A click should also be heard when a key on the keypad is
pressed.

4.6.3 Playing Back Sample Audio and Video Files Using the Media Player
The Microsoft-supplied Media Player application can be used to load and play a variety of audio and video
media files in a number of different formats. The only requirement is to include the software codecs in the
OS image that may be needed to decode the media file. The Media Player includes controls for pausing,
resuming, and stopping playback, and advancing playback to a specific point. Volume and muting controls
are also provided.

4.6.4 Using the SDK Sample Audio Applications for Testing
The Windows Embedded CE 6.0 SDK that is included as part of the Platform Builder includes two
audio-related sample applications. The wavrec sample application can be used to test the audio recording
function while the wavplay sample application provides a command line-based method of playing back
various media files. For additional information about these sample applications, see the Platform Builder
Help:

Windows Embedded CE Features > Audio > Waveform Audio > Waveform Audio Samples

4.7 Mixer Driver Tests
The Stereo Codec SGTL5000 on i.MX35 3-Stack supports loopback mode and input mux between
Microphone and Line In. The loopback mode is used by the TVIN and FM applications. The selection of
these modes is implemented as mixer interface within audio driver. An example application (unit test
program) for the mixer interface use can be found in WINCE600\SUPPORT\TEST\MIXER.

4.8 Audio Driver API Reference
For detailed reference information for the audio driver, see the Platform Builder Help:

Developing a Device Driver > Windows Embedded CE Drivers > Audio Drivers > Audio Driver
Reference > Waveform Audio Driver Reference

Audio Driver

Windows Embedded CE 6.0 BSP Reference Manual

4-12 Freescale Semiconductor

4.9 Audio Driver Troubleshooting Guide
The following sections describe techniques to identify and fix the most common problems involving the
audio driver.

4.9.1 Checking Build-Time Configuration Options
Compile- or link-time errors are probably due to incorrect or invalid configuration settings defined in
hwctxt.h or hwctxt.cpp. See Section 4.4.3.1, “i.MX35 Audio Driver Configuration Options for
information about the device driver build configuration options. Follow the build procedure documented
in the Release Notes to compile and link the audio driver. Confirm that the required Platform Builder
catalog items are included in the OS design. See Table 4-1 for a list of the required and recommended audio
driver-related catalog items.

4.9.2 Media Player Application Not Found
Make sure that the Media Player catalog item is included in the OS design. The Media Player application
is not included in the final system image if the catalog item is not selected. For information about these
items, see the Platform Builder Help topic:

Windows Embedded CE Features > Applications and Services > Windows Media Player for
Windows Embedded CE

4.9.3 Media Player Fails to Load and Play an Audio File
This problem is typically caused by failing to include the appropriate software codec that is required to
handle the audio file format. See the list of recommended audio driver catalog items in Table 4-1 and make
sure that support for the desired audio file format is included.

Windows Embedded CE 6.0 BSP Reference Manual

Freescale Semiconductor 5-1

Chapter 5
Backlight Driver
The backlight driver uses the hardware provided by the display module on the device to control the
backlight on the LCD display. The backlight driver interfaces with the Windows CE Power Manager to
provide timed control over the display backlight. A timeout interval controls the length of time that the
backlight stays on. The backlight driver is power-manageable, and it meets the requirements of a
power-manageable device by implementing the required IOCTLs. The backlight driver uses its own
defined timer to set the backlight power states.

5.1 Backlight Driver Summary
Table 5-1 provides a summary of source code location, library dependencies and other BSP information.

5.2 Supported Functionality
The backlight driver enables the 3-Stack System to provide the following support:

1. Conforms to the Device Manager streams interface
2. Supports 0–10 level adjustment
3. Supports power management mode full on/full off

Table 5-1. Backlight Driver Summary

Driver Attribute Definition

Target Platform iMX35-3DS-PDK1_7

Target SOC MX35_FSL_V2_PDK1_7

SOC Common Path ..\PLATFORM\COMMON\SRC\SOC\COMMON_FSL_V2_PDK1_7\BACKLIGHT

SOC Specific Path N/A

Platform Specific Path ..\PLATFORM\<Target Platform>\SRC\DRIVERS\BACKLIKGHT

Driver DLL backlight.dll

SDK Library N\A

Catalog Item Third Party > BSP > Freescale i.MX35 3DS PDK1_7: ARMV4I > Device Drivers > Smart
Backlight Control

SYSGEN Dependency SYSGEN_BATTERY=1

BSP Environment Variables BSP_NOBACKLIGHT=
BSP_BACKLIGHT_IPU=1

Backlight Driver

Windows Embedded CE 6.0 BSP Reference Manual

5-2 Freescale Semiconductor

5.3 Hardware Operation

5.3.1 i.MX35-3DS Hardware Operation
The hardware consists of a PWM implemented by the IPU. This PWM is usually dedicated to the contrast
but on the iMX35-3DS it used to drive the backlight. It can be configured by writing the
SDC_CUR_BLINK_PWM_CTRL register.

5.4 Software Operation
The backlight driver is a stream interface driver and is accessed through the file system APIs. To use the
backlight driver, a handle to the device must first be created using the CreateFile function. Subsequent
commands to the device are issued using the DeviceIoControl function with IOCTL codes specifying the
desired operation.

The control of the backlight operation requires a call to the DeviceIoControl function. The following are
the possible choices available for the user:

• IOCTL_POWER_CAPABILITIES, register and inform the Power Manager of capabilities
• IOCTL_POWER_QUERY, where the new power state is returned
• IOCTL_POWER_SET, interface to the hardware that controls the backlight through the PDD layer
• IOCTL_POWER_GET, where the current power state is returned

5.4.1 Backlight Driver Registry Settings

5.4.1.1 i.MX35-3DS Backlight Driver Registry Setting
The following registry keys are required to properly load backlight driver:
[HKEY_CURRENT_USER\ControlPanel\Backlight]
 "BattBacklightLevel"=dword:7F ; Backlight level settings. 0xFF = Full On
 "ACBacklightLevel"=dword:7F ; Backlight level settings. 0xFF = Full On
 "UseExt"=dword:0 ; Enable timeout when on external power
 "UseBattery"=dword:0 ; Enable timeout when on battery
 "AdvancedCPL"="AdvBacklight" ; Enable Advanced Backlight control panel dialog
 "BatteryTimeout"=dword:1E ; 30 Seconds
 "ACTimeout"=dword:78 ; 2 Minutes

5.4.2 Power Management
The backlight driver consumes power primarily through the operation of the Liquid Crystal Display Panel
backlight. To facilitate management of this module, the backlight driver implements the power
management I/O Control (IOCTL) code IOCTL_POWER_SET.

Backlight Driver

Windows Embedded CE 6.0 BSP Reference Manual

Freescale Semiconductor 5-3

5.4.2.1 PowerUp
This function is not implemented for the backlight driver.

5.4.2.2 PowerDown
This function is not implemented for the backlight driver.

5.4.2.3 IOCTL_POWER_SET
The backlight driver implements the IOCTL_POWER_SET IOCTL API with support for the D0 (Turn
On) and D4 (Set intensity to 0) power states. These states are handled in the following manner:

• D0 – Backlight is enabled for LCD panel and the intensity can be adjusted through the PDD layer
• D4 – Backlight intensity is set to 0 which is the lowest level of backlight

5.5 Unit Test
The backlight driver is tested by the application test.

5.5.1 Unit Test Hardware

5.5.1.1 i.MX35-3DS Unit Test Hardware
Table 5-2 lists the required hardware to run backlight application test.

5.5.2 Unit Test Software
Table 5-3 lists the required software to run the backlight application test.

5.5.3 Running the Backlight Application Test

Table 5-4 lists the backlight application test.

Table 5-2. Hardware Requirements

Requirement Description

CHUNGHWA 7" WVGA Display With Touch Screen (CLAA070VC01) Display panel required for display of graphics data.

Table 5-3. Software Requirements

Requirement Description

backlight.dll The backlight driver to implement the backlight functions

Advbacklight.dll The file implements adding an Advanced button to the Backlight Control Panel application

Backlight Driver

Windows Embedded CE 6.0 BSP Reference Manual

5-4 Freescale Semiconductor

5.6 Backlight API Reference
The API for the backlight driver conforms to the stream interface and exposes the standard functions.
Further information can be found at:

Developing a Device Driver > Windows CE Embedded Drivers > Streams Interface Drivers

Table 5-4. Backlight Application Test

Test Case Entry Criteria/Procedure/Expected Result

Backlight Level Entry Criteria: N/A

Procedure:
1. Go to Setting > Control Panel
2. Double click on the Display icon, then click on the Backlight tab
3. Click on the Advanced… button
4. Modify the backlight level setting for both battery and external power
5. Observe that the backlight level behaves according to the new setting

Expected Result: N/A

Backlight Timeout Entry Criteria: N/A

Procedure:
1. Go to Setting > Control Panel
2. Double click on the Display icon, then click on the Backlight tab
3. Modify the backlight timeout setting for both battery and external power, and then click on OK

button to apply the changes
4. Observe the time it takes for the backlight to go out, make sure it correspond with the new

settings entered in step 3

Expected Result: N/A

Windows Embedded CE 6.0 BSP Reference Manual

Freescale Semiconductor 6-1

Chapter 6
Boot from Secure Digital/MultiMedia Card (SD/MMC)
Boot support from SD/MMC includes the following components:

• Xloader (XLDR)
• EBOOT (may also be referred to as bootloader in this document)
• Storage for OS binary image (NK)

Xloader, which executes from Internal RAM (IRAM), is a initial loader whose responsibility is to copy the
bootloader from the SD/MMC memory to external RAM (SDRAM) and then pass the execution to
EBOOT.

NOTE
XLDR and EBOOT only support boot from ESDHC1. Boot ROM supports
booting from all ESDHC ports; therefore, XLDR and EBOOT can be
extended to boot from other ports. SD/MMC boot requires a card that is at
least 64 Mbytes.

6.1 Boot from SD/MMC Summary
Table 6-1 provides a summary of source code location, library dependencies and other BSP information.

Table 6-1. Boot from SD/MMC Summary

Driver Attribute Definition

Target Platform (TGTPLAT) iMX35-3DS-PDK1_7

Target SOC N/A

SOC Common Path N/A

SOC Specific Path N/A

Platform Specific Path ..\PLATFORM\<Target Platform>\SRC\BOOTLOADER
..\PLATFORM\COMMON\SRC\SOC\COMMON_FSL_V2_PDK1_7\BOOT\FMD\SDMMC

Driver DLL N/A

SDK Library N/A

Catalog Item(s) N/A

SYSGEN Dependency N/A

BSP Environment Variable(s) N/A

Boot from Secure Digital/MultiMedia Card (SD/MMC)

Windows Embedded CE 6.0 BSP Reference Manual

6-2 Freescale Semiconductor

6.2 Supported Functionality
The boot support from SD/MMC includes:

1. Boot from low or high capacity SD/MMC card at least 64 Mbytes in size on ESDHC1
2. Storing bootloader and SD/MMC Xloader images to SD/MMC flash
3. Storing OS images to SD/MMC flash
4. Loading OS image from SD/MMC flash to RAM
5. File system on bootable SD/MMC card
6. Internal boot (BMOD = 00) from SD/MMC
7. eSD2.1 and eMMC 4.3 boot from boot partition if boot partition can be configured to be at least

64 Mbytes in size; otherwise, boot from user partition on these devices is supported

6.3 Hardware Operation

6.3.1 Conflicts with Other Peripherals and Catalog Items
No conflicts for eSDHC1 with other on-chip peripherals.

6.4 Software Operation
Only ESDHC1 is supported by XLDR and EBOOT as the boot port.

On startup, when booting from SD/MMC, the boot ROM is responsible for initializing and bringing the
SD/MMC memory to a proper working state. It configures the memory only in 1-bit mode and brings it to
transfer state where read/write operation can be done from the memory. The boot ROM then copies the
entire XLDR from the SD/MMC memory to internal RAM and passes the control to the Xloader. The
Xloader initializes the SDRAM, copies the bootloader from a predefined memory location of the
SD/MMC memory to SDRAM, and passes control to the bootloader which in turn brings up the OS.
Xloader reads data in 1-bit mode only. It checks the addressing mode for the card used by the boot ROM
(which is stored in the IRAM at a fixed location), and decides whether to address the card in sector mode
(high capacity) or byte mode (low capacity).

SD/MMC boot does not use any form of DMA. Whether it is the boot ROM, XLDR, or EBOOT, all the
components involved in the boot process utilize the PIO mode. SD/MMC boot supports both secure
(internal boot mode is required for enabling security checks) as well as non-secure boot.

To store and load a boot image to SD/MMC cards using EBOOT, the SDFMD (SD Flash Media Driver)
library is used which exposes functions to perform erase, read and write operations on SD/MMC flash.
The FMD layer provides support for all types of cards (high as well as low capacity SD/MMC cards). It
also supports 1 and 4-bit modes for data transfer that is configurable through the
BSP_MMC4BitSupported() function found in the BSP portion of EBOOT.

For preparing and downloading the SD/MMC bootloader and for usage of the SD/MMC bootloader, refer
to the BSP User's Guide.

Boot from Secure Digital/MultiMedia Card (SD/MMC)

Windows Embedded CE 6.0 BSP Reference Manual

Freescale Semiconductor 6-3

6.4.1 Card Memory Layout
SD cards that do not meet the v2.1 spec and MMC cards that do not meet the v4.3 spec have only one
physical partition. To allow storage of boot images as well as file system on these card, EBOOT can add
a partition table (MBR) to the card that reserves the initial 64 Mbytes for boot images (XLDR, EBOOT,
NK) and the remaining portion of the card for the file system. The card must then be inserted into a PC to
format the file system partition. Subsequently, it can be used as a boot device as well as to store and load
user files once the OS has loaded. Refer to the BSP User's Guide for details.

eSD v2.1 and eMMC v4.3 both provide the capability of having more than one physical partition, thus
eliminating the need to put an MBR on the device. Reading, writing, and erasing one partition has no effect
on the other partitions. Starting with TO1, the ROM is able to boot from the boot partition on these devices.
During boot, the ROM code selects the boot partition #1 on the eSD v2.1 device and either boot partition
#1 or #2 on the eMMC v4.3 device (depending on which partition is enabled in the EXT_CSD register),
and subsequently reads out the data that is flashed to the boot partition and executes it. EBOOT provides
menu options to create and enable/disable boot partitions on both devices using the MMC and SD Utilities
sub-menu. Refer to the BSP User's Guide for details.

Before the NK OS image is launched, EBOOT disables the boot partition, and the user partition, where the
file system can be stored, is activated. As soon as system is reset, the ROM code re-enables the boot
partition and reads out and executes the boot images. The Windows CE 6 R2 SDBus2 Driver, although
capable of supporting high capacity SD cards, is not capable of supporting high capacity MMC cards.
Therefore, high capacity eMMC v4.3 devices are not usable on Windows CE 6 for file system storage.

Boot from Secure Digital/MultiMedia Card (SD/MMC)

Windows Embedded CE 6.0 BSP Reference Manual

6-4 Freescale Semiconductor

6.4.1.1 i.MX35 Card Memory Layout
Figure 6-1 shows the card memory layout for the i.MX35.

Figure 6-1. Card Memory Layout

A Master Boot Record (MBR) is placed by EBOOT (this functionality can be accessed using the EBOOT
menu) at sector 0 of the card to reserve the first 96 Mbytes of the card for boot images, and allocate the
remaining portion to the file system. The XLDR is saved at 0x400 (1 Kbyte) offset, which is sector 2 in
the card. The Boot ROM calculates the entry point of the XLDR from the flash header structure found in
the XLDR.

X L D R

(u p to 1 2 7 K B re s e rv e d ,
o n ly u s in g 4 K B)

6 4 M B

E B O O T

(u p to 2 5 6 K B)

N K O S Im a g e

(u p to 4 7 M B)

B o o t C o n f ig u ra t io n

(la s t 1 2 8 K B)

0 x 4 0 0
(1 K B)

F la s h H e a d e r
R e q u ire d b y
B o o t R O M

(4 0 B)

X L D R
in s tru c t io n s to

in it ia liz e
S D R A M , c o p y
E B O O T f ro m

c a rd to S D R A M ,
a n d ju m p to it .

4 K B

0 x 4 0 0 0 0 0 0

(6 4 M B)

M a s te r B o o t R e c o rd : 6 4 M B –
1 K B (s ta r t in g a t 0 x 4 0 0) re s e rv e d ,

re s t a llo c a te d to F A T p a r t it io n

F ile S y s te m
P a r t it io n

(c a rd s iz e – 6 4
M B)

Boot from Secure Digital/MultiMedia Card (SD/MMC)

Windows Embedded CE 6.0 BSP Reference Manual

Freescale Semiconductor 6-5

The MBR is only required on cards that are older than eSD v2.1 and eMMC v4.3 because these newer
devices can have multiple physical partitions. On these devices, the first 96 Mbytes shown above are
flashed on a separate boot partition (without an MBR at sector 0), and the file system partition referenced
above is another separate physical partition, which should only be active while OS is running.

Boot from Secure Digital/MultiMedia Card (SD/MMC)

Windows Embedded CE 6.0 BSP Reference Manual

6-6 Freescale Semiconductor

Windows Embedded CE 6.0 BSP Reference Manual

Freescale Semiconductor 7-1

Chapter 7
Camera Driver
The camera driver interfaces the low level camera sensor to the Windows CE camera subsystem.

7.1 Camera Driver Summary
The camera driver is based on the Windows CE Camera Device Driver Interface. This interface provides
basic support for video and still image capture devices. The camera driver conforms to the architecture for
Windows CE stream interface drivers, and allows applications to use the middleware layer provided by the
DirectShow video capture infrastructure to communicate with and control the camera. At the lower layer,
the camera driver performs several tasks:

• Communicating with and configuring the camera device or other input device through the I2C
interface

• Interfacing with the Image Processing Unit (IPU) to perform pre-processing tasks on captured
images

• Configuring the IPU Synchronous Display Controller (SDC) for display of video preview data

For i.MX35 BSP, this module is compatible with the camera sensor OV2640. And it is also supported
TVIN device ADV7180.

 Table 7-1 provides a summary of source code location, library dependencies and other BSP information.
Table 7-1. Camera Driver Summary

Driver Attribute Definition

Target Platform iMX35-3DS-PDK1_7

Target SOC MX35_FSL_V2_PDK1_7

SOC Common Path ..\PLATFORM\COMMON\SRC\SOC\COMMON_FSL_V2_PDK1_7\IPU\CAMERA

SOC Specific Path ..\PLATFORM\COMMON\SRC\SOC\<Target SOC>\CAMERA

Platform Specific Path ..\PLATFORM\<Target Platform>\SRC\DRIVERS\CAMERA

Driver DLL camera.dll

SDK Library N/A

Catalog Item Third Party > BSPs > Freescale <Target Platform>:ARMV4I > Device Drivers > Camera

Camera Driver

Windows Embedded CE 6.0 BSP Reference Manual

7-2 Freescale Semiconductor

7.2 Supported Functionality
The camera driver enables the 3-Stack System to provide the following software and hardware support:

1. Supports the Windows CE Camera Device Driver Interface
2. Supports Preview, Capture, and Still pins for camera application
3. Supports Preview pin for TVIN application.
4. Supports the OV2640 camera sensors for camera used for i.MX35.
5. Supports the analog device ADV7180 for TVIN used for i.MX35.

7.3 Hardware Operation
Several hardware modules are involved in the operation of the Camera driver. The input device (camera
sensor or TVIN device) captures external image data. All other hardware elements of the Camera driver
are within the Image Processing Unit (IPU). The IPU Camera Sensor Interface (CSI) receives data from
the sensor/TVIN and converts the data into a format understood by the IPU. This data subsequently flows
through the IPU Image Converter (IC) module, where it undergoes pre-processing. There are two
pre-processing paths: one for encoding and one for viewfinding. The pre-processed image data is then
transferred by the IPU DMA module to one of two destinations: system memory (encoding or viewfinding
data) or the IPU Synchronous Display Controller (SDC) for display (viewfinding data).

For detailed operation and programming information, refer to the chapter on the Image Processing Unit
(IPU) in the hardware specification document.

7.3.1 Conflicts with Other Peripherals and Catalog Items

7.3.1.1 Conflicts with SoC Peripherals
For i.MX35 platform, the camera sensor shares the CSI interface with the TVIN device and they use the
same camera driver. Only one module can be used on the i.MX35 3-Stack board at one time.

SYSGEN Dependency SYSGEN_IMAGING_BMP_ENCODE
SYSGEN_IMAGING_JPG_ENCODE
SYSGEN_IMAGING_BMP_DECODE
SYSGEN_IMAGING_JPG_DECODE
SYSGEN_DSHOW_DISPLAY
SYSGEN_DSHOW_CAPTURE
SYSGEN_DSHOW_DMO
SYSGEN_DSHOW_VIDREND

BSP Environment
Variables BSP_NOCAMERATVIN=

BSP_CAMERA=1 for camera used
BSP_TVIN=1 for TVIN used

Table 7-1. Camera Driver Summary

Camera Driver

Windows Embedded CE 6.0 BSP Reference Manual

Freescale Semiconductor 7-3

7.3.2 Conflicts with 3-Stack Peripherals
No conflicts.

7.4 Software Operation
The development concepts for camera driver is described in the Windows CE 6.0 Help Documentation
section under the topic

Developing a Device Driver > Windows Embedded CE Drivers > Camera Drivers.

7.4.1 Communicating with the Camera
Communication with the camera driver is accomplished through Camera APIs defined by Microsoft for
Windows Embedded CE 6.0. Applications may access these Camera APIs directly or through the
DirectShow video capture support.

7.4.1.1 Using the Windows CE Video Camera Device Driver Interface
The Windows CE Video Camera Device Driver Interface provides basic support for video and still image
capture devices. For information about using camera APIs, see the Windows Embedded CE 6.0 Help topic:

Developing a Device Driver > Windows Embedded CE Drivers > Camera Drivers > Camera Driver
Reference.

7.4.1.2 Using DirectShow for Video Capture
DirectShow provides support in its architecture for the creation of filter graphs for video capture. For
information about using DirectShow for video capture, see the Windows Embedded CE 6.0 Help:

Windows Embedded CE Features > Encoded Media > DirectShow > DirectShow Application
Development > Audio and Video Capture Support > Video Capture.

7.4.2 Registry Settings
Two sets of registry settings are important for proper Camera Driver operation. One set is for the camera
driver, and the other is for the DirectShow Capture Pins.

This section describes the registry keys used to select the camera sensor used on the SoC.

7.4.2.1 i.MX35 Registry Settings
The following registry keys are required to properly load the Camera Driver.
#if (defined BSP_CAMERA || defined BSP_TVIN)
[HKEY_LOCAL_MACHINE\Drivers\BuiltIn\Camera]
 "Prefix"="CAM"
 "Dll"="camera.dll"
 "Order"=dword:20
 "Index"=dword:1
 IF BSP_CAMERA

Camera Driver

Windows Embedded CE 6.0 BSP Reference Manual

7-4 Freescale Semiconductor

 "CameraId"=dword:3
 ELSE
 "CameraId"=dword:4
 ENDIF ;BSP_CAMERA
 ;See csi.h,In WinCE6.0,default is 2. CameraInUse: 0=iMagic8803, 1=iMagic8201,
2=Magna521DA, 3=ov2640, 4=Adv7180
 "IClass"=multi_sz:
"{CB998A05-122C-4166-846A-933E4D7E3C86}","{A32942B7-920C-486b-B0E6-92A702A99B35}"

The CameraId registry key identifies the available camera sensor modules. Valid values:
• 0 to indicate that the camera sensor in use is the iMagic IM8803
• 1 to indicate that the camera sensor in use is the iMagic IM8201.
• 2 to indicate that the camera sensor in use is the Magna521DA.
• 3 to indicate that the camera sensor in use is the OV2640.
• 4 to indicate that the TVIN in use is the ADV7180.

[HKEY_LOCAL_MACHINE\Software\Microsoft\DirectX\DirectShow\Capture]
 "Prefix"="PIN"
 "Dll"="camera.dll"
 "Order"=dword:20
 "Index"=dword:1
 "PinCount"=dword:3 ;Pin count. Max = 3; default = 2
 "MemoryModel"=dword:1 ; Pin memory mode.
 "IClass"=multi_sz:"{C9D092D6-827A-45E2-8144-DE1982BFC3A8}",
 "{A32942B7-920C-486b-B0E6-92A702A99B35}"
#endif ; (defined BSP_CAMERA || defined BSP_TVIN)

7.5 Power Management
The camera driver consumes power primarily through the operation of various IPU sub-modules, such as
the CSI (which synchronizes and receives image data from the camera sensor) and the IC (which performs
pre-processing operations on captured image data). The CSI and IC modules are enabled when the camera
or TVIN device is set to a running state.

Support for transitioning to the Suspend and Resume states if provided through the IOCTL_POWER_SET
IOCTL.

7.5.1 Power Up
This function is not implemented for the camera driver.

7.5.2 Power Down
This function is not implemented for the camera driver.

Camera Driver

Windows Embedded CE 6.0 BSP Reference Manual

Freescale Semiconductor 7-5

7.5.3 IOCTL_POWER_SET

7.5.3.1 i.MX35 IOCTL_POWER_SET Support
The camera driver implements the IOCTL_POWER_SET IOCTL API with support for the D0 (Full on)
and D4 (Off) power states.

These states are handled in the following manner:
• D0 – Action is only taken when resuming from the D4 state. If the camera was running when the

transition to the D4 state occurred, the camera returns to a running state, re-enabling the CSI and
IC modules.

• D4 – Action is only taken if the camera is running when the request to transition to the D4 state
occurs.

7.6 Unit Test
Because the Camera Driver API was introduced with Windows Embedded CE 6.0, there are CETK tests
written and provided by Microsoft.

The Camera CETK tests include:
• The Camera Driver Data Structure Verification Test - queries the driver for the various properties

and formats, and verifies that the data structures returned are valid.
• The Camera Driver I/O Test - verifies the functionality of the preview and capture streams on the

camera driver.
• The Camera and DirectShow Integration Test - verifies the functionality of the camera driver when

used under DirectShow.
• The Camera Performance Test suite - gathers performance data for a number of DirectShow

capture scenarios.

Additionally, for Windows Embedded CE 6.0, a Camera Application may be used to preview and capture
images. A TVIN Application is only used to preview images.

7.6.1 Unit Test Hardware
Table 7-2 lists the required hardware to run the unit tests.

The OV2640 camera sensor is used to run the Windows Embedded CE 6.0 Camera CETK test and the
camera application. The TVIN device ADV7180 is used to run the Windows Embedded CE 6.0 Camera
CETK test (only need test preview parts) and the TVIN application.

Table 7-2. Hardware Requirements

Requirement Description

Camera Sensor or TVIN device OV2640 CMOS camera sensor

Camera Driver

Windows Embedded CE 6.0 BSP Reference Manual

7-6 Freescale Semiconductor

7.6.2 Unit Test Software

7.6.2.1 CETK Test
Table 7-3 lists the required software to run the Camera Test.

The configuration file capconfig.ini is required for CameraPerfTests.dll.

7.6.2.2 Custom Camera and TVIN Application Test
The camapp.exe executable file is needed to run the custom camera application. The tvinapp.exe
executable file is needed to run the custom TVIN application.

7.6.2.3 Camera and TVIN Application Test
No additional actions are required to include the Windows CE 6.0 Camera/TVIN Application in an OS
image beyond the required registry keys.

7.6.3 Building the Unit Tests

7.6.3.1 CETK Test
The camera tests come pre-built as part of the CETK so no steps are required to build these tests. These
test files can be found with the other required CETK files in the following location:

[Drive]:\Program Files\Microsoft Platform Builder\6.00\cepb\wcetk\ddtk\armv4I

7.6.3.2 Custom Camera and TVIN Application Test
To build the custom Camera/TVIN application, complete the following steps.

Table 7-3. Software Requirements

Requirement Description

Tux.exe Tux test harness, which is needed for executing the test

Kato.dll Kato logging engine, which is required for logging test data

Tooltalk.dll Library required by Tux.exe and Kato.dll. Handles the transport between the target device and the
development workstation

CameraGraphTests.dll Library containing the camera and directshow integration test cases

CamTestProperties.dll Library containing the camera driver data structure verification test cases

CamIOTests.dll Library containing the camera driver I/O test cases

CameraPerfTests.dll Library containing the camera performance test cases

Cameragrabber.dll Filter required by many command-line options to track and output information about media samples

camera.dll Driver.dll file

Camera Driver

Windows Embedded CE 6.0 BSP Reference Manual

Freescale Semiconductor 7-7

Build an OS image for the desired Camera/TVIN configuration:
1. Add a new folder named APP under the folder ..\PLATFORM\<Target Platform>\SRC
2. Create an empty dirs file under the folder ..\PLATFORM\<Target Platform>\SRC\APP
3. Copy the folder of CAMAPP/TVIN under the folder APP
4. Select the Solution Explorer of the Platform Builder Workspace window
5. Expand Platform > <Target Platform> > Src > App > CAMAPP/TVIN
6. Right-click on the CAMAPP/TVIN folder and select Rebuild

The CAMAPP/TVIN execution file (camapp.exe/tvinapp.exe) is created in the obj\release or
obj\debug folder under the CAMAPP/TVIN folder. The camapp.exe/tvinapp.exe file is copied to the
workspace release directory.

Complete the following steps to build the custom Camera/TVIN application:
1. Select the Solution Explorer of the Platform Builder Workspace window
2. Select Subprojects in Solution Explorer
3. Right-click Subprojects and select Add Existing Subproject
4. Add the CAMAPP/TVIN project by selecting the sources file located in

\WINCE600\SUPPORT\APP\CAMAPP folder
5. Right-click on the CAMAPP/TVIN project and select Rebuild

The CAMAPP/TVIN execution file (camapp.exe/tvinapp.exe) is created in the workspace release
directory.

7.6.4 Running the Unit Tests

7.6.4.1 Running the Camera Unit Tests

7.6.4.1.1 Running the Camera CETK Test

For detailed information about the tests in this section, see the Windows Embedded CE 6.0 Help topic:

Windows Embedded CE Test Kit > CETK Tests and Test Tools > CECETK Tests > Camera Tests

Use this command line to run the Camera and DirectShow integration test:
tux –o –d CameraGraphTests.dll

Use this command line to run the Camera Driver Data Structure Verification test:
tux –o –d CamTestProperties.dll

Use this command line to run the Camera Driver I/O test:
tux –o –d CamIOTests.dll

Use this command line to run the Camera Performance test:
tux -o -d cameraperftests.dll -c "-p \release\capresults.csv -c
\release\capconfig.ini"

Camera Driver

Windows Embedded CE 6.0 BSP Reference Manual

7-8 Freescale Semiconductor

NOTE
The Camera Performance test requires the configuration file capconfig.ini
which specifies what to test, by copying the file under the corresponding
folder such as \release before testing from the following location:
[Drive]:\Program Files\Microsoft Platform
Builder\6.00\cepb\wcetk\ddtk\armv4I

For i.MX35 Case #508 and #510 may fail for CameraGraphTests.dll.

7.6.4.1.2 Running the Custom Camera Application Test

The following command executes the Custom Camera Application: camapp.exe

7.6.4.2 Running the TVIN Unit Tests

7.6.4.2.1 Running the TVIN CETK Test

TVIN only supports preview, so only test related preview CETK. Use this command line to run the Camera
and DirectShow integration test:
tux –o –d CameraGraphTests.dll -x !400-607

Use this command line to run the Camera Driver Data Structure Verification test:
tux –o –d CamTestProperties.dll

Use this command line to run the Camera Driver I/O test:
tux –o –d CamIOTests.dll

Use this command line to run the Camera Performance test:
tux -o -d cameraperftests.dll -c "-p \release\capresults.csv -c
\release\capconfig.ini" -x !300-401

NOTE
TVIN CETK does not support these cases related to Capture Pin and Still
Pin.

7.6.4.2.2 Running the Custom TVIN Application Test

The following command executes the Custom TVIN Application: tvinapp.exe

7.7 Camera Driver API Reference
For the camera driver API reference, see the Windows Embedded CE 6.0 documentation. There is one
additional custom API provided to allow applications to enable direct display of video preview data. For
reference information on basic camera driver functions, methods, and structures, see the Windows
Embedded CE 6.0 Help:

Camera Driver

Windows Embedded CE 6.0 BSP Reference Manual

Freescale Semiconductor 7-9

Developing a Device Driver > Windows Embedded CE Drivers > Camera Drivers > Camera Driver
Reference

Camera Driver

Windows Embedded CE 6.0 BSP Reference Manual

7-10 Freescale Semiconductor

Windows Embedded CE 6.0 BSP Reference Manual

Freescale Semiconductor 8-1

Chapter 8
Configurable Serial Peripheral Interface (CSPI) Driver
The CSPI module provides master functionality of a standard CSPI bus.

8.1 CSPI Driver Summary
Table 8-1 provides a summary of source code location, library dependencies and other BSP information.

8.2 Supported Functionality
The CSPI driver supports the following features:

1. Supports the CSPI master mode of operation
2. Supports CSPI configurable bus feature
3. Supports CSPI multiple channel method
4. Supports configurable access method of polling method and interrupt method
5. Supports DMA exchange mode for 32-bit interface SPI access
6. Supports buffering exchange for asynchronous SPI access
7. Supports stream interface
8. Supports two power management modes, full on and full off

Table 8-1. CSPI Driver Summary

Driver Attribute Definition

Target Platform iMX35-3DS-PDK1_7

Target SOC MX35_FSL_V2_PDK1_7

SOC Common Path ..\PLATFORM\COMMON\SRC\SOC\COMMON_FSL_V2_PDK1_7\CSPIBUSV2

SOC Specific Path ..\PLATFORM\COMMON\SRC\SOC\<Target SOC>\CSPIBUS

Platform Driver Path ..\PLATFORM\<Target Platform>\DRIVERS\CSPIBUS

Import Library cspisdk.lib

Driver DLL cspi.dll

Catalog Item Third Party > BSP > Freescale <TGTPLAT> > Device Drivers > CSPI Bus

SYSGEN Dependency N/A

BSP Environment Variables BSP_CSPIBUS1=1 or BSP_CSPIBUS2=1

Configurable Serial Peripheral Interface (CSPI) Driver

Windows Embedded CE 6.0 BSP Reference Manual

8-2 Freescale Semiconductor

8.2.1 Conflicts with Other Peripherals and Catalog Items

8.2.1.1 Conflicts with SoC Peripherals
The i.MX35 platform contains two CSPI modules, but only the CSPI1 module is used on the i.MX35 3DS
board. No pad is provided to CSPI2 module.

8.2.2 Conflicts with 3-Stack Peripherals
No conflicts

8.3 Software Operation

8.3.1 Registry Settings
The following registry keys are required to properly load the CSPI module.
; CSPI Bus Driver
;
IF BSP_CSPIBUS1
[HKEY_LOCAL_MACHINE\Drivers\BuiltIn\CSPI1]
 "Prefix"="SPI"
 "Dll"="cspi.dll"
 "Index"=dword:1
ENDIF ; BSP_CSPIBUS1

IF BSP_CSPIBUS2
[HKEY_LOCAL_MACHINE\Drivers\BuiltIn\CSPI2]
 "Prefix"="SPI"
 "Dll"="cspi.dll"
 "Index"=dword:2
ENDIF ; BSP_CSPIBUS2

8.3.2 Communicating with the CSPI
The CSPI is a stream interface driver, and is thus accessed through the file system APIs. To communicate
using the CSPI, a handle to the device must first be created using the CreateFile function. Subsequent
commands to the device are issued using the DeviceIoControl function with IOCTL codes specifying the
desired operation. If preferred, the DeviceIoControl function calls can be replaced with macros that hide
the DeviceIoControl call details. The basic steps are detailed below.

8.3.3 Creating a Handle to the CSPI
Call the CreateFile function to open a connection to the CSPI device. A CSPI port must be specified in
this call. The format is “SPIX:”, with X being the number indicating the CSPI port. This number should
not exceed the number of CSPI instances on the platform. If an CSPI port does not exist, CreateFile
returns ERROR_FILE_NOT_FOUND.

Configurable Serial Peripheral Interface (CSPI) Driver

Windows Embedded CE 6.0 BSP Reference Manual

Freescale Semiconductor 8-3

To open a handle to the CSPI:
1. Insert a colon after the CSPI port for the first parameter, lpFileName

For example, specify SPI1: as the CSPI port
2. Specify FILE_SHARE_READ | FILE_SHARE_WRITE in the dwShareMode parameter. Multiple

handles to an CSPI port are supported by the driver.
3. Specify OPEN_EXISTING in the dwCreationDisposition parameter. This flag is required.
4. Specify FILE_FLAG_RANDOM_ACCESS in the dwFlagsAndAttributes parameter.

The following code example shows how to open a CSPI port.
 // Open the serial port.
 hSPI = CreateFile (L”SPI1:”, // name of device
 GENERIC_READ | GENERIC_WRITE, // access (read-write) mode
 FILE_SHARE_READ | FILE_SHARE_WRITE, // sharing mode
 NULL, // security attributes (ignored)
 OPEN_EXISTING, // creation disposition
 FILE_FLAG_RANDOM_ACCESS, // flags/attributes
 NULL); // template file (ignored)

8.3.4 Data Transfer Operations
The CSPI driver provides one command, SPIExchange, that facilitates performing both reads and writes
through the CSPI bus. The basic unit of data transfer in the CSPI driver is the CSPI_XCH_PKT, which
contains a RX buffer for reading data, a TX buffer for writing data and a CSPI_BUSCONFIG datum that
specifies the desired bus configuration and XCH method which is used during the SPI transmission. The
steps below detail explain the process of performing write and read operations through the CSPI bus.

Before these actions can be taken, a handle to the CSPI port must already be opened. Each of these steps
requires a call to the DeviceIoControl function. As parameters, the CSPI port handle, appropriate IOCTL
code, and other input and output parameters are required.

To perform an CSPI transfer:
1. Create a CSPI_XCH_PKT object and initialize the fields of the packet as follows:

a) Initialize a CSPI_BUSCONFIG datum to specify the bus parameters as CHANNEL SELECT,
DATA RATE, BURST LENGTH, SSPOL, SSCTL, POL, PHA, DRCTL, and specify the
method parameters for use/not use DMA, use/not use POLLING.

b) Set the pTxBuf field to the user buffer which the data is written.
c) Set the pRxBuf field to the user buffer which receives data, if does not care of the Rx data, set

the field to NULL.
d) Set the xchCnt field, for the 1-8 bit XCH, the xchCnt = bytes, for the 9-16 bit XCH, the xchCnt

= words, for the 17-32 bit XCH, the xchCnt = dwords.
e) If give the xchEvent parameter, also give the xchEventlength and include the tail Zero character.

Otherwise, set xchEvent to NULL, and xchEventlength to 0. When use xchEvent the XCH data
is queued inside driver.

2. Set the hDevice parameter to the previously acquired CSPI port handle.
3. Set the dwIoControlCode to the SPI_IOCTL_EXCHANGE IOCTL code.

Configurable Serial Peripheral Interface (CSPI) Driver

Windows Embedded CE 6.0 BSP Reference Manual

8-4 Freescale Semiconductor

4. Set the lpInBuffer to point to the CSPI_XCH_PKT object created in step 1. Set nInBufferSize to the
size of that packet object.

5. Set lpOutBuffer, lpBytesReturned, and lpOverlapped to NULL. Set nOutBufferSize to 0.

The following code example demonstrates how to perform a XCH transfer.
CSPI_BUSCONFIG_T buscnfg =
{
 0, //use channel 0
 16000000, //XCH speed 16M
 32, //data rate = 32bit
 FALSE, // SSCTL: Only one SPI burst will be transmitted.
 TRUE, // SSPOL: Active HIGH
 FALSE, // POL: Active high polarity
 FALSE, // PHA: Phase 0 operation
 0, // DRCTL: Don’t care SPI_RDY
 FALSE, //Don't use DMA
 FALSE //Don't polling
};

DWORD TxData[11];
DWORD RxData[11];

CSPI_XCH_PKT_T xchPkt =
{
 &buscnfg,
 TxData,
 RxData,
 11, // XCH to target SPI device 11 times
 NULL,
 0
}; // optional asynchronous event, recommended
hEvent = CreateEvent(0, FALSE, FALSE, L"RX_EVENT");
xchpkt.xchEvent = L"RX_EVENT";
xchpkt.xchEventLength = sizeof(L"RX_EVENT");

// Transfer data via CSPI
DeviceIoControl(hCSPI, // file handle to the driver
 CSPI_IOCTL_EXCHANGE, // I/O control code
 (PBYTE) &xchPkt, // in buffer
 sizeof(xchPkt), // in buffer size
 NULL, // out buffer
 0, // out buffer size
 NULL, // number of bytes returned
 NULL); // ignored (=NULL)

As a substitute for the DeviceIoControl call above, a SDK wrap function may be used to simplify the code.
The following is an example:

CSPIExchange(hCSPI, &xchPkt); // optional
WaitForSingleObject(hEvent, INFINITE); // Code for dealing received DATA

8.3.5 Closing the Handle to the CSPI
Call the CloseHandle function to close a handle to the CSPI after an application finishes using it.
CloseHandle has one parameter, which is the handle returned by the CreateFile function call that opened
the CSPI port.

Configurable Serial Peripheral Interface (CSPI) Driver

Windows Embedded CE 6.0 BSP Reference Manual

Freescale Semiconductor 8-5

8.3.6 Power Management
The primary method for limiting power consumption in the CSPI module is to gate off the input clock to
the module when the input CSPI clock is not needed. This is accomplished through the
DDKClockSetGatingMode function call. In all of the BSP use cases, the CSPI controller acts as a master
device. As a result, the CSPI clock can be turned off, whenever the module is not processing CSPI packets.

As described in the Data Transfer Operations section, the CSPI driver turns on the CSPI clocks and
enables the CSPI module before processing an CSPI XCH, and then disables and turns off clocks to the
CSPI module after the XCH has been done. This limits the time during which the CSPI module is
consuming power to the time during which the CSPI is actively performing data transfers.

8.3.6.1 PowerUp
This function is not implemented for the CSPI driver. Power to the CSPI module is managed as CSPI
transfer operations are processed. There are no additional power management steps needed for the CSPI.

8.3.6.2 PowerDown
This function is not implemented for the CSPI driver.

8.3.6.3 IOCTL_POWER_SET
This function is implemented for the CSPI driver. When D4 power mode is set, the driver switches its
operating mode to polling mode that does not produce interrupt events to BSP system. When leaving the
D4 power mode, the driver recovers its origin operating mode.

8.4 Restrictions
The following restrictions apply to the DMA XCH:

• The DMA XCH in CSPI only supports 32-bit data size that is DWORD aligned
• The DMA XCH size is restricted to maximum DMA buffer size, up to 5 Kbytes

8.5 Unit Test
The CSPI driver does not use the CETK for unit testing, but uses the test program described in the
following section for unit tests.

8.5.1 Building the Unit Tests
To build the CSPI tests, build an OS image for the desired configuration using these steps:

1. Within the Platform Builder, choose Build OS > Open Release Directory.
A DOS prompt is displayed.

2. Change to the CSPI Test directory: \WINCE600\SUPPORT_PDK1_7\TEST\CSPI
3. Enter set WINCEREL=1 on the command prompt and press return.

Configurable Serial Peripheral Interface (CSPI) Driver

Windows Embedded CE 6.0 BSP Reference Manual

8-6 Freescale Semiconductor

This copies the EXE to the flat release directory.
4. Input build -c to build CSPI test.

After the build completes, the CSPIAPP.EXE file is located in the $(_FLATRELEASEDIR) directory. To
run the application within VS2005, go to the Target menu option and select the Run Programs menu
option. This gives a list of applications that can be run on the OS. Select CSPIAPP.EXE from this list and
click on Run to run this application.

8.6 CSPI Driver API Reference

8.6.1 CSPI Driver IOCTLS
This section consists of descriptions for the CSPI I/O control codes (IOCTLs). These IOCTLs are used in
calls to DeviceIoControl to issue commands to the CSPI device. Only relevant parameters for the IOCTL
have a description provided.

8.6.1.1 CSPI_IOCTL_EXCHANGE
This DeviceIoControl request performs the transfer of data to a target device. An SPI_XCH_PKT object
is required, which contains CSPI bus configuration parameters and TX/RX data buffers. All of the required
information should be stored in the SPI_XCH_PKT passed in the lpInBuffer field.
Parameters
lpInBuffer Pointer to an SPI_XCH_PKT structure containing a pointer to bus configuration

parameters and TX/RX data buffers
nInBufferSize Size in bytes of the SPI_XCH_PKT

8.6.1.2 CSPI_IOCTL_ENABLE_LOOPBACK
This DeviceIoControl request sets the LOOPBACK flag in the CSPI hardware.

8.6.1.3 CSPI_IOCTL_DISABLE_LOOPBACK
This DeviceIoControl request clears the LOOPBACK flag in the CSPI hardware.

8.6.2 CSPI Driver SDK Wrapper

8.6.2.1 CSPIOpenHandle
This function retrieves the CSPI device handle.

HANDLE CSPIOpenHandle(
LPCWSTR lpDevName

);

Parameters
lpDevName The CSPI device name for retrieving handle from CreateFile()
Return Values Returns Handle for CSPI driver; returns INVALID_HANDLE_VALUE if failure

Configurable Serial Peripheral Interface (CSPI) Driver

Windows Embedded CE 6.0 BSP Reference Manual

Freescale Semiconductor 8-7

8.6.2.2 CSPICloseHandle
This function closes a handle of the CSPI stream driver.

BOOL CSPICloseHandle(
HANDLE hDev

);

Parameters
hDev The CSPI device handle retrieved from CreateFile()
Return Values Returns TRUE or FALSE. If the result is TRUE, the operation is successful

8.6.2.3 CSPIEnableLoopback
This function sets the CSPI controller in loopback mode to inspect if data value during XCH is correct.

BOOL CSPIEnbaleLoopback(
HANDLE hDev

);

Parameters
hDev The CSPI device handle retrieved from CreateFile()
Return Values Returns TRUE or FALSE. If the result is TRUE, the operation is successful

8.6.2.4 CSPIExchange
This function performs XCH operations.

BOOL CSPITransfer(
HANDLE hDev,
PCSPI_XCH_PKT_T pCspiXchPkt

);

Parameters
hDev The CSPI device handle retrieved from CreateFile()
pCspiXchPkt [in] Pointer to XCH packet with bus configuration parameters
Return Values Returns TRUE or FALSE. If the result is TRUE, the operation is successful

8.6.3 CSPI Driver Structures

8.6.3.1 CSPI_BUSCONFIG_T
This structure contains the bus configuration information needed during CSPI performs XCH.
// CSPI bus configuration
typedef struct
{
 UINT8 chipselect;
 UINT32 freq;
 UINT8 bitcount;
 BOOL sspol;
 BOOL ssctl;
 BOOL pol;
 BOOL pha;

Configurable Serial Peripheral Interface (CSPI) Driver

Windows Embedded CE 6.0 BSP Reference Manual

8-8 Freescale Semiconductor

 UINT8 drctl;
 BOOL usedma;
 BOOL usepolling;
} CSPI_BUSCONFIG_T, *PCSPI_BUSCONFIG_T;

8.6.3.2 CSPI_XCH_PKT_T
This structure contains an XCH buffer parameters to be used in data exchange to CSPI device.
// CSPI exchange packet
typedef struct
{
 PCSPI_BUSCONFIG_T pBusCnfg;
 LPVOID pTxBuf;
 LPVOID pRxBuf;
 UINT32 xchCnt;
 LPWSTR xchEvent;
 UINT32 xchEventLength;
} CSPI_XCH_PKT_T, *PCSPI_XCH_PKT_T;

Table 8-2. CSPI_BUSCONFIG_T Structure Members

Member Description

chipselect Select XCH channel, range 0-3

freq DATA band rate

bitcount Define bits used in a single XCH, range 1-32

sspol SPI SS Polarity Select. If FALSE, active low, if TURE, active high

ssctl SPI SS Wave Form Select. This bit controls the output wave form of SS signal
FALSE: Only one SPI bursts is transmitted
TRUE: Negate SS between SPI bursts. Multiple SPI bursts is transmitted

pol SPI Clock Polarity Control
FALSE: Active high polarity (0 = Idle)
TRUE: Active low polarity (1 = Idle)

pha SPI Clock/Data Phase Control
FALSE: Phase 0 operation
TRUE: Phase 1 operation

drctl DRCTL of CSPI XCH operation
00: Do not care SPI_RDY
01: Burst is triggered by failing edge of SPI_RDY
10: Burst is triggered by low level of SPI_RDY
11: RSV

usedma If TRUE, uses DMA mode

usepolling If TRUE, uses polling mode

Table 8-3. CSPI_XCH_PKT_T Structure Members

Member Description

pBusCnfg A pointer to CSPI bus configuration object

pTxBuf A pointer to Tx data buffer

pRxBuf A pointer to Rx data buffer

Configurable Serial Peripheral Interface (CSPI) Driver

Windows Embedded CE 6.0 BSP Reference Manual

Freescale Semiconductor 8-9

xchCnt Amount of XCH operation to SPI device

xchEvent Asynchronous access using the internal exchange queue

xchEventLength Event name length including tailing Zero

Table 8-3. CSPI_XCH_PKT_T Structure Members

Member Description

Configurable Serial Peripheral Interface (CSPI) Driver

Windows Embedded CE 6.0 BSP Reference Manual

8-10 Freescale Semiconductor

Windows Embedded CE 6.0 BSP Reference Manual

Freescale Semiconductor 9-1

Chapter 9
Controller Area Network (CAN) Driver
The CAN module provides the low level functionality of a CAN protocol according to the CAN 2.0B
protocol spec. The CAN module only supports Message Buffer mode.

9.1 CAN Driver Summary
Table 9-1 provides a summary of source code location, library dependencies and other BSP information.

9.2 Supported Functionality
The CAN driver enables the 3-Stack System to provide the following software and hardware support:

1. Supports the CAN communication protocol
2. Provides a stream interface driver implementing the programming interface defined in this

document
3. Supports two power management modes, full on and full off

9.3 Hardware Operation
Refer to the chapter on CAN in the Multimedia Applications Processor Reference Manual for detailed
operation and programming information.

Table 9-1. CAN Driver Summary

Driver Attribute Definition

Target Platform iMX35-3DS-PDK1_7

Target SOC N/A

SOC Common Path ..\PLATFORM\COMMON\SRC\SOC\COMMON_FSL_V2_PDK1_7\CANBUS

SOC Specific Path N/A

Platform Specific Path ..\PLATFORM\<Target Platform>\SRC\DRIVERS\CANBUS

Driver DLL can.dll

SDK Library cansdk.lib

Catalog Item Third Party > BSPs > Freescale <Target Platform> > Device Drivers > CAN Bus

SYSGEN Dependency N/A

BSP Environment Variables BSP_CANBUS1=1
BSP_CANBUS2=1

Controller Area Network (CAN) Driver

Windows Embedded CE 6.0 BSP Reference Manual

9-2 Freescale Semiconductor

9.3.1 Conflicts with Other Peripherals and Catalog Items

9.3.1.1 Conflicts with SoC Peripherals
No conflicts.

9.3.1.2 Conflicts with 3-Stack Peripherals
On the 3-Stack board, CAN1 pin conflicts with the USB high speed device. Do not enable the USB host
device driver when CAN1 driver is enabled.

9.4 Software Operation

9.4.1 Communicating with the CAN
The CAN driver is a stream interface driver, and is thus accessed through the file system APIs. To
communicate using the CAN, a handle to the device must first be created using the CreateFile function.
Subsequent commands to the device are issued using the DeviceIoControl function with IOCTL codes
specifying the desired operation. If preferred, the DeviceIoControl function calls can be replaced with
macros that hide the DeviceIoControl call details. The basic steps are detailed below.

9.4.2 Creating a Handle to the CAN
Call the CreateFile function to open a connection to the CAN device. A CAN port must be specified in
this call. The format is “CANX”, with X being the number indicating the CAN port. This number should
not exceed the number of CAN instances on the platform. If an CAN port does not exist, CreateFile
returns ERROR_FILE_NOT_FOUND.

To open a handle to the CAN:
1. Insert a colon after the CAN port for the first parameter, lpFileName. For example, specify CAN1:

as the CAN port.
2. Specify FILE_SHARE_READ | FILE_SHARE_WRITE in the dwShareMode parameter. Multiple

handles to an CAN port are supported by the driver.
3. Specify OPEN_EXISTING in the dwCreationDisposition parameter. This flag is required.
4. Specify FILE_FLAG_RANDOM_ACCESS in the dwFlagsAndAttributes parameter.

The following code example shows how to open an CAN1 port.
// Open the CAN port.
hCAN = CreateFile (CAN1_FID, // name of device
 GENERIC_READ | GENERIC_WRITE, // access (read-write) mode
 FILE_SHARE_READ | FILE_SHARE_WRITE, // sharing mode
 NULL, // security attributes (ignored)
 OPEN_EXISTING, // creation disposition
 FILE_FLAG_RANDOM_ACCESS, // flags/attributes
 NULL); // template file (ignored)

Controller Area Network (CAN) Driver

Windows Embedded CE 6.0 BSP Reference Manual

Freescale Semiconductor 9-3

Before writing to or reading from an CAN port, the port must be configured. When an application opens
an CAN port, it uses the default configuration settings, which might not be suitable for the device at the
other end of the connection.

9.4.3 Configuring the CAN
Configuring the CAN port for communications involves one main operation: setting the CAN for transmit
or receiver mode. Before this action can be taken, a handle to the CAN port must already be opened. Each
of these steps requires a call to the DeviceIoControl function. As parameters, the CAN port handle,
appropriate IOCTL code, and other input and output parameters are required.

To configure an CAN port:
1. Set the hDevice parameter to the previously acquired CAN port handle.
2. Set the dwIoControlCode to the following IOCTL code: CAN_IOCTL_SET_CAN_MODE
3. Set the lpInBuffer to point to the variable to use for the CAN port setting. Set nInBufferSize to the

size of that variable.
4. Set lpOutBuffer, lpBytesReturned, and lpOverlapped to NULL. Set nOutBufferSize to 0.

The following code example shows how to configure the CAN port.
// Set CAN mode
 DeviceIoControl(hCAN, // file handle to the driver

CAN_IOCTL_SET_CAN_MODE, // I/O control code
&ChangedMode, // in buffer
sizeof(DWORD) // in buffer size
NULL, // out buffer
0, // out buffer size
NULL, // number of bytes returned
NULL); // ignored (=NULL)

As a substitute for the DeviceIoControl calls above, sdk may be used to simplify the code. The following
code shows an example:
CANSetMode(HANDLE hCAN,DWORD index,CAN_MODE mode);

9.4.4 Data Transfer Operations
The CAN driver provides one command, Transfer, that facilitates performing both reads and writes
through the CAN. The basic unit of data transfer in the CAN driver is the CAN_PACKET, which contains
a buffer for reading or writing data and a flag that specifies whether the desired operation is a Read or a
Write. An array of these packets makes up an CAN_TRANSFER_BLOCK object, which is needed to
perform a Transfer operation. The steps below detail the process of performing write and read operations
through the CAN.

Before these actions can be taken, a handle to the CAN port must already be opened. Each of these steps
requires a call to the DeviceIoControl function. As parameters, the CAN port handle, appropriate IOCTL
code, and other input and output parameters are required.

Controller Area Network (CAN) Driver

Windows Embedded CE 6.0 BSP Reference Manual

9-4 Freescale Semiconductor

To perform an CAN transfer:
1. Create an array of CAN_PACKET objects and initialize the fields of each packet as follows:

a) Set the byIndex field to the message buffer index for exchange data, the maximun value is 64.
b) Set the byRW field to CAN_RW_WRITE to specify that the CAN operation is a Write, or

CAN_RW_READ to specify that the CAN operation is a Read.
c) Set the format field to CAN_STANDARD to specify that the CAN frame format is a standard,

or CAN_EXTENDED to specify that the CAN frame format is a extended.
d) Set the frame field to CAN_DATA to specify that the CAN RTR format is a data, or

CAN_REMOTE to specify that the CAN RTR frame format is a remote.
e) Set the ID field to the message buffer ID for exchange data, for standard frame only supports

11 bit frame identification, extended frame can support 29 bit frame identification.
f) Set the wLen field to size, in bytes, of the read or write buffer. This indicates the number of

bytes to write or read.
g) Set the pbybuf field to the read or write buffer.
h) Set the lpiResult field to point to an integer that holds the return value from the write operation.

2. Set the hDevice parameter to the previously acquired CAN port handle.
3. Set the dwIoControlCode to the CAN_IOCTL_TRANSFER IOCTL code.
4. Set the lpInBuffer to point to the CAN_TRANSFER_BLOCK object created in step 1. Set

nInBufferSize to the size of that packet object.
5. Set lpOutBuffer, lpBytesReturned, and lpOverlapped to NULL. Set nOutBufferSize to 0.
6. After calling the DeviceIoControl function, check the lpiResult field to ensure that the operation

was successful. If lpiResult points to the CAN_NO_ERROR value, the operation was successful.
Otherwise, there was an error.

The following code example demonstrates how to perform a transfer that contains one write.
CAN_PACKET cp = {0};
CAN_TRANSFER_BLOCK ctb = {0};

cp.byIndex=(DWORD)lpParameter;
cp.byRW=CAN_RW_READ;
cp.fromat=CAN_EXTENDED;
cp.frame =CAN_DATA;
cp.ID=0x1234456;
cp.wLen=8;
cp.pbyBuf=(PBYTE)data;
cp.lpiResult=&ret;
ctb.pCANPackets=&cp;
ctb.iNumPackets=1;

 // Transfer data via CAN
if (!DeviceIoControl(hCAN, // file handle to the driver
 CAN_IOCTL_TRANSFER, // I/O control code
 pCANTransferBlock, // in buffer
 sizeof(CAN_TRANSFER_BLOCK), // in buffer size
 NULL, // out buffer
 0, // out buffer size
 NULL, // pointer to number of bytes returned

Controller Area Network (CAN) Driver

Windows Embedded CE 6.0 BSP Reference Manual

Freescale Semiconductor 9-5

 NULL)) // ignored (=NULL)
 {
 DEBUGMSG(ZONE_ERROR,
 (TEXT("%s: CAN_IOCTL_TRANSFER failed!\r\n"), __WFUNCTION__));
 return FALSE;
 }

As a substitute for the DeviceIoControl call above, the SDK function as following:
CANTransfer(g_hReader, &ctb);

9.4.5 Closing the Handle to the CAN
Call the CloseHandle function to close a handle to the CAN when an application is done using it.
CloseHandle has one parameter, which is the handle returned by the CreateFile function call that opened
the CAN port.

9.4.6 Power Management

9.4.6.1 PowerUp
This function is not implemented for the CAN driver.

9.4.6.2 PowerDown
This function is not implemented for the CAN driver.

9.4.6.3 IOCTL_POWER_CAPABILITIES
The power management capabilities are handled with the Power Manager through this IOCTL. The CA N
module supports only two power states: D0 and D4.

9.4.6.4 IOCTL_POWER_SET
This IOCTL requests a change from one device power state to another. D0 and D4 are the only two
supported CEDEVICE_POWER_STATE in the CAN driver. Any request that is not D0 is changed to a
D4 request and results in the system entering into suspend state, while for a value of D0 the system is
resumed. For all platforms, the following registry entry must be defined:
"IClass"="{A32942B7-920C-486b-B0E6-92A702A99B35}"

9.4.6.5 IOCTL_POWER_GET
This IOCTL returns the current device power state. By design, the Power Manager knows the device
power state of all power-manageable devices. It does not generally issue an IOCTL_POWER_GET call
to the device unless an application calls GetDevicePower with the POWER_FORCE flag set.

9.4.7 CAN Registry Settings
The following registry keys are required to properly load the CAN1 and CAN2 module.

Controller Area Network (CAN) Driver

Windows Embedded CE 6.0 BSP Reference Manual

9-6 Freescale Semiconductor

IF BSP_CANBUS1
[HKEY_LOCAL_MACHINE\Drivers\BuiltIn\CAN1]
 "Prefix"="CAN"
 "Dll"="can.dll"
 "Index"=dword:1
 "Order"=dword:9
 "IClass"="{A32942B7-920C-486b-B0E6-92A702A99B35}"
ENDIF ; BSP_CANBUS1

IF BSP_CANBUS2
[HKEY_LOCAL_MACHINE\Drivers\BuiltIn\CAN2]
 "Prefix"="CAN"
 "Dll"="can.dll"
 "Index"=dword:2
 "Order"=dword:9
 "IClass"="{A32942B7-920C-486b-B0E6-92A702A99B35}"
ENDIF ; BSP_CANBUS2

9.5 Unit Test
The CAN CETK test cases verify the functionality of the CAN driver with the CAN controller. The CAN
driver can also be used to verify the functionality of the CAN driver.

9.5.1 Unit Test Hardware
The CANBUS1 controller should be connected to the CANBUS2 controller and loopback is tested
between the two CANBUS controllers. The CANBUS controllers can be connected directly; you do not
need to connect an external transceiver between the two controllers. The four CANBUS controller pins
should be connected together directly.

9.5.2 Unit Test Software
Table 9-2 lists the required software to run the unit tests.

9.5.3 Building the Unit Tests
To build the CAN tests, build an OS image for the desired configuration using these steps:

1. Within the Platform Builder, choose Build OS > Open Release Directory.

Table 9-2. Software Requirements

Requirement Description

Tux.exe Tux test harness, which is needed for executing the test

Kato.dll Kato logging engine, which is required for logging test data

Ktux.dll Ktux.dll which is required to run in kernel mode

Tooltalk.dll Library required by Tux.exe and Kato.dll. Handles the transport between the target device and
the development workstation

CanTest.dll Test .dll file

Controller Area Network (CAN) Driver

Windows Embedded CE 6.0 BSP Reference Manual

Freescale Semiconductor 9-7

A DOS prompt is displayed.
2. Change to the CAN Tests directory: \WINCE600\SUPPORT_PDK1_7\TEST\CANBUS\CANFunc

3. Enter set WINCEREL=1 on the command prompt and press return.
This copies the file to the flat release directory.

4. Input build -c to build the CAN test.

After the build completes, the cantest.dll file is located in the $(_FLATRELEASEDIR) directory.

9.5.4 Running the Unit Tests
The command line for running the tests is:

tux -o -n -d cantest

CAN tests do not contain any test specific command line options.

Controller Area Network (CAN) Driver

Windows Embedded CE 6.0 BSP Reference Manual

9-8 Freescale Semiconductor

Windows Embedded CE 6.0 BSP Reference Manual

Freescale Semiconductor 10-1

Chapter 10
Chip Support Package Driver Development Kit (CSPDDK)
The Chip Support Package Driver Development Kit (CSPDDK) provides an interface to access peripheral
features and SOC configurations shared by the system. The CSPDDK executes as a device driver DLL
and exports functions for the following SCC components:

• System clocking (CCM)
• GPIO
• DMA (SDMA)
• Pin multiplexing and pad configuration (IOMUX)

10.1 CSPDDK Driver Summary
Table 10-1 provides a summary of source code location, library dependencies and other BSP information.

10.2 Supported Functionality
The CSPDDK meets the following requirements:

1. Supports an interface that allows synchronized inter-process access to the following set of shared
SoC resources:
— GPIO (DDK_GPIO)
— SDMA (DDK_SDMA)
— IOMUX (DDK_IOMUX)

Table 10-1. CSPDDK Driver Summary

Driver Attribute Definition

Target Platform iMX35-3DS-PDK1_7

Target SOC MX35_FSL_V2_PDK1_7

SOC Common Path ..\PLATFROM\COMMON\SRC\SOC\COMMON_FSL_V2_PDK1_7\CSPDDK

SOC Specific Path ..\PLATFORM\COMMON\SRC\SOC\<Target SOC>\CSPDDK

Platform Driver Path ..\PLATFORM\<Target Platform>\SRC\DRIVERS\CSPDDK

Driver DLL cspddk.dll

SDK Library N/A

Catalog Item N/A

SYSGEN Dependency N/A

BSP Environment Variables BSP_NOCSPDDK=

Chip Support Package Driver Development Kit (CSPDDK)

Windows Embedded CE 6.0 BSP Reference Manual

10-2 Freescale Semiconductor

— CCM (DDK_CLK)
2. Exposes exported functions that can be invoked without incurring a system call (for example, not

a stream driver)

10.3 Hardware Operation
Refer to the Applications Processor Reference Manual for detailed operation and programming
information.

10.3.1 Conflicts with Other Peripherals and Catalog Items

10.3.1.1 Conflicts with SoC Peripherals
Refer to the i.MX35 hardware specification document for possible conflicts.

10.3.1.2 Conflicts with Board Peripherals
No conflicts.

10.4 Software Operation

10.4.1 Communicating with the CSPDDK
The CSPDDK DLL does not require any special initialization. All of the initialization required by the
CSPDDK is performed when the DLL is loaded into the respective process space. Drivers that want to
utilize the CSPDDK simply need to link to the CSPDDK export library and invoke the exported functions.

10.4.2 Compile-Time Configuration Options
The CSPDDK exposes compile-time options for configuring the SDMA support. In some cases, these
compilation variables are also leveraged by driver code to expose a central point of controlling SDMA
functionality. Table 10-2 describes the available CSPDDK compile options.

Table 10-2. CSPDDK Compile Options

Compilation Variable Header File Description

IMAGE_WINCE_DDKSDMA_IRAM_PA_STAR
T

image_cfg.h Physical starting address in internal RAM (IRAM) where the
shared SDMA data structures are located.

IMAGE_WINCE_DDKSDMA_IRAM_OFFSET image_cfg.h Offset in bytes from the base of IRAM for the SDMA data
structures.

IMAGE_WINCE_DDKSDMA_IRAM_SIZE image_cfg.h Size in bytes of the IRAM reserved for SDMA data structures.

IMAGE_WINCE_CSPDDK_RAM_PA_START image_cfg.h Physical starting address in external RAM where the shared
CSPDDK data structures are located. The DDK_CLK and
DDK_SDMA uses space from this region. This address must
correspond to the region reserved in config.bib.

Chip Support Package Driver Development Kit (CSPDDK)

Windows Embedded CE 6.0 BSP Reference Manual

Freescale Semiconductor 10-3

The CSPDDK manages the allocation of buffer descriptor chains for drivers and applications. The
allocation scheme first attempts to allocate the buffer descriptor chain from a fixed memory pool within
the region specified by BSP_SDMA_MC0PTR. If the CSPDDK is unable to allocate enough storage from
this fixed pool, it dynamically allocates the necessary storage from external memory.

10.4.3 Registry Settings
There are no registry settings that need to be modified to use the CSPDDK driver. Since most drivers need
to use CSPDDK functionality, the CSPDDK should be one of the first DLLs loaded by Device Manager.

10.4.4 Power Management
The CSPDDK exposes interfaces that allow drivers to self-manage power consumption by controlling
clocking and pin configuration. The CSPDDK executes as a shared DLL and does not implement the
Power Manager driver IOCTLs or the PowerUp/PowerDown stream interface. However, the CSPDDK
functions are invoked by other drivers during power state transitions.

IMAGE_WINCE_CSPDDK_RAM_OFFSET image_cfg.h Offset in bytes from the base of external RAM for the shared
CSPDDK data structures.

IMAGE_WINCE_CSPDDK_RAM_SIZE image_cfg.h Size in bytes of the external RAM reserved for CSPDDK data
structures. This size must correspond to the region reserved
in config.bib.

IMAGE_WINCE_DDKSDMA_RAM_PA_START image_cfg.h Physical starting address in external RAM where the shared
DDK_SDMA data structures are located. This starting address
must fall within the region reserved by the
IMAGE_WINCE_CSPDDK definitions.

IMAGE_WINCE_DDKSDMA_RAM_SIZE image_cfg.h Size in bytes of the external RAM reserved for DDK_SDMA
data structures. This size must fall within the region reserved
by the IMAGE_WINCE_CSPDDK definitions.

IMAGE_WINCE_DDKCLK_RAM_PA_START image_cfg.h Physical starting address in external RAM where the shared
DDK_CLK data structures are located. This starting address
must fall within the region reserved by the
IMAGE_WINCE_CSPDDK definitions.

IMAGE_WINCE_DDKCLK_RAM_SIZE image_cfg.h Size in bytes of the external RAM reserved for DDK_CLK data
structures. This size must fall within the region reserved by the
IMAGE_WINCE_CSPDDK definitions.

BSP_SDMA_MC0PTR bsp_cfg.h Starting address for the shared SDMA data structures. Can
only be set to IMAGE_WINCE_SDMA_PA_START to use
external RAM.

BSP_SDMA_CHNPRI_xxx bsp_cfg.h Assigns a SDMA channel priority to the respective peripheral.
Refer to the individual driver chapters for more information on
the specific priorities.

BSP_SDMA_SUPPORT_xxx bsp_cfg.h Boolean to specifies if SDMA-based transfers are enabled for
each respective peripheral. Refer to the individual driver
chapters for more information on the DMA support provided.

Table 10-2. CSPDDK Compile Options (continued)

Chip Support Package Driver Development Kit (CSPDDK)

Windows Embedded CE 6.0 BSP Reference Manual

10-4 Freescale Semiconductor

10.5 Unit Test
Due to the heavy use of the CSPDDK routines by other drivers on the system, the CSPDDK tests are
currently limited to testing the interface exposed by the DDK_SDMA.

10.5.1 Unit Test Hardware
Table 10-3 lists the required hardware to run the unit tests.

10.5.2 Unit Test Software
Table 10-4 lists the required software to run the unit tests.

10.5.3 Building the Unit Tests
To build the CSPDDK tests, build an OS image for the desired configuration using these steps:

1. Within the Platform Builder, choose Build OS > Open Release Directory.
A DOS prompt is displayed.

2. Change to the SDMA Tests directory: \WINCE600\SUPPORT_PDK1_7\TEST\SDMA
3. Enter set WINCEREL=1 on the command prompt and press return.

This copies the DLL to the flat release directory.
4. Input build -c to build the CSPDDK test.

After the build completes, the SDMATEST.dll file is located in the $(_FLATRELEASEDIR) directory.

10.5.4 Running the Unit Tests
The command line for running the DDK_SDMA tests is tux –o –d SDMATEST -n. The CSPDDK_SDMA
tests do not contain any test-specific command line options. Table 10-5 describes the test cases contained
in the DDK_SDMA tests.

Table 10-3. Hardware Requirements

Requirement Description

No additional hardware required

Table 10-4. Software Requirements

Requirement Description

Tux.exe Tux test harness, which is needed for executing the test

Ktux.dll Required to run tests in kernel mode

Kato.dll Kato logging engine, which is required for logging test data

Tooltalk.dll Library required by Tux.exe and Kato.dll. Handles the transport between the
target device and the development workstation

SDMATEST.dll Test .dll file

Chip Support Package Driver Development Kit (CSPDDK)

Windows Embedded CE 6.0 BSP Reference Manual

Freescale Semiconductor 10-5

10.6 CSPDDK DLL Reference

10.6.1 CSPDDK DLL System Clocking (DDK_CLK) Reference
The DDK_CLK interface allows device drivers to configure and query system clock settings.

10.6.1.1 DDK_CLK Enumerations

10.6.1.2 DDK_CLK Functions

10.6.1.2.1 DDKClockSetGatingMode

This function sets the clock gating mode of the peripheral.
BOOL DDKClockSetGatingMode(

DDK_CLOCK_GATE_INDEX index,
DDK_CLOCK_GATE_MODE mode)

Parameters
index [in] Index for referencing the peripheral clock gating control bits

Table 10-5. DDK_SDMA Test Cases

Test Case Description

SDMA Open/Close Channel Tests open/close operation of the SDMA virtual channels. Attempts to open all available
channels and verify that the correct virtual channel ID is returned. All successfully
opened channels are then closed.

SDMA ExtMemory-to-ExtMemory Tests the SDMA ability to perform a external memory to external memory transfer. A
virtual channel is requested and then DMA buffers are used to define a memory transfer.
The transfer is done in both directions and the results are verified. This transfer is
interrupt-driven and uses the standard OAL interrupt registration procedures normally
used by device drivers.

Table 10-6. DDK_CLK Enumerations

Programming Element Description

DDK_CLOCK_SIGNAL Clock signal name for querying/setting clock configuration

DDK_CLOCK_GATE_INDEX Index for referencing the corresponding clock gating control bits in the CCM

DDK_CLOCK_GATE_MODE Clock gating modes supported by CCM clock gating registers

DDK_CLOCK_BAUD_SOURCE Input source for baud clock generation

DDK_CLOCK_CKO_SRC Clock output source one (CKO) signal selections

DDK_CLOCK_ACM Module name of Audio Clock Mux (ACM) configuration

DDK_CLOCK_ACM_SRC Clock source selections of Audio Clock Mux (ACM) configuration

DDK_DVFC_SETPOINT Frequency/voltage setpoints supported by the DVFC driver

Chip Support Package Driver Development Kit (CSPDDK)

Windows Embedded CE 6.0 BSP Reference Manual

10-6 Freescale Semiconductor

mode [in] Requested clock gating mode for the peripheral
Return Values Returns TRUE if successful, otherwise returns FALSE

10.6.1.2.2 DDKClockGetGatingMode

This function retrieves the clock gating mode of the peripheral.
BOOL DDKClockGetGatingMode(

DDK_CLOCK_GATE_INDEX index,
DDK_CLOCK_GATE_MODE *pMode)

Parameters
index [in] Index for referencing the peripheral clock gating control bits
pMode [out] Current clock gating mode for the peripheral
Return Values Returns TRUE if successful, otherwise returns FALSE

10.6.1.2.3 DDKClockGetFreq

This function retrieves the clock frequency in Hz for the specified clock signal.
BOOL DDKClockGetFreq(

DDK_CLOCK_SIGNAL sig,
UINT32 *freq)

Parameters
sig [in] Clock signal
freq [out] Current frequency in Hz
Return Values Returns TRUE if successful, otherwise returns FALSE

10.6.1.2.4 DDKClockConfigBaud

This function configures the input source clock and dividers for the specified CCM peripheral baud clock
output.

BOOL DDKClockConfigBaud(
DDK_CLOCK_SIGNAL sig,
DDK_CLOCK_BAUD_SOURCE src,
UINT32 preDiv,
UINT32 postDiv)

Parameters
sig [in] Clock signal to configure
src [in] Selects the input clock source
preDiv [in] Specifies the value programmed into the baud clock predivider
postDiv [in] Specifies the value programmed into the baud clock postdivider
Return Values Returns TRUE if successful, otherwise returns FALSE

10.6.1.2.5 DDKClockConfigACM

This function configures the Audio Clock Mux (ACM) source selections for the specified Audio module.

Chip Support Package Driver Development Kit (CSPDDK)

Windows Embedded CE 6.0 BSP Reference Manual

Freescale Semiconductor 10-7

BOOL DDKClockConfigACM(
DDK_CLOCK_ACM module,
DDK_CLOCK_ACM_SRC src)

Parameters
module [in] Audio module to configure
src [in] Selects the ACM source
Return Values Returns TRUE if successful, otherwise returns FALSE

10.6.1.2.6 DDKClockSetCKO

This function configures the clock output source (CKO) signal.

BOOL DDKClockSetCKO(
BOOL bEnable,
DDK_CLOCK_CKO_SRC src,
UINT32 div1,
UINT32 preDiv,
UINT32 postDiv)

Parameters
bEnable [in] Set to TRUE to enable CKO output. Set to FALSE to disable CKO output
src [in] Selects the CKO source signal
div1 [in] Specifies the CKO_DIV1, either 0 or 1
preDiv [in] Specifies the CKO_DIV[5:3]
postDiv [in] Specifies the CKO_DIV[2:0]
Return Values Returns TRUE if successful, otherwise returns FALSE

10.6.1.2.7 DDKClockSetpointRequest

This function requests the DVFC driver to transition to a setpoint that meets or exceeds the voltage and
clocking requirements of the setpoint being requested. This function optionally blocks until the setpoint
request has been granted.

BOOL DDKClockSetpointRequest(
DDK_DVFC_SETPOINT setpoint,
DDK_DVFC_DOMAIN domain,
BOOL bBlock)

Parameters
setpoint [in] Specifies the setpoint to be requested
domain [in] Specifies DVFC domain for which the setpoint is requested
bBlock [in] Set TRUE to block until the setpoint has been granted; set FALSE to return

immediately after the request has been submitted
Return Values Returns TRUE if successful, otherwise returns FALSE

Chip Support Package Driver Development Kit (CSPDDK)

Windows Embedded CE 6.0 BSP Reference Manual

10-8 Freescale Semiconductor

10.6.1.2.8 DDKClockSetpointRelease

This function releases a setpoint previously requested using DDKClockSetpointRequest.
BOOL DDKClockSetpointRelease(

DDK_DVFC_SETPOINT setpoint,
DDK_DVFC_DOMAIN domain)

Parameters
setpoint [in] Specifies the setpoint to be released
domain [in] Specifies DVFC domain for which the setpoint is requested
Return Values Returns TRUE if successful, otherwise returns FALSE

10.6.1.3 DDK_CLK Examples
Example 10-1. CSPDDK Clock Gating

#include “csp.h” // Includes CSPDDK definitions

// Enable I2C1 peripheral clock
DDKClockSetGatingMode(DDK_CLOCK_GATE_INDEX_I2C1, DDK_CLOCK_GATE_MODE_ENABLED_ALL);

// Disable I2C1 peripheral clock
DDKClockSetGatingMode(DDK_CLOCK_GATE_INDEX_I2C1, DDK_CLOCK_GATE_MODE_DISABLED);

Example 10-2. CSPDDK Clock Rate Query

#include “csp.h” // Includes CSPDDK definitions

UINT32 freq;

// Query the current bus clock
DDKClockGetFreq(DDK_CLOCK_SIGNAL_AHB, &freq);

10.6.2 CSPDDK DLL GPIO (DDK_GPIO) Reference
The DDK_GPIO interface allows device drivers to utilize the GPIO ports. Each GPIO port has a single
interrupt request line that is shared for all port pins. In addition, configuration, status, and data registers
are shared. The DDK_GPIO provides safe access to the shared GPIO resources.

10.6.2.1 DDK_GPIO Enumerations
Table 10-7. DDK_GPIO Enumerations

Programming Element Description

DDK_GPIO_PORT GPIO module instance

DDK_GPIO_DIR Direction the GPIO pins

DDK_GPIO_INTR Detection logic used for generating GPIO interrupts

Chip Support Package Driver Development Kit (CSPDDK)

Windows Embedded CE 6.0 BSP Reference Manual

Freescale Semiconductor 10-9

10.6.2.2 DDK_GPIO Functions

10.6.2.2.1 DDKGpioSetConfig

This function sets the GPIO configuration (direction and interrupt) for the specified pin.
BOOL DDKGpioSetConfig(

DDK_GPIO_PORT port,
UINT32 pin,
DDK_GPIO_DIR dir,
DDK_GPIO_INTR intr)

Parameters
port [in] GPIO module instance
pin [in] GPIO pin [0-31]
dir [in] Direction for the pin
intr [in] Interrupt configuration for the pin
Return Values Returns TRUE if successful, otherwise returns FALSE

10.6.2.2.2 DDKGpioWriteData

This function writes the GPIO port data to the specified pins.
BOOL DDKGpioWriteData(

DDK_GPIO_PORT port,
UINT32 portMask,
UINT32 data)

Parameters
port [in] GPIO module instance
portMask [in] Bit mask for data port pins to be written
data [in] Data to be written
Return Values Returns TRUE if successful, otherwise returns FALSE

10.6.2.2.3 DDKGpioWriteDataPin

This function writes the GPIO port data to the specified pin.
BOOL DDKGpioWriteDataPin(

DDK_GPIO_PORT port,
UINT32 pin,
UINT32 data)

Parameters
port [in] GPIO module instance
pin [in] GPIO pin [0-31]
data [in] Data to be written [0 or 1]
Return Values Returns TRUE if successful, otherwise returns FALSE

Chip Support Package Driver Development Kit (CSPDDK)

Windows Embedded CE 6.0 BSP Reference Manual

10-10 Freescale Semiconductor

10.6.2.2.4 DDKGpioReadData

This function reads the GPIO port data from the specified pins.
BOOL DDKGpioReadData(

DDK_GPIO_PORT port,
UINT32 portMask,
UINT32 *pData)

Parameters
port [in] GPIO module instance
portMask [in] Bit mask for data port pins to be read
pData [out] Points to buffer for data read
Return Values Returns TRUE if successful, otherwise returns FALSE

10.6.2.2.5 DDKGpioReadDataPin

This function reads the GPIO port data from the specified pin.
BOOL DDKGpioReadDataPin (

DDK_GPIO_PORT port,
UINT32 pin,
UINT32 *pData)

Parameters
port [in] GPIO module instance
pin [in] GPIO pin [0–31]
pData [out] Points to buffer for data read; data is shifted to the LSB
Return Values Returns TRUE if successful, otherwise returns FALSE

10.6.2.2.6 DDKGpioReadIntr

This function reads the GPIO port interrupt status for the specified pins.
BOOL DDKGpioReadIntr(

DDK_GPIO_PORT port,
UINT32 portMask,
UINT32 *pStatus)

Parameters
port [in] GPIO module instance
portMask [in] Bit mask for interrupt status bits to be read
pStatus [out] Points to buffer for interrupt status
Return Values Returns TRUE if successful, otherwise returns FALSE

10.6.2.2.7 DDKGpioReadIntrPin

This function reads the GPIO port interrupt status from the specified pin.
BOOL DDKGpioReadIntrPin(

DDK_GPIO_PORT port,
UINT32 pin,
UINT32 *pStatus)

Chip Support Package Driver Development Kit (CSPDDK)

Windows Embedded CE 6.0 BSP Reference Manual

Freescale Semiconductor 10-11

Parameters
port [in] GPIO module instance
pin [in] GPIO pin [0–31]
pStatus [out] Points to buffer for interrupt status; status is shifted to the LSB
Return Values Returns TRUE if successful, otherwise returns FALSE

10.6.2.2.8 DDKGpioClearIntrPin

This function clears the GPIO interrupt status for the specified pin.
BOOL DDKGpioClearIntrPin(

DDK_GPIO_PORT port,
UINT32 pin)

Parameters
port [in] GPIO module instance
pin [in] GPIO pin [0–31]
Return Values Returns TRUE if successful, otherwise returns FALSE

10.6.2.3 DDK_GPIO Example
Example 10-3. CSPDDK GPIO Configuration

#include “csp.h” // Includes CSPDDK definitions

// Configure GPIO1_3 as a level-sensitive interrupt input
DDKGpioSetConfig(DDK_GPIO_PORT1, 3, DDK_GPIO_DIR_IN, DDK_GPIO_INTR_HIGH_LEV);

// Clear interrupt status for GPIO1_3
DDKGpioClearIntrPin(DDK_GPIO_PORT1, 3);

10.6.3 CSPDDK DLL IOMUX (DDK_IOMUX) Reference
The DDK_IOMUX interface allows device drivers to configure signal multiplexing and pad configuration.
This control resides inside the IOMUX registers and is shared for the entire system. The DDK_IOMUX
support allows drivers to dynamically update and query their signal multiplexing and pad configuration.

10.6.3.1 DDK_IOMUX Enumerations
Table 10-8. DDK_IOMUX Enumerations

Programming Element Description

DDK_IOMUX_PIN Functional pin name used to configure the IOMUX. The enum value corresponds to the
index to the SW_MUX_CTL registers

DDK_IOMUX_PIN_MUXMODE Mux mode for a signal

Chip Support Package Driver Development Kit (CSPDDK)

Windows Embedded CE 6.0 BSP Reference Manual

10-12 Freescale Semiconductor

10.6.3.2 DDK_IOMUX Functions

10.6.3.2.1 DDKIomuxSetPinMux

This function sets the IOMUX configuration for the specified IOMUX pin.
BOOL DDKIomuxSetPinMux(

DDK_IOMUX_PIN pin,
DDK_IOMUX_PIN_MUXMODE muxmode,
DDK_IOMUX_PIN_SION sion)

Parameters
pin [in] Functional pin name used to select the pin that is configured
muxmode [in] Mux mode configuration
sion [in] Sion configuration
Return Values Returns TRUE if successful, otherwise returns FALSE

10.6.3.2.2 DDKIomuxGetPinMux

This function gets the IOMUX configuration for the specified IOMUX pin.
BOOL DDKIomuxGetPinMux(

DDK_IOMUX_PIN pin,
DDK_IOMUX_PIN_MUXMODE *pMuxmode,
DDK_IOMUX_PIN_SION *pSion)

Parameters
pin [in] Functional pin name used to select the pin that is returned

DDK_IOMUX_PIN_SION Configuration on Software Input On Field to force the selected mux mode Input path no
matter of mux mode functionality. If no SION bit for a PIN, the
DDK_IOMUX_PIN_SION_NULL should be set

DDK_IOMUX_PAD Functional pad name used to configure the IOMUX. The enum value corresponds to the
bit offset within the SW_PAD_CTL registers

DDK_IOMUX_PAD_SLEW Slew rate for a pad; if no SLEW bit for a PAD, the DDK_IOMUX_PAD_SLEW_NULL
should be set

DDK_IOMUX_PAD_DRIVE Drive strength for a pad; if no DRIVE bit for a PAD, the DDK_IOMUX_PAD_DRIVE_NULL
should be set.

DDK_IOMUX_PAD_OPENDRAIN Open drain for a pad; if no ODE bit for a PAD, the
DDK_IOMUX_PAD_OPENDRAIN_NULL should be set

DDK_IOMUX_PAD_HYSTERESIS Hysteresis mode for a pad; if no HYS bit for a PAD, the
DDK_IOMUX_PAD_HYSTERESIS_NULL should be set

DDK_IOMUX_PAD_VOLTAGE Specifies the driver voltage for a pad, either 1.8 V or 3.3 V

DDK_IOMUX_PAD_PULL Pull-up/pull-down/keeper configuration for a pad

DDK_IOMUX_SELECT_INPUT Functional pad name to be selected and involved in Daisy Chain

Table 10-8. DDK_IOMUX Enumerations (continued)

Programming Element Description

Chip Support Package Driver Development Kit (CSPDDK)

Windows Embedded CE 6.0 BSP Reference Manual

Freescale Semiconductor 10-13

pMuxmode [out] Mux mode configuration
pSion [out] Sion configuration
Return Values Returns TRUE if successful, otherwise returns FALSE

10.6.3.2.3 DDKIomuxSetPadConfig

This function sets the IOMUX pad configuration for the specified IOMUX pin.
BOOL DDKIomuxSetPadConfig(

DDK_IOMUX_PAD pad,
DDK_IOMUX_PAD_SLEW slew,
DDK_IOMUX_PAD_DRIVE drive,
DDK_IOMUX_PAD_OPENDRAIN openDrain,
DDK_IOMUX_PAD_PULL pull,
DDK_IOMUX_PAD_HYSTERESIS hysteresis,
DDK_IOMUX_PAD_VOLTAGE voltage)

Parameters
pad [in] Functional pad name used to select the pad that is configured
slew [in] Slew rate configuration
drive [in] Drive strength configuration
openDrain [in] Open drain configuration
pull [in] Pull-up/pull-down/keeper configuration
hysteresis [in] Hysteresis configuration
voltage [in] Drive voltage configuration
Return Values Returns TRUE if successful, otherwise returns FALSE.

10.6.3.2.4 DDKIomuxGetPadConfig

This function gets the IOMUX pad configuration for the specified IOMUX pad.
BOOL DDKIomuxSetPadConfig(

DDK_IOMUX_PAD pad,
DDK_IOMUX_PAD_SLEW *pSlew,
DDK_IOMUX_PAD_DRIVE *pDrive,
DDK_IOMUX_PAD_OPENDRAIN *pOpenDrain,
DDK_IOMUX_PAD_PULL *pPull,
DDK_IOMUX_PAD_HYSTERESIS *pHysteresis,
DDK_IOMUX_PAD_VOLTAGE *pVoltage)

Parameters
pad [in] Functional pad name used to select the pad that is configured
pSlew [out] Slew rate configuration
pDrive [out] Drive strength configuration
pOpenDrain [out] Open drain configuration
pPull [out] Pull-up/pull-down/keeper configuration
pHysteresis [out] Hysteresis configuration
pVoltage [out] Drive voltage configuration

Chip Support Package Driver Development Kit (CSPDDK)

Windows Embedded CE 6.0 BSP Reference Manual

10-14 Freescale Semiconductor

Return Values Returns TRUE if successful, otherwise returns FALSE.

10.6.3.2.5 DDKIomuxSelectInput

This function writes a daisy value into the IOMUX SELECT_INPUT register to select the pad that is the
input to the port.

BOOL DDKIomuxSelectInput(
DDK_IOMUX_SELEIN port,
UINT32 daisy)

Parameters
port [in] Port to select input
daisy [in] Data to be written
Return Values Returns TRUE if successful, otherwise returns FALSE

10.6.3.3 DDK_IOMUX Examples
Example 10-4. CSPDDK IOMUX Signal Multiplexing

#include “csp.h” // Includes CSPDDK definitions

// Configure the signal multiplexing for GPIO1_5. The ALT0 mux mode is configured
// and the regular sion is assigned for the GPIO1_5 ot the GPIO module.
DDKIomuxSetPinMux(DDK_IOMUX_PIN_GPIO1_5, DDK_IOMUX_PIN_MUXMODE_ALT0,
DDK_IOMUX_PIN_SION_REGULAR);

Example 10-5. CSPDDK IOMUX Pad Configuration

#include “csp.h” // Includes CSPDDK definitions

// Configure the GPIO1_5 pad for the following configuration: fast slew rate,
// high drive strength, no opendrain, no pull, no hysteresis, and 3.3 V drive voltage.
DDKIomuxSetPadConfig(DDK_IOMUX_PIN_GPIO1_5, DDK_IOMUX_PAD_SLEW_FAST,
DDK_IOMUX_PAD_DRIVE_HIGH, DDK_IOMUX_PAD_OPENDRAIN_DISABLE,
DDK_IOMUX_PAD_PULL_NONE, DDK_IOMUX_PAD_HYSTERESIS_DISABLE,
DDK_IOMUX_PAD_VOLTAGE_3V3);

10.6.4 CSPDDK DLL SDMA (DDK_SDMA) Reference
The DDK_SDMA interface allows device drivers to allocate, configure, and control shared SDMA
resources.

10.6.4.1 DDK_SDMA Enumerations
Table 10-9. DDK_SDMA Enumerations

Programming Element Description

DDK_DMA_ACCESS Width of the data for a peripheral DMA transfer

Chip Support Package Driver Development Kit (CSPDDK)

Windows Embedded CE 6.0 BSP Reference Manual

Freescale Semiconductor 10-15

10.6.4.2 DDK_SDMA Functions

10.6.4.2.1 DDKSdmaOpenChan

This function attempts to find an available virtual SDMA channel that can be used to support a
memory-to-memory, peripheral-to-memory, or memory-to-peripheral transfers.

UINT8 DDKSdmaOpenChan(
DDK_DMA_REQ dmaReq,
UINT8 priority)

Parameters
dmaReq [in] Specifies the DMA request that is bound to a virtual channel
priority [in] Priority assigned to the opened channel
Return Values Returns a non-zero virtual channel index if successful, otherwise returns 0

10.6.4.2.2 DDKSdmaUpdateSharedChan

This function allows a channel that has multiple DMA requests combined into a shared DMA event to be
reconfigured for one of the alternate DMA requests.

BOOL DDKSdmaUpdateSharedChan(
UINT8 chan,
DDK_DMA_REQ dmaReq)

Parameters
chan [in] Virtual channel returned by DDKSdmaOpenChan
dmaReq [in] Specifies the DMA request that is bound to a virtual channel
Return Values Returns TRUE if successful, otherwise returns FALSE

10.6.4.2.3 DDKSdmaCloseChan

This function closes a virtual DMA channel previously opened by DDKSdmaOpenChan.
BOOL DDKSdmaCloseChan(

UINT8 chan)

Parameters
chan [in] Virtual channel returned by DDKSdmaOpenChan function
Return Values Returns TRUE if successful, otherwise returns FALSE

10.6.4.2.4 DDKSdmaAllocChain

This function allocates a chain of buffer descriptors for a virtual DMA channel.
BOOL DDKSdmaAllocChain(

UINT8 chan,
UINT32 numBufDesc)

DDK_DMA_FLAGS Mode flags within the DMA buffer descriptor

DDK_DMA_REQ DMA request used to trigger SDMA channel execution

Table 10-9. DDK_SDMA Enumerations (continued)

Chip Support Package Driver Development Kit (CSPDDK)

Windows Embedded CE 6.0 BSP Reference Manual

10-16 Freescale Semiconductor

Parameters
chan [in] Virtual channel returned by DDKSdmaOpenChan
numBufDesc [in] Number of buffer descriptors to be allocated for the chan
Return Values Returns TRUE if successful, otherwise returns FALSE

10.6.4.2.5 DDKSdmaFreeChain

This function frees a chain of buffer descriptors previously allocated with DDKSdmaAllocChain.
BOOL DDKSdmaFreeChain(

UINT8 chan)

Parameters
chan [in] Virtual channel returned by DDKSdmaOpenChan
Return Values Returns TRUE if successful, otherwise returns FALSE

10.6.4.2.6 DDKSdmaSetBufDesc

This function configures a buffer descriptor for a DMA transfer.
BOOL DDKSdmaSetBufDesc(

UINT8 chan,
UINT32 index,
UINT32 modeFlags,
UINT32 memAddr1PA,
UINT32 memAddr2PA,
DDK_DMA_ACCESS dataWidth,
UINT16 numBytes)

Parameters
chan [in] Virtual channel returned by DDKSdmaOpenChan.
index [in] Index of buffer descriptor within the chain to be configured.
modeFlags [in] Specifies the buffer descriptor mode word flags that control the continue,

wrap, and interrupt settings
memAddr1PA [in] For memory-to-memory transfers, this parameter specifies the physical

memory source address for the transfer. For memory-to-peripheral transfers, this
parameter specifies the physical memory source address for the transfer. For
peripheral-to-memory transfers, this parameter specifies the physical memory
destination address for the transfer

memAddr2PA [in] Used only for memory-to-memory transfers to specify the physical memory
destination address for the transfer. Ignored for memory-to-peripheral and
peripheral-to-memory transfers

dataWidth [in] Used only for memory-to-peripheral and peripheral-to-memory transfers to
specify the width of the data for the peripheral transfer. Ignored for
memory-to-memory transfers

numBytes [in] Virtual channel returned by DDKSdmaOpenChan
Return Values Returns TRUE if successful, otherwise returns FALSE

Chip Support Package Driver Development Kit (CSPDDK)

Windows Embedded CE 6.0 BSP Reference Manual

Freescale Semiconductor 10-17

10.6.4.2.7 DDKSdmaGetBufDescStatus

This function retrieves the status of the done and error bits from a single buffer descriptor within of a chain.
BOOL DDKSdmaGetBufDescStatus(

UINT8 chan,
UINT32 index,
UINT32 *pStatus)

Parameters
chan [in] Virtual channel returned by DDKSdmaOpenChan
index [in] Index of buffer descriptor within the chain
pStatus [in] Points to a buffer that is filled with the status of the buffer descriptor
Return Values Returns TRUE if successful, otherwise returns FALSE

10.6.4.2.8 DDKSdmaGetChainStatus

This function retrieves the status of the done and error bits from all of the buffer descriptors of a chain.
BOOL DDKSdmaGetChainStatus(

UINT8 chan,
UINT32 *pStatus)

Parameters
chan [in] Virtual channel returned by DDKSdmaOpenChan
pStatus [in] Points to an array filled with the status of each buffer descriptor in the chain
Return Values Returns TRUE if successful, otherwise returns FALSE

10.6.4.2.9 DDKSdmaClearBufDescStatus

This function clears the status of the done and error bits within the specified buffer descriptor.
BOOL DDKSdmaClearBufDescStatus(

UINT8 chan,
UINT32 index)

Parameters
chan [in] Virtual channel returned by DDKSdmaOpenChan
index [in] Index of buffer descriptor within the chain
Return Values Returns TRUE if successful, otherwise returns FALSE

10.6.4.2.10 DDKSdmaClearChainStatus

This function clears the status of the done and error bits within all of the buffer descriptors of a chain.
BOOL DDKSdmaClearChainStatus(

UINT8 chan)
Parameters
chan [in] Virtual channel returned by DDKSdmaOpenChan
Return Values Returns TRUE if successful, otherwise returns FALSE

Chip Support Package Driver Development Kit (CSPDDK)

Windows Embedded CE 6.0 BSP Reference Manual

10-18 Freescale Semiconductor

10.6.4.2.11 DDKSdmaInitChain

This function initializes a buffer descriptor chain and the context for a channel. It should be invoked when
before a virtual DMA channel is initially started, and when the DMA channel is stopped and restarted.

BOOL DDKSdmaInitChain(
UINT8 chan,
UINT32 waterMark)

Parameters
chan [in] Virtual channel returned by DDKSdmaOpenChan
waterMark [in] Specifies the watermark level used by the peripheral to generate a DMA

request. This parameter tells the DMA how many transfers to complete for each
assertion of the DMA request. Ignored for memory-to-memory transfers

Return Values Returns TRUE if successful, otherwise returns FALSE

10.6.4.2.12 DDKSdmaStartChan

This function starts the specified channel.
BOOL DDKSdmaStartChan(

UINT8 chan)

Parameters
chan [in] Virtual channel returned by DDKSdmaOpenChan
Return Values Returns TRUE if successful, otherwise returns FALSE

10.6.4.2.13 DDKSdmaStopChan

This function stops the specified channel.
BOOL DDKSdmaStopChan(

UINT8 chan,
BOOL bKill)

Parameters
chan [in] Virtual channel returned by DDKSdmaOpenChan
bKill [in] Set TRUE to terminate the channel if it is actively running. Set FALSE to

allow the channel to continue running until it yields
Return Values Returns TRUE if successful, otherwise returns FALSE

Windows Embedded CE 6.0 BSP Reference Manual

Freescale Semiconductor 11-1

Chapter 11
Display Driver for IPUv1
The Windows Embedded CE 6.0 BSP display driver is based on the Microsoft DirectDraw Graphics
Primitive Engine (DDGPE) classes and supports the Microsoft DirectDraw interface. This driver
combines the functionality of a standard LCD display with DirectDraw support. The display driver
interfaces with the Image Processing Unit v1 (IPUv1). For dumb displays, the IPU Synchronous Display
Controller (SDC) combines graphics and video planes and generates display controls with programmable
timing.

The display driver supports the following display type:
• CHUNGHWA 7" WVGA Display With Touch Screen (CLAA070VC01)

11.1 Display Driver Summary
Table 11-1 identifies the source code location, library dependencies and other BSP information.

11.2 Supported Functionality
The display driver enables the 3-Stack board to provide the following software and hardware support:

1. RGB565 user interface

Table 11-1. Display Driver Summary

Driver Attribute Definition

Target Platform iMX35-3DS-PDK1_7

Target SOC MX35_FSL_V2_PDK1_7

SOC Common Path ..\PLATFORM\COMMON\SRC\SOC\COMMON_FSL_V2_PDK1_7\IPU

SOC Specific Path ..\PLATFORM\COMMON\SRC\SOC\<Target SoC>\IPU

Platform Specific Path ..\PLATFORM\<Target Platform>\SRC\DRIVERS\IPU

Driver DLL ddraw_ipu.dll

Import Library ddgpe.lib, gpe.lib

Catalog Items Third Party > BSP > Freescale <Target Platform>: ARMV4I > Device Drivers > Display
> CHUNGHWA CLAA070VC01(WVGA)

SYSGEN Dependency SYSGEN_DDRAW=1

BSP Environment Variables BSP_NODISPLAY=
BSP_I2CBUS1=1
BSP_PP=1
BSP_PF=1 (if need PF)

Display Driver for IPUv1

Windows Embedded CE 6.0 BSP Reference Manual

11-2 Freescale Semiconductor

2. DirectDraw Hardware Abstraction Layer (DDHAL)
3. One overlay surface
4. Video overlays containing image data in any of the following FOURCC pixel formats: RGB565,

UYVY or YV12
5. Hardware-accelerated color space conversion in video overlays
6. Hardware-accelerated image resizing in video overlays
7. Overlay surface color key feature
8. Two power management modes: full on and full off (resume and suspend)
9. Screen rotation
10. Supports CHUNGHWA 7" WVGA Display With Touch Screen (CLAA070VC01)
11. Supports WVGA landscape display resolution(800x480)

Note: The following limitations apply to the display driver overlay support.
12. The display panel flickers when the ATA driver operates in UDMA5 by ADMA controller, due to

memory bus bandwidth
13. For other limitations refer to the release notes

11.3 Hardware Operation
For operation and programming information, see the chapter on the Image Processing Unit (IPU) in the IC
Reference Manual.

11.3.1 Conflicts with Other Peripherals and Catalog Items
No conflicts.

11.3.2 Rotation Control
The application rotate.exe provides a way to change the screen orientation while the Windows Embedded
CE 6.0 image is running. Clicking rotate application toggles the orientation of the screen between a 0 and
270 degree rotation angle. The default path of rotate.exe is \windows.

NOTE
Due to lack of support for the co-existence of GDI screen rotation and
DirectDraw, a DirectDraw display driver with rotation support enabled may
yield more failures in the GDI/DIRECTDRAW CETK test suite. It is
recommended to run these CETK tests with rotation support disabled or
under 0 rotation degree. See the Windows Embedded CE 6.0 Help, stating
that GDI screen rotation cannot be used with DirectDraw.

Display Driver for IPUv1

Windows Embedded CE 6.0 BSP Reference Manual

Freescale Semiconductor 11-3

11.4 Software Operation

11.4.1 Communicating with the Display
Communication with the display driver is accomplished through Microsoft-defined APIs. A framework
for accessing the display driver is provided through the Graphics Device Interface (GDI) and DirectDraw.

11.4.1.1 Using the Graphics Device Interface
The Graphics Device Interface (GDI) provides basic controls for the display of text and graphics. For
information, see the Help:

Windows Embedded CE Features > Shell, GWES and User Interface > Graphics, Windowing and
Events (GWES) > GWES Application Development > Graphics Device Interface (GDI)

11.4.1.2 Using DirectDraw
The DirectDraw API provides support for hardware-accelerated 2-D graphics, offering fast access to
display hardware while retaining compatibility with the GDI. For information about the DirectDraw API,
see the DirectDraw Help or the MSDN documentation library topic:

Windows Embedded CE Features > Graphics > DirectDraw

The following DirectDraw features are supported in the display driver by the IPU hardware:
• Page flipping with one backbuffer.
• Overlay surfaces using RGB, YV12, or UYVY pixel format.
• Overlaying using a color key for the overlay surface for RGB colors.
• Overlaying using a color key for the non-overlay graphics surface for RGB colors.
• Stretching of overlay surfaces.

The IPU contains multiple image processing hardware blocks, which are used within the display driver to
accelerate the following operations:

• Color space conversion of YUV overlay data to RGB. This conversion may be required in order to
combine the overlay data with RGB graphics plane data before being displayed.

• Resizing of the overlay surface.
• Rotation of the overlay surface (used when the screen orientation is rotated).

11.4.1.3 Using Display Driver Escape Codes
In some cases, applications might need to communicate directly with a display driver. To make this
possible, an escape code mechanism is provided as part of the display driver. For a detailed description of
standard display driver escape codes, see the CE Help:

Developing a Device Driver > Windows Embedded CE Drivers > Display Drivers > Display Driver
Development Concepts > Display Driver Escape Codes

Display Driver for IPUv1

Windows Embedded CE 6.0 BSP Reference Manual

11-4 Freescale Semiconductor

11.4.2 Configuring the Display
The display configuration is based on the PanelType registry key, which is described in Section 11.4.2.3,
“Display Registry Settings”. The PanelType registry key indicates the display panel that is being used.
There is only one supported display panel: The CHUNGHWA CLAA070VC01 WVGA LCD panel.

11.4.2.1 Rotation Support
The DirectDraw display driver may be configured to allow screen rotation, through a parameter in the
bsp_cfg.h file. If the BSP_DIRECTDRAW_SUPPORT_ROTATION parameter is set to TRUE, the
DirectDraw display driver supports rotation. If it is set to FALSE, it does not.

NOTE
Due to lack of support for the co-existence of GDI screen rotation and
DirectDraw, a DirectDraw display driver with rotation support enabled may
yield more failures in the GDI/DIRECTDRAW CETK test suite. It is
recommended to run these CETK tests with rotation support disabled or
under 0 rotation degree. See the Windows CE Help, stating that GDI screen
rotation cannot be used with DirectDraw.

11.4.2.2 Display Driver Blit Acceleration
On-chip Graphics Processing Unit (GPU) 2D cores may be accessed through the display driver to
accelerate a subset of the GDI graphical blit operations. The subsequent sections provide details on the
features offered by the GPU core, and how to configure the BSP to enable acceleration through the GPU
core.

11.4.2.2.1 GPU2D Graphics Acceleration

GPU2D core graphics acceleration may be enabled through the following steps:
1. Enable the GPU base by setting the BSP_GPU_BASE environment variable. This may be

achieved by selecting at least one GPU catalog item from the Third Party Catalog.
2. Enable the GPU2D component by setting the platform environment variable

BSP_DISPLAY_Z160=1. This may be achieved by navigating to the project properties, and
adding the environment variable in the Configuration Properties->Environment window.

11.4.2.2.1.2 Supported Acceleration Features
1. Solid color fills.
2. BitBlt() - Simple operations not requiring rotation or resizing.
3. StretchBlt() - Support for COLORONCOLOR and BILINEAR stretch modes. For a DDraw blt,

the default stretch mode is BILINEAR.
4. PolyLine() - Support for horizontal and vertical line draws and bias whose llGamma equals to 0.
5. PatBlt() - Pattern copy blits are accelerated.
6. Mask blt: MaskBlt() function calls use this feature. For ROP4 value MAKEROP4(SRCCOPY,

0X00AA0029)

Display Driver for IPUv1

Windows Embedded CE 6.0 BSP Reference Manual

Freescale Semiconductor 11-5

7. Blitting a UYVY surface to an RGB surface: The UYVY data format should be yCbCr.

 The Y,U,V data range is:

 Y = 0.257R + 0.504G + 0.098B + 16(16~235)

 U = -0.148R - 0.291G + 0.439B + 128(16~240)

 V = 0.439R - 0.368G - 0.071B + 128(16~240)
8. Alphablend blt: Both perpixel alpha and constant alpha are supported. To enable this feature, the

“alphablend API”(SYSGEN_GDI_ALPHABLEND) catalog item must be included in the OS
image.

9. The following accelerated ROP operations: BLACKNESS, PATCOPY, SRCCOPY, WHITENESS.
10. All of the above features are also supported when the screen is rotated.
11. 16BPP and 32BPP are supported.

11.4.2.2.1.3 Hardware Restrictions
• The GPU2D cannot draw a line with a non-zero llGamma value.
• Due to a GPU2D precision limitation, the coordinates of certain pixels be offset by small amount

after an accelerated blit completes. As a result, the MaskBlt and StretchBlt GDI CETK tests may
not pass(case 208,218,...).

• The GPU2D bilinear algorithm differs from the algorithm used in the Micorsoft-provided emulated
blit software routines. As a result, the GPU2D bilinear stretch blt will result in a mismatch with
the CETK reference image(case #218).

• GPU2D fails the AlphaBlend CETK test(case #231). The color output after an alpha blend blit
operation may have a single-bit mismatch when compared with the reference image.

11.4.2.3 Display Registry Settings
The following registry keys are optionally included, depending on the display panel catalog item included
in the OS design.

11.4.2.3.1 i.MX35 Registry Settings

If the CHUNGHWA WVGA panel is selected, the following registry keys are included:
[HKEY_LOCAL_MACHINE\Drivers\Display\DDIPU]
 "Bpp"=dword:10 16bpp
 "VideoBpp"=dword:10 ; RGB565
 "PanelType"=dword:3 ; CHUNGHWA WVGA Panel
 "VideoMemSize"=dword:600000 ; 6.0MB (960KB/frame)

When the OS image is configured to use graphics acceleration through the GPU, the C2DFlag key is also
included. The C2DFlag key controls the types of graphical blit operations that are accelerated by the GPU.
The following bits control which blits are accelerated:

• Bit 0 - Enable/Disable solid color fill acceleration

Display Driver for IPUv1

Windows Embedded CE 6.0 BSP Reference Manual

11-6 Freescale Semiconductor

• Bit 1 - Enable/Disable pattern fill acceleration
• Bit 2 - Enable/Disable simple bitblt (without rotation, stretchblt) acceleration
• Bit 3 - Enable/Disable line draw acceleration
• Bit 4 - Enable/Disable maskblt acceleration
• Bit 5 - Enable/Disable stretchblt acceleration
• Bit 8 - Enable/Disable acceleration for rotated screen cases

In the following example C2DFlag setting, acceleration is enabled for pattern fill, line draw, stretchblt, and
rotated screen cases, while acceleration is disabled for solid color fill, simple bitblt, and maskblt:

[HKEY_LOCAL_MACHINE\Drivers\Display\DDIPU]
 "C2DFlag"=dword:12a ; Flag for c2d

11.4.2.4 Post Filter
The Post Filter performs postfiltering for the MPEG-4 (deblocking and deringing) or H.264 (deblocking)
video compression standards. To use the Post Filter, set “BSP_PF=1“.

11.4.3 Power Management
The display driver consumes power primarily through the operation of various IPU sub-modules, such as
the SDC, which combines and displays video and graphics data, and through the operation of the display
panel. To facilitate management of these modules, the display driver implements the power management
I/O Control (IOCTL) codes, such as IOCTL_POWER_CAPABILITIES, IOCTL_POWER_QUERY,
IOCTL_POWER_GET and IOCTL_POWER_SET.

11.4.3.1 PowerUp
This function is not implemented for the display driver.

11.4.3.2 PowerDown
This function is not implemented for the display driver.

11.4.3.3 IOCTL_POWER_SET
The display driver implements the IOCTL_POWER_SET IOCTL API with support for the D0 (Full On)
and D4 (Off) power states. These states are handled in the following manner:

• D0 – The display panel is enabled. The IPU Display Interface (DI) and SDC modules are enabled.
• D4 – The DI and SDC modules of the IPU are disabled. The display panel is disabled.

11.5 Unit Test
The display driver is subject to two test suites provided with the Windows CE Test Kit (CETK): the
Graphics Device Interface (GDI) Test and the DirectDraw Test. Additionally, video playback may be
verified by using the Windows Media Player application.

Display Driver for IPUv1

Windows Embedded CE 6.0 BSP Reference Manual

Freescale Semiconductor 11-7

The GDI Test is designed to test a graphics device interface. This test verifies that basic shapes, including
rectangles, triangles, circles, and ellipses, are drawn correctly. The test also examines the color palette of
the display, verifies that the display is correctly divided into multiple regions, and tests whether a device
context can be properly created, stored, retrieved, and destroyed.

The DirectDraw Test analyzes basic DirectDraw functionality including block image transfers (blits),
scaling, color keying, color filling, flipping, and overlaying.

Windows Media Player may be used to play back WMV video files and visually verify correct operation
of video overlays, accelerated color space conversion, and accelerated image resizing.

11.5.1 Unit Test Hardware
The CHUNGHWA CLAA070VC01 WVGA panel is needed to run the GDI and DirectDraw tests. The
panel displays the graphics data.

11.5.2 Unit Test Software

11.5.2.1 GDI Tests
Table 11-4 lists the software required to run the GDI tests.

Table 11-4. GDI Software Requirements

Requirement Description

Tux.exe Tux test harness, which is needed for executing the test

Kato.dll Kato logging engine, which is required for logging test data

Tooltalk.dll Library required by Tux.exe and Kato.dll. Handles the transport between the target device and the
development workstation

Gdiapi.dll Main test .dll file

Ddi_test.dll Graphics Primitive Engine (GPE)–based display driver that the GDI API uses to verify the success
of each test case. If Ddi_test.dll is unavailable, run the test with manual verification

Display Driver for IPUv1

Windows Embedded CE 6.0 BSP Reference Manual

11-8 Freescale Semiconductor

11.5.2.2 DirectDraw Tests
Table 11-5 lists the software required to run the DirectDraw tests.

11.5.2.3 Windows Media Player Tests
Table 11-6 lists the software required to perform WMV playback with Windows Media Player.

11.5.3 Building the Unit Tests
The GDI and DirectDraw tests come pre-built as part of the CETK. Ensure that the latest CETK suite is
installed. No steps are required to build these tests. For information about the tests, see the Help:

Windows Embedded CE Test Kit > Running the CETK

For Windows Media Player testing, there are no build steps required. The Windows Media Player catalog
item must be added to the OS image to ensure that ceplayer.exe is included in the image. Additionally,
sample WMV files must be included in the image to demonstrate playback.

11.5.4 Running the Unit Tests

11.5.4.1 Running the GDI Tests
The command line for running the GDI tests is:

tux –o –d gdiapi.dll

For information about the GDI tests and command line options, see the Platform Builder Help:

Windows EmbeddedCE Test Kit > CETK Tests and Test Tools > CETK Tests > Display Tests >
Graphics Device Interface Test

Table 11-5. DirectDraw Software Requirements

Requirement Description

Tux.exe Tux test harness, which is needed for executing the test

Kato.dll Kato logging engine, which is required for logging test data

Tooltalk.dll Library required by Tux.exe and Kato.dll. Handles the transport between the target device and the
development workstation

DDrawTK.dll Test .dll file

Table 11-6. Windows Media Player Software Requirements

Requirement Description

Ceplayer.exe Windows Media Player sample application

*.wmv sample video files Sample windows media files

Display Driver for IPUv1

Windows Embedded CE 6.0 BSP Reference Manual

Freescale Semiconductor 11-9

11.5.4.2 Running the DirectDraw Tests
The command line for running the DirectDraw tests is:

tux –o –d ddrawtk

NOTE
The display driver fails the following DirectDraw CETK test cases: 1240,
1250, 1340, 1350. The failure occurs because the hardware requires the
overlay surface dimensions to be a multiple of 16 pixels, and the failing tests
create surfaces with dimensions that violate this restriction.

11.5.4.3 Running the Windows Media Player tests
The command line for starting playback of a WMV test video clip in Windows Media Player is:

ceplayer [wmv test file]

For example, ceplayer motocross_208x160_30fps.wmv

If audio support is not included in the current BSP, the message Audio hardware is missing or disabled
appears when the WMV file is being loaded. Click OK to continue to WMV playback.

To confirm the correct operation of this test, observe the application and verify that the video clip is playing
at a smooth rate (it should not drop frames or otherwise appear jerky). It should have a clear image, normal
coloring, and correct image sizing.

11.6 Display Driver API Reference
For information about the display driver APIs, see CE Help. No additional custom API information is
required for the features currently supported in the display driver.

For reference information on basic display driver functions, methods, and structures, see the CE Help:

Developing a Device Driver > Windows Embedded CE Drivers > Display Drivers > Display Driver
Reference

For reference information on DirectDraw functions, callbacks, and structures, see the CE Help:

Windows Embedded CE Features > Graphics > DirectDraw

Display Driver for IPUv1

Windows Embedded CE 6.0 BSP Reference Manual

11-10 Freescale Semiconductor

Windows Embedded CE 6.0 BSP Reference Manual

Freescale Semiconductor 12-1

Chapter 12
Dynamic Voltage and Frequency Control (DVFC) Driver
The BSP includes the DVFC driver that provides combined support for DVFS (Dynamic Voltage
Frequency Scaling). The DVFC driver plays an important role in the reduction of active power
consumption by dynamically adjusting the voltage and frequency settings of the system. The DVFC driver
responds to DVFC hardware logic or load tracking software that is monitoring CPU loading and
process/temperature performance of the silicon.

12.1 DVFC Driver Summary
Table 12-1 provides a summary of source code location, library dependencies, and other BSP information.

12.2 Supported Functionality
The DVFC driver enables the hardware platform to provide the following software and hardware support:

1. Executes as a device driver and provides synchronized support of the DVFS power management
feature

2. Exposes stream interface for initialization and power management
3. Supports D0 and D4 driver power states and support control of frequency/voltage setpoint based

on Power Manager device power states
4. Supports peripheral setpoint requests initiated by CSPDDK clock management code

Table 12-1. DVFC Driver Summary

Driver Attribute Definition

Target Platform iMX35-3DS-PDK1_7

Target SOC MX35_FSL_V2_PDK1_7

SOC Common Path ..\PLATFORM\COMMON\SRC\SOC\COMMON_FSL_V2_PDK1_7\DVFC

SOC Specific Path ..\PLATFORM\COMMON\SRC\SOC\<Target SOC>\DVFC

Platform Specific Path ..\PLATFORM\<Target Platform>\SRC\DRIVERS\DVFC

Driver DLL dvfc_max8660.dll or dvfc_mc13892.dll

SDK Library N/A

Catalog Item Third Party > BSP > Freescale <Target Platform>: ARMV4I > Device Drivers > DVFC
driver support using the MC13892

SYSGEN Dependency N/A

BSP Environment Variables BSP_DVFC = 1

Dynamic Voltage and Frequency Control (DVFC) Driver

Windows Embedded CE 6.0 BSP Reference Manual

12-2 Freescale Semiconductor

12.3 Hardware Operation

12.3.1 Conflicts with Other Peripherals and Catalog Items
No conflicts.

12.3.2 i.MX35 3-Stack Configuration
The DVFC driver is dependent upon the MAX8660/MC13892 PMIC interface for dynamic voltage
control via the I2C1 port. The I2C driver and MAX8660/MC13892 PMIC SDK are needed by the DVFC
driver. The I2C interface is used to control voltage.

MX35 supports 2 CCM schemes called Consumer Path and AUTO Path, which are controlled by a fuse
inside the chip. The target maximum CPU frequency for Consumer Path is 532 MHz, for AUTO Path is
399 MHz.

12.4 Software Operation

12.4.1 i.MX35 Registry Settings
The following registry keys are required to properly load the i.MX35 DVFC module.

;--
; DVFC Driver
;
IF BSP_BOARD_RED !
IF BSP_DVFC_MC13892
[HKEY_LOCAL_MACHINE\Drivers\BuiltIn\DVFC]
 "Prefix" = "DVF"
 "Dll"="dvfc_mc13892.dll"
 "IClass"="{A32942B7-920C-486b-B0E6-92A702A99B35}" ; PMCLASS_GENERIC_DEVICE
ENDIF ; BSP_DVFC_MC13892
ELSE
IF BSP_DVFC_MAX8660
[HKEY_LOCAL_MACHINE\Drivers\BuiltIn\DVFC]
 "Prefix" = "DVF"
 "Dll"="dvfc_max8660.dll"
 "IClass"="{A32942B7-920C-486b-B0E6-92A702A99B35}" ; PMCLASS_GENERIC_DEVICE
ENDIF ; BSP_DVFC_MAX8660
ENDIF ; BSP_BOARD_RED !
;--

12.4.2 Loading and Initialization
The DVFC driver is automatically loaded to kernel space by the Device Manager as a stream driver. As
part of the loading procedure of stream drivers, the device manager invokes the corresponding stream
initialization function exported by the DVFC driver. The initialization sequence includes a call to
platform-specific code (BSPDvfcInit) to allow the OEM to configure and tune the DVFC driver operation.

Dynamic Voltage and Frequency Control (DVFC) Driver

Windows Embedded CE 6.0 BSP Reference Manual

Freescale Semiconductor 12-3

12.4.3 Operation
The DVFC driver is the central point in the BSP for controlling voltage and frequency scaling. The DVFC
communicates with the PMIC and CCM to coordinate the DVFS. The DVFC driver responds to setpoint
requests from DDK_CLK (by driver calling DDKClockSetGatingMode) and Power Manager (by
IOCTL_POWER_SET). A shared global data structure (DDK_CLK_CONFIG) is used to keep track of
reference counts for each setpoint. The DVFC relies on synchronization with the DDK_CLK component
to determine when it is safe to transition to a new setpoint. DVFC integration with the Power Manager
allows drivers and applications direct control of the setpoint by using the SetDevicePower API.

12.4.3.1 i.MX35 Voltage/Frequency Setpoints
The DVFC driver supports four voltage frequency setpoints. Table 12-2 provides the voltage/frequency
characteristics for these setpoints.

The setpoint attributes are controlled by the definitions in the DVFC driver code (found in
\PLATFORM\<Target Platform>\SRC\DRIVERS\DVFC\COMMON\setpoint.c). The DVFC driver uses
these definitions to populate a global setpoint array (g_SetPointConfigCon/g_SetPointConfigAuto) that is
referenced during setpoint transitions. For AUTO clock path, the maximum CPU frequency supported is
399 MHz, the nominal AUTO path setpoint TURBO is equal to HIGH.

12.4.3.2 i.MX35 Setpoint Mapping
The peripherals may not be able to operate properly in all of the supported setpoints due to minimum
frequency/voltage requirements. Therefore, drivers that support these peripherals need a method of
communicating setpoint requirements. Drivers communicate clocking and setpoint requirements through
the use of APIs in the CSPDDK. The mapping of DDK_CLK clock management routines
(DDKClockSetGatingMode) to DVFC setpoints is located in UpdateSetpointRequestCount (found in
\PLATFORM\<Target Platform>\SRC\DRIVERS\CSPDDK\DDK_CLK\ddk_clk.c). To change the
setpoint mapping for a specific peripheral, modify the code in UpdateSetpointRequestCount.

WARNING
Do not map a peripheral to a setpoint that violates the electrical specification
or does not provide adequate clocking for the peripheral protocol
specification.

The DVFC driver advertises support for IOCTL_POWER requests from Power Manager. A
IOCTL_POWER_SET request is mapped to a setpoint by the DVFC driver. This mapping allows
applications to use the Power Manager APIs to request changes in the DVFC setpoint. The mapping of

Table 12-2. DVFC Setpoints

Setpoint Name CPU/BUS/PER Clock (MHz) Core Voltage

DDK_DVFC_SETPOINT_TURBO 532/133/66.5 1.450 V

DDK_DVFC_SETPOINT_HIGH 399/133/66.5 1.200 V

DDK_DVFC_SETPOINT_MEDIUM 133/66.5/66.5 1.200 V

DDK_DVFC_SETPOINT_LOW 133/66.5/33.25 1.200 V

Dynamic Voltage and Frequency Control (DVFC) Driver

Windows Embedded CE 6.0 BSP Reference Manual

12-4 Freescale Semiconductor

device power states (D0-D4) to DVFC setpoints is located in DvfcMapDevPwrStateToSetpoint (found
in \PLATFORM\<Target Platform>\SRC\DRIVERS\DVFC\COMMON\mappm.c). To change the
setpoint mapping for a specific device power state (D0-D4), modify the code in
DvfcMapDevPwrStateToSetpoint.

12.4.3.3 i.MX35 Frequency Scaling Operation
The DVFC driver supports frequency scaling of the MCU, MAX (AHB), IPG (peripheral), HSP (IPU),
and NFC clock domains. This section describes the main features of the frequency scaling.

12.4.3.3.1 i.MX35 DDR Bus Scaling

Scaling the AHB bus frequency with DDR memory requires a calibration sequence to be executed from
an internal uncached memory space. The calibration sequence must disable interrupts to prevent bus
masters from accessing the DDR during the sequence. A custom kernel IOCTL
(IOCTL_HAL_DVFC_BUS_SCALE) called from the DVFC driver is used to perform DDR delay line
calibration. The DDR calibration sequence is executed from uncached IRAM defined by
IMAGE_WINCE_DVFC_IRAM definitions in \PLATFORM\<Target
Platform>\SRC\INC\image_cfg.h.

12.4.3.3.2 i.MX35 IPG_PER_CLK Clock Scaling

The AHB to IPG clocks are kept at a fixed ratio of 1-to-2. The EPIT timer peripheral is configured to clock
from PERCLK. The DVFC driver does not scale the IPG_PER_CLK clock unless all peripherals that
depend on it are inactive.

Peripherals that use synchronous clocking can continue to operate at a reduced IPG_PER_CLK/PERCLK
ratio without changes to the data transmission clock rate. However, peripherals that use asynchronous
clocking (UART) or have specific clocking requirements, cannot tolerate PERCLK rate changes between
transfers. In such cases, the CSPDDK source code can be modified to restrict setpoints for specific
peripherals. Refer to Section 12.4.3.2, “i.MX35 Setpoint Mapping for more information regarding the
mapping between DVFC setpoints and peripheral clocking. Upon invoking DDKClockSetGatingMode,
the DVFC coordinates a setpoint transition, if necessary, to grant the driver a voltage/frequency setpoint
that meets or exceeds the request.

Timer peripherals (EPIT, GPT) that are configured to clock from the IPG clock, experience clock
skew/drift during IPG clock scaling. The OAL support for the OS tick timer using EPIT1 is configured by
PERCLK that prevents IPG scaling.

Without removing SOC modules depends upon the MEDIUM setpoint; the LOW setpoint is never entered.
The LOW setpoint is kept for backwards compatibility.

12.4.4 DDK Interface
The DVFC driver allows other drivers or applications to control some aspects of the DVFS operation. Due
to the tight coupling with the system clock configuration, this interface is exposed within CSPDDK
clocking support. Refer to the CSPDDK documentation for the following functions:

• DDKClockSetpointRequest, Section 10.6.1.2.7, “DDKClockSetpointRequest.”

Dynamic Voltage and Frequency Control (DVFC) Driver

Windows Embedded CE 6.0 BSP Reference Manual

Freescale Semiconductor 12-5

• DDKClockSetpointRelease, Section 10.6.1.2.8, “DDKClockSetpointRelease.”

12.4.5 Power Management
The DVFC is an integral part of the power management supported by the BSP. However, since the DVFC
runs as a driver on the system, it also supports the Power Manager device driver interface. This allows the
DVFC driver to be notified of when the system is suspending or resuming and configure the processor
performance accordingly.

12.4.5.1 PowerUp
This stream interface function is not implemented for the DVFC driver.

12.4.5.2 PowerDown
This stream interface function is not implemented for the DVFC driver.

12.4.5.3 IOCTL_POWER_CAPABILITIES
The DVFC driver advertises that D0–D4 device power states are supported.

12.4.5.4 IOCTL_POWER_SET
The DVFC driver supports requests to enter D0–D4 device power state.

12.4.5.5 IOCTL_POWER_GET
The DVFC driver reports the current device power state (D0, D1, D2 or D4).

12.5 Unit Test

Dynamic Voltage and Frequency Control (DVFC) Driver

Windows Embedded CE 6.0 BSP Reference Manual

12-6 Freescale Semiconductor

Windows Embedded CE 6.0 BSP Reference Manual

Freescale Semiconductor 13-1

Chapter 13
Enhanced Secure Digital Host Controller (eSDHC) Driver
The eSDHC module supports Multimedia Cards (MMC), Secure Digital Cards (SD) and Secure Digital
I/O and Combo Cards (SDIO). The eSDHC driver provides the interface between the Microsoft SD Bus
driver and the eSDHC hardware.

13.1 eSDHC Driver Summary
Table 13-1 provides a summary of source code location, library dependencies and other BSP information.

13.2 Supported Functionality
The eSDHC driver enables the hardware to provide the following software and hardware support:

1. Enhanced Secure Digital Host Controllers
2. Designed and implemented as close as possible to Standard Host Controller Driver in CE 6.0 R2
3. Compliant with the SDBUS2 driver provided in CE 6.0 R2
4. Fast Path
5. DMA or PIO modes of data transfers based on value of eSDHC driver registry key, DisableDMA

Table 13-1. eSDHC Driver Summary

Driver Attribute Definition

Target Platform iMX35-3DS-PDK1_7

Target SOC MX35_FSL_V2_PDK1_7

SOC Common Path ..\PLATFORM\COMMON\SRC\SOC\COMMON_FSL_V2_PDK1_7\ESDHC

SOC Specific Path ..\PLATFORM\COMMON\SRC\SOC\<Target SOC>\ESDHC

Platform Specific Path ..\PLATFORM\<Target Platform>\SRC\DRIVERS\ESDHC

Driver DLL esdhc.dll

SDK Library esdhcbase_common_fsl_v2PDK1_7.lib, esdhcbase_<Target SOC>.lib, sdcardlib.lib,
sdhclib.lib, sdbus.lib

Catalog Item Third Party > BSP > Freescale i.MX35 3DS PDK1_7: ARMV4I > Device Drivers > SD Host
Controller > Enhanced SD Host Controller 1 (ESDHC1) Support

SYSGEN Dependency SYSGEN_SD_MEMORY=1

BSP Environment Variables BSP_NOESDHC=
BSP_ESDHC1=1
BSP_ESDHC2=1
IMGSDBUS2

Enhanced Secure Digital Host Controller (eSDHC) Driver

Windows Embedded CE 6.0 BSP Reference Manual

13-2 Freescale Semiconductor

6. SD, SD High Capacity (up to spec v2.1), MMC (up to spec v4.3), and SDIO cards (up to spec v2.0).
High capacity MMC cards are not supported because SDBUS2 in CE 6.0 R2 does not support these
cards

7. One host supports only one card connected to it
8. DLL supports multiple instances of the eSDHC controller
9. Configuration of the block sizes from 1–4096 bytes in single and multi-block modes
10. Insertion and removal of card, even when system is suspended; when the system resumes, the card

(if present) is remounted
11. Power states on(D0) and off (D4), D1–D3 states are treated as D4
12. Clocks are gated in D4 state, and ungated in D0 state, except for SDIO cards for which clocks are

never gated.
13. Write protect switch on SD cards
14. Combo cards (for example, SD memory + WiFi functionality on same card)
15. MMC cards in 1-bit mode and SD/SDIO cards in 4-bit modes due to limitation in SDBUS2 in CE

6.0 R2

13.3 Hardware Operation
Refer to the chapter on the eSDHC in the Applications Processor Reference Manual for detailed operation
and programming information.

13.3.1 Conflicts with Other Peripherals and Catalog Options

13.3.1.1 Conflicts with SoC Peripherals
All ESDHC1 and ESDHC2 pads can be configured for their primary function in Alternate Mode 0.
However, some ESDHC1 pads are shared with MSHC in ALT Mode1, IPU in ALT Mode 2 and USB OTG
in ALT Mode 3. ESDHC2 conflicts with UART3/I2C3/CAN1/USB HOST, and some ESDHC2 pads can
be configured as ESDHC1 DATA5–DATA8 for 8-bit mode. ESDHC3 pads can be configured in Alternate
mode 3, while the primary function in Alternate Mode 0 are used fro IPD function.

13.3.1.2 Conflicts with Other Board Peripherals
No conflicts.

13.4 Software Operation
The eSDHC driver follows the Microsoft-recommended architecture (standard host controller driver) for
Secure Digital Host Controller drivers, whenever possible. The details of this architecture and its operation
can be found in the Platform Builder Help under the heading Secure Digital Card Driver Development
Concepts, or in the online documentation at the following URL:
http://msdn2.microsoft.com/en-us/library/aa925967.aspx

Enhanced Secure Digital Host Controller (eSDHC) Driver

Windows Embedded CE 6.0 BSP Reference Manual

Freescale Semiconductor 13-3

13.4.1 Required Catalog Items

13.4.1.1 SD and MMC Memory Card Support
Catalog > Device Drivers > SDIO > SDIO Memory > SD Memory

Additionally, since eSDHC driver supports high capacity cards, it is necessary to define IMGSDBUS2
variable in the workspace. Both SYSGEN_SD_MEMORY and IMGSDBUS2 are set by default in the BSP
workspace.

13.4.2 eSDHC Registry Settings

13.4.2.1 i.MX35 SDHC Registry Settings
; @CESYSGEN IF CE_MODULES_SDBUS

IF BSP_ESDHC1
[HKEY_LOCAL_MACHINE\Drivers\BuiltIn\ESDHC_MX35]
 "Order"=dword:19
 "Dll"="esdhc.dll"
 "Prefix"="SHC"
 "Index"=dword:1
 "DisableDMA"=dword:0 ; Use this reg setting to disable both internal and external DMA
 "MaximumClockFrequency"=dword:3197500 ; 52 MHz max clock speed
 "UseExternalDMA"=dword:0

"SDIOPriority"=dword:64 ; IST thread priority of 100

[HKEY_LOCAL_MACHINE\System\StorageManager\Profiles\MMC]
 "Name"="MMC Card"
 "Folder"="MMCMemory"

[HKEY_LOCAL_MACHINE\System\StorageManager\Profiles\SDMemory]
 "Name"="SD Memory Card"
 "Folder"="SDMemory"

[HKEY_LOCAL_MACHINE\Comm\PegasSDN1\Parms]
 "SdioBitMode"=dword:00000001

[HKEY_LOCAL_MACHINE\Comm\PegasSDN1\Parms]
 "DisablePowerManagement"=dword:1
 "ResetOnResume"=dword:0
 "RebindOnResume"=dword:1
ENDIF BSP_ESDHC1

; @CESYSGEN ENDIF CE_MODULES_SDBUS

Enhanced Secure Digital Host Controller (eSDHC) Driver

Windows Embedded CE 6.0 BSP Reference Manual

13-4 Freescale Semiconductor

13.4.3 DMA Support

13.4.3.1 DMA Support
DMA mode is supported by the eSDHC driver. The driver does not allocate or manage DMA buffers
internally except for a start buffer and an end buffer for non-aligned buffers that are provided to the driver.
For every request submitted to it, the driver attempts to build a DMA Scatter Gather Buffer Descriptor list
for the buffer passed to it by the upper layer. For cases where this list cannot be built, the driver falls back
to the non-DMA mode of transfer.

13.4.3.1.1 i.MX35 DMA Support

Both DMA mode and non-DMA modes are supported by the driver. DMA mode is used by default, and
user can change the DisableDMA value in registry file esdhc_mx35.reg to enable non-DMA mode.
Internal DMA on ESDHC is used. Two internal DMA modes are supported by the ESDHC hardware:
Simple DMA and Advanced DMA. The driver supports only ADMA mode.

For the driver to attempt to build the Scatter Gather DMA Buffer Descriptors, the upper layer should
ensure that the buffer meets the following criteria.

• Start of the buffer should be a page aligned address (4096 bytes).

Due to cache coherency issues from processor and DMA access of the memory, the above criteria is further
constrained for the read or receive operation (it is not applicable for write or transmit) by:

• Number of bytes to transfer should be cache line size (32 bytes) aligned.

For buffer chain that does not meet the above criteria, the driver uses its own start and end buffers that are
page and cache-aligned. Later, when the DMA completes, a memcpy is done from the temporary start and
end buffers back to the original non-aligned buffers.

13.4.4 Power Management
The eSDHC driver does self-management of the module clocks for power savings during inactivity. Only
two power states are supported by the driver: D0 when all clocks are on, and D4 when all clocks are gated.
The IOCTL_POWER calls are never entered in this driver because it does not register with the CE Power
Manager. Instead, the SHC_powerUp and SHC_PowerDown APIs are the entry points for suspend and
resume functionality.

13.4.4.1 i.MX35-3DS Power Management
Clocks to the ESDHC module are turned off (gated) when there is no card present in the socket. No power
gating is implemented on this platform. The power to the socket is always on.

13.5 Unit Test
The eSDHC driver is tested using the following tests included as part of the Windows CE 6.0 Test Kit
(CETK).

• File System Driver Test

Enhanced Secure Digital Host Controller (eSDHC) Driver

Windows Embedded CE 6.0 BSP Reference Manual

Freescale Semiconductor 13-5

• Storage Device Block Driver Read/Write Test
• Storage Device Block Driver API Test
• Storage Device Block Driver Performance Test
• Partition Driver Test

13.5.1 Unit Test Hardware
Table 13-2 lists the required hardware to run the unit tests.

13.5.2 Unit Test Software
Table 13-3 lists the required software to run the unit tests.

13.5.3 Building the Unit Tests
All the above mentioned tests come pre-built as part of the CETK. No steps are required to build these
tests. These test files can be found alongside the other required CETK files in the following location:
[Drive]:\Program Files\Microsoft Platform Builder\6.00\cepb\wcetk\ddtk\armv4I

Table 13-2. Hardware Requirements

Requirement Description

SD Cards SanDisk (128MB, 512MB, Extreme III SDHC 4GB)
ATP (SDHC 4GB)
A-DATA Turbo (SDHC 4GB)
Kingston (MiniSD 512MB, MicroSD 1GB)

MMC Cards PQI (128 Mbytes)
Kingmax (RS-MMC: 512MB, 1GB)
Transcend (MMCPlus: 1 Gbytes, 4 Gbytes)

Table 13-3. Software Requirements

Requirement Description

tux.exe Tux test harness, which is needed for executing the test

kato.dll Kato logging engine, which is required for logging test data

tooltalk.dll Library required by Tux.exe and Kato.dll. Handles the transport between the target device and the
development workstation

fsdtst.dll File System Driver Test .dll file

rwtest.dll Storage Device Block Driver Read/Write Test .dll file

disktest.dll Storage Device Block Driver API Test .dll file

disktest_perf.dll Storage Device Block Driver Performance Test

msparttest.dll Partition Driver Test .dll file

Enhanced Secure Digital Host Controller (eSDHC) Driver

Windows Embedded CE 6.0 BSP Reference Manual

13-6 Freescale Semiconductor

13.5.4 Running the Unit Tests
The following sections describe the tests available and the test procedures for each of the tests. For detailed
information on these tests see the relevant subsections under CETK Tests in the Platform Builder Help,
or view the online documentation at the following URL:
http://msdn2.microsoft.com/en-us/library/aa934353.aspx

13.5.4.1 File System Driver Test
Use command line
tux –o –d fsdtst –c “-p SDMemory –z”

to run the tests on an SD card. For MMC cards, use
tux –o –d fsdtst –c “-p MMC –z”

This tests all the cards inserted and requires the cards to be formatted prior to running the test. For higher
capacity cards, the test takes a long time to complete, and hence it is recommended that the system power
management (from control panel) be configured so that the system does not enter suspend state during test
execution.

13.5.4.2 Storage Device Block Driver Read/Write Tests
Use the command line
tux –o –d rwtest –c “-z”

to run the tests. This only tests one card at a time.

13.5.4.3 Storage Device Block Driver API Tests
Use the command line
tux –o –d disktest –c “-z”

to run the tests. This only tests one card at a time.

13.5.4.4 Storage Device Block Driver Performance Tests
Use the command line
tux –o –d disktest_perf –c “-z -disk DSK1:”

to run the tests. This tests only one card at a time.

13.5.4.5 Partition Driver Test
Use command line
tux –o –d msparttest –c “-z”

to run the tests.

Enhanced Secure Digital Host Controller (eSDHC) Driver

Windows Embedded CE 6.0 BSP Reference Manual

Freescale Semiconductor 13-7

Cards should be of size 256 Mbytes and higher. For higher capacity cards, the test takes a long time to
complete, and hence it is recommended that the system power management (from control panel) be
configured so that the system does not enter suspend state during test execution.

13.5.5 System Testing
The following system tests are performed to verify the operation of the SD and MMC memory cards:

• Use the Start > Settings > Control Panel > Storage Manager to format and create partitions on
the mounted memory cards

• Establish ActiveSync connection over USB and transfer files to and from the memory cards
• Write media files to memory storage and use Windows Media Player to playback media files from

memory storage.

13.6 Secure Digital Card Driver API Reference
Detailed reference information for the Secure Digital Card driver may be found in the Platform Builder
Help under the heading Secure Digital Card Driver Reference or in the online documentation at the
following URL: http://msdn2.microsoft.com/en-us/library/aa912994.aspx

Enhanced Secure Digital Host Controller (eSDHC) Driver

Windows Embedded CE 6.0 BSP Reference Manual

13-8 Freescale Semiconductor

Windows Embedded CE 6.0 BSP Reference Manual

Freescale Semiconductor 14-1

Chapter 14
Enhanced Serial Audio Interface (ESAI) Driver
The Enhanced Serial Audio Interface (ESAI) provides a serial port for serial communication with a variety
of serial devices.

14.1 ESAI Driver Summary
The ESAI consists of independent transmitter and receiver sections, each section with its own clock
generator. It is called synchronous because all serial transfers are synchronized to a clock. Up to six
transmitters and four receivers are supported. Table 14-1 provides a summary of source code location,
library dependencies and other BSP information.

14.2 Supported Functionality
The ESAI audio driver enables the 3-Stack System to provide the following software and hardware
support:

1. Conforms to the audio driver architecture as defined for Windows Embedded CE 6.0 and all related
operating systems

2. Uses double-buffered DMA operations to transfer audio data
3. Supports multi-channel PCM wave data playback function
4. Supports multi-channel PCM wave data record function

Table 14-1. ESAI Driver Summary

Driver Attribute Definition

Target Platform iMX35-3DS-PDK1_7

Target SOC MX35_FSL_V2_PDK1_7

SOC Common Path ..\PLATFORM\COMMON\SRC\SOC\COMMON_FSL_V2_PDK1_7\ESAI

SOC Specific Path ..\PLATFORM\COMMON\SRC\SOC\<Target SOC>\ESAI

Platform Specific Path ..\PLATFORM\<Target Platform>\SRC\DRIVERS\ESAI

Driver DLL esai_wm8580.dll

SDK Library esai_common_fsl_v2_PDK1_7.lib, esai_<Target SOC>.lib

Catalog Item Third Party > BSP > Freescale <Target Platform>: ARMV4I > Device Drivers > ESAI

SYSGEN Dependency SYSGEN_AUDIO

BSP Environment Variables BSP_NOAUDIO=
BSP_ESAI=1
BSP_ASRC=1

Enhanced Serial Audio Interface (ESAI) Driver

Windows Embedded CE 6.0 BSP Reference Manual

14-2 Freescale Semiconductor

5. Supports 16-bit and 24-bit PCM data. (24-bit PCM data is packed in bits 23–0 of the 32 bits)
6. Supports 1–6 channel PCM data playback. (Refer to software operation for detail)
7. Supports 1–4 channel PCM data record. (Refer to software operation for detail)
8. Supports playback function with Freescale hardware platforms that include the WM8580

multi-channel audio Codec
9. Supports playback without ASRC support at sample rate: 16KHz,32 KHz, 44.1 KHz, 48 KHz,

64KHz,88.2 KHz, 96 KHz, 128KHz, 176.4KHz, 192KHz (WM8580 Codec) Please note: sample
rate about 48KHz is not supported if the playback audio protocol is configured as network mode,
refer to the registry setting about the protocol setting.

10. Supports playback with ASRC support from sample rate 32K–96K (16-bit PCM data is not
supported by the ASRC)

11. Supports record function with Freescale hardware platform that includes the AK5702 Codec
12. Supports record sample rates: 48 KHz, 44.1 KHz, 32 KHz, 24 KHz, 16 KHz, 12 KHz, 8 KHz

(AK5702 Codec)

14.3 Hardware Operation
Refer to the chapter on the ESAI in the Multimedia Applications Processor Reference Manual for detailed
operation and programming information.

14.3.1 Conflicts with Other Peripherals and Catalog Items
N/A

14.3.1.1 Conflicts with 3-Stack Peripherals
N/A

14.3.2 Hardware Limitation

14.3.2.1 Channel Order
In the ESAI hardware implementation, all the transmitters share one data FIFO. When multiple
transmitters are used, the audio data from the FIFO is transferred to the different transmitters is sequence,
such as TX0, TX1, TX2, TX0, TX1, TX2, and so on. Since the different transmitters use the same slot
mask, when multiple transmitters are used, the channel mask is not handled well. The channel mask can
only be used when only one transmitter is being used.

Also, the mapping from channel number to the transmitter port changes according to the channel numbers
when multiple transmitters are used.

For example, when three transmitters are used for 1–6 channels of audio playback:

Channel Number = 6: CH0,CH3->TX0, CH1,CH4->TX1, CH2,CH5->TX2

Channel Number = 4, CH0,CH2->TX0, CH1,CH3->TX1

Enhanced Serial Audio Interface (ESAI) Driver

Windows Embedded CE 6.0 BSP Reference Manual

Freescale Semiconductor 14-3

Channel Number = 2, CH0,CH1->TX0

For receive, the problem is similar and the channel number should be even for both playback and record.

14.3.2.2 Full Duplex Support
The ESAI module cannot support full duplex. Therefore, playback or record cannot be performed at the
same time.

14.4 Software Operation
The audio driver follows the Microsoft-recommended architecture for audio drivers. For information
about the architecture and operation, see the Platform Builder Help:

Developing a Device Driver > Windows CE Drivers > Audio Drivers > Audio Driver Development
Concepts.

14.4.1 Required Catalog Items
Third Party > BSP > Freescale<Target Platform>:ARMV4I > Device Drivers > CSPI Bus > CSPI Bus1

Third Party > BSP > Freescale<Target Platform>:ARMV4I > Device Drivers >I2C Bus > I2C Bus1

14.4.2 ESAI Registry Settings

14.4.2.1 i.MX35 Registry Settings
[HKEY_LOCAL_MACHINE\Drivers\BuiltIn\ESAI]
"Prefix"="WAV"
 "Dll"="esai_wm8580.dll"
 "Index"=dword:3
 "Order"=dword:8
 "Priority256"=dword:95
 "AudioProtocol"=dword:0
 "IClass"=multi_sz:"{E92BC203-8354-4043-A06F-2A170BF6F227}",
 "{37168569-61C4-45fd-BD54-9442C7DBA46F}"

The AudioProtocol key value can be set to 0 (one transmitter with network mode) or 2 (multi-transmitter
with normal mode). When AudioProtocol is set to 0, one transmitter is used and the channel mask is well
handled. Since all the audio data is transferred on one serial bus, the frame rate is limited by the bit clock.
Sample rate beyond 48 K is not supported. In this mode, the mapping from slot number to the transmitter
port is fixed.

When AudioProtocol is set to 2, multiple transmitters are used and 6-channel wave format is supported.
To keep the mapping relationship between slot number and transmitters, the audio data needs to be packed
to 6-channel format before it is transferred to the ESAI interface. In this case, the channel mask does not
take effect.

This AudioProtocol affects only the playback function. For the record function, the bus protocol is decided
by the driver and is not selectable.

Enhanced Serial Audio Interface (ESAI) Driver

Windows Embedded CE 6.0 BSP Reference Manual

14-4 Freescale Semiconductor

14.4.3 Supported Wave Data Format
To access the ESAI audio interface, the WAVEFORMATEXTENSIBLE data structure must be used:

typedef struct {
 WAVEFORMATEX Format;
 union {
 WORD wValidBitsPerSample;
 WORD wSamplesPerBlock;
 WORD wReserved;
 } Samples;
 DWORD dwChannelMask;
 GUID SubFormat;
} WAVEFORMATEXTENSIBLE, *PWAVEFORMATEXTENSIBLE;

Format.wFormatTag must be set to WAVE_FORMAT_EXTENSIBLE. The dwChannelMask member
does not take effect while AudioProtocol is set to 2 in the registry file. Format.nChannels can be set from
1 to 6, but when AudioProtocol is set to 2 in the registry file, only even number can be used (such as 2, 4,
6). For 24-bit audio data, set Samples.wValidBitsPerSample to 24 and Format.wBitsPerSample to 32. The
SubFormat member is not used since only PCM data is supported.

14.4.4 DMA Support

14.4.4.1 DMA Support
Double-buffer is used for audio data transfer.

14.4.5 Power Management
This function is not implemented for the ESAI driver.

14.4.5.1 PowerUp
This function is not implemented for the ESAI driver.

14.4.5.2 PowerDown
This function is not implemented for the ESAI driver.

14.4.5.3 IOCTL_POWER_CAPABILITIES
This function is not implemented for the ESAI driver.

14.4.5.4 IOCTL_POWER_GET
This function is not implemented for the ESAI driver.

14.4.5.5 IOCTL_POWER_SET
This function is not implemented for the ESAI driver.

Enhanced Serial Audio Interface (ESAI) Driver

Windows Embedded CE 6.0 BSP Reference Manual

Freescale Semiconductor 14-5

14.5 Unit Test
The ESAI driver interface supports only wave data that conforms with the WAVEFORMATEXTENSIBLE
structure. Therefore the driver might not be supported by general audio applications.

14.5.1 Building the Unit Test
To build the ESAI tests, build an OS image for the desired configuration using these steps:

1. Within the Platform Builder, choose Build OS > Open Release Directory.
A DOS prompt is displayed.

2. Change to the M_Player Tests directory: \WINCE600\SUPPORT_PDK1_7\TEST\ESAI\M_PLAYER
3. Enter set WINCEREL=1 on the command prompt and press return.

This copies the .exe file to the flat release directory
4. Enter build -c at the prompt and press return
5. Change to the M_Recorder Tests directory: \WINCE600\SUPPORT_PDK1_7\TEST\ESAI\M_RECORDER
6. Enter set WINCEREL=1 on the command prompt and press return.

This copies the .exe file to the flat release directory
7. Enter build -c at the prompt and press return

After the build completes, the m_player.exe and m_recorder.exe files are located in the
$(_FLATRELEASEDIR) directory.

14.5.2 Hardware Setup
The audio extension card is necessary for the ESAI test. The multi-channel audio codec for playback and
record function is located on the audio extension card. Connect the audio card with CN9 on the i.MX35
personality board (refer to the board user manual for details).

For playback function, connect the earphone/speaker with J2 on the audio card, and 6 channels are
supported at most. For record function, connect audio input line with J3 on audio card, and 4 channels are
supported at most.

14.5.3 Running the Unit Test

14.5.3.1 Playback Function Test
The m_player application is used for the playback function test. Earphone or speakers can be used to hear
the sound.

Usage: m_player wave_file_name channel_number channel_mask

Example: m_player temp\source.wav 6 0x3f

In this example, the source.wav is played through the ESAI in six channels and the channel mask is 0x3f.
The wave file used for testing is a general stereo wave file and the application extends it to multi-channel
wave format. The wave file can be a 16-bit or 24-bit (packed into bits 23–0 of the 32 bits) data file.

Enhanced Serial Audio Interface (ESAI) Driver

Windows Embedded CE 6.0 BSP Reference Manual

14-6 Freescale Semiconductor

To run the application within VS2005, go to the Target menu option and select the Run Programs menu
option. This gives a list of applications that can be run on the OS. Select m_player.exe from this list and
click on Run to run this application.

14.5.3.2 Record Function Test
The m_recorder application is used for the record function test. The sound from the audio input line is
recorded in the destination wave file and can be played later for verification.

Usage: m_recorder wave_file_name seconds_length sample_rate bit_depth channel_number
channel_mask

Example: m_record temp\target.wav 10 48000 16 4 0xf

In this example, the target.wav file is recorded through the ESAI. The file is in wave format: 10 seconds
in length, 48 KHz sample rate, 16-bit depth, 4 channels and the channel mask is 0xf.

To run the application within VS2005, go to the Target menu option and select the Run Programs menu
option. This gives a list of applications that can be run on the OS. Select m_record.exe from this list and
click on Run to run this application.

If the bit depth is set to 32, the recorded data is 24-bit (packed into bits 23–0 of the 32 bits). The channel
number indicates the number of channels in the audio data, and the mask indicates which channel contains
data and which channel contains zero. Zeros should not be present in the data, but there is a limitation in
the hardware conversion process that generates zeros. If a bit in the mask is zero, the corresponding bits
are zeros in the interleaved audio data. The channel number also includes such “zero-data” channel.

NOTE
These applications are mainly used for simple function test and API demo
usage. User might encounter wave file format related failures (like wave
format chunk length and “fact” chunk is not well handled). Edit the source
code to resolve the problem.

14.5.4 Known Issues
On some audio extension cards, the mulit-channel audio codec WM8580 is not stable at 44.1 KHz/88.2
KHz/176.4KHz. Playback with audio files at these sample rates may cause noise.

Windows Embedded CE 6.0 BSP Reference Manual

Freescale Semiconductor 15-1

Chapter 15
Fast Ethernet Controller (FEC) Driver
The Fast Ethernet driver is used for connectivity with an IEEE 802.3 Ethernet using the on-chip Fast
Ethernet Controller. The driver provides support to communicate with the Ethernet at 10/100 Mbps, using
a MII compatible interface and an external transceiver (SMCS LAN8700 and Am79C874). The Fast
Ethernet driver is NDIS 4.0 compliant miniport driver.

15.1 Fast Ethernet Driver Summary
Table 15-1 provides a summary of source code location, library dependencies and other BSP information.

15.2 Supported Functionality
The FEC driver enables the hardware platform to provide the following software and hardware support:

1. Compliant with the NDIS 4.0 miniport driver
2. 10/100 Mbps network
3. MII PHY or RMII PHY

Table 15-1. FEC Driver Summary

Driver Attribute Definition

Target Platform iMX35-3DS-PDK1_7

Target SOC N/A

SOC Common Path ..\PLATFORM\COMMON\SRC\SOC\COMMON_FSL_V2_PDK1_7\FEC

SOC Specific Path N/A

Platform Specific Path ..\PLATFORM\<Target Platform>\SRC\DRIVERS\FEC

Driver DLL fec.dll

SDK Library N/A

Catalog Item Third Party > BSP > Freescale <Target Platform>:ARMV4I > Device Drivers > FEC

SYSGEN Dependency SYSGEN_NDIS=1
SYSGEN_TCPIP=1
SYSGEN_WINSOCK=1

BSP Environment Variables BSP_NOFEC=

Fast Ethernet Controller (FEC) Driver

Windows Embedded CE 6.0 BSP Reference Manual

15-2 Freescale Semiconductor

15.3 Hardware Operations
The Fast Ethernet Controller connects with the external transceivers using standard MII (Media
Independent Interface) connection. All the registers in the external transceivers can be accessed by the MII
compatible management frames. The interrupt signal from the external transceiver is connected to the
processor through the PBC (Peripheral Bus Controller). Refer to the Peripheral Bus Controller document
for detailed operation and programming information. The attached transceiver for the Fast Ethernet
Controller can detect the speed of the ethernet network automatically by the auto-negotiation process. The
software accesses the status register of attached transceiver to determine the speed of the ethernet network
(10 Mbps or 100 Mbps).

15.3.1 Conflicts with Other Peripherals and Catalog Items

15.3.1.1 Conflicts with SoC Peripherals
No conflicts.

15.3.1.2 Conflicts with 3-Stack Peripherals
No conflicts.

15.4 Software Operations
The Fast Ethernet driver follows the Microsoft-recommended architecture for NDIS miniport drivers. The
details can be found in the Platform Builder Help at the following location:

Developing a Device Driver > Windows Embedded CE Drivers > Network Drivers > Network Driver
Development Concepts > Miniports, Intermediate Drivers, and Protocol Drivers.

15.4.1 FEC Driver Registry Settings
The following register keys are required to properly load the Fast Ethernet driver and to configure the
TCP/IP for Ethernet interface. To enable dynamic IP address assignment using DHCP, the variable
EnableDHCP should be set to 1.

[HKEY_LOCAL_MACHINE\Comm\FEC]
"DisplayName"="FEC Ethernet Driver"
"Group"="NDIS"
"ImagePath"="fec.dll"
[HKEY_LOCAL_MACHINE\Comm\FEC\Linkage]
"Route"=multi_sz:"FEC1"
[HKEY_LOCAL_MACHINE\Comm\FEC1]
"DisplayName"="FEC Ethernet Driver"
"Group"="NDIS"
"ImagePath"="fec.dll"
[HKEY_LOCAL_MACHINE\Comm\FEC1\Parms]
"BusNumber"=dword:0
"BusType"=dword:0
; DuplexMode: 0:AutoDetect; 1:HalfDuplex; 2:FullDuplex.
"DuplexMode"=dword:0

Fast Ethernet Controller (FEC) Driver

Windows Embedded CE 6.0 BSP Reference Manual

Freescale Semiconductor 15-3

; The Ethernet Physical Address. For example,

; Ethernet Address 00:24:20:10:bf:03 is MACAddress1=0024,
; MACAddress2=2010,and MACAddress3=bf03.
"MACAddress1"=dword:1213
"MACAddress2"=dword:1728
"MACAddress3"=dword:3121

[HKEY_LOCAL_MACHINE\Comm\FEC1\Parms\TcpIp]
; This should be MULTI_SZ
"DefaultGateway"="" ; This should be SZ... If null it means use LAN, else WAN and
Interface.
"LLInterface"="" ; Use zero for broadcast address? (or 255.255.255.255)
"UseZeroBroadcast"=dword:0 ;Thus should be MULTI_SZ, the IP address list
"IpAddress"="0.0.0.0"; This should be MULTI_SZ, the subnet masks for the above IP
"Subnetmask"="0.0.0.0"
"EnableDHCP"=dword:1

[HKEY_LOCAL_MACHINE\Comm\TcpIp\Parms]
;Set to True to keep the device from entering idle mode if there's network adapter
;;"NoIdleIfAdapter"=dword:1
;Set to True to keep the device from entering idle mode while communicating/loop back
"NoIdleIfConnected"=dword:1

[HKEY_LOCAL_MACHINE\Comm\Tcpip\Linkage]
; This should be MULTI_SZ
; This is the list of llip
"Bind"=multi_sz:"FEC1"

15.5 Unit Tests
The Fast Ethernet driver is tested using the following:

• Network utilities/operations
— Ping to and from the tested device
— FTP transfers (file put and get) with tested device as FTP server
— Internet browsing with Pocket Internet Explorer on the tested device

• Winsock CETK test cases
— Winsock 2.0 Test (v4/v6)
— Winsock Performance Test with tested device as client.

15.5.1 Unit Test Hardware
Table 15-2 lists the required hardware to run the unit tests.

Table 15-2. Hardware Requirements

Requirement Description

HW Platform System —

PC/machine Counterpart for network operation

An Ethernet or a cross Ethernet cable To and from an Ethernet

Fast Ethernet Controller (FEC) Driver

Windows Embedded CE 6.0 BSP Reference Manual

15-4 Freescale Semiconductor

15.5.2 Unit Test Software
Table 15-3 lists the required software to run the unit tests.

15.5.3 Building the Unit Tests

15.5.3.1 Network Utilities Related Tests
• To include the ping utilities, the SYSGEN_NETUTILS = 1 needs to be set. Under Catalog > Core

OS > CEBASE > Communication Services and Networking > Networking General > Network
Utilities, IpConfig, Ping, and Route should be included in the OS design.

• To include FTP, SYSGEN_FTPD = 1 needs to be set. Catalog > Core OS > CEBASE >
Communication Services and Networking > Servers > FTP Server should be included in the
OS design.

• The following registry entry needs to be added to reg to allow get and put of files using the
anonymous FTP login:

[HKEY_LOCAL_MACHINE\COMM\FTPD]
"AllowAnonymousUpload" = dword:1

15.5.3.2 Winsock 2.0 Test (v4/v6)
The Winsock 2.0 Test (v4/v6) comes pre-built as part of the CETK. No steps are required to build these
tests. The Ws2bvt.dll file can be found alongside the other required CETK files in the following location:
[Drive]:\Program Files\Microsoft Platform Builder\6.00\cepb\wcetk\ddtk\armv4I

Table 15-3. Software Requirements

Requirement Description

Tux.exe Tux test harness, which is needed for executing the test

Kato.dll Kato logging engine, which is required for logging test data

Tooltalk.dll Library required by Tux.exe and Kato.dll. Handles the transport between the target device and the
development workstation

Ws2bvt.dll Test .dll file for Winsock 2.0 Test (v4/v6)

Perflog.dll Module that contains functions that monitor and log performance for Winsock Performance Test

Perf_winsock2.dll Test .dll file for Winsock Performance Test

Perf_winsockd2.exe Test .exe file (server program) for Winsock Performance Test

Ndt.dll Protocol driver for One-card network card miniport driver test

Ndt_1c.dll Test .dll for One-card network card miniport driver test

Ndp.dll MS_NDP protocol driver for NDIS performance test

Perf_ndis.dll Test .dll file NDIS performance test

Fast Ethernet Controller (FEC) Driver

Windows Embedded CE 6.0 BSP Reference Manual

Freescale Semiconductor 15-5

15.5.3.3 Winsock Performance Test
The Winsock Performance Test comes pre-built as part of the CETK. No steps are required to build these
tests. The Perf_winsock2.dll and Perf_winsockd2.exe files can be found alongside the other required
CETK files in the following location:

Perf_winsock2.dll in:
[Drive]:\Program Files\Microsoft Platform Builder\6.00\cepb\wcetk\ddtk\armv4I

Perf_winsockd2.exe in:
[Drive]:\Program Files\Microsoft Platform Builder\6.00\cepb\wcetk\ddtk\desktop

15.5.3.4 One-Card Network Card Miniport Driver Test
The One-card network card miniport driver test comes pre-built as part of the CETK. No steps are required
to build these tests. The ndt.dll and ndt_1c.dll files can be found alongside the other required CETK files
in the following location:
[Drive]:\Program Files\Microsoft Platform Builder\6.00\cepb\wcetk\ddtk\armv4I

15.5.3.5 NDIS Performance Test
The NDIS performance test comes pre-built as part of the CETK. No steps are required to build these tests.
The ndp.dll and perf_ndis.dll files can be found alongside the other required CETK files in the
following location:
[Drive]:\Program Files\Microsoft Platform Builder\6.00\cepb\wcetk\ddtk\armv4I

15.5.4 Running the Unit Tests

15.5.4.1 Network Utilities Related Tests

15.5.4.1.1 Ping Tests

The ping tests can be run as usual from the tested device as well as from the PC side.

15.5.4.1.2 Browsing

The network browsing tests can be done after setting the following on the device front panel:

DNS servers in the TCP/IP properties of Fast Ethernet network interface (Control Panel Network and
Dial-up Connections) Proxy server, if used in the test network on the Pocket Internet explorer.

15.5.4.1.3 FTP Tests

For running FTP tests, the FTP service needs to be started on the tested device using the following
command on the DOS prompt:
services start FTP0:

Fast Ethernet Controller (FEC) Driver

Windows Embedded CE 6.0 BSP Reference Manual

15-6 Freescale Semiconductor

15.5.4.2 Winsock 2.0 Test (v4/v6)
The test can be executed by using
tux –o –d Ws2bvt.dl

in the command line on the tested device. For detailed information on the Winsock 2.0 Test (v4/v6) tests,
see the Platform Builder Help:

Windows Embedded CE Test Kit > CETK Test and Test Tools > CETK Tests > Ethernet Tests > Tests
Winsock 2.0 Test(v4/v6).

15.5.4.3 Winsock Performance Test
Start the server on the PC by typing
Perf_winsockd2 - install

at the command line. Then client side test executes on the second device by using
tux –o –d Perf_winsock2.dll –c “-s 10.193.101.41”

in the command line on the tested target device, where 10.193.101.41 denotes PC IP address and needs to
be replaced appropriately. For detailed information on the Winsock Performance tests, see the Platform
Builder Help:

Windows Embedded CE Test Kit > CETK Test and Test Tools > CETK Tests > Performance Test >
Wisock Performance Test.

NOTE
Cases 1007 and 1008 fail. This is a known MSFT CETK issue.

15.5.4.4 One-Card Network Card Miniport Driver Test
This test can be done by including ndt.dll and ndt_1c.dll in the image, and starting the test by entering
tux –o –d ndt_1c.dll –c “-t FEC1”

on the command line on the tested target device. For detailed information on the Winsock Performance
tests, see the Platform Builder Help:

Windows Embedded CE Test Kit > CETK Test and Test Tools > CETK Tests > Ethernet Tests >
One-card Network Card Miniport Driver Test.

15.5.4.5 NDIS Performance Test
This test can be done by including ndp.dll and perf_ndis.dll in the image, and starting the test by
entering
tux –o –d perf_ndis.dll –c “FEC1”

Fast Ethernet Controller (FEC) Driver

Windows Embedded CE 6.0 BSP Reference Manual

Freescale Semiconductor 15-7

on the command line on the tested target device. For detailed information on the Winsock Performance
tests, see the Platform Builder Help:

Windows Embedded CE Test Kit > CETK Test and Test Tools > CETK Tests > Performance Test >
NDIS Performance Test.

15.6 Fast Ethernet Driver API Reference
The Fast Ethernet driver conforms to NDIS 4.0 specification by Microsoft for the miniport network
drivers. For reference information on basic NDIS driver functions, methods, and structures, see the CE
Help:

Developing a Device Driver > Windows Embedded CE Drivers > Network Drivers > Network Driver
Reference.

Fast Ethernet Controller (FEC) Driver

Windows Embedded CE 6.0 BSP Reference Manual

15-8 Freescale Semiconductor

Windows Embedded CE 6.0 BSP Reference Manual

Freescale Semiconductor 16-1

Chapter 16
FM Radio Driver
The FM Radio driver is compatible with the Stream Interface driver framework. This chapter explains how
to develop the FM radio application that interfaces to the hardware components of the radio chip. The FM
radio driver controls the Si4702 chip.

16.1 Radio Driver Summary
Table 16-1 provides a summary of source code location, library dependencies and other BSP information.

16.2 Supported Functionality
The Radio driver enables the 3-Stack board to provide the following software and hardware support:

1. Supports the Windows CE streams interface.
2. Supports the main functions of FM Radio: Power on/off, Set Frequency, Set Volume, Muted and

Auto Scan.
3. Supports the Si4702 chip.

16.3 Hardware Operation
The driver uses I2C to interact with radio chip. The radio driver uses I2C to interact with Si4702 chip. For
information, see the Silicon Laboratories Si4702 Guide.

Table 16-1. Radio Driver Summary

Driver Attribute Definition

Target Platform iMX35-3DS-PDK1_7

Target SOC N/A

SOC Common Path N/A

SOC Specific Path N/A

Platform Specific Path ..\PLATFORM\<Target Platform>\SRC\DRIVERS\RADIO

Driver DLL fm_radio.dll

SDK Library N/A

Catalog Item Third Party > BSPs > Freescale <Target Platform>: ARMV4I > Device Drivers > Radio

SYSGEN Dependency N/A

BSP Environment Variables BSP_RADIO=1
BSP_I2CBUS1=1

FM Radio Driver

Windows Embedded CE 6.0 BSP Reference Manual

16-2 Freescale Semiconductor

16.3.1 Conflicts with Other Peripherals and Catalog Items
No Conflicts.

16.4 Software Operation
The only interface to control the Radio driver is provided by the IOCTLs.

16.4.1 Registry Settings

16.4.1.1 i.MX35 Registry Settings
The following registry keys are required to properly load the Radio driver.
; These registry entries load the FM Radio driver. The IClass value is GUID for generic
power-managed devices.

[HKEY_LOCAL_MACHINE\Drivers\BuiltIn\RADIO]
 "Prefix"="RDO"
 "Dll"="fm_radio.dll"
 "Index"=dword:1
 "Order"=dword:30
 "IClass"="{A32942B7-920C-486b-B0E6-92A702A99B35}"

16.5 Power Management
The primary method for limiting power consumption in the Radio module is to power down the chip when
the FM Radio driver is not in use. The application calls IOCTL_SET_POWER with the parameter
POWER_OFF to power down the chip.

16.5.1 Power Up
This function is not implemented for the Radio driver.

16.5.2 Power Down
This function is not implemented for the Radio driver.

16.5.3 IOCTL_POWER_SET

16.5.3.1 i.MX35 IOCTL_POWER_SET Support
This IOCTL requests a change from one device power state to another. D0 and D4 are the only two
supported CEDEVICE_POWER_STATE in the Radio driver. Any request that is not D0, is changed to
a D4 request, which puts the system in a suspend state. The system is resumed for a request of value D0.

FM Radio Driver

Windows Embedded CE 6.0 BSP Reference Manual

Freescale Semiconductor 16-3

16.6 Unit Test
The Radio CETK test cases verify the functionality of the radio driver with radio chip. The FM Radio
Application can also be used to verify the radio driver. For information, see the FM Radio Application
section of the User’s Guide.

16.6.1 Unit Test Hardware
Table 16-2 lists the required hardware to run the unit tests.

16.6.2 Unit Test Software
Table 16-3 lists the required software to run the unit tests.

16.6.3 Building the Unit Tests

16.6.3.1 FM Radio Tests
In order to build the Radio tests, complete the following steps:

Build an OS image for the desired configuration:
1. Within Platform Builder, go to the Build OS menu option and select the Open Release Directory

menu option. This opens a DOS prompt.
2. Change to the Radio Tests directory: \WINCE600\SUPPORT_PDK1_7\TEST\RADIO
3. Enter set WINCEREL=1 on the command prompt and hit return. This copies the built DLL to the

flat release directory.
4. Enter the build command (build -c) at the prompt and press return.

After the build completes, the radio_test.dll file is located in the $(_FLATRELEASEDIR) directory.

Table 16-2. Hardware Requirements

Requirement Description

Radio chip N/A

Table 16-3. Software Requirements

Requirement Description

Tux.exe Tux test harness, which is needed for executing the test

Kato.dll Kato logging engine, which is required for logging test data

Tooltalk.dll Library required by Tux.exe and Kato.dll. Handles the transport between the target device and the
development workstation

Radio_test.dll Test .dll file

FM Radio Driver

Windows Embedded CE 6.0 BSP Reference Manual

16-4 Freescale Semiconductor

16.6.3.2 FM Radio Custom Application
In order to build the FM Radio custom application, complete the following steps:

Build an OS image for the desired configuration:
1. Within Platform Builder, go to the Build OS menu option and select the Open Release Directory

menu option. This opens a DOS prompt.
2. Change to the Radio application directory: \WINCE600\SUPPORT_PDK1_7\APP\FM
3. Enter set WINCEREL=1 on the command prompt and hit return. This copies the built executable

to the flat release directory.
4. Enter the build command (build -c) at the prompt and press return.

After the build completes, the FM application file is located in the $(_FLATRELEASEDIR) directory.

16.6.4 Running the Unit Tests
The command line for running the radio tests is:

tux –o –d radio_test

To redirect the test results to a file, add the option –f. Radio tests do not contain any test-specific command
line options.

16.7 Radio Driver API Reference

16.7.1 Radio Driver IOCTLS
This section describes the RADIO I/O control codes (IOCTLs). These IOCTLs are used in calls to
DeviceIoControl to issue commands to the radio device modules. Only relevant parameters for this IOCTL
are described. Most of the IOCTLs are explained in other sections.

16.7.1.1 RADIO_IOCTL_GET_CAPS
This DeviceIoControl request determines the capability of the hardware.
Parameters
hOpenContext [in] Handle to the device that is to perform the operation. To obtain a device

handle, call the CreateFile function.
pBufIn NULL
pBufOut pointer to RADIO_CAPS type data return to caller.

16.7.1.2 RADIO_IOCTL_GET_TUNER
This DeviceIoControl request used to retrieve the tuner information of the hardware.
Parameters
hOpenContext [in] Handle to the device that is to perform the operation. To obtain a device

handle, call the CreateFile function.

FM Radio Driver

Windows Embedded CE 6.0 BSP Reference Manual

Freescale Semiconductor 16-5

pBufIn NULL
pBufOut pointer to RADIO_TUNER type data return to caller.

16.7.1.3 RADIO_IOCTL_SET_TUNER
This DeviceIoControl request sets tuner information of the hardware.
Parameters
hOpenContext [in] Handle to the device that is to perform the operation. To obtain a device

handle, call the CreateFile function.
pBufIn pointer to RADIO_TUNER type data filled by caller.
pBufOut NULL

16.7.1.4 RADIO_IOCTL_GET_AUDIO
This DeviceIoControl request used to retrieve the audio information of the hardware.
Parameters
hOpenContext [in] Handle to the device that is to perform the operation. To obtain a device

handle, call the CreateFile function.
pBufIn NULL
pBufOut pointer to RADIO_AUDIO type data return to caller.

16.7.1.5 RADIO_IOCTL_SET_AUDIO
This DeviceIoControl request sets audio information of the hardware, such as volume and whether muted.
Parameters
hOpenContext [in] Handle to the device that is to perform the operation. To obtain a device

handle, call the CreateFile function.
pBufIn pointer to RADIO_AUDIO type data filled by caller.
pBufOut NULL

16.7.1.6 RADIO_IOCTL_GET_FREQ
This DeviceIoControl request used to retrieve the current frequency of the hardware.
Parameters
hOpenContext [in] Handle to the device that is to perform the operation. To obtain a device

handle, call the CreateFile function.
pBufIn NULL
pBufOut pointer to the current frequency return to caller.

16.7.1.7 RADIO_IOCTL_SET_FREQ
This DeviceIoControl request tunes to the frequency.

FM Radio Driver

Windows Embedded CE 6.0 BSP Reference Manual

16-6 Freescale Semiconductor

Parameters
hOpenContext [in] Handle to the device that is to perform the operation. To obtain a device

handle, call the CreateFile function.
pBufIn pointer to the frequency filled by caller.
pBufOut NULL

16.7.1.8 RADIO_IOCTL_GET_POWER
This DeviceIoControl request is used to retrieve the power state of the hardware.
Parameters
hOpenContext [in] Handle to the device that is to perform the operation. To obtain a device

handle, call the CreateFile function.
pBufIn NULL
pBufOut pointer to RADIO_POWER type data return to caller.

16.7.1.9 RADIO_IOCTL_SET_POWER
This DeviceIoControl request sets the power state of the hardware.
Parameters
hOpenContext [in] Handle to the device that is to perform the operation. To obtain a device

handle, call the CreateFile function.
pBufIn pointer to RADIO_POWER type data filled by caller.
pBufOut NULL

16.7.1.10 RADIO_IOCTL_AUTO_TUNE
This DeviceIoControl request auto scans all available channels.
Parameters
hOpenContext [in] Handle to the device that is to perform the operation. To obtain a device

handle, call the CreateFile function.
pBufIn pointer to RADIO_AUTOTUNE type data filled by caller.
pBufOut NULL

16.7.1.11 RADIO_IOCTL_GET_LAST_ERROR
This DeviceIoControl returns the last return code.
Parameters
hOpenContext [in] Handle to the device that is to perform the operation. To obtain a device

handle, call the CreateFile function.
pBufIn NULL
pBufOut pointer to the current return code returned to the caller

FM Radio Driver

Windows Embedded CE 6.0 BSP Reference Manual

Freescale Semiconductor 16-7

16.7.2 Radio Driver Structures

16.7.2.1 Radio Tuner Structure
typedef struct
{
 TCHAR name[32]; // i.e "FM"
 INT32 band_id;
 UINT32 range_low; //KHZ
 UINT32 range_high; //KHZ
 UINT32 signal;
 UINT32 normal_signal; //acceptable signal
 UINT32 mode; //MONO, STEREO
 UINT32 reserved;
} RADIO_TUNER;

16.7.2.2 Radio Caps Structure
typedef struct
{
 TCHAR driver[32];// i.e. "Radio"
 TCHAR chip[32]; // i.e. "Silicon Laboratories Si4702"
 UINT32 version; //
 UINT32 caps; // Device capabilities
 UINT32 bands;
 UINT32 reserved;
} RADIO_CAPS;

16.7.2.3 Radio Audio Structure
typedef struct
{
 UINT32 volume;
 UINT32 muted;
} RADIO_AUDIO;

16.7.2.4 Radio Power State Structure
typedef enum
{
 RADIO_POWER_OFF = 0,
 RADIO_POWER_ON
} RADIO_POWER;

16.7.2.5 Radio Auto Tune Structure
typedef enum
{
 RADIO_AUTOTUNE_FROM_BEGIN = 0,
 RADIO_AUTOTUNE_FROM_CUR,
 RADIO_AUTOTUNE_FROM_END
} RADIO_AUTOTUNE_POS;

typedef enum
{

FM Radio Driver

Windows Embedded CE 6.0 BSP Reference Manual

16-8 Freescale Semiconductor

 RADIO_AUTOTUNE_SEEKUP = 0,
 RADIO_AUTOTUNE_SEEKDOWN
} RADIO_AUTOTUNE_DIR;

typedef struct
{
 RADIO_AUTOTUNE_POS pos;
 RADIO_AUTOTUNE_DIR dir;
} RADIO_AUTOTUNE;

Windows Embedded CE 6.0 BSP Reference Manual

Freescale Semiconductor 17-1

Chapter 17
General Purpose Timer (GPT) Driver
The GPT is a multipurpose module used to measure intervals or generate periodic output. The GPT counter
value can be captured in a register using an event on an external pin. The GPT can also generate an event
on a chip boundary signal and an interrupt when the timer reaches a programmed value.

17.1 GPT Driver Summary
Table 17-1 provides a summary of source code location, library dependencies and other BSP information.

17.2 Supported Functionality
The GPT driver enables the hardware platform to provide the following software support:

1. Clock source selection including IPG_CLK (microsecond level precision) and GPT_32KCLK
(microsecond level precision)

2. Both reset and free-run mode count operation
3. Two power management modes: power on and power off
4. Exposes the SDK API interface which is used by application

Table 17-1. GPT Driver Summary

Driver Attribute Definition

Target Platform iMX35-3DS-PDK1_7

Target SOC MX35_FSL_V2_PDK1_7

SOC Common Path ..\PLATFORM\COMMON\SRC\SOC\COMMON_FSL_V2_PDK1_7\GPT

 SOC Specific Path ..\PLATFORM\COMMON\SRC\SOC\<Target SOC>\GPT

Platform Specific Path ..\PLATFORM\<Target Platform>\SRC\DRIVERS\GPT

Driver DLL gpt.dll

SDK Library gptsdk.lib

Catalog Item Third Party > BSP > Freescale <Target Platform>: ARMV4I > Device Drivers > GPT >
GPT

SYSGEN Dependency N/A

BSP Environment Variables BSP_GPT=1

General Purpose Timer (GPT) Driver

Windows Embedded CE 6.0 BSP Reference Manual

17-2 Freescale Semiconductor

NOTE
GPT_IPGCLK is adapted for short time period (GPT_IPGCLK is
66.5 MHz, the maximum time period is 64.599 seconds), while the
maximum time period of GPT_32KCLK is approximately 37 hours, 16
minutes, 57 seconds.

17.3 Hardware Operation
Refer to the chapter on GPT in the Applications Processor Reference Manual for detailed hardware
operation and programming information.

17.3.1 Conflicts with Other Peripherals and Catalog Items
Because the external GPT clock source is not used, GPT module does not conflict with other peripherals.

17.4 Software Operation
If the Platform Builder profiling support is to be used, the GPT driver cannot be included in the workspace.

17.4.1 GPT Registry Settings
[HKEY_LOCAL_MACHINE\Drivers\BuiltIn\GPT]

"Prefix"="GPT"
"Dll"="gpt.dll"
"Index"=dword:1

17.4.2 Communicating with the GPT
The GPT driver controls the General Purpose Timer. This timer is used to provide high resolution
(microsecond) timing functionality to other platform modules. The GPT is a stream interface driver and is
thus accessed through the file system APIs. To communicate using the GPT, a handle to the device must
first be obtained using the GptOpenHandle function. Subsequent commands to the device are issued
using various APIs supported by this driver. For more information about the API refer to Section 17.7,
“GPT SDK API Reference.” To use this API, it is necessary to include the gptsdk.lib library.

17.4.2.1 Creating a Handle to the GPT
To communicate with the GPT, a handle to the device must first be created using the GptOpenHandle
API. The default GPT port is 1.

The following code shows how to open a handle to the GPT:
// Global data
// Handle to the GPT device
HANDLE g_hGpt = NULL;

// opening the GPT1 port.
g_hGpt = GptOpenHandle(L"GPT1:");

General Purpose Timer (GPT) Driver

Windows Embedded CE 6.0 BSP Reference Manual

Freescale Semiconductor 17-3

17.4.2.2 Create Event for GPT
HANDLE GptCreateTimerEvent(HANDLE hGpt, LPTSTR eventName)
// Function: GptCreateTimerEvent
//
// This method returns a handle triggered
// when the GPT timer period has elapsed.
//
// Parameters:
// hGpt
// [in] Handle to GPT driver.
//
// eventName
// [in] String identifying timer event.
//
// Returns:
// Timer event handle created. Handle is NULL if failure.

The following is an example:
// Name to create the named event for Timer
#define GPT_EVENT_NAME L"GptTest1"

// create an event for the timer interrupt
hGptIntr = GptCreateTimerEvent(hGpt, GPT_EVENT_NAME);

17.4.2.3 Configuring the GPT
Calling the GptStart(g_hGpt, pTimerConfig) function starts the GPT module and enables the timer event
trigger. g_hGpt is valid and opened handle for GPT, and pTimerConfig struct is as follows:

typedef struct
{
 timerMode_c timerMode;
 UINT32 period;
 timerSrc_c timerSrc;
} GPT_Config, *pGPT_Config;

and timerSrc may select GPT_IPGCLK or GPT_32KCLK.

Before this action can be taken, a handle to the GPT port must already be opened.

Call the GptStart API to enable and start the timer:
// configuring and starting the GPT, the second parameter contains timer mode, period and
clock source
GptStart(g_hGpt, pTimerConfig);

Call the GptShowTimerSrc API to show current timer source:
// showing current GPT timer source
GptShowTimerSrc(g_hGpt);

After the GPT starts to time and the timer event handle is created, call the following command to wait the
coming of the predefined time:

// waiting for event triggering
if(WaitForSingleObject(g_hGptIntr, INFINITE) == WAIT_OBJECT_0)
{
}

General Purpose Timer (GPT) Driver

Windows Embedded CE 6.0 BSP Reference Manual

17-4 Freescale Semiconductor

17.4.2.4 Closing the Handle to the GPT
To close the GPT handle, call the GptCloseHandle API. Before performing the close operation, stop the
timer using GptStop API. It is always advised to call GptReleaseTimerEvent to release any pending
timer events before closing the handle.

The following code shows how to close the GPT Handle:
// Name to create the named event for Timer
#define GPT_EVENT_NAME L"GptTest1"

// releasing the Timer Event.
GptReleaseTimerEvent(g_hGpt, eventString);
GptStop(g_hGpt);
GptCloseHandle(g_hGpt);

To pause the timer and then restart for a moment, use the GptStop function, as follows:
GptStop(g_hGpt);
Sleep(sometime);
GptResume(g_hGpt);

BOOL GptResume(HANDLE hGpt)
// Function: GptResume
//
// This method reactivates the GPT(Usually called after a Stop))
//
// Parameters:
// hGpt
// [in] Handle to GPT driver.
//
// Returns:
// TRUE if success.
// FALSE if failure.

17.4.3 DMA Support
The GPT driver does not use the DMA.

17.5 Power Management
The primary method for limiting power consumption in the GPT module is to gate off all clocks to the
module when the GPT is not used. The clock is enabled when an application calls GPT_Open(). This
clock then remains enabled as long device is kept open. The GPT clock is turned off when the application
closes the device using GPT_Close().

17.5.1 PowerUp
This function restores the state of the GPT clocks back to the state before entering suspend. If the GPT was
counting before suspend, GPT continues to count from the place where it was stopped.

General Purpose Timer (GPT) Driver

Windows Embedded CE 6.0 BSP Reference Manual

Freescale Semiconductor 17-5

17.5.2 PowerDown
This function disables the clock to the GPT module. If the GPT was counting, then the count value freezes
at the point when the clock is disabled.

17.5.3 IOCTL_POWER_SET
This function is not implemented for the GPT driver.

17.6 Unit Test
The GPT tests verify that the GPT driver properly initializes and controls the general purpose timer.

17.6.1 Unit Test Hardware
Table 17-2 lists the required hardware to run the unit tests.

17.6.2 Unit Test Software
Table 17-3 lists the required software to run the unit tests.

17.6.3 Building the Unit Tests
To build the GPT tests, build an OS image for the desired configuration using these steps:

1. Within the Platform Builder, choose Build OS > Open Release Directory.
A DOS prompt is displayed.

2. Change to the GPT Tests directory: \WINCE600\SUPPORT_PDK1_7\TEST\GPT
3. Enter set WINCEREL=1 on the command prompt and press return.

This copies the DLL to the flat release directory.

Table 17-2. Hardware Requirements

Requirement Description

No additional hardware required

Table 17-3. Software Requirements

Requirement Description

Tux.exe Tux test harness, which is needed for executing the test

Kato.dll Kato logging engine, which is required for logging test data

Tooltalk.dll Library required by Tux.exe and Kato.dll. Handles the transport between the target device
and the development workstation

GPTTEST.dll Test .dll file

General Purpose Timer (GPT) Driver

Windows Embedded CE 6.0 BSP Reference Manual

17-6 Freescale Semiconductor

4. Input build -c to build GPT test.

After the build completes, the GPTTEST.dll file is located in the $(_FLATRELEASEDIR) directory.

17.6.4 Running the Unit Tests
To run this test the tux.exe and kato.dll files must be present in the release directory. These files are not
present by default and need to be copied from this location:
\Program Files\Microsoft Platform Builder\6.00\cepb\wcetk\ddtk\armv4i

to the release directory.

To run the test using the Target Control window use the following steps:
1. Within the Platform Builder, go to the Target menu option and select the Target Control menu

option. This opens a Windows CE Command Prompt window
2. Run on the Command Prompt windows this command: s tux -o -d gpttest.dll

The test starts and the results can be viewed in the Output panel in the Visual Studio.

Table 17-4 describes the test cases contained in the GPT tests.

17.7 GPT SDK API Reference

17.7.1 GPT SDK Functions

17.7.1.1 GptOpenHandle
This API creates a handle to the GPT stream driver.

HANDLE GptOpenHandle(
LPCWSTR lpDevName);

Parameters
lpDevName [in] Device name to open
Return Values Open handle to the specified file indicates success INVALID_HANDLE_VALUE

indicates failure

Table 17-4. GPT Test Cases

Test Case Description

1: TST_StartBeforeCfg Attempt to start the GPT timer without setting the timer period (expected failure)

2: TST_OpenMultipleHandle Attempt to open multiple GPT Handles (expected failure)

3: TST_ComparewithSysTick Check timer accuracy with system clock

4:TST_PeriodicMode Periodic mode test

5: TST_FreerunMode Free run mode test

6: TST_StopAndResume Stop and resume test

General Purpose Timer (GPT) Driver

Windows Embedded CE 6.0 BSP Reference Manual

Freescale Semiconductor 17-7

Remarks Use the GptCloseHandle function to close the handle returned by
GptOpenHandle()

17.7.1.2 GptCreateTimerEvent
This API is used to create the GPT Timer event.

HANDLE GptCreateTimerEvent(
 HANDLE hGpt,
 LPTSTR eventName);

Parameters
hGpt [in] Handle to the GPT driver returned by GptOpenHandle API
eventName [in] Pointer to a null-terminated string that specifies the name of the object
Return Values Non-null handle to the specified event indicates success. NULL indicates failure
Remarks Use the GptReleaseTimerEvent function to close the event. The system closes

the handle automatically when the process terminates. The event object is
destroyed when its last handle has been closed.

17.7.1.3 GptStart
This API enables the GPT interrupt and starts the GPT timer.

BOOL GptStart(
HANDLE hGpt,
pGPT_Config pTimerConfig);

Parameters
hGpt [in] Handle to the GPT driver returned by GptOpenHandle API
pTimerConfig [in] Object of the pGPT_Config structure
Return Values TRUE on success and FALSE indicates a failure
Remarks Set desired event trigger time and start GPT

17.7.1.4 GptGetCounterValue
This API gets the current counter register value.

BOOL GptGetCounterValue(
HANDLE hGpt,
PDWORD pTimerCount);

Parameters
hGpt [in] Handle to the GPT driver returned by GptOpenHandle API
pTimerCount [in] Pointer to the variable which receives current counter value
Remarks None

17.7.1.5 GptResume
This API reactivates the GPT.

BOOL GptResume(

General Purpose Timer (GPT) Driver

Windows Embedded CE 6.0 BSP Reference Manual

17-8 Freescale Semiconductor

HANDLE hGpt);
Parameters
hGpt [in] Handle to the GPT driver returned by GptOpenHandle API
Remarks Often called after a stop

17.7.1.6 GptStop
This API disables the GPT interrupt and stops the GPT timer.

BOOL GptStop(
HANDLE hGpt);

Parameters
hGpt [in] Handle to the GPT driver returned by GptOpenHandle API
Return Values TRUE on success and FALSE indicates a failure
Remarks None

17.7.1.7 GptReleaseTimerEvent
This API closes the currently open GPT Timer Event.

BOOL GptReleaseTimerEvent(
HANDLE hGpt,
LPTSTR eventName);

Parameters
hGpt [in] Handle to the GPT driver returned by GptOpenHandle API
eventName [in] Pointer to a null-terminated string that specifies the name of the object
Return Values Nonzero indicates success; Zero indicates failure

To get extended error information, call GetLastError()
Remarks None

17.7.1.8 GptCloseHandle
This API closes a handle to the GPT driver.

BOOL GptCloseHandle(
HANDLE hGpt);

Parameters
hGpt [in] Handle to the GPT driver returned by GptOpenHandle API
Return Values Nonzero indicates success; Zero indicates failure

To get extended error information, call GetLastError()
Remarks None

General Purpose Timer (GPT) Driver

Windows Embedded CE 6.0 BSP Reference Manual

Freescale Semiconductor 17-9

17.7.2 GPT Driver Structures

17.7.2.1 GPT_Config
typedef struct
{ timerMode_c timerMode;

UINT32 period;
timerSrc_c timerSrc;

} GPT_Config, *pGPT_Config;
Members
timerMode Selects between two supported modes: reset or periodic mode

(timerModePeriodic) and free-running mode (timerModeFreeRunning)
period Counter period (in microsecond)
timerSrc Selects GPT clock source: GPT_IPGCLK or GPT_32KCLK

17.7.2.2 GPT_TIMER_SRC_PKT
typedef struct
{ timerSrc_c timerSrc;
}GPT_TIMER_SRC_PKT, *PGPT_TIMER_SRC_PKT;

Members
timerSrc Select clock source between two supported timer clock sources: GPT_IPGCLK or

GPT_32KCLK

General Purpose Timer (GPT) Driver

Windows Embedded CE 6.0 BSP Reference Manual

17-10 Freescale Semiconductor

Windows Embedded CE 6.0 BSP Reference Manual

Freescale Semiconductor 18-1

Chapter 18
Global Positioning System (GPS) Driver
The Global Positioning System (GPS) enables a GPS receiver to determine its location, speed/direction,
and time.

18.1 GPS Driver Summary
This 3-Stack platform supports the BroadCom BCM4750 Single Chip Assisted-GPS (A-GPS) solution.
BCM4750™ is an A-GPS solution that integrates a high performance A-GPS baseband signal processor
with a low-noise GPS RF Tuner into a single CMOS die. BCM4750 delivers exceptional sensitivity (-162
dBm), low power consumption and fast time-to-first-fix (TTFF) in a small, inexpensive package.

The external GPS module is supported using the UART port and GPIO resources. Because the chipset
features a host-based architecture, you must load certain software components on the platform in order to
enable full operation. Table 18-1 provides a summary of source code location, library dependencies and
other BSP information.

Table 18-1. GPS Driver Summary

Driver Attribute Definition

Target Platform iMX35-3DS-PDK1_7

Target SOC N/A

SOC Common Path N/A

SOC Specific Path N/A

Platform Specific Path ..\PLATFORM\<Target Platform>\SRC\DRIVERS\GPS
..\PLATFORM\<Target Platform>\SRC\DRIVERS\GPSCTRL

Driver DLL gpscontroldriver.dll, GpsctService.dll, GlvcDriver.dll, log4net.dll, OpenNetCF_GL.dll,
OpenNetCF.Windows.Form_GL.dll, OpenNetCF.Net_GL.dll,

SDK Library N\A

Catalog Item Third Party > BSPs > Freescale <Target Platform>: ARMV4I > Device Drivers > GPS > GPS
core DLL
Third Party > BSPs > Freescale <Target Platform>: ARMV4I > Device Drivers > GPS > GPS
Control Driver

SYSGEN Dependency N/A

BSP Environment Variables BSP_GPS_CONTROL_DRIVER=1
BSP_GPS_COREDRIVER=1
BSP_SERIAL_UART3 =1
BSP_MCU_MC9S08DZ60=1

Global Positioning System (GPS) Driver

Windows Embedded CE 6.0 BSP Reference Manual

18-2 Freescale Semiconductor

NOTE
Do not use FEC feature for the TO2 blue CPU board because UART3 and
FEC share pins and UART3 is used by the GPS.

Most GPS software modules are provided in binary form only. This application also provides source code
format for the driver that supports access to the hardware. To enable the GPS module, select the
corresponding elements from the Platform Builder Catalog for the current OS Design. The binary files and
the registry settings that correspond to the elements selected are included in the OS run-time image.

The GPS module uses UART on the 3-Stack platform. Resetting and power on/power off to the GPS
module are controlled by the MCU GPIO pins. The GPS module functionality is segmented into
subsystems. All of the subsystems do not need to be selected in order to enable GPS on the platform.

Figure 18-1 shows the architecture of GPS driver. Three layers in the GPS software system.
• Application layer
• GPS core driver layer
• GPS HAL driver layer

Figure 18-1. Software Architecture of GPS Driver

18.1.1 Application Layer
Handset applications, TCP/IP stack and the GSM layer3 belong to the application layer. Handset
applications, such as VisualGpsce.exe or any other mapping software, can receive standard NMEA data

Global Positioning System (GPS) Driver

Windows Embedded CE 6.0 BSP Reference Manual

Freescale Semiconductor 18-3

to show position with a friendly user interface. TCP/IP stack and GSM layer3 can provide A-GPS
navigation service to enable GPS functionality even when satellite signal is not good enough to get fix.

18.1.2 GPS Core Driver Layer
The deep color part (GLL) belongs to GPS core driver layer. The GPS core driver runs at host and
communicates with GPS chip by calling GPS HAL driver. The driver is used for position calculation and
assistance data management.

18.1.3 GPS HAL Driver Layer
GPS HAL drivers provide hardware related resource, such as serial port driver, non-volatile storage and
GPIO functions. The driver is called as gpscontroldriver.dll, and source code can be found at:

PLATFORM\<Target Platform>\SRC\DRIVERS\GPSCTRL\.

18.2 Supported Functionality
The GPS driver enables the 3-Stack board to provide the following software and hardware support:

1. Integrates the BCM4750 GPS module from BroadCom company
2. Supports power management mode full on/full off

18.3 Hardware Operation
The GPS driver exchanges data and command between GPS application layer and hardware module via
UART port

18.3.1 Conflicts with Other Peripherals and Catalog Items

18.3.1.1 Conflicts with SoC Peripherals
None

18.3.1.2 Conflicts with 3-Stack Peripherals

18.3.1.3 i.MX35 Peripheral Conflicts
Because the GPS uses the UART3 port which shares some pins with the FEC module as a commication
port in i.MX35 TO2 blue CPU board, do not add the GPS and FEC drivers into image at the same time.

Global Positioning System (GPS) Driver

Windows Embedded CE 6.0 BSP Reference Manual

18-4 Freescale Semiconductor

18.3.2 i.MX35 Hardware Operation

18.3.2.1 UART Port

For i.MX35-3DS TO2 blue CPU board, UART3 port is used to communicate with the GPS module. If a
different UART port is used for this purpose, then the following registry must be changed
correspondingly:

..\PLATFORM\<Target Platform>\SRC\DRIVERS\GPS\GlobalLocate-Gpsct-flatrom.reg:

"GpsComPort"="COMx:", where “x” should be specified according to the UART actually used
("COM3:").

18.3.2.2 GPIO Control

Three MCU GPIO pins are used to control the GPS module as shown in Table 18-2.

If different pins are used for such purpose, then some source code must be updated to reflect the
difference. Refer to the following source file for details:
..\PLATFORM\<Target Platform>\SRC\DRIVERS\GPSCTRL\gpsctlpdd.cpp

18.4 Software Operation

18.4.1 Communicating with the GPS Module
Software applications communicate with the GPS module through a virtual COM port (COM8). The
virtual COM port is a standard stream interface driver, and is thus accessed through the file system APIs.
For example, the Win32 API CreateFile() call can be used to obtain a handle and ReadFile() can be used
to read the NMEA data stream output by the GPS module.

18.4.2 Power Management
The GPS_PowerUp and GPS_PowerDown functions are used to bring the GPS module into and out of
standby mode. The code is designed to keep the power consumption of the GPS module at a minimal level
when the standby power state is invoked.

Table 18-2. GPIO Control

GPIO Name PIN Value Description

GPS_RST PTE6(MCU) 0: Reset of GPS module is asserted
1: Reset of GPS module is de-asserted

GPS_PWREN PTE5(MCU) 1: GPS module is powered on
0: GPS module is powered off

32K_GPSA PTG5(MCU) Enable GPS 32K Clock

Global Positioning System (GPS) Driver

Windows Embedded CE 6.0 BSP Reference Manual

Freescale Semiconductor 18-5

18.4.3 GPS Driver Registry Settings

18.4.3.1 Configuration Registry Keys
The registry files can be found at:

PLATFORM\<Target Platform>\SRC\DRIVERS\GPS\GlobalLocate-Gpsct-flatrom.reg

PLATFORM\<Target Platform>\SRC\DRIVERS\GPS\gpscontroldriver.reg

18.5 Unit Test
A navigation application is necessary to test the GPS driver. Freescale does not provide a navigation
application. The user is responsible for providing a navigation application (contact BroadCom for more
information).

Global Positioning System (GPS) Driver

Windows Embedded CE 6.0 BSP Reference Manual

18-6 Freescale Semiconductor

Windows Embedded CE 6.0 BSP Reference Manual

Freescale Semiconductor 19-1

Chapter 19
Graphics Processing Unit (GPU)
The Graphics Processing Unit (GPU) is a graphics accelerator targeting embedded 2D graphics
applications. The GPU2D (2D graphics processing unit) is based on the AMD Z160 core, which is an
embedded 2D and vector graphics accelerator targeting the OpenVG 1.1 graphics API and feature set. The
GPU driver is delivered only as binary code.

19.1 GPU Driver Summary
Table 19-1 provides a summary of source code location, library dependencies and other BSP information.

19.2 Supported Functionality
The GPU driver enables the board to provide the following software and hardware support:

1. EGL™ (interface between Khronos rendering APIs such as OpenGL ES or OpenVG and the
underlying native platform window system) 1.3 API defined by Khronos Group

2. OpenVG™ (royalty-free, cross-platform API that provides a low-level hardware acceleration
interface for vector graphics libraries such as Flash and SVG) 1.1 API defined by Khronos Group

3. D0 (Full On) and D4 (Off) power states

Table 19-1. GPU Driver Summary

Driver Attribute Definition

Target Platform iMX35-3DS-PDK1_7

Target SOC MX35_FSL_V2_PDK1_7

SOC Common Path N/A

SOC Specific Path N/A

Platform Specific Path ..\PLATFORM\<Target Platform>\SRC\DRIVERS\GPU

Driver DLL libkos.dll libgsl.dll amdgslldd.dll libgslmemcfg.dll
libos.dlllibgsluser.dll libpanel.dll res_client.dllcsi.dll
libOpenVG.dlllib2dz160k.dll

lib2d-z160.dll

SDK Library N/A

Catalog Item Third Party > BSP > Freescale <Target Platform> > Device Drivers > GPU > Z160

SYSGEN Dependency N/A

BSP Environment
Variables

BSP_GPU=1

Graphics Processing Unit (GPU)

Windows Embedded CE 6.0 BSP Reference Manual

19-2 Freescale Semiconductor

19.3 Hardware Operation
Refer to the GPU chapter in the i.MX35 Applications Processor Reference Manual for detailed hardware
operation and programming information.

19.3.1 Conflicts with Other Peripherals and Catalog Items
No conflicts.

19.4 Software Operation

19.4.1 Communicating with the GPU
The GPU driver is divided into two layers. The first layer is running in kernel mode, acting as the base
driver for the whole stack and providing the essential hardware access, device management, memory
management, command stream management, context management and power management. The second
layer is running in user mode, implementing the stack logic and providing following APIs to the upper
layer applications such as:

• EGL 1.3 API
• OpenVG 1.1 API

19.4.2 GPU Driver Files
Listed below is a brief introduction to the GPU driver files. This list is not complete. The platform.bib file
contains the complete list.

• Files that reside in kernel space:
— amdgslldd.dll—base GPU driver and the standard stream interface driver, provides essential

access to GPU hardware
— libkos.dll—contains OS helper functions
— libgsl.dll—contains common Graphics System Layer (GSL) logic
— lib2dz160k.dll—contains Z160 c2d helper functions
— libgslmemcfg.dll—contains memory configuration helper functions

• Files that reside in user space
— libos.dll—contains OS helper functions
— libgsluser.dll—contains common Graphics System Layer (GSL) logic
— lib2d-z160.dll—contains Z160 c2d helper functions
— libpanel.dll—contains GPU configuration helper functions so that some configurations could

be customized during runtime, instead of hard-built images
— essc.dll—contains shader compiler logic
— librenderboy.dll—contains the logic of rendering framework

Graphics Processing Unit (GPU)

Windows Embedded CE 6.0 BSP Reference Manual

Freescale Semiconductor 19-3

— libEGL.dll—contains EGL implementation
— libOpenVG.dll—contains OpenVG 1.1 implementation
— res_client.dll—contains resource client helper functions for OpenVG
— csi.dll—contains command stream interface helper functions for OpenVG

19.4.3 Power Management
The GPU driver implements the PowerUp and PowerDown APIs with support for the D0 (Full On) and
D4 (Off) power states. These states are handled in the following manner:

• D0—GPU clocks are not enabled until the GPU driver is required to enable the clocks, for
example, when an OpenGL ES application is launched. The GPU driver disabled the clocks when
applications exit. Additionally, the graphics core has integrated power management design that
supports gated clock branches used to turn off idle blocks within the core. This block-level clock
gating is managed automatically in the core and GPU driver enables this capability when configure
the core at the initialization time.

• D4—GPU clocks are disabled and power supplies are also disabled when possible.

19.4.4 GPU Registry Settings
[HKEY_LOCAL_MACHINE\Drivers\BuiltIn\GSL]
"Prefix"="GSL"
[HKEY_LOCAL_MACHINE\Drivers\BuiltIn\GSL]
"Dll"="amdgslldd.dll"
[HKEY_LOCAL_MACHINE\Drivers\BuiltIn\GSL]
"Index"=dword:1

19.5 Float Pointing Acceleration using the ARM Vector Floating Point
(VFP) Library

As this SOC includes a VFP module, graphics applications or drivers can use VFP to accelerate the
mathematical algorithm. You can download the ARM VFP library release from the ARM
website(http://www.arm.com/products/os/windowsce.html) and use the information in the release notes to enable
the OEM floating point library support.

19.6 Unit Test
The following sections describe the unit tests for the GPU driver.

19.6.1 Unit Test Hardware
No special requirements.

19.6.2 Unit Test Software
The following sections describe the software for the GPU driver unit tests.

Graphics Processing Unit (GPU)

Windows Embedded CE 6.0 BSP Reference Manual

19-4 Freescale Semiconductor

19.6.2.1 Tiger Test
This test application verifies the basic functionality of OpengVG 1.1. It is included into the release image
and is located under \Windows\tiger.exe. Click to launch this test and a rotating tiger appears on the screen
as shown in Figure 19-1. Press ESC to exit this application.

Figure 19-1. Tiger Test

19.6.2.2 OpenVG 1.1 Conformance Test
The OpenVG 1.1 conformance test is standard OpenVG conformance test designed by the Khronos Group.
Visit the Khronos Group website at http://www.khronos.org/opengles/adopters/login/ for detailed
information about how to download the source code, build the test binaries and run this tests.

19.6.2.3 Known Issues
• Refer to the release notes for up-to-date known issue list

19.7 GPU Driver API Reference
• For EGL 1.3 API refer to http://www.khronos.org/egl/ for detailed specifications
• For OpenVG 1.1 API refer to http://www.khronos.org/openvg/ for detailed specifications

Graphics Processing Unit (GPU)

Windows Embedded CE 6.0 BSP Reference Manual

Freescale Semiconductor 19-5

Graphics Processing Unit (GPU)

Windows Embedded CE 6.0 BSP Reference Manual

19-6 Freescale Semiconductor

Windows Embedded CE 6.0 BSP Reference Manual

Freescale Semiconductor 20-1

Chapter 20
Inter-Integrated Circuit (I2C) Driver
The Inter-Integrated Circuit (I2C) module provides the functionality of a standard I2C slave and master.
The I2C module is designed to be compatible with the standard Phillips I2C bus protocol.

20.1 I2C Driver Summary
Table 20-1 provides a summary of source code location, library dependencies and other BSP information.

20.2 Supported Functionality
The I2C driver supports the following features:

1. I2C communication protocol
2. Multiple I2C controllers
3. I2C master mode of operation
4. I2C slave mode of operation
5. Stream interface
6. Two power management modes: full on and full off

Table 20-1. I2C Driver Summary

Driver Attribute Definition

Target Platform iMX35-3DS-PDK1_7

Target SOC MX35_FSL_V2_PDK1_7

SOC Common Path ..\PLATFORM\COMMON\SRC\SOC\COMMON_FSL_V2_PDK1_7\I2C

SOC Specific Path ..\PLATFORM\COMMON\SRC\SOC\<Target SOC>\I2C

Platform Driver Path ..\PLATFORM\Target Platform>\SRC\DRIVERS\I2C

Import Library N/A

Driver DLL i2csdk.dll i2c.dll

Catalog Item Third Party > BSP > Freescale <TGTPLAT> > Device Drivers > I2CBus

SYSGEN Dependency N/A

BSP Environment Variables BSP_I2CBUS1=1

Inter-Integrated Circuit (I2C) Driver

Windows Embedded CE 6.0 BSP Reference Manual

20-2 Freescale Semiconductor

20.3 Hardware Operation

20.3.1 Conflicts with Other Peripherals and Catalog Items

20.3.1.1 Conflicts with SoC Peripherals
The i.MX35 platform contains three I2C modules, but only one of these modules may be used on the
i.MX35 3DS board, the I2C1 module. I2C2 and I2C3 pins are not available in the 3DS board, and the pads
are used for CAN and ESAI.

20.3.1.2 Conflicts with Board Peripherals
No conflicts.

20.4 Software Operation
The I2C APIs should be used to perform any operation on or using the I2C module. Any array of packets
to be transferred to or from the I2C bus finish to completion without preemption by another request to
transfer data.

20.4.1 Registry Settings

20.4.1.1 i.MX35 Registry Settings
The following registry keys are required to properly load the I2C module.
IF BSP_I2CBUS
; @XIPREGION IF PACKAGE_OEMDRIVERS
[HKEY_LOCAL_MACHINE\Drivers\BuiltIn\I2C1]
 "Prefix"="I2C"
 "Dll"="i2c.dll"
 "Index"=dword:1
 "Order"=dword:4
ENDIF

20.4.2 Communicating with the I2C
The I2C is a stream interface driver, and is thus accessed through the file system APIs. To communicate
using the I2C, a handle to the device must first be created using the CreateFile function. Subsequent
commands to the device are issued using the DeviceIoControl function with IOCTL codes specifying the
desired operation. The basic steps are detailed below. The I2C driver is provided to hide all the IOCTL
calls from the calling application.

20.4.3 Creating a Handle
Call the CreateFile function to open a connection to the I2C device. An I2C port must be specified in this
call. The format is I2CX:, with X being the number indicating the I2C port. This number should not exceed

Inter-Integrated Circuit (I2C) Driver

Windows Embedded CE 6.0 BSP Reference Manual

Freescale Semiconductor 20-3

the number of I2C instances on the platform. If an I2C port does not exist, CreateFile returns
ERROR_FILE_NOT_FOUND.

To open a handle to the I2C:
1. Insert a colon after the I2C port for the first parameter, lpFileName. For example, specify I2C1:.
2. Specify FILE_SHARE_READ | FILE_SHARE_WRITE in the dwShareMode parameter. Multiple

handles to an I2C port are supported by the driver.
3. Specify OPEN_EXISTING in the dwCreationDisposition parameter. This flag is required.
4. Specify FILE_FLAG_RANDOM_ACCESS in the dwFlagsAndAttributes parameter.

The following code example shows how to open an I2C port.
 // Open the I2C port.
 hI2C = CreateFile (CAM_I2C_PORT, // name of device
 GENERIC_READ | GENERIC_WRITE, // access (read-write) mode
 FILE_SHARE_READ | FILE_SHARE_WRITE, // sharing mode
 NULL, // security attributes (ignored)
 OPEN_EXISTING, // creation disposition
 FILE_FLAG_RANDOM_ACCESS, // flags/attributes
 NULL); // template file (ignored)

Before writing to or reading from an I2C port, configure the port. When an application opens an I2C port,
it uses the default configuration settings, which might not be suitable for the device at the other end of the
connection.

20.4.4 Configuring the I2C
Configuring the I2C port for communications involves two main operations:

• Setting the master or slave mode
• Setting the I2C clock rate

Before these actions can be taken, a handle to the I2C port must already be opened. Each of these steps
requires a call to the DeviceIoControl function. As parameters, the I2C port handle, appropriate IOCTL
code, and other input and output parameters are required. Use the helper APIs to correctly configure the
port.

As an example, the code below configures an I2C port:
HANDLE hI2C = I2COpenHandle(_T("I2C1:"));

if (hI2C == INVALID_HANDLE_VALUE)
{

ERRORMSG(1, (L"Unable to open handle to I2C block\r\n"));
retVal = -1;
goto exit;

}

if (!I2CSetMasterMode(hI2C))
{

ERRORMSG(1, (L"Unable to set master mode\r\n"));
retVal = -1;
goto exit;

}

Inter-Integrated Circuit (I2C) Driver

Windows Embedded CE 6.0 BSP Reference Manual

20-4 Freescale Semiconductor

if (!I2CSetFrequency(hI2C, EEPROM_CLOCK_RATE))
{

ERRORMSG(1, (L"Unable to set frequency\r\n"));
retVal = -1;
goto exit;

}

20.4.5 Data Transfer Operations
The I2C driver provides one command, Transfer, that facilitates performing both reads and writes through
the I2C. The basic unit of data transfer in the I2C driver is the I2C_PACKET, which contains a buffer for
reading or writing data and a flag that specifies whether the desired operation is a read or a write. An array
of these packets makes up an I2C_TRANSFER_BLOCK object, which is needed to perform a Transfer
operation. The steps below detail the process of performing write and read operations through the I2C.

Before these actions can be taken, a handle to the I2C port must already be opened, and it should already
be configured in the correct mode with the correct frequency.

To perform an I2C transfer:
1. Create an array of I2C_PACKET objects and initialize the fields of each packet as follows:

a) Set the byRW field to I2C_RW_WRITE to specify that the I2C operation is a write, or
I2C_RW_READ to specify that the I2C operation is a read.

b) Set the byAddr field to the 7-bit I2C slave address of the device to which the data is written.

NOTE
The byAddr field requires the 7-bit I2C slave address, aligned to the least
significant 7 bits. This address is shifted left one bit and OR-ed with the
read/write bit to compose the 8-bit value sent out during the I2C slave
address cycle. In older versions of this driver, the slave address was entered
as the most significant 7 bits of the 8-bit value.

c) If byRW is set to I2C_RW_WRITE, create a buffer of bytes and fill it with the data to write to
the slave device. Set the pbyBuf field to point to this buffer. If byRW is set to I2C_RW_READ,
create a buffer of bytes to hold the data which is read from the slave device.

d) Set the wLen field to the size, in bytes, of the read or write buffer. This indicates the number of
bytes to write or read.

e) Set the lpiResult field to point to an integer that holds the return value from the write operation.
2. Call the I2CTransfer SDK API to start the I2C transfer.
3. After calling the I2CTransfer function, check the lpiResult field if the function returned FALSE, to

narrow down the type of error that occurred.

The following code example demonstrates how to perform a transfer that contains one write and one read
packet. The write is performed before the read operation.
I2C_TRANSFER_BLOCK I2CXferBlock;
I2C_PACKET I2CPacket[2];
BYTE byAddr = 0x2D; // Slave Address

Inter-Integrated Circuit (I2C) Driver

Windows Embedded CE 6.0 BSP Reference Manual

Freescale Semiconductor 20-5

BYTE byOutData = 0x39; // Data to write
BYTE byInData; // Read buffer

// Packet 0 contains write operation
I2CPacket[0].pbyBuf = (PBYTE) &byOutData;
I2CPacket[0].wLen = sizeof(byOutData);

I2CPacket[0].byRW = I2C_RW_WRITE;
I2CPacket[0].byAddr = byAddr;
I2CPacket[0].lpiResult = lpiResult;

// Packet 1 contains read operation
I2CPacket[1].pbyBuf = (PBYTE) &byInData;
I2CPacket[1].wLen = sizeof(byInData);

I2CPacket[1].byRW = I2C_RW_READ;
I2CPacket[1].byAddr = byAddr;
I2CPacket[1].lpiResult = lpiResult;

I2CXferBlock.pI2CPackets = I2CPacket;
I2CXferBlock.iNumPackets = 2;

// Transfer data via I2C
if (!I2CTransfer(hI2C,&I2CXferBlock))

{
ERRORMSG(1, (_T("Data transfer failed!\r\n")));
retVal = -1;
goto exit; // examine value in lpiResult

}

20.4.5.1 Repeated Start
The array of I2C_PACKET objects passed to the Transfer command is guaranteed to be performed
sequentially, without interruption or preemption by another driver that is attempting to access the I2C
module. A START command of the I2C initiates the transmission of the first packet in the
I2C_TRANSFER_BLOCK array. For subsequent packets, a change in the direction of communication
(from read to write or write to read) or a change in the target slave address triggers a REPEATED START
command before the transmission of the packet. Thus, if a REPEATED START is required between data
transfers with a target I2C device, all of those data transfers should be contained within a single
I2C_TRANSFER_BLOCK. The final packet in the I2C_TRANSFER_BLOCK is succeeded by an I2C
STOP command.

20.4.6 Closing the Handle
Call the CloseHandle function to close the handle to the I2C after the transfer task is complete.
CloseHandle has one parameter, which is the handle returned by the CreateFile function call that opened
the I2C port.

20.4.7 Power Management
The power management method used in the I2C module is to gate off all clocks to the module when those
clocks are not needed. This is accomplished through the DDKClockSetGatingMode function call. In

Inter-Integrated Circuit (I2C) Driver

Windows Embedded CE 6.0 BSP Reference Manual

20-6 Freescale Semiconductor

most BSP use cases, the I2C module operates in master mode and never in slave mode. As a result, the I2C
module can be disabled, and its clocks turned off, whenever the module is not processing packets. In
contrast, when the I2C module operates in slave mode, the module has to be enabled, and have its clocks
turned on at all times to properly receive the interrupt that signals the start of a data transfer from another
I2C master device.

As described in the Data Transfer Operations section, the I2C data transfer operations are handled in
I2C_TRANSFER_BLOCK objects, which contain one or more packets of I2C data. The I2C driver turns
on the I2C clocks and enables the I2C module before processing an I2C_TRANSFER_BLOCK, and then
disables and turns off clocks to the I2C module after the block of packets has been processed. This limits
the time during which the I2C module is consuming power to the time during which the I2C is actively
performing data transfers.

20.4.7.1 PowerUp
This function is not implemented for the I2C driver. Power to the I2C module is managed as I2C transfer
operations are processed. There are no additional power management steps needed for the I2C.

20.4.7.2 PowerDown
This function is not implemented for the I2C driver.

20.4.7.3 IOCTL_POWER_SET
This function is implemented for the I2C driver. When D4 power mode is set, the driver switches its
operating mode to polling that does not produce interrupt events to the BSP system. When leaving the D4
power mode, the driver recovers its original operating mode.

20.5 Unit Test

20.5.1 Unit Test Hardware

20.5.1.1 I2C MCU Tests
MCU module which can be read/write by I2C.

20.5.2 Unit Test Software

20.5.2.1 I2C MCU Tests
Table 20-2 lists the software required to perform I2C MCU tests.

Table 20-2. I2C MCU Tests Software Requirements

Requirement Description

i2cma.exe MCU read/write tests by I2C sample application

Inter-Integrated Circuit (I2C) Driver

Windows Embedded CE 6.0 BSP Reference Manual

Freescale Semiconductor 20-7

20.5.3 Building the Unit Tests

20.5.3.1 I2C MCU Tests
To build the I2C MCU tests, build an OS image for the desired configuration using these steps:

1. Within the Platform Builder, choose Build OS > Open Release Directory.
A DOS prompt is displayed.

2. Change to the I2C MCU tests directory: \WINCE600\SUPPORT_PDK1_7\TEST\I2C\I2CMCU
3. Input build -c to build the I2C MCU test.

After the build completes, the i2cma.exe file is located in the $(_FLATRELEASEDIR) directory.

20.5.4 Running the Unit Tests

20.5.4.1 I2C MCU Tests
To run the application within VS2005, go to the Target menu option and select the Run Programs menu
option. This gives a list of applications that can be run on the OS. Select i2cma.exe from this list and click
on Run to run this application.

If I2C read MCU successfully, will output massage “I2C read MCU successfully“.

If I2C read MCU failed, will output massage “I2C read MCU failed“.

20.6 Hardware Limitations
For the slave function, the hardware does not distinguish between a START and REPEATED START
signal from the I2C bus. Hence the driver checks the IAAS address cycle start flag to detect a new I2C
transmission.

20.7 I2C Driver API Reference

20.7.1 I2C Driver IOCTLS
This section contains descriptions of the I2C I/O control codes (IOCTLs). These IOCTLs are used in calls
to DeviceIoControl to issue commands to the I2C device. Only relevant parameters for the IOCTL have
a description provided.

20.7.1.1 I2C_IOCTL_GET_CLOCK_RATE
This DeviceIoControl request retrieves the clock rate divisor. The value is not the absolute peripheral clock
frequency. The value retrieved should be compared against the I2C specifications to obtain the true
frequency.
Parameters

Inter-Integrated Circuit (I2C) Driver

Windows Embedded CE 6.0 BSP Reference Manual

20-8 Freescale Semiconductor

lpOutBuffer Pointer to the divisor index. The true clock frequency is platform dependent. Refer
to I2C specification for more information

nOutBufferSize Size in bytes of the divisor index

20.7.1.2 I2C_IOCTL_GET_SELF_ADDR
This DeviceIoControl request retrieves the address of the I2C device. This macro is only meaningful if it
is currently in Slave mode.
Parameters
lpOutBuffer Pointer to the current I2C device address, valid range is [0x00–0x7F]
nOutBufferSize Size in bytes of the I2C device address

20.7.1.3 I2C_IOCTL_IS_MASTER
This DeviceIoControl request determines whether the I2C is currently in Master mode.
Parameters
lpOutBuffer Pointer to a BYTE that contains the return value from the Master mode inquiry:

TRUE if currently in Master mode; FALSE if currently in Slave mode
nOutBufferSize Size in bytes of the return value, should be one byte

20.7.1.4 I2C_IOCTL_IS_SLAVE
This DeviceIoControl request determines whether the I2C is currently in Slave mode.
Parameters
lpOutBuffer Pointer to a BYTE that contains the return value from the Slave mode inquiry:

TRUE if currently in Slave mode; FALSE if currently in Master mode
nOutBufferSize Size in bytes of the return value, should be one byte

20.7.1.5 I2C_IOCTL_RESET
This DeviceIoControl request performs a hardware reset. The I2C driver maintains all of the current
information of the device, including all of the initialized addresses.

20.7.1.6 I2C_IOCTL_SET_CLOCK_RATE
This DeviceIoControl request initializes the I2C device with the given clock rate. This IOCTL does not
expect to receive the absolute peripheral clock frequency. Rather, it expects the clock rate divisor index
stated in the I2C specification. If absolute clock frequency must be used, use the macro
I2C_MACRO_SET_FREQUENCY.
Parameters
lpInBuffer Pointer to the divisor index. Refer to the I2C specification to obtain the true clock

frequency
nInBufferSize Size in bytes of the divisor index

Inter-Integrated Circuit (I2C) Driver

Windows Embedded CE 6.0 BSP Reference Manual

Freescale Semiconductor 20-9

20.7.1.7 I2C_IOCTL_SET_FREQUENCY
This DeviceIoControl request estimates the nearest clock rate acceptable for I2C device and initialize the
I2C device to use the estimated clock rate divisor. If the estimated clock rate divisor index is required, refer
to the macro I2C_MACRO_GET_CLOCK_RATE to determine the estimated index.
Parameters
lpInBuffer Pointer to the desired I2C frequency
nInBufferSize Size in bytes of the I2C frequency requested

20.7.1.8 I2C_IOCTL_SET_MASTER_MODE
This DeviceIoControl request sets the I2C device to Master mode.

20.7.1.9 I2C_IOCTL_SET_SELF_ADDR
This DeviceIoControl request initializes the I2C device with the given address.
Parameters
lpInBuffer Pointer to the expected I2C device address, valid range is [0x00–0x7F]
nInBufferSize Size in bytes of the I2C device address
Remarks The device expects to respond when any master on the I2C bus wishes to proceed

with any transfer. This IOCTL has no effect if the I2C device is in Master mode.

20.7.1.10 I2C_IOCTL_SET_SLAVE_MODE
This DeviceIoControl request sets the I2C device to Slave mode.

20.7.1.11 I2C_IOCTL_TRANSFER
This DeviceIoControl request performs the transfer (read or write) of one or more packets of data to a
target device. An I2C_TRANSFER_BLOCK object is expected, which contains an array of I2C_PACKET
objects to be executed sequentially. All of the required information should be stored in the
I2C_TRANSFER_BLOCK passed in the lpInBuffer field.
Parameters
lpInBuffer Pointer to an I2C_TRANSFER_BLOCK structure containing a pointer to an array

of I2C_PACKET objects specifying all of the information required to perform the
requested Read and Write operations

nInBufferSize Size in bytes of the I2C_TRANSFER_BLOCK

20.7.1.12 I2C_IOCTL_ENABLE_SLAVE
This DeviceIoControl request starts the I2C device to work in slave mode.

Inter-Integrated Circuit (I2C) Driver

Windows Embedded CE 6.0 BSP Reference Manual

20-10 Freescale Semiconductor

20.7.1.13 I2C_IOCTL_DISABLE_SLAVE
This DeviceIoControl request stops the I2C device to work in slave mode.

20.7.1.14 I2C_IOCTL_GET_SLAVESIZE
This DeviceIoControl request gets the interface buffer size of the I2C device for slave mode.

20.7.1.15 I2C_IOCTL_SET_SLAVESIZE
This DeviceIoControl request sets the interface buffer size of the I2C device for slave mode. The maximum
size for the buffer is configured by I2CSLAVEBUFSIZE.

20.7.1.16 I2C_IOCTL_GET_SLAVE_TXT
This DeviceIoControl request gets the current data from interface buffer of the I2C device for slave mode.
Both slave device or external master can change this data.

20.7.1.17 I2C_IOCTL_SET_SLAVE_TXT
This DeviceIoControl request sets data to interface buffer of the I2C device for slave mode. An external
I2C master can get this data immediately from driver after it connects the slave.

20.7.2 I2C Driver SDK Encapsulation

20.7.2.1 I2COpenHandle
This function retrieves the I2C device handle.

HANDLE I2COpenHandle(
LPCWSTR lpDevName);

Parameters
lpDevName The I2C device name for retrieving handle from CreateFile()
Return Values Returns the handle for I2C driver, returns INVALID_HANDLE_VALUE if failure

20.7.2.2 I2CCloseHandle
This function closes a handle of the I2C stream driver.

BOOL I2CCloseHandle(
HANDLE hDev);

Parameters
hDev The I2C device handle retrieved from CreateFile()
Return Values Returns TRUE or FALSE; if the result is TRUE, the operation is successful

Inter-Integrated Circuit (I2C) Driver

Windows Embedded CE 6.0 BSP Reference Manual

Freescale Semiconductor 20-11

20.7.2.3 I2CSetSlaveMode
This function sets the I2C device in slave mode. This function is for back compatibility. Use
I2CEnableSlave instead.

BOOL I2CSetSlaveMode(
HANDLE hDev);

Parameters
hDev I2C device handle retrieved from CreateFile()
Return Values Returns TRUE or FALSE; if the result is TRUE, the operation is successful

20.7.2.4 I2CSetMasterMode
This function sets the I2C device in master mode. This function is for back compatibility. The default
setting of driver is master.

BOOL I2CSetMasterMode(
HANDLE hDev);

Parameters
hDev I2C device handle retrieved from CreateFile()
Return Values Returns TRUE or FALSE, if the result is TRUE, the operation is successful

20.7.2.5 I2CIsMaster
This function determines whether the I2C is currently in Master mode. This function is for back
compatibility.

BOOL I2CIsMaster(
HANDLE hDev,
PBOOL pbIsMaster);

Parameters
hDev I2C device handle retrieved from CreateFile()
pbIsMaster TRUE if the I2C device is in master mode
Return Values Returns TRUE or FALSE, if the result is TRUE, the operation is successful

20.7.2.6 I2CIsSlave
This function determines whether the I2C is currently in Slave mode.

BOOL I2CIsSlave(
HANDLE hDev,
PBOOL pbIsSlave);

Parameters
hDev I2C device handle retrieved from CreateFile()
pbIsSlave TRUE if the I2C device is in Slave mode
Return Values Returns TRUE or FALSE. If the result is TRUE, the operation is successful

Inter-Integrated Circuit (I2C) Driver

Windows Embedded CE 6.0 BSP Reference Manual

20-12 Freescale Semiconductor

20.7.2.7 I2CGetClockRate
This function retrieves the clock rate divisor. This value is not the absolute peripheral clock frequency. The
value retrieved should be compared against the I2C specifications to obtain the true frequency.

BOOL I2CGetClockRate(
HANDLE hDev,
PWORD pwClkRate);

Parameters
hDev I2C device handle retrieved from CreateFile()
pwClkRate Pointer of WORD variable that retrieves divisor index. Refer to I2C specification

to obtain the true clock frequency
Return Values Returns TRUE or FALSE, if the result is TRUE, the operation is successful

20.7.2.8 I2CSetClockRate
This function initializes the I2C device with the given clock rate. This function does not expect to receive
the absolute peripheral clock frequency. Rather, it expects the clock rate divisor index stated in the I2C
specification. If absolute clock frequency must be used, use the function I2CSetFrequency().

BOOL I2CSetClockRate(
HANDLE hDev,
WORD wClkRate);

Parameters
hDev I2C device handle retrieved from CreateFile()
wClkRate Divisor index. Refer to I2C specification to obtain the true clock frequency
Return Values Returns TRUE or FALSE, if the result is TRUE, the operation is successful

20.7.2.9 I2CSetFrequency
This function estimates the nearest clock rate acceptable for I2C device and initializes the I2C device to
use the estimated clock rate divisor. If the estimated clock rate divisor index is required, refer to the macro
I2CGetClockRate to determine the estimated index.

BOOL I2CSetFrequency(
HANDLE hDev,
DWORD dwFreq);

Parameters
hDev I2C device handle retrieved from CreateFile()
dwFreq Desired frequency, unit is Hz
Return Values Returns TRUE or FALSE, if the result is TRUE, the operation is successful

20.7.2.10 I2CSetSelfAddr
This function initializes the I2C device with the given address. The device is expected to respond when
any master within the I2C bus wish to proceed with any transfer.

BOOL I2CSetSelfAddr(

Inter-Integrated Circuit (I2C) Driver

Windows Embedded CE 6.0 BSP Reference Manual

Freescale Semiconductor 20-13

HANDLE hDev,
BYTE bySelfAddr);

Parameters
hDev I2C device handle retrieved from CreateFile()
bySelfAddr Expected I2C device address. The valid range of address is [0x00–0x7F]
Return Values Returns TRUE or FALSE, if the result is TRUE, the operation is successful

20.7.2.11 I2CGetSelfAddr
This function retrieves the address of the I2C device.

BOOL I2CGetSelfAddr(
HANDLE hDev,
PBYTE pbySelfAddr);

Parameters
hDev I2C device handle retrieved from CreateFile()
pbySelfAddr Pointer to BYTE variable that retrieves I2C device address
Return Values Returns TRUE or FALSE, if the result is TRUE, the operation is successful

20.7.2.12 I2CTransfer
This function performs one or more I2C read or write operations. pI2CTransferBlock contains a pointer to
the first of an array of I2C packets to be processed by the I2C. All the required information for the I2C
operations should be contained in the array elements of pI2CPackets.

BOOL I2CTransfer(
HANDLE hDev,
PI2C_TRANSFER_BLOCK pI2CTransferBlock);

Parameters
hDev I2C device handle retrieved from CreateFile()
pI2CTransferBlock
pI2CPackets [in] Pointer to an array of packets to be transferred sequentially
iNumPackets [in] Number of packets pointed to by pI2CPackets (the number of packets to be

transferred)
Return Values Returns TRUE or FALSE, if the result is TRUE, the operation is successful

20.7.2.13 I2CReset
This function performs a hardware reset. The I2C driver maintains all the current information of the device,
which includes all the initialized addresses.

BOOL I2CReset(
HANDLE hDev);

Parameters
hDev I2C device handle retrieved from CreateFile()
Return Values Returns TRUE or FALSE, if the result is TRUE, the operation is successful

Inter-Integrated Circuit (I2C) Driver

Windows Embedded CE 6.0 BSP Reference Manual

20-14 Freescale Semiconductor

20.7.2.14 I2CEnableSlave
This function enables a I2C slave access from the bus. After the I2C slave interface is enabled, the I2C slave
driver waits for an external master access.

BOOL I2CEnableSlave(
HANDLE hDev);

Parameters
hDev I2C device handle retrieved from CreateFile()
Return Values Returns TRUE or FALSE, if the result is TRUE, the operation is successful

20.7.2.15 I2CDisableSlave
This function disables I2C slave access from the bus. Note that after the I2C slave interface disabled, I2C
slave module can be turned off.

BOOL I2CDisableSlave(
HANDLE hDev);

Parameters
hDev I2C device handle retrieved from CreateFile()
Return Values Returns TRUE or FALSE, if the result is TRUE, the operation is successful

20.7.2.16 I2CGetSlaveSize
This function returns the I2C slave interface buffer length. The I2C slave driver directly returns data to the
master from the interface buffer. The interface buffer can be set at any time, even when the I2C slave
module has been turned off.

BOOL I2CGetSlaveSize(
HANDLE hDev,
PDWORD pdwSize);

Parameters
hDev I2C device handle retrieved from CreateFile()
pdwSize Pointer to DWORD variable that retrieves interface buffer length
Return Values Returns TRUE or FALSE, if the result is TRUE, the operation is successful

20.7.2.17 I2CSetSlaveSize
This function sets the I2C slave interface buffer length. The maximum acceptable length is
I2CSLAVEBUFSIZE. If input length is longer than I2CSLAVEBUFSIZE, the operation fails, and the
original buffer length is not changed. The I2C slave driver directly returns data to the master from the
interface buffer. The interface buffer can be set at any time, even when the I2C slave module has been
turned off.

BOOL I2CSetSlaveSize(
HANDLE hDev,
DWORD dwSize);

Parameters
hDev I2C device handle retrieved from CreateFile()

Inter-Integrated Circuit (I2C) Driver

Windows Embedded CE 6.0 BSP Reference Manual

Freescale Semiconductor 20-15

dwSize DWORD variable that sets interface buffer length
Return Values Returns TRUE or FALSE, if the result is TRUE, the operation is successful

20.7.2.18 I2CGetSlaveText
This function returns the I2C slave interface buffer text. The I2C slave driver directly returns data to the
master from the interface buffer. The interface buffer can be accessed at any time, even when the I2C slave
module has been turned off.

BOOL I2CGetSlaveText(
HANDLE hDev,
PBYTE pbyTextBuf,
DWORD dwBufSize,
PDWORD pdwTextLen);

Parameters
hDev I2C device handle retrieved from CreateFile()
pbyTextBuf User buffer to store text returned from interface buffer
pdwBufSize User buffer size
pdwTextLen Actual data bytes returned
Return Values Returns TRUE or FALSE, if the result is TRUE, the operation is successful

20.7.2.19 I2CSetSlaveText
This function returns the I2C slave interface buffer text. The I2C slave driver directly returns data to the
master from the interface buffer. The interface buffer can be accessed at any time, even when the I2C slave
module has been turned off.

BOOL I2CSetSlaveText(
HANDLE hDev,
PBYTE pbyTextBuf,
DWORD dwTextLen);

Parameters
hDev I2C device handle retrieved from CreateFile()
pbyTextBuf User buffer to store text to interface buffer
dwTextLen Text length in user buffer
Return Values Returns TRUE or FALSE, if the result is TRUE, the operation is successful

20.7.3 I2C Driver Structures

20.7.3.1 I2C_PACKET
This structure contains the information needed to write or read data using an I2C port.

typedef struct {
BYTE byAddr;
BYTE byRW;
PBYTE pbyBuf;
WORD wLen;

Inter-Integrated Circuit (I2C) Driver

Windows Embedded CE 6.0 BSP Reference Manual

20-16 Freescale Semiconductor

LPINT lpiResult;
} I2C_PACKET, *PI2C_PACKET;

Members
byAddr 7-bit slave address that specifies the target I2C device to or from which data is read

or written
byRW Determines whether the packet is a read or a write packet. Set to I2C_RW_READ

for reading and I2C_RW_WRITE for writing. Set to I2C_POLLING_MODE to
force polling mode for transfer.

pbyBuf Pointer to a buffer of bytes. For a read operation, this is the buffer into which data
is read. For a write operation, this buffer contains the data to write to the target
device.

wLen If the operation is a read, wLen specifies the number of bytes to read into pbyBuf.
If the operation is a write, wLen specifies the number of bytes to write from
pbyBuf.

lpiResult Pointer to an int that contains the return code from the transfer operation

20.7.3.2 I2C_TRANSFER_BLOCK
This structure contains an array of packets to be transferred using an I2C port.

typedef struct {
I2C_PACKET *pI2CPackets;
INT32 iNumPackets;

} I2C_TRANSFER_BLOCK, *PI2C_TRANSFER_BLOCK;
Members
pI2CPackets Pointer to an array of I2C_PACKET objects
iNumPackets Number of I2C_PACKET objects pointed to by pI2CPackets

Windows Embedded CE 6.0 BSP Reference Manual

Freescale Semiconductor 21-1

Chapter 21
MediaLB Device Module (MLB)
The MediaLB module implements the Physical Layer and Link Layer of the MediaLB specification,
interfacing the hardware platform to the MediaLB controller.

21.1 MLB Summary
The MLB implements the 3-pin MediaLB mode and runs at speeds up to 1024FS. It does not implement
the MediaLB controller functionality, and only works as the MLB device. Windows CE provides driver
support for MLB device using stream interface architecture. The interface driver exports functions to the
file system. Users can operate the MLB functions using IOCTL or read/write functions. Table 21-1
provides a summary of source code location, library dependencies and other BSP information.

21.2 Supported Functionality
The MLB driver enables the i.MX35-3DS board to provide the following software and hardware support:

1. Supports the Windows CE stream interface driver.
2. Supports the IC test bench environment from SMSC.
3. Supports the data processing that is received and transmitted

Table 21-1. MLB Summary

Driver Attribute Definition

Target Platform iMX35-3DS-PDK1_7

Target SOC N/A

SOC Common Path N/A

SOC Specific Path N/A

Platform Specific Path ..\PLATFORM\<Target Platform>\SRC\DRIVERS\MLB

Driver DLL mlb.dll

SDK Library N/A

Catalog Item(s) Third Party > BSP > Freescale <Target Platform>: ARMV4I > Device
Drivers > MLB > MLB

SYSGEN Dependency N/A

BSP Environment Variable(s) BSP_MLB = 1

MediaLB Device Module (MLB)

Windows Embedded CE 6.0 BSP Reference Manual

21-2 Freescale Semiconductor

21.3 Hardware Operation

21.3.1 Conflicts with Other Peripherals and Catalog Items
No conflicts

21.4 Software Operation
The stream interface driver is described in the Wince600 Help. MLB is developed in the stream interface
architecture.

21.4.1 Compile-Time Configuration Options
N/A.

21.4.2 Registry Settings

21.4.2.1 i.MX35 Registry Settings
[HKEY_LOCAL_MACHINE\Drivers\BuiltIn\MLB]
 "Prefix"="MLB"
 "Dll"="mlb.dll"
 "Index"=dword:1

21.4.3 DMA Support

21.4.3.1 i.MX35 DMA Support
The MLB module supports internal DMA transfer when receiving or transmitting data. This is realized in
the MLB internal operation. However, for software design, the registers that point to the address of the
internal RAM have to be set with the physical address. If not, the receiving or transmitting cannot succeed.

21.4.4 IOCTL

21.4.4.1 i.MX35 IOCTL
For the stream interface driver, IOCTL is used to implement the specific operations. MLB driver provides
several IOCTLs.

21.4.4.1.1 MLB_CTL_256FS_SWLOOP

This IOCTL is used to test the MLB at a speed of 256FS in control mode, using the software loop-back
test environment provided by SMSC.

MediaLB Device Module (MLB)

Windows Embedded CE 6.0 BSP Reference Manual

Freescale Semiconductor 21-3

21.4.4.1.2 MLB_CTL_512FS_SWLOOP

This IOCTL is used to test the MLB at a speed of 512FS in control mode, using the software loop-back
test environment provided by SMSC.

21.4.4.1.3 MLB_ASYN_256FS_SWLOOP

This IOCTL is used to test the MLB at a speed of 256FS in asynchronous mode, using the software
loop-back test environment provided by SMSC.

21.4.4.1.4 MLB_ASYN_512FS_SWLOOP

This IOCTL is used to test the MLB at a speed of 512FS in asynchronous mode, using the software
loop-back test environment provided by SMSC.

21.4.4.1.5 MLB_CTL_READ

This IOCTL is used to read the data that is received in the control mode.

21.4.4.1.6 MLB_CTL_WRITE

This IOCTL is used to write the data that is to be transmitted in the control mode.

21.4.4.1.7 MLB_ASYN_READ

This IOCTL is used to read the data that is received in the asynchronous mode.

21.4.4.1.8 MLB_ASYN_WRITE

This IOCTL is used to write the data that is to be transmitted in the asynchronous mode.

21.5 Power Management

21.5.1 i.MX35 Power Management
N/A.

21.6 Unit Test
The MLB driver is tested using the Test Bench from SMSC using the following applications:

• Software Loop-Back Test at speeds of 256/512FS in control mode
• Software Loop-Back Test at speeds of 256/512FS in asynchronous mode

21.6.1 Unit Test Hardware
Table 21-2 lists the required hardware to run the unit tests.

MediaLB Device Module (MLB)

Windows Embedded CE 6.0 BSP Reference Manual

21-4 Freescale Semiconductor

21.6.2 Unit Test Software
An application tests the MLB driver and is used in the Test Bench environment. The application opens the
driver and operates different functions using IOCTL. The application is located at:

\WINCE600\SUPPORT_PDK1_7\TEST\MLBTest

Users can change the codes to send different IOCTLs.

21.6.3 Building the Unit Tests
In order to build the MLB test, complete the following steps:

Build an OS image for the desired configuration
• Within Platform Builder, go to the Build OS menu option and select the Open Release Directory

menu option. This opens a DOS prompt.
• Change to the MLBTest directory: \WINCE600\SUPPORT\TEST\MLBTest
• Enter set WINCEREL=1 on the command prompt and hit return. This copies the built exe to the

flat release directory
• Input build -c command to build MLBTest

After the building completes, the mlb.exe file is located in the $(_FLATRELEASEDIR) directory.

21.6.4 Running the Unit Tests
Copy mlb.exe to the device using SD/MMC cards or other modes. Click the mlb.exe and run the test.

Table 21-2. Hardware Requirements

Requirement Description

Test Bench from SMSC Demo board and I/O board to work as Controller and Device in the MLB environment

Windows Embedded CE 6.0 BSP Reference Manual

Freescale Semiconductor 22-1

Chapter 22
Micro Controller Unit (MCU) Driver
The MCU drivers is a stream interface driver that directly controls the hardware components provided by
Freescale microcontroller unit MC9S08DZ60.

22.1 MCU Driver Summary
The MCU description can be found in the MC9S08DZ60 datasheet and HW MCU design documentation.
This document is intended for device driver and application developers who need to understand and gain
access to the functionality provided by the MCU. Table 22-1 provides a summary of source code location,
library dependencies and other BSP information.

22.2 Supported Functionality
The MCU driver enables the 3-Stack board to provide the following software and hardware support:

1. Supports the RTC function
2. Supports GPIO extension
3. Supports keypad scanning
4. Supports touch screen control
5. Supports power management

Table 22-1. MCU Driver Summary

Driver Attribute Definition

Target Platform iMX35-3DS-PDK1_7

Target SOC N/A

SOC Common Path N/A

SOC Specific Path N/A

Platform Specific Path ..\PLATFORM\<TargetPlatform>\SRC\DRIVERS\MCU\MC9S08DZ60\PDK
..\PLATFORM\<TargetPlatform>\SRC\DRIVERS\MCU\MC9S08DZ60\SDK

Driver DLL mcupdk_mc9s08dz60.dll mcusdk_mc9s08dz60.dll

SDK Library mcusdk_mc9s08dz60.lib

Catalog Item Third Party > BSP > Freescale <Target Platform>:ARMV4I > Device Drivers > MCU

SYSGEN Dependency N/A

BSP Environment Variables BSP_MCU= 1

Micro Controller Unit (MCU) Driver

Windows Embedded CE 6.0 BSP Reference Manual

22-2 Freescale Semiconductor

22.3 Hardware Operation
The i.MX35 device uses the I2C1 port to interact with the MCU as shown in Figure 22-1 and the I2C1
signals are selected in the IOMUX. GPIO1_0 is used as MCU GPIO interrupt

Figure 22-1. i.MX35 and MCU Hardware Connections

22.3.1 Conflicts with Other Peripherals and Catalog Items
No conflicts.

22.4 Software Operation
The MCU driver modules can be used by applications or device drivers. For example, the GPIO function
is used for the FEC driver to control the FEC external transceiver power enable pin. The MCU device
driver framework for Windows CE is a stream interface driver and a SDK DLL. A description of the
stream interface driver may be found in the Windows CE Platform Builder documentation at Developing
a Device Driver > Windows Embedded CE Drivers > Stream Interface Drivers. The MCU Stream
Interface driver controls the MCU hardware directly via the I2C bus. The Stream Interface driver provides
an IOCTL interface for MCU SDK DLLs. The MCU SDK DLL provide APIs for WindowsCE drivers
and applications. We access the MCU only need use the MCU SDK DLL.

MX35 MC9SDZ60

INT

I2C1(master) I2C(slave)
GPIO1_0

MAX8660
SW1_EN
SW2_EN

SW34_EN

LDO5_EN

X+
X-
Y+
Y-

GPIO

Reset

ON/OFF

4x4 keypad

Micro Controller Unit (MCU) Driver

Windows Embedded CE 6.0 BSP Reference Manual

Freescale Semiconductor 22-3

22.4.1 MCU Driver Function

22.4.2 MCU RTC Function
OAL RTC function use KernelIoControl to access the MCU driver to get RTC.We implement four basic
KernelIoControl for exchange RTC.
{ IOCTL_HAL_RTC_INIT, 0, OALIoCtlInitRTC },
{ IOCTL_HAL_RTC_QUERY, 0, OALIoCtlHalRtcQuery },
{ IOCTL_HAL_RTC_SYNC, 0, OALIoCtlHalRtcSync },
{ IOCTL_HAL_RTC_ALARM, 0, OALIoCtlHalRtcAlarm },

22.4.3 Registry Settings
MCU driver only need a standard stream interface driver registry settings.
; These registry entries load the MCU driver. The IClass value is GUID for generic power-managed
devices.
[HKEY_LOCAL_MACHINE\Drivers\BuiltIn\MCU]
 "Prefix"="MCU"
 "Dll"=”mcupdk_mc9s08dz60.dll"
 "Index"=dword:1
 "Order"=dword:3
 "IClass"="{A32942B7-920C-486b-B0E6-92A702A99B35}"

Table 22-2. MCU Driver Functions

Function Description

McuRegisterRead Reads a register in MCU

McuRegisterWrite Writes a register in MCU

McuInterruptRegister Initializes a interrupt in MCU

McuInterruptDeregister Uninitializes a interrupt in MCU.

McuInterruptHandlingComplete This function handle Complete a interrupt in MCU

McuInterruptDisable Disables an interrupt

McuInterruptEnable Enables an interrupt

McuGpioEnable Enables an GPIO in MCU

McuGpioReset Enables an GPIO Reset

McuTouchInit Initializes the MCU touch controller

McuTouchDeinit Uninitializes the MCU touch controller

McuADCTouchRead Reads touch screen sample

McuTouchIsPressed Get touch panel is pressed Status

McuKeybdInit Initializes the MCU key interface

McuKeybdDeinit Uninitializes the MCU key interface

McuKeybdRead Scan the press key data

Micro Controller Unit (MCU) Driver

Windows Embedded CE 6.0 BSP Reference Manual

22-4 Freescale Semiconductor

22.5 Power Management

22.5.1 PowerUp
This function is not implemented for the MCU driver.

22.5.2 PowerDown
This function is not implemented for the MCU driver.

22.5.3 IOCTL_POWER_CAPABILITIES
We advertise the power management capabilities with power manager through this IOCTL. The MCU
module supports only two power states: D0 and D4.

22.5.4 IOCTL_POWER_SET
This IOCTL requests a change from one device power state to another. D0 and D4 are the only two
supported CEDEVICE_POWER_STATE in MCU driver. Any request that is not D0 is changed to a D4
request results in the system entering into suspend state. For a value of D0, the system is resumed. For all
platforms, the following registry entry must be defined:

"IClass"="{A32942B7-920C-486b-B0E6-92A702A99B35}"

22.5.5 IOCTL_POWER_GET
This IOCTL returns the current device power state. By design, the Power Manager knows the device
power state of all power-manageable devices. It does not generally issue an IOCTL_POWER_GET call
to the device unless an application calls GetDevicePower with the POWER_FORCE flag set.

22.6 Unit Test
The MCU driver is used by an application or by other drivers. Therefore, other driver are used to test the
MCU driver function.

22.6.1 RTC Function
Use OAL RTC CEKT function to test the RTC function.

22.6.1.1 Unit Test Hardware
Only need the 3-Stack board.

Micro Controller Unit (MCU) Driver

Windows Embedded CE 6.0 BSP Reference Manual

Freescale Semiconductor 22-5

22.6.1.2 Unit Test Software
Select the MCU RTC catalog item for the RTC function test. Figure 22-3 lists the required software to run
the unit tests.

22.6.1.3 Running the Unit Tests
The command line for running the tests is:

tux -o -d oalTestTimers.dll -x 1260-1290

22.6.1.4 MCU Touch Driver
Use the touch driver CEKT to test the MCU touch driver function.

Table 22-3. Software Requirements

Requirement Description

Tux.exe Tux test harness, which is needed for executing the test

Kato.dll Kato logging engine, which is required for logging test data

Tooltalk.dll Library required by Tux.exe and Kato.dll. Handles the transport between the target device and
the development workstation

oalTestTimers.dll Test .dll file

Micro Controller Unit (MCU) Driver

Windows Embedded CE 6.0 BSP Reference Manual

22-6 Freescale Semiconductor

Windows Embedded CE 6.0 BSP Reference Manual

Freescale Semiconductor 23-1

Chapter 23
NAND Flash Driver
The NAND Flash Driver provides the functionality of NAND storage accessing. The flash driver follows
Windows CE 6.0 R2 Flash driver MDD and PDD model.

23.1 Flash Driver Summary
Windows CE provides driver support for flash media devices using MDD/PDD architecture. The MDD
allows NAND flash storage to be exposed as a block driver that is accessed by file system. The PDD wraps
FMD layer(flash driver model before R2) as a stream interface called by MDD. The FMD software layer
ported to the i.MX NAND Flash controller is responsible for the actual communication with the
corresponding NAND Flash devices.

The flash driver supports both SLC and MLC NAND Flash devices. As for page size, 512 byte (small page
size) is not supported. Table 23-1 provides a summary of source code location, library dependencies and
other BSP information.

Table 23-1. Flash Driver Summary

Driver Attribute Definition

Target Platform iMX35-3DS-PDK1_7

Target SOC MX35_FSL_V2_PDK1_7

SOC Common Path ..\PLATFORM\COMMON\SRC\SOC\COMMON_FSL_V2_PDK1_7\NAND

SOC Specific Path ..\PLATFORM\COMMON\SRC\SOC\<Target SOC>\NAND

Platform Specific Path ..\PLATFORM\<Target Platform>\SRC\DRIVERS\BLOCK\NANDFMD
..\PLATFORM\<Target Platform>\SRC\COMMON\NANDFMD

Driver DLL flashpdd_nand.dll

SDK Library N/A

Catalog Item Device Drivers > Storage Devices > MSFlash Drivers > Flash MDD
Third Party > BSP > Freescale i.MX35 3DS PDK1_7: ARMV4I > Storage Drivers > MSFlash
Drivers > K9LBG08U0D NAND Flash

SYSGEN Dependency N/A

BSP Environment Variables BSP_NONAND=

BSP_NAND_K9LAG08U0M=1
BSP_NAND_K9LBG08U0M=1
BSP_NAND_K9LBG08U0D=1

NAND Flash Driver

Windows Embedded CE 6.0 BSP Reference Manual

23-2 Freescale Semiconductor

23.2 Supported Functionality
The flash driver enables the 3-Stack System to provide the following software and hardware support:

1. Supports the Windows CE MDD/PDD interface
2. Supports both MLC and SLC NAND
3. Supports both 2 Kbyte and 4 Kbyte page size NAND
4. Supports MLC NAND Flash K9LBG08U0D as default

23.3 Hardware Operation
Refer to the chapter on the NAND Flash Controller (NFC)in the i.MX35 Multimedia Applications
Processor Reference Manual for detailed operation and programming information.

23.3.1 Conflicts with Other Peripherals and Catalog Items

23.3.1.1 Conflicts with SoC Peripherals
No conflicts.

23.4 Software Operation
The development concepts for flash media drivers are described in the Windows CE 6.0 Help
Documentation section under the topic

Developing a Device Driver > Windows Embedded CE Drivers > Flash Drivers.

The flash driver supported in the i.MX BSP implements the required PDD functions for interfacing to
NAND Flash devices.

23.4.1 MDD/PDD Layer Overview
The Microsoft Windows Embedded CE 6.0 Flash Driver component contains two components: the
module device driver (MDD), and the platform-dependent driver (PDD).

The flash driver MDD is responsible for actions such as handling wear-leveling, writing sector
transactions, translating logical sectors to physical sectors, and performing compaction. The flash MDD
can operate regardless of the type of flash media, allowing it to support single-level cell (SLC) NAND,
multi-level cell (MLC) NAND, and NOR media. The operating system provides the MDD component.

The flash driver PDD is responsible for interacting with the flash hardware, and contains the basic
functions necessary to access physical flash. Also, the PDD exposes a stream interface, and the PDD is
where you implement the PDD IOCTLS to meet your specific hardware needs. The PDD component is
platform specific, and the Freescale flash driver provides the functionality of the PDD component.

The block diagram below (Figure 38-1) describes the high level architecture and basic interactions of the
i.MX NAND driver implementation. The i.MX flash driver PDD consists of three major components:

NAND Flash Driver

Windows Embedded CE 6.0 BSP Reference Manual

Freescale Semiconductor 23-3

• Common Logical Layer - this component contains logical part of the PDD layer, including
parameter check, memory management, boot time dynamic detection of installed flash module,
algorithm for using multiple nand chips, etc. This layer is shared by all platforms.

• SOC Operation Layer - this component contains pure hardware operations, including sector
reading, sector writing, block erasing, etc. No additional logic is in this layer, except some simple
necessary ones for doing hardware operations. This layer is SOC specific.

• BSP Configuration Layer - this component is used to report flash chip properties to common
logical layer. No algorithm and no hardware operations are needed in this layer. Only report the
reality situation of the flash property on board. This layer is board specific.

The i.MX flash driver currently supports a limited number of commercially available flash modules.
However, the i.MX flash driver software architecture allows support of new flash modules. The i.MX
flash driver must be modified to support new flash modules that the BSP does not currently support.

The i.MX flash driver is table driven. That is, by appropriately modifing definitions described in this
chapter, the flash driver can be reconfigured to support a different flash module. No other source code
changes are required.

Figure 23-1. PDD Layer Block Diagram

common logical layer

soc operation layer

bsp configuration layer

request hardware
operations from soc layer
based on flash properties

get board configuration
from bsp layer

bsp layer reports nand
properties or set auto
detection mode to let logical
layer scan out the flash
type dynamically based on
NandChipInfo array

DISK layer

PDD

MDD

NAND Flash Driver

Windows Embedded CE 6.0 BSP Reference Manual

23-4 Freescale Semiconductor

23.4.2 Definitions
Flash modules vary between manufacturers, and even between process-technologies or product revisions
by the same manufacturer. Each module is different, and the flash driver must change to support these new
modules. A number of definitions are used to describe flash module characteristics and include the
following:

• Bad block mark
• Block size
• Page size
• Command set

The manufacturer's data sheet describes each of these definitions in detail for the particular flash module.
The manufacturer's data sheet and these definitions are very important to understand when adding new
flash support to the i.MX flash driver.

The i.MX flash driver abstracts the characteristics of the NAND Flash memory device to a single header
file. This header file is named in terms of the NAND device name, could be found in:

\WINCE600\PLATFORM\COMMON\SRC\SOC\COMMON_FSL_V2_PDK1_7\NAND\INC

For each NAND flash device, there are two header files, one is .h format used for C language code and
another is .inc format used for assembly language code. The two files are highly similar.

Table 23-2. Nand Property Definitions

Member Description

CMD_READID Command used to read nand flash ID. Default value is 0x90.

CMD_READ Command used as initial command for reading operation. Default value is 0x00.

CMD_READ2 Command used as start command for reading operation. Default value is 0x30.

CMD_RESET Command used to reset nand flash. Default value is 0xFF.

CMD_WRITE Command used as initial command for writing operation. Default value is 0x80.

CMD_WRITE2 Command used as start command for writing operation. Default value is 0x10.

CMD_ERASE Command used as initial command for erasing operation. Default value is 0x60.

CMD_ERASE2 Command used as start command for erasing operation. Default value is 0xD0.

CMD_STATUS Command used to read nand flash status. Default value is 0x70.

NAND_STATUS_BUSY_BIT Bit number in status byte to indicate BUSY/IDLE status of nand flash status. Default value
is 6.

NAND_STATUS_ERROR_BIT Bit number in status byte to indicate PASS/FAIL status of nand flash operation. Default
value is 0.

NAND_NUM_OF_CS Number of dies per nand flash chip.

NAND_BLOCK_CNT Number of blocks per nand flash die.

NAND_PAGE_CNT Number of pages per block.

NAND Flash Driver

Windows Embedded CE 6.0 BSP Reference Manual

Freescale Semiconductor 23-5

23.4.3 Adding New Flash Configurations
The i.MX flash driver is table driven. That is, by appropriately modifing the definitions described above,
the flash driver can be reconfigured to support a different flash module. No other source code changes are
required.

The flash driver currently supports the flash modules listed in section 38.2. The flash driver does not
dynamically detect which flash module is installed. Instead, the flash driver must be modified and
re-compiled to support a different flash module

To support a flash module that is not currently supported by the BSP, use the following steps:
1. create two new header files (.h and .inc format files) by using one of the existing NAND device

headers as templates
2. update the newly created header file to include device-specific definitions described in 38.4.2
3. update the reference in the nandbsp.h device-specific header located in the following directory:

\WINCE600\PLATFORM\<Target Platform>\SRC\COMMON\NANDFMD

4. recompile the flash driver for the new device

NAND_PAGE_SIZE Number of bytes in main data area per page.

NAND_SPARE_SIZE Number of bytes in spare area per page.

NAND_BUS_WIDTH Bit number of nand flash, it should be 8bits or 16bits.

NAND_MAKER_CODE Nand ID defined in terms of manufacturer.

NAND_DEVICE_CODE Nand ID defined in terms of nand type.

BBI_NUM Number of pages, defined by manufacturer, that is used to indicate initial bad block during
manufacturing.

BBMarkPage[BBI_NUM] An array that indicates which pages are used to indicate initial bad block during
manufacturing.

BBI_MAIN_ADDR Byte address that is used to swap data with bad block mark to guarantee BBI position is
untouched. For 2K+64B page size nand, define it as 464; For 4K+128B page size nand,
define it as 400; For 4K+218B page size nand, define it as 330.

NAND_PAGE_CNT_LSH The power exponent (log2) of NAND_PAGE_CNT. For exsample, it should be 7 if page
number is 128 (2^7). The definition is defined in .inc file.

NAND_PAGE_SIZE_LSH The power exponent (log2) of NAND_PAGE_SIZE. For exsample, it should be 12 if page
size is 4096 (2^12). The definition is defined in .inc file.

NAND_BLOCK_SIZE_LSH The power exponent (log2) of nand flash block size. The definition is defined in .inc file.

NUM_OF_NAND_DEVICES Number of nand flash dies per nand flash chip. The definition is defined in .inc file.

NUM_OF_NAND_DEVICES_L
SH

The power exponent (log2) of NUM_OF_NAND_DEVICES. The definition is defined in .inc
file.

Table 23-2. Nand Property Definitions (continued)

Member Description

NAND Flash Driver

Windows Embedded CE 6.0 BSP Reference Manual

23-6 Freescale Semiconductor

NOTE
The flash driver currently supports 2K+64B page size, 4K+128B page size, and 4K+218B page size with
8 bit ECC. The table configuration method can be used to support these common flash memory types.

23.4.4 Registry Settings
The registry keys implemented for the flash driver provide basic support for loading and configuring the
NAND as a file system mount. Many more configuration options are available and are discussed in:
Windows CE 6.0 Help Documentation section under the topic

Windows Embedded CE features > File Systems and Storage Management > Storage Management
> Storage Manager Registry Settings

As default, the NAND disk is automatically formatted and a partition created if no NAND partition is
found when booting up. The functionality is implemented by specifying following items:
"AutoPart"=dword:1
"AutoFormat"=dword:1

The two items can be deleted to disable the functionality.

23.4.5 DMA Support
The flash driver does not support DMA.

23.4.6 Power Management
Flash driver handles power requests in MDD layer by default.

23.5 Unit Test
The flash driver is tested using the Windows CE 6.0 Test Kit and additional system used cases. This section
describes the test scenarios that are used to verify the operation of the flash driver.

23.5.1 CETK Testing
NOTE

Depending on the state of the NAND flash memory, it may be necessary to
format and partition the NAND device using Storage Manager prior to
running the CETK tests that do not reformat the device automatically.

Table 23-3. CEKT Tests

CETK Test Command Line

File System Driver Test tux -o -d fsdtst -c "-p MSFlash -z"

Flash Memory Read/Write and Performance Test tux -o -d flshwear -c"/profile MSFlash /store /flash"

Storage Device Block Diver Read/Write Test tux -o -d rwtest -c"/profile MSFlash /zorch /part"

NAND Flash Driver

Windows Embedded CE 6.0 BSP Reference Manual

Freescale Semiconductor 23-7

23.5.2 System Testing
The following system tests verify the operation of the flash driver:

• Use the Start > Settings > Control Panel > Storage Manager to format and create partitions on the
mounted NAND device

• Establish ActiveSync connection over USB and transfer files to/from the NAND storage
• Write media files to NAND storage. Use Windows Media Player to playback media files from

NAND storage

Storage Device Block Diver API Test tux -o -d disktest -c"/profile MSFlash /zorch /part /sectors 256"

Storage Device Block Diver Benchmark Test tux -o -d rw_all -c"/profile MSFlash /zorch /part"

Table 23-3. CEKT Tests

Storage Device Block Diver Read/Write Test tux -o -d rwtest -c"/profile MSFlash /zorch /part"

NAND Flash Driver

Windows Embedded CE 6.0 BSP Reference Manual

23-8 Freescale Semiconductor

Windows Embedded CE 6.0 BSP Reference Manual

Freescale Semiconductor 24-1

Chapter 24
Power Management IC (PMIC)

24.1 PMIC Summary
This chapter provides information to develop:

• Device drivers that interface directly to the Freescale power management IC (PMIC) hardware
components. The PMIC that is specifically referenced in this document is the MC13892.

• Applications that use the special hardware capabilities that are provided by the PMIC (for example,
touch I/O, BackLight function.).

This chapter describes the API provided by Freescale which allows complete access to the functionality
of the PMICs. This document is intended for device driver and application developers who need to
understand and gain access to the functionality provided by the PMICs. Table 24-1 provides a summary of
source code location, library dependencies and other BSP information.

24.2 Supported Functionality
The PMIC device driver framework for Windows CE is a stream interface driver and a SDK DLL. A
description of the stream interface driver may be found in the Windows CE Platform Builder
documentation at Developing a Device Driver > Windows CE Drivers > Stream Interface Drivers.

Table 24-1. PMIC Summary

Driver Attribute Definition

Target Platform iMX35-3DS-PDK1_7

Target SOC N/A

SOC Common Path ..\PLATFORM\COMMON\SRC\SOC\COMMON_FSL_V2_PDK1_7\PMIC\MC13892

SOC Specific Path N/A

Platform Specific Path ..\PLATFORM\<Target Platform>\SRC\DRIVERS\PMIC\MC13892

Driver DLL pmicPdk_mc13892.dll

SDK Library pmicSdk_mc13892.lib

Catalog Item(s) N/A

SYSGEN Dependency N/A

BSP Environment Variable(s) BSP_PMIC_MC13892 = 1

Power Management IC (PMIC)

Windows Embedded CE 6.0 BSP Reference Manual

24-2 Freescale Semiconductor

The PMIC Stream Interface driver controls the PMIC hardware directly using the SPI or I2C bus. The
Stream Interface driver provides an IOCTL interface for SDK DLLs. The SDK DLLs provide APIs for
Windows CE drivers and applications.

The API covers the PMIC functionality of the following areas:
1. Register Access
2. Tri-Color LED
3. Battery
4. Regulators
5. Keys (Power, PTT)
6. ADC /Touch
7. Backlight (Keyboard, LCD)
8. Battery Charger
9. GPO

24.3 Hardware Operation
Refer to the MC13892 document for details on the MC13892 PMIC.

24.3.1 Conflicts with Other On-Chip Peripherals

24.3.1.1 i.MX35 Peripheral Conflicts
No Conflicts.

24.3.2 Conflicts with Other 3-Stack Peripherals
No conflicts.

24.4 Software Operation

24.4.1 Configuring the PMIC
The PMIC modules can be used by applications or device drivers. For example, the battery API of the
PMIC is used by the battery driver. Configuring the PMIC port for communications involves some basic
operations. A handle to the desired PMIC port must be opened prior to accessing the module registers. This
handle is required to call the DeviceIoControl function. The function parameters include the PMIC port
handle, appropriate IOCTL code, and other input and output parameters.

Power Management IC (PMIC)

Windows Embedded CE 6.0 BSP Reference Manual

Freescale Semiconductor 24-3

24.4.2 Creating a Handle to the PMIC
Before calling any PMIC API make sure that the PMIC device is attached by calling the CreateFile
function which opens a file and it returns a handle that can be used to access the MC13892 hardware. If
the MC13892 hardware does not exist, CreateFile returns ERROR_FILE_NOT_FOUND.

To open a handle to the PMIC:
1. Insert a colon after the PMI1 port for the first parameter, lpFileName.

For example, specify PMI1: as the PMIC port.
2. Specify FILE_SHARE_READ | FILE_SHARE_WRITE in the dwShareMode parameter. Multiple

handles to a PMIC port are supported by the driver.
3. Specify OPEN_EXISTING in the dwCreationDisposition parameter. This flag is required.
4. Specify FILE_FLAG_RANDOM_ACCESS in the dwFlagsAndAttributes parameter.

The following code example shows how to open a PMIC port.
// Open the PMIC port.
hPMI = CreateFile(TEXT("PMI1:"),

GENERIC_READ | GENERIC_WRITE, // access (read-write) mode
FILE_SHARE_READ | FILE_SHARE_WRITE, // sharing mode
NULL, // security attributes (ignored)
OPEN_EXISTING// sharing mode // creation disposition
FILE_FLAG_RANDOM_ACCESS, //flags and attributes
NULL); // template file (ignored)

if ((hPMI == NULL) || (hPMI == INVALID_HANDLE_VALUE))
{

ERRORMSG(1, (_T("Failed in create File()\r\n")));
}

24.4.3 Write Operations
The PMIC driver does not provide an interface to write through the PMIC_Write (stream write) function.
The PMIC_Write is a stub function and always returns success.

24.4.4 Read Operations
Like the write operation, the PMIC driver does not provides for reading through the PMIC_Read function.
This is a stub function and always returns success.

24.4.5 Closing the Handle to the PMIC
Call the CloseHandle function to close a handle to the PMIC when an application is done using it.
CloseHandle has one parameter, which the handle is returned by the CreateFile function call that opened
the PMIC port.

24.4.6 Power Management
The primary method for limiting power consumption in the PMIC module is to gate off all clocks to the
module when those clocks are not needed. This is accomplished through the DDKClockSetGatingMode

Power Management IC (PMIC)

Windows Embedded CE 6.0 BSP Reference Manual

24-4 Freescale Semiconductor

function call. The PMIC module clock is enabled whenever any of the PMIC registers need to be accessed
and then disabled once it is done.

24.4.6.1 PowerUp
This function is not implemented for the PMIC driver.

24.4.6.2 PowerDown
This function is not implemented for the PMIC driver.

24.4.6.3 IOCTL_POWER_CAPABILITIES
The power management capabilities are controlled with the power manager through this IOCTL. The
PMIC module supports only two power states: D0 and D4.

24.4.6.4 IOCTL_POWER_SET
This IOCTL requests a change from one device power state to another. D0 and D4 are the only two
supported CEDEVICE_POWER_STATE in the PMIC driver. Any request that is not D0 is changed to
a D4 request and results in the system entering into suspend state. For a request of value of D0, the system
is resumed.

24.4.6.5 IOCTL_POWER_GET
This IOCTL returns the current device power state. By design, the Power Manager knows the device
power state of all power-manageable devices. It does not generally issue an IOCTL_POWER_GET call
to the device unless an application calls GetDevicePower with the POWER_FORCE flag set.

24.4.7 PMIC Registry Settings
[HKEY_LOCAL_MACHINE\Drivers\BuiltIn\PMI]
 "Prefix"="PMI"
 "Dll"="pmicpdk_mc13892.dll"
 "Index"=dword:1
 "Order"=dword:2
 "IClass"="{A32942B7-920C-486b-B0E6-92A702A99B35}" ; PMCLASS_GENERIC_DEVICE

24.4.8 DMA Support
No support.

24.5 Unit Test

24.5.1 Unit Test Hardware
The 3-Stack and the MC13892 PMIC boards are required.

Power Management IC (PMIC)

Windows Embedded CE 6.0 BSP Reference Manual

Freescale Semiconductor 24-5

24.5.2 Unit Test Software
No software is necessary for this test.

24.5.3 Running the PMIC Tests
The PMIC driver can be tested using the following actions:

• The command line for running the PMIC tests is s i2cpmic
• Use the touch driver CEKT to test MC13892 touch function
• Use the battery driver CEKT to test MC13892 battery function
• Use the backlight driver CEKT to test MC13892 backlight function

24.6 PMIC Driver API Reference

24.6.1 PMIC Driver IOCTLS
This section consists of descriptions for the PMIC I/O control codes (IOCTLs). These IOCTLs are used in
calls to DeviceIoControl to issue commands to the PMIC device modules. Only relevant parameters for
the IOCTL have a description provided. These IOCTLs are used with in the API developed for specific
modules of the PMIC device. Most of the IOCTLs are explained in the specific sections where they are
more relevant.

24.6.1.1 PMIC_IOCTL_LLA_READ_REG
This DeviceIoControl request reads the register content.

Parameters
hPMI [in] Handle to the device that is to perform the operation. To obtain a device

handle, call the CreateFile function
lpInBuffer Index of the register
lpOutBuffer [out] Long pointer to a buffer that receives the output data for the operation. Set

to NULL if the dwIoControlCode parameter specifies an operation that does not
produce output data

24.6.1.2 PMIC_IOCTL_LLA_WRITE_REG
This DeviceIoControl request writes the data to the said register of the PMIC device.

Parameters
hPMI [in] Handle to the device that is to perform the operation. To obtain a device

handle, call the CreateFile function
lpInBuffer Index of the register
lpOutBuffer Pointer to data which needs to be written to the register

Power Management IC (PMIC)

Windows Embedded CE 6.0 BSP Reference Manual

24-6 Freescale Semiconductor

24.6.1.3 PMIC_IOCTL_LLA_INT_REGISTER
This DeviceIoControl is used to register interrupt.

Parameters
hPMI [in] Handle to the device that is to perform the operation. To obtain a device

handle, call the CreateFile function
lpInBuffer Index of the register
lpOutBuffer Pointer to event name and interrupt ID

Code example:
param.int_id = int_id;
param.event_name = event_name;
ret = DeviceIoControl(hPMI, PMIC_IOCTL_LLA_INT_REGISTER, ¶m,sizeof(param), NULL, 0,
NULL, NULL);

24.6.1.4 PMIC_IOCTL_LLA_INT_DEREGISTER
This DeviceIoControl is used to deregister PMIC interrupt.

Parameters
hPMI [in] Handle to the device that is to perform the operation. To obtain a device

handle, call the CreateFile function
lpInBuffer Index of the register
lpOutBuffer Null

Code example:
param.int_id = int_id;
ret = DeviceIoControl(hPMI, PMIC_IOCTL_LLA_INT_DEREGISTER, ¶m,sizeof(param), NULL,
0, NULL, NULL)

24.6.1.5 PMIC_IOCTL_LLA_INT_COMPLETE
Parameters
hPMI [in] Handle to the device that is to perform the operation. To obtain a device

handle, call the CreateFile function
lpInBuffer Index of the register
lpOutBuffer Pointer to interrupt ID
Code example:

param.int_id = int_id;
ret = DeviceIoControl(hPMI, PMIC_IOCTL_LLA_INT_COMPLETE, ¶m,sizeof(param), NULL, 0,
NULL, NULL);

24.6.1.6 PMIC_IOCTL_LLA_INT_ENABLE
This IOCTL is used to enable the interrupt.

Power Management IC (PMIC)

Windows Embedded CE 6.0 BSP Reference Manual

Freescale Semiconductor 24-7

Parameters
hPMI [in] Handle to the device that is to perform the operation. To obtain a device

handle, call the CreateFile function
lpInBuffer Index of the register
lpOutBuffer Pointer to interrupt ID

Code example:
param.int_id = int_id;
ret = DeviceIoControl(hPMI, PMIC_IOCTL_LLA_INT_COMPLETE, ¶m,sizeof(param), NULL, 0,
NULL, NULL);

24.6.1.7 PMIC_IOCTL_LLA_INT_DISABLE
This IOCTL is used to disable the interrupt.

Parameters
hPMI [in] Handle to the device that is to perform the operation. To obtain a device

handle, call the CreateFile function
lpInBuffer Index of the register
lpOutBuffer Pointer to interrupt ID

Code example:
param.int_id = int_id;
ret = DeviceIoControl(hPMI, PMIC_IOCTL_LLA_INT_COMPLETE, ¶m, sizeof(param), NULL, 0,
NULL, NULL);

24.6.2 Interrupt Handling
This section describes the interrupt handling of the PMIC driver.

24.6.2.1 Interrupt Handling Overview
The PMIC has interrupt generation capability to inform the CPU when events occur. This is signaled to
the processors driving the SPI or I2C buses. There is only one interrupt line connected to each processor,
so the kernel can only know that there is an interrupt from the PMIC, but without knowing exactly which
module generated the interrupt.

There is one PMIC Interrupt Service Thread (IST) to handle all interrupts from the PMIC. The PMIC IST
is invoked by the kernel once the kernel receives an interrupt from the PMIC. This IST first queries the
PMIC to determine the source of the interrupt. The IST maintains a table to track if an interrupt has been
registered by a driver or application. If the interrupt is registered, the IST then sets a predefined event. For
any drivers and applications that need notification of an interrupt, they must register the interrupt and wait
for the event. They also need to reset the event after handling the event.

Power Management IC (PMIC)

Windows Embedded CE 6.0 BSP Reference Manual

24-8 Freescale Semiconductor

24.6.2.2 Interrupt Events
Drivers or applications that wish to monitor an interrupt should create a named event for each interrupt.
The event name is passed to PMIC driver when registering the interrupt. The PMIC IST triggers the event
when the corresponding interrupt occurs.

24.6.2.3 PMIC Interrupt Events
Table 24-2 shows the events and corresponding MC13892 interrupts.

Table 24-2. PMIC Interrupt Events

PMIC Interrupt Description

ADCDONEI ADC has finished requested conversions

ADCBISDONEI ADCBIS has finished requested conversions

TSI Touch screen wakeup

VBUSVALIDI VBUSVALID detect

IDFACTORYI ID factory mode detect

USBOVI USB over-voltage detection

CHGDETI Charger attach

CHGFAULTI Charger fault detection

CHGREVI Charger path reverse current

CHGSHORTI Charger path short circuit

CCCVI Charger path CC / CV transition detect

CHGCURRI Charge current below threshold warning

BPONI BP turn on threshold

LOBATLI Low battery low threshold warning

LOBATHI Low battery high threshold warning

IDFLOATI USB ID float detect

IDGNDI USB ID ground detect

1HZI 1 Hz time tick

TODAI Time of day alarm

PWRON3I PWRON3 event

PWRON1I PWRON1 event

PWRON2I PWRON2 event

WDIRESETI WDI system reset event

SYSRSTI PWRON system reset event

RTCRSTI RTC reset event

PCI Power cut event

Power Management IC (PMIC)

Windows Embedded CE 6.0 BSP Reference Manual

Freescale Semiconductor 24-9

24.6.2.4 Interrupt Data Structures
typedef enum _PMIC_MC13892_INT_ID {
 PMIC_MC13892_INT_ADCDONEI = 0,
 PMIC_MC13892_INT_ADCBISDONEI = 1,
 PMIC_MC13892_INT_TSI = 2,
 PMIC_MC13892_INT_VBUSVALIDI = 3,
 PMIC_MC13892_INT_IDFACTORYI = 4,
 PMIC_MC13892_INT_USBOVI = 5,
 PMIC_MC13892_INT_CHGDETI = 6,
 PMIC_MC13892_INT_CHGFAULTI = 7,
 PMIC_MC13892_INT_CHGREVI = 8,
 PMIC_MC13892_INT_CHGSHORTI = 9,
 PMIC_MC13892_INT_CCCVI = 10,
 PMIC_MC13892_INT_CHGCURRI = 11,
 PMIC_MC13892_INT_BPONI = 12,
 PMIC_MC13892_INT_LOBATLI = 13,
 PMIC_MC13892_INT_LOBATHI = 14,
 PMIC_MC13892_INT_IDFLOATI = 19,
 PMIC_MC13892_INT_IDGNDI = 20,
 PMIC_MC13892_INT_1HZI = 32,
 PMIC_MC13892_INT_TODAI = 33,
 PMIC_MC13892_INT_PWRON3I = 34,
 PMIC_MC13892_INT_PWRON1I = 35,
 PMIC_MC13892_INT_PWRON2I = 36,
 PMIC_MC13892_INT_WDIRESETI = 37,
 PMIC_MC13892_INT_SYSRSTI = 38,
 PMIC_MC13892_INT_RTCRSTI = 39,
 PMIC_MC13892_INT_PCI = 40,
 PMIC_MC13892_INT_WARMI = 41,
 PMIC_MC13892_INT_MEMHLDI = 42,
 PMIC_MC13892_INT_LPBI = 43,
 PMIC_MC13892_INT_THWARNLI = 44,
 PMIC_MC13892_INT_THWARNHI = 45,
 PMIC_MC13892_INT_CLKI = 46,
 PMIC_MC13892_INT_SCPI = 48,
 PMIC_MC13892_INT_BATTDETBI = 54,
 PMIC_INT_MAX_ID
} PMIC_INT_ID;

WARMI Warm start event

MEMHLDI Memory hold event

LPBI Low power USB boot detection

THWARNLI Thermal warning low threshold

THWARNHI Thermal warning high threshold

CLKI Clock source change

SCPI Short circuit protection trip detection

BATTDETBI Battery removal detect

Table 24-2. PMIC Interrupt Events (continued)

Power Management IC (PMIC)

Windows Embedded CE 6.0 BSP Reference Manual

24-10 Freescale Semiconductor

24.6.2.5 Interrupt Functions
Table 24-3 shows the interrupt functions.

24.6.3 Register Access API
The PMIC Low Level Access API allows drivers and applications to read and write PMIC registers. There
are some restrictions to prohibit drivers and application from accessing some registers. Interrupt registers
is one example. The interrupt library functions are in this Low Level Access DLL.

24.6.3.1 Read Register
This function reads a PMIC register.

Prototype
PMIC_STATUS PmicRegisterRead(unsigned char index, UINT32* reg);
Parameters
index [in] register index
reg [out] The contents of the register
Return Value Status code

24.6.3.2 Write Register
This function writes a PMIC register.

Prototype
PMIC_STATUS PmicRegisterWrite(unsigned char index, UINT32 reg, UINT32 mask);

Parameters
index [in] register index
reg [in] data to be written
mask [in] bitmap mask to indicate which bits in parameter reg should be written to

PMIC register
Return Value Status code

Table 24-3. Interrupt Functions

Function Description

PmicInterruptRegister Register the interrupt if the interrupt is to be enabled

PmicInterruptDeregister Deregisters an interrupt

PmicInterruptHandlingComplete Completion of a interrupt handling, enable an interrupt

PmicInterruptDisable Disables an interrupt

PmicInterruptEnable Reenable an interrupt

Power Management IC (PMIC)

Windows Embedded CE 6.0 BSP Reference Manual

Freescale Semiconductor 24-11

24.6.4 Power Control Reference

24.6.4.1 Power Control Function
This section provides information about MC13892 power control module. The API MC13892 Power
control module can be accessed using the functions shown in Table 24-4.

Table 24-4. Power Control Functions

Function Usage

PmicPwrctrlSetPowerCutTimer Set the power cut timer duration

PmicPwrctrlGetPowerCutTimer Get the power cut timer duration

PmicPwrctrlEnablePowerCut Enable the power cut

PmicPwrctrlDisablePowerCut Disable the power cut

PmicPwrctrlSetPowerCutCounter Set the power cut counter

PmicPwrctrlGetPowerCutCounter Get the power cut counter

PmicPwrctrlSetPowerCutMaxCounter Set the maximum number of power cut counter

PmicPwrctrlGetPowerCutMaxCounter Get the setting of maximum power cut counter

PmicPwrctrlEnableCounter Enable the power counter

PmicPwrctrlDisableCounter Disable the power counter

PmicPwrctrlEnableClk32kMCU Enable the CLK32KMCU

PmicPwrctrlDisableClk32kMCU Disable the CLK32KMCU

PmicPwrctrlEnableDRM Set Keeps VSRTC and CLK32KMCU on for all states

PmicPwrctrlDisableDRM Disable Keeps VSRTC and CLK32KMCU on for all states

PmicPwrctrlEnableUSEROFFCLK Enable Keeps VSRTC and CLK32KMCU during user off

PmicPwrctrlDisableUSEROFFCLK Disable VSRTC and CLK32KMCU during user off

PmicPwrctrlEnablePCUTEXPB E nable PCUTEXPB=1 at a startup event

PmicPwrctrlDisablePCUTEXPB Disable PCUTEXPB=1 at a startup event

PmicPwrctrlEnableUserOffModeWhenDelay Place the phone in User Off Mode after a delay

PmicPwrctrlDisableUserOffModeWhenDelay Set not to place the phone in User Off Mode after a delay

PmicPwrctrlEnableWarmStart Warm start enable

PmicPwrctrlDisableWarmStart Warm start disable

PmicPwrctrlEnablePWRONRESET System reset on PWRON pin

PmicPwrctrlDisablePWRONRESET Disable system reset on PWRON pin

PmicPwrctrlSetDebtime Set debounce time on PWRON pin

PmicPwrctrlEnableSTANDBYINV Set STANDBY is interpreted as active low

PmicPwrctrlDisableSTANDBYINV Set disable STANDBY is interpreted as active not low

PmicPwrctrlEnableSTANDBYSECINV Set disable STANDBYSEC is interpreted as active low

Power Management IC (PMIC)

Windows Embedded CE 6.0 BSP Reference Manual

24-12 Freescale Semiconductor

24.6.4.2 Power Control Data Structures
typedef enum _MC13892_PWRCTRL_PWRON{
 PWRON1=0,
 PWRON2,
 PWRON3,
} MC13892_PWRCTRL_PWRON;

typedef enum _MC13892_PWRCTRL_MODES{
 MODES_GROUNDED=0,
 MODES_RESEVED,
 MODES_VCOREDIG,
 MODES_VCORE,
} MC13892_PWRCTRL_MODES;

typedef enum _MC13892_PWRCTRL_I2CS{
 SPI=0,
 I2C,
} MC13892_PWRCTRL_I2CS;

typedef enum _MC13892_PWRCTRL_PUMSS{
 PUMSS_GROUNDED=0,
 PUMSS_OPEN,
 PUMSS_VCOREDIG,
 PUMSS_VCORE,
} MC13892_PWRCTRL_PUMSS;

PmicPwrctrlDisableSTANDBYSECINV Disable STANDBYSEC is interpreted as active not low

PmicPwrctrlEnableWDIRESET Enable system reset through WDI

PmicPwrctrlDisableWDIRESET Disable system reset through WDI

PmicPwrctrlSetSPIDRV Set SPI drive strength

PmicPwrctrlGetSPIDRV Get SPI drive strength

PmicPwrctrlSetCLK32KDRV Set CLK32K and CLK32KMCU drive strength

PmicPwrctrlGetCLK32KDRV Get the CLK32K and CLK32KMCU drive strength

PmicPwrctrlSetSTBYDLY Set Standby delay

PmicPwrctrlGetSTBYDLY Get the Standby delay

PmicPwrctrlGetMODES Get the MODE sense

PmicPwrctrlGetI2CS Get the I2CS mode

PmicPwrctrlGetPUMSS Get the PUMSS mode

Table 24-4. Power Control Functions (continued)

Function Usage

Power Management IC (PMIC)

Windows Embedded CE 6.0 BSP Reference Manual

Freescale Semiconductor 24-13

24.6.5 Buck Switchers and Linear Regulators
This section provides information about control MC13892 buck switchers and linear regulators.

24.6.5.1 Functions
PMIC_STATUS PmicSwitchModeRegulatorOn (PMIC_REGULATOR_SREG regulator);
PMIC_STATUS PmicSwitchModeRegulatorOff (PMIC_REGULATOR_SREG regulator);
PMIC_STATUS PmicSwitchModeRegulatorGetVoltageLevel (PMIC_REGULATOR_SREG regulator,

PMIC_REGULATOR_SREG_VOLTAGE_TYPE voltageType,PMIC_REGULATOR_SREG_VOLTAGE*voltage);
PMIC_STATUS PmicSwitchModeRegulatorSetMode (PMIC_REGULATOR_SREG

regulator,PMIC_REGULATOR_SREG_STBY standby,PMIC_REGULATOR_SREG_MODE mode);
PMIC_STATUS PmicSwitchModeRegulatorGetMode (PMIC_REGULATOR_SREG regulator,

PMIC_REGULATOR_SREG_STBY standby,PMIC_REGULATOR_SREG_MODE* mode);
PMIC_STATUS PmicSwitchModeRegulatorEnableSTBYDVFS (PMIC_REGULATOR_SREG regulator);
PMIC_STATUS PmicSwitchModeRegulatorDisableSTBYDVFS (PMIC_REGULATOR_SREG regulator);
PMIC_STATUS PmicSwitchModeRegulatorSetDVSSpeed (PMIC_REGULATOR_SREG regulator, UINT8dvsspeed);
PMIC_STATUS PmicSwitchModeRegulatorSetSidLevel (PMIC_REGULATOR_SREG regulator, UINT8

hilevel,UINT8 lowlevel);
PMIC_STATUS PmicSwitchModeRegulatorGetSidLevel(PMIC_REGULATOR_SREG regulator, UINT8*

hilevel,UINT8* lowlevel);
PMIC_STATUS PmicSwitchModeRegulatorSetPLLMF (UINT8 mf);
PMIC_STATUS PmicSwitchModeRegulatorEnableHIRANGE(PMIC_REGULATOR_SREG regulator);
PMIC_STATUS PmicSwitchModeRegulatorDisableHIRANGE(PMIC_REGULATOR_SREG regulator);
PMIC_STATUS PmicSwitchModeRegulatorEnableMemoryHoldMode(PMIC_REGULATOR_SREG regulator);
PMIC_STATUS PmicSwitchModeRegulatorDisableMemoryHoldMode(PMIC_REGULATOR_SREG regulator);
PMIC_STATUS PmicSwitchModeRegulatorEnableUserOffMode(PMIC_REGULATOR_SREG regulator);
PMIC_STATUS PmicSwitchModeRegulatorDisableUserOffMode(PMIC_REGULATOR_SREG regulator);
PMIC_STATUS PmicSwitchModeRegulatorEnableSIDMode();
PMIC_STATUS PmicSwitchModeRegulatorDisableSIDMode();
PMIC_STATUS PmicSwitchModeRegulatorEnablePLL();
PMIC_STATUS PmicSwitchModeRegulatorDisablePLL();
PMIC_STATUS PmicSwitchModeRegulatorEnableSWBST();
PMIC_STATUS PmicSwitchModeRegulatorDisableSWBST();
PMIC_STATUS PmicVoltageRegulatorOn (PMIC_REGULATOR_VREG regulator);
PMIC_STATUS PmicVoltageRegulatorOff (PMIC_REGULATOR_VREG regulator);
PMIC_STATUS PmicVoltageRegulatorSetVoltageLevel (PMIC_REGULATOR_VREG regulator,

PMIC_REGULATOR_VREG_VOLTAGE voltage);
PMIC_STATUS PmicVoltageRegulatorGetVoltageLevel (PMIC_REGULATOR_VREG regulator,

PMIC_REGULATOR_VREG_VOLTAGE* voltage);
PMIC_STATUS PmicVoltageRegulatorSetPowerMode (PMIC_REGULATOR_VREG regulator,

PMIC_REGULATOR_VREG_POWER_MODE powerMode);
PMIC_STATUS PmicVoltageRegulatorGetPowerMode (PMIC_REGULATOR_VREG regulator,

PMIC_REGULATOR_VREG_POWER_MODE* powerMode);
PMIC_STATUS PmicVoltageGPOOn (MC13892_GPO_SREG gpo);
PMIC_STATUS PmicVoltageGPOOff (MC13892_GPO_SREG gpo);

24.6.6 Backlight and Led
This section provides information about control MC13892 backlight system and signaling LEDs.

24.6.6.1 Backlight and LED Functions
PMIC_STATUS PmicBacklightEnableHIMode(BACKLIGHT_CHANNEL channel);
PMIC_STATUS PmicBacklightDisableHIMode(BACKLIGHT_CHANNEL channel);

Power Management IC (PMIC)

Windows Embedded CE 6.0 BSP Reference Manual

24-14 Freescale Semiconductor

PMIC_STATUS PmicBacklightEnableRamp(BACKLIGHT_CHANNEL channel);
PMIC_STATUS PmicBacklightDisableRamp(BACKLIGHT_CHANNEL channel);
PMIC_STATUS PmicBacklightSetCurrentLevel(BACKLIGHT_CHANNEL channel, UINT8 level);
PMIC_STATUS PmicBacklightGetCurrentLevel(BACKLIGHT_CHANNEL channel, UINT8* level);
PMIC_STATUS PmicBacklightSetDutyCycle(BACKLIGHT_CHANNEL channel, UINT8 cycle);
PMIC_STATUS PmicBacklightGetDutyCycle(BACKLIGHT_CHANNEL channel, UINT8* cycle);
PMIC_STATUS PmicLEDIndicatorEnableRamp(LED_CHANNEL channel);
PMIC_STATUS PmicLEDIndicatorDisableRamp(LED_CHANNEL channel);
PMIC_STATUS PmicLEDIndicatorSetCurrentLevel(LED_CHANNEL channel, unsigned char level);
PMIC_STATUS PmicLEDIndicatorGetCurrentLevel(LED_CHANNEL channel, unsigned char* level);
PMIC_STATUS PmicLEDIndicatorSetDutyCycle(LED_CHANNEL channel, unsigned char dc);
PMIC_STATUS PmicLEDIndicatorGetDutyCycle(LED_CHANNEL channel, unsigned char* dc);
PMIC_STATUS PmicLEDIndicatorSetBlinkPeriod(LED_CHANNEL channel, unsigned char bp);
PMIC_STATUS PmicLEDIndicatorGetBlinkPeriod(LED_CHANNEL channel, unsigned char* bp);
PMIC_STATUS PmicLEDIndicatorEnableSWBST();
PMIC_STATUS PmicLEDIndicatorDisableSWBST();

24.6.6.2 Backlight and Led Data Structures
typedef enum _BACKLIGHT_CHANNEL {
 BACKLIGHT_MAIN_DISPLAY,
 BACKLIGHT_AUX_DISPLAY,
 BACKLIGHT_KEYPAD
} BACKLIGHT_CHANNEL;
typedef enum _LED_CHANNEL {
 TCLED_RED,
 TCLED_GREEN,
 TCLED_BLUE
} LED_CHANNEL;

24.6.7 ADC and Touch Controller

24.6.7.1 ADC and Touch Controller Function
PMIC_STATUS PmicADCInit(void);
PMIC_STATUS PmicADCGetSingleChannelOneSample(UINT16 channel, UINT16 * pResult);
PMIC_STATUS PmicADCGetSingleChannelEightSamples(UINT16 channel, UINT16 * pResult);
PMIC_STATUS PmicADCGetMultipleChannelsSamples(UINT16 channels, UINT16 * pResult);
PMIC_STATUS PmicADCGetHandsetCurrent(PMIC_ADC_CONVERTOR_MODE mode, UINT16 *pResult);
PMIC_STATUS PmicADCTouchRead(UINT16* x, UINT16* y);
PMIC_STATUS PmicADCTouchStandby(BOOL intEna);
void PmicADCDeinit(void);

24.6.7.2 ADC and Touch Controller Data Structures
typedef enum _MC13892_TOUCH_MODE {
 TM_INACTIVE = 0,
 TM_INTERRUPT,
 TM_TOUCHSCREEM
} MC13892_TOUCH_MODE;
typedef MC13892_TOUCH_MODE PMIC_TOUCH_MODE;

typedef enum _PMIC_ADC_CONVERTOR_MODE
{
 ADC_8CHAN_1X = 0, // RAND = 0, 8 channels, 1 sample

Power Management IC (PMIC)

Windows Embedded CE 6.0 BSP Reference Manual

Freescale Semiconductor 24-15

 ADC_1CHAN_8X // RAND = 1, 1 channel, reads 8 sequential values
} PMIC_ADC_CONVERTOR_MODE;

24.6.8 Battery Charger
This section provides information about control MC13892 battery charger system.

24.6.8.1 Battery Charger Functions
PMIC_STATUS PmicBatterEnableCharger(BATT_CHARGER chgr, UINT8 c_voltage, UINT8 c_current);
PMIC_STATUS PmicBatterDisableCharger(BATT_CHARGER chgr);
PMIC_STATUS PmicBatterSetCharger(BATT_CHARGER chgr, UINT8 c_voltage, UINT8 c_current);
PMIC_STATUS PmicBatterGetChargerSetting(BATT_CHARGER chgr, UINT8* c_voltage, UINT8*c_current);
PMIC_STATUS PmicBatterGetChargeCurrent(UINT16* c_current);
PMIC_STATUS PmicBatterLedControl(BOOL on);
PMIC_STATUS PmicBatterSetReverseSupply(BOOL enable);
PMIC_STATUS PmicBatterSetUnregulated(BOOL enable);

24.6.8.2 Battery Charger Data Structures
typedef enum {
 BATT_MAIN_CHGR = 0, // Main battery charger
 BATT_CELL_CHGR, // CoinCell battery charger
 BATT_TRCKLE_CHGR // Trickle charger
} BATT_CHARGER;
typedef enum {
 DUAL_PATH = 0,
 SINGLE_PATH,
 SERIAL_PATH,
 DUAL_INPUT_SINGLE_PATH,
 DUAL_INPUT_SERIAL_PATH,
 DUAL_INPUT_DUAL_PATH,
 INVALID_CHARGER_MODE
}CHARGER_MODE;

Power Management IC (PMIC)

Windows Embedded CE 6.0 BSP Reference Manual

24-16 Freescale Semiconductor

Windows Embedded CE 6.0 BSP Reference Manual

Freescale Semiconductor 25-1

Chapter 25
Serial Driver
The serial driver interfaces the low level serial driver hardware to the Windows CE serial subsystem.

25.1 Serial Driver Summary
The serial port driver is implemented as a stream interface driver and supports all the standard I/O control
codes and entry points. The serial port driver handles all the internal UARTs except UART1 which is used
for debugging. In the BSP implementation, the hardware-specific code that corresponds to the serial port
driver lower layer is implemented as the platform-dependent driver (PDD). This PDD is linked with
Microsoft-provided public serial MDD library (com_mdd2.lib) to form the whole serial port driver.
Table 25-1 provides a summary of source code location, library dependencies and other BSP information.

NOTE
Do not select UART3 and FEC function in PB catalog window on the TO2.0
blue CPU board, because UART3 and FEC share some pins.

Table 25-1. Serial Driver Summary

Driver Attribute Definition

Target Platform iMX35-3DS-PDK1_7

Target SOC MX35_FSL_V2_PDK1_7

SOC Common Path ..\PLATFORM\COMMON\SRC\SOC\COMMON_FSL_V2_PDK1_7\SERIAL

SOC Specific Path N/A

Platform Specific Path ..\PLATFORM\<Target Platform>\SRC\DRIVERS\SERIAL

Driver DLL csp_serial.dll

SDK Library N\A

Catalog Item Third Party −> BSP −> Freescale <Target Platform>: ARMV4I − > Device Drivers −> Serial
−> UART2serial port support
Third Party −> BSP −> Freescale <Target Platform>: ARMV4I −> Device Drivers −> Serial
−> UART3 serial port support

SYSGEN Dependency N/A

BSP Environment Variables BSP_SERIAL_UART2 =1
BSP_SERIAL_UART3 =1

Serial Driver

Windows Embedded CE 6.0 BSP Reference Manual

25-2 Freescale Semiconductor

25.2 Supported Functionality
The serial port driver enables the hardware system to provide the following support:

1. Conforms to RS232 protocol standard
2. Supports RTS/CTS hardware flow control function
3. Supports parity check and optional stop bit
4. Supports power management mode full on/full off
5. Supports DMA transfer
6. Supports baudrate up to 4 Mbps

25.3 Hardware Operation
Refer to the chapter on the UART in the Multimedia Applications Processor Reference Manual for detailed
operation and programming information.

25.3.1 Conflicts with Other Peripherals and Catalog Items

25.3.1.1 Conflicts with SoC Peripherals
All the pins of UART3 can be configured for alternate functionality (FEC, ATA, SD2) using the IOMUX.
The configuration is specified by BSP serial driver. Changing this configuration results in a conflict and
prevents proper operation of the UART3. In the TO2 blue CPU board, GPIO1_5 is used to switch UART3
and FEC pins function.

25.3.1.2 Conflicts with Board Peripherals
No conflicts.

25.4 Software Operation
The serial driver follows the Microsoft-recommended architecture for serial drivers. The details of this
architecture and its operation can be found in the Platform Builder Help at the following location:

Developing a Device Driver > Windows CE Drivers > Serial Drivers > Serial Driver Development
Concepts.

25.4.1 Registry Settings

25.4.1.1 i.MX35 Registry Settings
IF BSP_SERIAL_UART2
[HKEY_LOCAL_MACHINE\Drivers\BuiltIn\COM2]
 "DeviceArrayIndex"=dword:0
 "IoBase"=dword:43F94000

Serial Driver

Windows Embedded CE 6.0 BSP Reference Manual

Freescale Semiconductor 25-3

 "IoLen"=dword:D4
 "Prefix"="COM"
 "Dll"="csp_serial.dll"
 "Index"=dword:2
 "Order"=dword:4
[HKEY_LOCAL_MACHINE\Drivers\BuiltIn\COM2\Unimodem]
 "Tsp"="Unimodem.dll"
 "DeviceType"=dword:0
 "FriendlyName"="i.MX35 COM2 UNIMODEM"
 "DevConfig"=hex: 10,00, 00,00, 05,00,00,00, 10,01,00,00, 00,4B,00,00, 00,00, 08, 00, 00,
00,00,00,00
ENDIF ;BSP_SERIAL_UART2
IF BSP_SERIAL_UART3
[HKEY_LOCAL_MACHINE\Drivers\BuiltIn\COM3]
 "DeviceArrayIndex"=dword:0
 "IoBase"=dword:5000C000
 "IoLen"=dword:D4
 "Prefix"="COM"
 "Dll"="csp_serial.dll"
 "Index"=dword:3
 "Order"=dword:4
[HKEY_LOCAL_MACHINE\Drivers\BuiltIn\COM3\Unimodem]
 "Tsp"="Unimodem.dll"
 "DeviceType"=dword:0
 "FriendlyName"="i.MX35 COM3 UNIMODEM"
 "DevConfig"=hex: 10,00, 00,00, 05,00,00,00, 10,01,00,00, 00,4B,00,00, 00,00, 08, 00, 00,
00,00,00,00
ENDIF ; BSP_SERIAL_UART3

25.4.2 Power Management
The serial driver supports full on/full off power management mode through PowerUp() and
PowerDown() functions.

25.5 Unit Test
The serial driver is tested using the Serial Port Driver Test and Serial Communications Test included as
part of the CETK. The Serial Port Test assesses whether the driver supports configurable device
parameters such as baud rate and data bits. The test also assesses additional functionality such as COM
port events, escape functions and time-outs.

25.5.1 Unit Test Hardware
• i.MX35 3DS board

25.5.2 Unit Test Software
Table 25-2 lists the required software to run the unit tests.

Serial Driver

Windows Embedded CE 6.0 BSP Reference Manual

25-4 Freescale Semiconductor

25.5.3 Building the Unit Tests
The serial port driver tests come pre-built as part of the CETK. No steps are required to build these tests.
The Pserial.dll file can be found alongside the other required CETK files in the following location:

[Drive]:\Program Files\Microsoft Platform Builder\6.00\cepb\wcetk\ddtk\armv4i

25.5.4 Running the Unit Tests
The Serial Port Driver Test executes the tux –o –d serdrvbvt command line on default execution.

For detailed information on the Serial Port tests, see

Debugging and Testing > Tools for Debugging and Testing > Windows CE Test Kit > CETK Tests >
Serial Port Driver Test > Serial Port Driver Test Cases in the Platform Builder Help.

The serial port tests are designed to test that the serial port driver works properly and the API behaves
correctly, and it should be pass all the test cases. Table 25-3 describes the Serial Port driver test cases.

Table 25-2. Software Requirements

Requirement Description

Tux.exe Tux test harness, which is needed for executing the test

Kato.dll Kato logging engine, which is required for logging test data

Tooltalk.dll Library required by Tux.exe and Kato.dll. Handles the transport between the target device and the
development workstation

SerDrvBvt.dll Test .dll file for Serial Port Driver Test

Table 25-3. Serial Port Driver Test Cases

Test
Case Description

1001 Configures the port and writes data to the port at all possible baud rates, data bits, parities, and stop bits. This
test fails if it cannot send data on the port with a particular configuration.

1002 Tests the SetCommEvent and GetCommEvent functions. This test fails if the driver does not properly support
the SetCommEvent or GetCommEvent functions.

1003 Tests the EscapeCommFunction function. This test fails if the driver does not support one of the Microsoft Win32
EscapeCommFunction functions.

1004 Tests the WaitCommEvent function on the EV_TXEMPTY event. The test creates a thread to send data and
waits for the EV_TXEMPTY event to occur when the thread finishes sending data. This test fails if the
WaitCommEvent function behaves improperly or if the EV_TXEMPTY event does not signal appropriately.

1005 Tests the SetCommBreak and ClearCommBreak functions. This test fails if the driver does not properly support
the SetCommBreak or ClearCommBreak functions.

1006 Makes the WaitCommEvent function return a value when the handle for the current COM port is cleared. This
test fails if the WaitCommEvent function behaves improperly.

1007 Makes the WaitCommEvent function return a value when the handle for the current COM port is closed. This test
fails if the WaitCommEvent function behaves improperly.

Serial Driver

Windows Embedded CE 6.0 BSP Reference Manual

Freescale Semiconductor 25-5

25.6 Serial Driver API Reference
Detailed reference information for the serial driver may be found in the Platform Builder Help at the
following location:

Developing a Device Driver > Windows CE Drivers > Serial Port Drivers > Serial Port Driver
Reference

25.6.1 Serial PDD Functions
Table 25-4 shows a mapping of Serial PDD functions to the functions used in the serial driver.

1008 Tests the SetCommTimeouts function and verifies that the ReadFile function properly times out when no data
is received. This test fails if the COM timeouts do not function correctly.

1009 Verifies that previous Device Control Block (DCB) settings are preserved when the SetCommState function call
fails with DCB settings that are not valid. This test fails if the serial port driver does not keep previous DCB settings
when DCB settings that are not valid are passed to the driver.

Table 25-4. Serial PDD Functions

PDD Function Pointer Serial Driver Function

HWInit SerSerialInit

HWPostInit SerPostInit

HWDeinit SerDeinit

HWOpen SerOpen

HWClose SerClose

HWGetIntrType SL_GetIntrType

HWRxIntrHandler SL_RxIntrHandler

HWTxIntrHandler SL_TxIntrHandler

HWModemIntrHandler SL_ModemIntrHandler

HWLineIntrHandler SL_LineIntrHandler

HWGetRxBufferSize SL_GetRxBufferSize

HWPowerOff SerPowerOff

HWPowerOn SerPowerOn

HWClearDTR SL_ClearDTR

HWSetDTR SL_SetDTR

HWClearRTS SL_ClearRTS

HWSetRTS SL_SetRTS

Table 25-3. Serial Port Driver Test Cases

Test
Case Description

Serial Driver

Windows Embedded CE 6.0 BSP Reference Manual

25-6 Freescale Semiconductor

25.6.2 Serial Driver Structures

25.6.2.1 UART_INFO
This structure contains information about the UART Module.
typedef struct {
 volatile PCSP_UART_REG pUartReg;
 ULONG sUSR1;
 ULONG sUSR2;
 BOOL bDSR;
 uartType_c UartType;
 ULONG ulDiscard;
 BOOL UseIrDA;
 ULONG HwAddr;
 EVENT_FUNC EventCallback;
 PVOID pMDDContext;
 DCB dcb
 COMMTIMEOUTS CommTimeouts;
 PLOOKUP_TBL pBaudTable;
 ULONG DroppedBytes;
 HANDLE FlushDone;
 BOOL CTSFlowOff;
 BOOL DSRFlowOff;
 BOOL AddTXIntr;
 COMSTAT Status;
 ULONG CommErrors;
 ULONG ModemStatus;
 CRITICAL_SECTION TransmitCritSec;
 CRITICAL_SECTION RegCritSec
 ULONG ChipID;
 } UART_INFO, * PUART_INFO;

HWEnableIR SerEnableIR

HWDisableIR SerDisableIR

HWClearBreak SL_ClearBreak

HWSetBreak SL_SetBreak

HWXmitComChar SL_XmitComChar

HWGetStatus SL_GetStatus

HWReset SL_Reset

HWGetModemStatus SL_GetModemStatus

HWGetCommProperties SerGetCommProperties

HWPurgeComm SL_PurgeComm

HWSetDCB SL_SetDCB

HWSetCommTimeouts SL_SetCommTimeouts

Table 25-4. Serial PDD Functions

PDD Function Pointer Serial Driver Function

Serial Driver

Windows Embedded CE 6.0 BSP Reference Manual

Freescale Semiconductor 25-7

Members
pUartReg Pointer to UART Hardware registers
sUSR1 This value contains the UART status register
sUSR2 This value contains the UART status register
bDSR This boolean value keeps the DSR state
UartType This value contains the type of UART like DCE or DTE
UlDiscard This is used to discard the echo characters in IrDa Mode
UseIrDA This boolean value determines the driver is in IR mode or not
HwAddr This value contains the hardware address of the UART Module
EventCallback This is a callback to the Model Device Driver
pMDDContext This contains the context of the UART, which is the first parameter to the callback

function
dcb This value contains the copy of Device Control Block
CommTimeouts This contains the copy of CommTimeouts structure used to get and set the

time-out parameters for a communication device
pBaudTable Pointer to baud rate table
DroppedBytes This value contains the number of bytes dropped
FlushDone Handle to the flush done event
CTSFlowOff This boolean value is used to store the CTS flow control state
DSRFlowOff This boolean value is used to Store the DSR flow control state
AddTXIntr This boolean value is used to fake a Tx interrupt
Status This value contains the comm status
CommErrors This value contains Win32 comm error status
ModemStatus This value shows the Win32 Modem status
TransmitCritSec This value is used as Critical Section for UART registers
RegCritSec This value is used as Critical Section for UART
ChipID This value contains Chip identifier (CHIP_ID_16550 or CHIP_ID_16450)

25.6.2.2 SER_INFO
This is a private structure contains the information about the serial.
typedef struct __SER_INFO {
 UART_INFO uart_info;
 BOOL fIRMode;
 DWORD dwDevIndex;
 DWORD dwIOBase;
 DWORD dwIOLen;
 PCSP_UART_REG pBaseAddress;
 UINT8 cOpenCount;

Serial Driver

Windows Embedded CE 6.0 BSP Reference Manual

25-8 Freescale Semiconductor

 COMMPROP CommProp;
 PHWOBJ pHWObj;

BOOL useDMA;
 DDK_DMA_REQ SerialDmaReqTx;
 DDK_DMA_REQ SerialDmaReqRx;
 PHYSICAL_ADDRESS SerialPhysTxDMABufferAddr;
 PHYSICAL_ADDRESS SerialPhysRxDMABufferAddr;
 PBYTE pSerialVirtTxDMABufferAddr;
 PBYTE pSerialVirtRxDMABufferAddr;
 UINT8 SerialDmaChanRx;
 UINT8 SerialDmaChanTx;
 UINT8 currRxDmaBufId;
 UINT8 currTxDmaBufId;
 UINT dmaRxStartIdx;
 UINT availRxByteCount;
 UINT32 awaitingTxDMACompBmp;
 UINT32 dmaTxBufFirstUseBmp;
 UINT16 rxDMABufSize;
 UINT16 txDMABufSize;
} SER_INFO, *PSER_INFO;

Members
uart_info This structure contains information about UART
fIRMode This boolean value determines the module is FIR or serial
dwDevIndex This static value contains the device index value which is read from

registry
dwIOBase This static value contains the I/O Base address of UART module which

is read from registry
dwIOLen This static value contains the I/O length of UART Module which is read

from registry
pBaseAddress Pointer to the start address of the UART registers mapped
cOpenCount Contains count of the concurrent open
CommProp Pointer to CommProp structure
pHWObj Pointer to PDDs HWObj structure
useDMA This boolean flag indicates if SDMA is to be used for transfers through

this UART
SerialDmaReqTx SDMA request line for Tx
SerialDmaReqRx SDMA request line for Rx
SerialPhysTxDMABufferAddr Physical address of Tx SDMA address
SerialPhysRxDMABufferAddr Physical address of Rx SDMA address
pSerialVirtTxDMABufferAddr Virtual address of Tx SDMA address
pSerialVirtRxDMABufferAddr Virtual address of Rx SDMA address.
SerialDmaChanRx SDMA virtual channel indices for Rx
SerialDmaChanTx SDMA virtual channel indices for Tx

Serial Driver

Windows Embedded CE 6.0 BSP Reference Manual

Freescale Semiconductor 25-9

currRxDmaBufId Index of the buffer descriptor next expected to complete its SDMA in
the Rx SDMA buffer descriptor chains

currTxDmaBufId Index of the buffer descriptor next expected to complete its SDMA in
the Tx SDMA buffer descriptor chains

dmaRxStartIdx Keeps the start index of byte to be delivered to MDD for Read
availRxByteCount This variable keeps the remaining bytes in the Rx SDMA buffer
awaitingTxDMACompBmp Indicates if an SDMA request is in progress on Tx SDMA buffer

descriptor
dmaTxBufFirstUseBmp Indicator for first time use of a Tx SDMA buffer descriptor
rxDMABufSize Receive DMA buffer size
txDMABufSize Transfer DMA buffer size

Serial Driver

Windows Embedded CE 6.0 BSP Reference Manual

25-10 Freescale Semiconductor

Windows Embedded CE 6.0 BSP Reference Manual

Freescale Semiconductor 26-1

Chapter 26
Sony/Philips Digital Interface (SPDIF) Driver
The Sony/Philips Digital Interface (SPDIF) audio module is a stereo transceiver that allows the processor
to receive and transmit digital audio.

26.1 SPDIF Driver Summary
The SPDIF driver module (spdifdev.dll) provides receiver (RX) and transmitter (TX) functions as a
waveform audio driver. For more information about the waveform audio driver, see the Platform Builder
Help topic:

Windows Embedded CE Features > Audio > Waveform Audio > Waveform Audio Application
Development

Table 26-1 provides the source code location, library dependencies, and other BSP information.

26.2 Supported Functionality
The SPDIF driver enables the board to provide the following software and hardware support:

1. Conforms to the Microsoft audio driver architecture as defined for Windows Embedded CE 6.0 and
all related operating systems

2. Supports Freescale hardware platforms that include the SPDIF module

Table 26-1. SPDIF Driver Summary

Driver Attribute Definition

Target Platform iMX35-3DS-PDK1_7

Target SOC MX35_FSL_V2_PDK1_7

SOC Common Path ..\PLATFORM\COMMON\SRC\SOC\COMMON_FSL_V2_PDK1_7\SPDIFDEV

SOC Specific Path N/A

Platform Specific Path ..\PLATFORM\<Target Platform>\SRC\DRIVERS\SPDIF

Driver DLL spdifdev.dll

SDK Library N/A

Catalog Item Third Party > BSP > Freescale<Target Platform>:ARMV4I > Device Drivers > SPDIF > SPDIF

SYSGEN Dependency SYSGEN_AUDIO

BSP Environment Variables BSP_NOAUDIO=
BSP_SPDIF=1

Sony/Philips Digital Interface (SPDIF) Driver

Windows Embedded CE 6.0 BSP Reference Manual

26-2 Freescale Semiconductor

3. Double-buffered DMA operations to transfer audio data between memory and the SPDIF TX/RX
FIFO

4. Two power management modes, full on and full off
5. PCM data and compressed data transmission according with IEC958 spec
6. Both TX and RX function, support 44.1 Kbyte, 48 Kbyte sample rate

26.2.1 Conflicts with Other Peripherals and Catalog Items

26.2.1.1 Conflicts with SoC Peripherals
The SPDIF controller shares pins with the CSPI2 module. The SPDIF-specific signals are AUD5_TXD,
AUD5_RXD, AUD5_SCK.

26.2.1.2 Conflicts with board Peripherals
No conflicts

26.2.2 Known Issues
The SPDIF driver may cause the audio playback driver CETK to fail for MSFT CETK fault. To run the
audio playback driver CETK, remove the SPDIF driver from the catalog temporarily or run the
AudioRouting application to select Audio Output/Input as the default device.

26.3 Software Operation
The SPDIF driver follows the Microsoft-recommended architecture for audio drivers. For information
about the architecture and operation, see the Platform Builder Help:

Developing a Device Driver > Windows Embedded CE Drivers > Audio Drivers > Audio Driver
Development Concepts

26.3.1 SPDIF Transmitter (TX)
The software operation of the SPDIF driver for playback is similar to that of the hardware configuration.
Once the hardware components are configured, the SPDIF driver must only handle the output DMA buffer
empty interrupts. This is done using the interrupt handler, which refills each of the output DMA buffers
with new audio data that has been supplied by the application, and then returns the DMA buffer to the
SDMA controller.

26.3.2 SPDIF Receiver (RX)
The operation of the SPDIF driver for receiving is similar to the hardware configuration. Once the
hardware components are configured, the audio driver handles the input DMA buffer full interrupts. This
is done via the interrupt handler, which copies the contents of each input DMA buffer to an

Sony/Philips Digital Interface (SPDIF) Driver

Windows Embedded CE 6.0 BSP Reference Manual

Freescale Semiconductor 26-3

application-supplied buffer, and then returns the empty DMA buffer to the SDMA controller. If the
application-supplied buffer does not have enough space for all of the new data, any extra data is discarded.
The application is signaled using a callback function when the application-supplied buffer is full. The
SPDIF driver also picks-up C Channel and U Channel information, so the application can query these
when need.

26.3.3 Compile-Time Configuration Options
Table 26-2 shows the compile-time configuration options.

26.3.4 Registry Settings
At least one registry key must be properly defined so that the Device Manager loads the SPDIF driver
when the system is booted. The following registry keys are required in order for the Device Manager to
properly load the SPDIF device driver during the normal device boot process. These registry settings
should typically not be modified. If they are missing or incorrectly defined, then the SPDIF driver may not
be loaded and all SPDIF functions are disabled.

[HKEY_LOCAL_MACHINE\Drivers\BuiltIn\SPDIF]
"Prefix"="WAV"
"Dll"="spdifdev.dll"
"Index"=dword:1
"Order"=dword:7
;"Priority256"=dword:99
"IClass"="{A32942B7-920C-486b-B0E6-92A702A99B35}" ; PMCLASS_GENERIC_DEVICE

26.3.5 DMA Support
As indicated previously, the SPDIF driver uses the SDMA controller to transfer the digital audio data
between the audio application and the RX/TX FIFOs. This minimizes the processing required by the core
and can also reduce the power consumption during SPDIF transmitting and receiving operations. This
section describes the SPDIF driver DMA implementation issues and trade-offs, and the available
compile-time DMA-related configuration options.

In order to use DMA transfers, the following items must be properly allocated, managed, and deallocated
by the device driver:

• The DMA data buffers where the application data is kept

Table 26-2. SPDIF Driver Configuration Options (hwctxt.cpp)

Configuration Setting Name Description

AUDIO_DMA_PAGE_SIZE The size in bytes of each DMA buffer. Default is 6144 bytes.

SPDIF_SFCSR_TX_WATERMARK The transmitter watermarks that are to be used with SPDIF TX FIFO. The default is 16.

SPDIF_SFCSR_RX_WATERMARK The receiver watermarks that are to be used with SPDIF RX FIFO. The default is 16.

SPDIF_TX_ENABLED Enable/Disable SPDIF TX module bye define/undef this macro.

SPDIF_RX_ENABLED Enable/Disable SPDIF RX module bye define/undef this macro.

Sony/Philips Digital Interface (SPDIF) Driver

Windows Embedded CE 6.0 BSP Reference Manual

26-4 Freescale Semiconductor

• The DMA buffer descriptors, which are used by the DMA hardware to manage the state of each
DMA buffer

The DMA data buffers can be allocated from either internal memory (which is provided by on-chip
internal RAM) or external memory (which is provided by off-chip external DRAM). The issues and
considerations for the type of memory to use for the DMA data buffers is as follows:

• Internal memory region:
— Allows the external memory to be placed in a low power mode while the DMA data buffers are

being processed to reduce system power consumption (as long as nothing else on the system
requires access to external memory). Also, less power is required to access the internal RAM
than to access.

— Total size of the internal memory region is limited.
— The limited amount of internal memory may have to be shared by multiple device drivers.
— The entire internal memory region must be manually managed with predefined addressed

ranges being reserved for each specific use.
• External memory region:

— The total size of the external memory is typically much greater than the size of the internal
memory. This provides much greater flexibility in selecting the size of the DMA data buffers.

— There is typically no need to worry about the possible impact and memory requirements of any
other device driver.

— Memory allocation is handled using the standard Windows Embedded CE 6.0 system calls.
— The external memory cannot be placed into a low power mode while the DMA is active.

The build configuration options such that the SPDIF driver allocates its DMA data buffers from either
internal or external memory are as follows:

• Internal memory region—Set the BSP_SPDIF_DMA_BUF_ADDR macro in bsp_cfg.h to an
address within the internal memory region. Also set BSP_SPDIF_DMA_BUF_SIZE to the total
size (in bytes) for all DMA data buffers that are allocated.

• External memory region—Comment out the BSP_SPDIF_DMA_BUF_ADDR macro in
bsp_cfg.h

The DMA buffer descriptors can also be allocated from either internal or external memory. However, in
this case, the choice is made automatically through the use of the CSPDDK API, specifically
DDKSdmaAllocChain(). See the Chapter 10, “Chip Support Package Driver Development Kit
(CSPDDK),” for additional information about the DDKSdmaAllocChain() API.

26.4 Power Management
The primary method for limiting power consumption in the SPDIF driver is to gate off all clocks to the
SPDIF when those clocks are not needed and set SPDIF to lower power mode. This is accomplished
through the DDKClockSetGatingMode function call and the SPDIF related register setting. The clock
gating and the disabling of the SPDIF is handled automatically within the SPDIF module and requires no
additional configuration or code changes. The SPDIF driver operates correctly after resuming from the
power down mode.

Sony/Philips Digital Interface (SPDIF) Driver

Windows Embedded CE 6.0 BSP Reference Manual

Freescale Semiconductor 26-5

26.4.1 PowerUp
This function resumes an SPDIF I/O operation that was previously terminated by calling the PowerDown()
API. It begins by restoring power and then it restarts the DMA transfers to complete the powerup process
for the SPDIF driver. This function is intended to be called only by the Power Manager and must not block
or depend on any hardware interrupts. Therefore, all required timed delays must be handled by using a
polling loop instead of any of the normal wait for an event to be signalled functions. This functionality is
currently handled by IOCTL_POWER_SET and the function is just a stub.

26.4.1.1 i.MX35 PowerUp Support
Power enable clock and leave SPDIF from lower-power mode.

26.4.2 PowerDown
This function suspends all currently active SPDIF I/O operations just before the entire system enters the
low power state. This function is intended to be called only by the Power Manager and must not block or
depend on any hardware interrupts. This functionality is currently handled by IOCTL_POWER_SET and
the function is just a stub.

26.4.2.1 i.MX35 Power Down Support
Power gating clock and set SPDIF to lower-power mode.

26.4.2.2 IOCTL_POWER_SET
This Power Manager IOCTL is implemented for the SPDIF driver. All system suspend and resume
handling is handled by the IOCTL, which handles the PowerDown and PowerUp functionality. For all
platforms, the following registry entry must be defined for proper power management functionality:

[HKEY_LOCAL_MACHINE\Drivers\BuiltIn\SPDIF]
"IClass"="{A32942B7-920C-486b-B0E6-92A702A99B35}" ; PMCLASS_GENERIC_DEVICE

26.5 Unit Test

26.5.1 Unit Test Hardware
Table 26-3 lists the required hardware to run the unit tests.

Table 26-3. Hardware Requirements

Requirement Description

M-Audio Card on PC M-Audio Card to send/receive SPDIF digital data

Audio Daughter Card SPDIF input/output interface on the card

Sony/Philips Digital Interface (SPDIF) Driver

Windows Embedded CE 6.0 BSP Reference Manual

26-6 Freescale Semiconductor

26.5.2 Unit Test Software
Table 26-4 lists the required software to run the unit tests.

26.5.3 Building the Unit Tests
To build the SPDIF tests, build an OS image for the desired configuration using the following steps:

1. Within Platform Builder, choose Build OS > Open Release Directory.
A DOS prompt is displayed.

2. Change to the SPDIF Tests directory: \WINCE600\SUPPORT_PDK1_7\TEST\SPDIF
3. Enter set WINCEREL=1 on the command prompt and hit return.

This copies the built DLL to the flat release directory.
4. Input build -c at the prompt and press return.

After the build completes, the spdif_test.dll file is located in the $(_FLATRELEASEDIR) directory.

26.5.4 Running the Unit Tests
The command line for running the SPDIF tests is:

tux –o –d spdiftest.dll -n

To redirect the test results to a file, add the option –f. The SPDIF tests do not contain any test-specific
command line options.

26.6 System Testing
In addition to running the SPDIF driver tests in the CETK, simple applications can be developed to
perform various system-level tests that involve the use of the SPDIF driver. For example, a small
modification can be made to WAVPLAY and WAVEREC to test the SPDIF TX and RX functions
(Windows CE sample application source code located in WINCE600\PUBLIC\COMMON\SDK\SAMPLES\AUDIO).

pwfx->wFormatTag = WAVE_FORMAT_WMASPDIF; // SPDIF FORMAT

For perform this testing, a SPDIF transmitter and receiver device which can be used to send or receive
audio data to/from i.MX353DS board is required, such as an M-Audio USB card (which can be connected
to the PC by the USB port).

The TX path should be connected as follows:

Table 26-4. Software Requirements

Requirement Description

Tux.exe Tux test harness, which is needed for executing the test

Kato.dll Kato logging engine, which is required for logging test data

Tooltalk.dll Library required by Tux.exe and Kato.dll. Handles the transport between the
target device and the development workstation

spdiftest.dll Test.dll file

Sony/Philips Digital Interface (SPDIF) Driver

Windows Embedded CE 6.0 BSP Reference Manual

Freescale Semiconductor 26-7

M-Audio optical port [in] <—> line dual-optical interface <—> i.MX35 SPDIF TX optical port

The connection diagram of RX as following:

M-Audio optical port [out] <—> line dual-optical interface <—> i.MX35 SPDIF RX optical port

Then Spectralab, WaveLab (which can be find in M-Audio software disc) can be used capture/play audio
data from/to 3DSSPDIF device.

26.7 SPDIF Driver API Reference
SPDIF driver is a standard waveform audio driver. For detailed reference information for the SPDIF driver,
see the Platform Builder Help:

Developing a Device Driver > Windows Embedded CE Drivers > Audio Drivers > Audio Driver
Reference > Waveform Audio Driver Reference

Sony/Philips Digital Interface (SPDIF) Driver

Windows Embedded CE 6.0 BSP Reference Manual

26-8 Freescale Semiconductor

Windows Embedded CE 6.0 BSP Reference Manual

Freescale Semiconductor 27-1

Chapter 27
Touch Panel Driver
The touch screen interface provides all the circuitry required for a 4-wire resistive touch screen. The touch
screen X plate is connected to TSX1 and TSX2 and the Y plate is connected to TSY1 and TSY2. A local
supply ADREF serves as reference.

27.1 Touch Panel Driver Summary
Table 27-1 provides a summary of source code location, library dependencies and other BSP information.

27.2 Supported Functionality
The touch panel should conform to the standards as explained in documentation under:

Developing a Device Driver > Windows Embedded CE Drivers > Touch Screen Drivers

Table 27-1. Touch Panel Driver Summary

Driver Attribute Definition

Target Platform iMX35-3DS-PDK1_7

Target SOC N/A

SOC Common Path ..\PLATFORM\COMMON\SRC\SOC\COMMON_FSL_V2_PDK1_7\TOUCH

SOC Specific Path N/A

Platform Specific Path ..\PLATFORM\<Target Platform>\SRC\DRIVERS\TOUCH

Driver DLL touch.dll

SDK Library N/A

Catalog Item Third Party > BSP > Freescale i.MX35 3DS PDK1_7:ARMV4I > Device Drivers > TOUCH
> TI TSC2007 > for TI TSC 2007
Third Party > BSP > Freescale i.MX35 3DS PDK1_7:ARMV4I > Device Drivers > TOUCH
> Freescale MC9S08DZ60 Microcontroller > for MCU
Third Party > BSP > Freescale i.MX35 3DS PDK1_7:ARMV4I > Device Drivers > TOUCH
> MC13892 TOUCH > for MC13892 PMIC Touch

SYSGEN Dependency SYSGEN_TOUCH = 1

BSP Environment Variables BSP_NOTOUCH= BSP_TOUCH_TSC2007=1 ->for TI TSC
2007BSP_TOUCH_MCU9S08DZ60=1 ->for MCU
BSP_TOUCH_MC13892=1 ->for MC13892 PMIC Touch

Touch Panel Driver

Windows Embedded CE 6.0 BSP Reference Manual

27-2 Freescale Semiconductor

27.3 Hardware Operations
The hardware consists of a LCD Panel with a touch screen and a TI TSC2007 touch controller. The I2C
module sends control information to the TSC2007 and reads back the touch samples. More details about
the I2C can be found in Chapter 20, “Inter-Integrated Circuit (I2C) Driver.”

The hardware also consists of a LCD Panel with touch screen and the MCU. The MCU driver module
sends control commands and reads back the touch samples. More details about the MCU driver can be
found in the MCU driver chapter.

The hardware also consists of a LCD panel with a touch screen and the MC13892. The MC13892 touch
screen driver sends control commands and reads back the touch samples. More details about MC13892
driver can be found in Chapter 24, “Power Management IC (PMIC).”

27.3.1 Conflicts with SOC Peripherals
The Touch Driver requires a timer to provide the necessary timings between different touch samples.
Therefore, the EPIT2 is dedicated for Touch Panel and cannot be used by any other module.

27.4 Software Operations
The touch screen driver reads user input from the touch screen hardware and converts the input to touch
events. The touch screen events are then sent to the Graphics, Windowing, and Events Subsystem
(GWES). The driver also converts un-calibrated coordinates to calibrated coordinates. Calibrated
coordinates compensate for any hardware anomalies, such as skew or nonlinear sequences.

For the touch screen driver to work properly it must submit points while the user’s finger or stylus is
touching the touch screen. When the user’s finger or stylus is removed from the screen, the driver must
submit at least one final event indicating that the user’s finger or stylus tip was removed. The calibrated
coordinates must be reported to the nearest one-quarter of a pixel.

The following steps detail the basic algorithm that are used to sample and calibrate the screen with the
touch screen driver:

1. Call the TouchPanelEnable function to start the screen sampling
2. Call the TouchPanelGetDeviceCaps function to request the number of sampling points

For every calibration point, perform the following steps:
1. Call TouchPanelGetDeviceCaps to get a calibration coordinate, a crosshair appears on the screen,

touching the cross hair starts the calibration
2. Call the TouchPanelReadCalibrationPoint function to get calibration data
3. Call the TouchPanelSetCalibration function to calculate the calibration coefficients

27.4.1 Touch Driver Registry Settings
IF BSP_NOTOUCH !
[HKEY_LOCAL_MACHINE\HARDWARE\DEVICEMAP\TOUCH]
 "DriverName"="touch.dll"

Touch Panel Driver

Windows Embedded CE 6.0 BSP Reference Manual

Freescale Semiconductor 27-3

; For double-tap default setting
[HKEY_CURRENT_USER\ControlPanel\Pen]
 "DblTapDist"=dword:18
 "DblTapTime"=dword:637

[HKEY_LOCAL_MACHINE\HARDWARE\DEVICEMAP\TOUCH]
 "MaxCalError"=dword:7
"CalibrationData"="539,520 280,259 280,778 793,781 794,259"

; For Touch Panel calibration. Note that the Windows Mobile PocketPC touch panel
; calibration is handled automatically by the welcome.exe application so a
; separate "Launch" registry key is not required. Also, Windows Mobile
; SmartPhone does not support a touch panel at all which means that this is
; not required for SmartPhone either.

[HKEY_LOCAL_MACHINE\init]
 "Launch80"="touchc.exe"
 "Depend80"=hex:14,00, 1e,00
ENDIF ; BSP_NOTOUCH !

27.5 Unit Tests

27.5.1 Unit Test Hardware
Table 27-2 lists the required hardware to run the unit tests.

27.5.2 Unit Test Software
Table 27-3 lists the required software to run the unit tests.

.

Table 27-2. Hardware Requirements

Requirement Description

 LCD panel Display panel required for display of graphics data

Table 27-3. Software Requirements

Requirement Description

Tux.exe Tux test harness, which is needed for executing the test

Kato.dll Kato logging engine, which is required for logging test data

Ktux.dll Ktux.dll which is required to run in kernel mode

Touchtest.dll The Test.dll File

Touch.dll Touch Panel Driver

Touch Panel Driver

Windows Embedded CE 6.0 BSP Reference Manual

27-4 Freescale Semiconductor

NOTE
The touch driver does work after the CETK Touch Panel Test. This is a
known MSFT CETK issue. The MSFT online help notes that “When you
complete the test, the operating system does not regain control of the touch
panel. You must reset the touch panel to restore normal operation.” Refer to
CETK Tests and Test Tools > CETK Tests > Touch Panel Tests

Cases 8011, 9001–9003 fail. The touch panel shows several lines when a
circle or arc is drawn. This is also a known MSFT CETK issue. All these
points are captured, but are not painted in time.

Case 8011 cannot draw in the right part of screen after a 90° rotation.
ethca.exe works after rotation and the CETK works when the case runs
again.

27.5.3 Running the Touch Panel Tests
The touch panel test cases can be run by typing:

tux -o -n -d touchtest.dll -x <Test case id>

The test case IDs are described in the documentation at:

Windows Embedded CE Test Kit > CETK Tests and Test Tools >CETK Tests > Touch Panel Tests >
Touch Panel Test

27.6 Touch Panel API Reference
The complete API reference is given in the documentation at:
Developing a Device Driver > Windows Embedded CE Drivers > Touch Screen Drivers > Touch
Screen Driver Reference

Windows Embedded CE 6.0 BSP Reference Manual

Freescale Semiconductor 28-1

Chapter 28
Universal Serial Bus (USB) OTG Driver
The OTG USB driver provides High Speed USB 2.0 host and device support for the USB On The Go
(OTG) port of the i.MX. The OTG driver automatically selects either host or device functionality at any
given time, depending on the USB cable/mini-plug configuration. This is achieved by a set of three drivers:
USB OTG host controller driver, USB client driver and/or USB transceiver controller (Full Function)
driver, which performs the host/function client switching.

The USB host driver can be configured for class support for mass storage, HID, printer, and RNDIS
peripherals. The device/client portion can be configured to provide mass storage, serial, or RNDIS
function. The Full Function OTG transceiver driver automatically selects between the host or client driver.
The host or client can also be configured as the only mode for the OTG port, using the Pure Host or Pure
Client catalog item. All the OTG catalog items are exclusive. (See Section 28.1, “USB OTG Driver
Summary.” and Section 28.2, “USB Host Driver Summary”).

28.1 USB OTG Driver Summary

28.1.1 USB OTG Client Driver Summary
Table 28-1 provides a summary of source code location, library dependencies and other BSP information
for the USB OTG client driver.

Table 28-1. OTG Client Driver Summary

Driver Attribute Definition

Target Platform iMX35-3DS-PDK1_7

Target SOC MX35_FSL_V2_PDK1_7

Common SOC COMMON_FSL_V2

CSP Driver Path ..\PLATFORM\COMMON\SRC\SOC\<Target SOC>\USBD
..\PLATFORM\COMMON\SRC\SOC\<Common Soc>\ms\USBFN

CSP Static Library usb_usbfn_<Target SOC>_PDK1_7.lib
usb_usbfn_os_<Target SOC>_PDK1_7.lib
usb_ufnmddbase_<Common Soc>_PDK1_7.lib

Platform Driver Path ..\PLATFORM\<Target Platform>\SRC\DRIVERS\USBD

Import Library N/A

Driver DLL usbfn.dll

Universal Serial Bus (USB) OTG Driver

Windows Embedded CE 6.0 BSP Reference Manual

28-2 Freescale Semiconductor

USB clients require a function driver to be loaded. A client can only present one function. Only one of the
function drivers (described in Section 28.5.5, “Function Drivers,”) should be configured through drag and
drop. If more than one is configured, the serial function is the default unless the registry is manually
modified.

28.1.2 OTG Host Driver Summary
Table 28-2 provides a summary of source code location, library dependencies and other BSP information
for the USB OTG host driver.

Host driver requires a set of class drivers to be loaded. See Section 28.5.6, “Class Drivers,” for class driver
information.

Catalog Item High Speed OTG:
Third Party > BSP > Freescale <Target Platform>: ARMV4I > Device Drivers > USB Devices > USB
High Speed OTG Device
To support only client/device mode, choose .. > High Speed OTG Port Pure Client Function

SYSGEN Dependency SYSGEN_USBFN=1

BSP Environment
Variable

BSP_NOUSB=
BSP_USB_HSOTG_CLIENT=1

Table 28-2. OTG Host Driver Summary

Driver Attribute Definition

Target Platform (TGTPLAT) iMX35-3DS-PDK1_7

Target SOC (TGTSOC) MX35_FSL_V2_PDK1_7

Common SOC COMMON_FSL_V2

CSP Driver Path ..\PLATFORM\COMMON\SRC\SOC\<Common SOC>\ms\USBH\EHCI
..\PLATFORM\COMMON\SRC\SOC\<Common SOC>\ms\USBH\EHCIPDD
..\PLATFORM\COMMON\SRC\SOC\<Common SOC>\ms\USBH\USB2COM

CSP Static Library usbh_ehcdmdd_<Common SOC>_PDK1_7.lib
usbh_ehcdpdd_<Common SOC>_PDK1_7.lib
usbh_usb2com_<Common SOC>_PDK1_7.lib

Platform Driver Path ..\PLATFORM\<Target Platform>\SRC\DRIVERS\USBH\HSOTG

Import Library N/A

Driver DLL hcd_hsotg.dll

Catalog Item Third Party > BSP > Freescale <Target Platform>: ARMV4I > Device Drivers > USB
Devices > USB High Speed OTG Device
To support only host mode, choose .. >High Speed OTG Port Pure Host Function.

SYSGEN Dependency SYSGEN_USB=1

BSP Environment Variable BSP_NOUSB=
BSP_USB_HSOTG_HOST=1

Table 28-1. OTG Client Driver Summary (continued)

Driver Attribute Definition

Universal Serial Bus (USB) OTG Driver

Windows Embedded CE 6.0 BSP Reference Manual

Freescale Semiconductor 28-3

28.1.3 OTG Transceiver Driver Summary (For High-Speed Only)
Table 28-3 provides a summary of source code location, library dependencies and other BSP information
for the USB OTG transceiver driver.

Table 28-3. OTG Transceiver Driver Summary

Driver Attribute Definition

Target Platform (TGTPLAT) MX35-3DS-PDK1_7

Target SOC (TGTSOC) MX35_FSL_V2_PDK1_7

CSP Driver Path ..\PLATFORM\COMMON\SRC\SOC\<Target SOC>\USBXVR

CSP Static Library usb_xvc_<Target SOC>_PDK1_7.lib

Platform Driver Path ..\PLATFORM\<Target Platform>\SRC\DRIVERS\USBXVR

Import Library N/A

Driver DLL imx_xvc.dll

Catalog Item Third Party > BSPs > Freescale <Target Platform>: ARMV4I > Device Drivers > USB
Devices > USB High Speed OTG Device > High Speed OTG Port Full OTG Function
Support

SYSGEN Dependency SYSGEN_USBFN=1

BSP Environment Variable BSP_NOUSB=
BSP_USB_HSOTG_CLIENT=1
BSP_USB_HSOTG_HOST=1
BSP_USB_HSOTG_XVC=1

Universal Serial Bus (USB) OTG Driver

Windows Embedded CE 6.0 BSP Reference Manual

28-4 Freescale Semiconductor

28.2 USB Host Driver Summary
Table 52-4 provides a summary of source code location, library dependencies and other BSP information
for the HS host driver.

28.2.1 FS Host2 Driver Summary

Host driver requires a set of class drivers to be loaded. See Section 28.5.6, “Class Drivers for class driver
information.

Notes: The H2 host on MX35 is a FULL SPEED Host controller.

28.3 Supported Functionality
The OTG driver provides the following software and hardware support:

1. High Speed OTG/Host driver supports USB specification 2.0.
2. Configured as client/peripheral by default, with one function driver defined as default. When

nothing is connected to the OTG port, the port does not drive Vbus and awaits attachment to a host
by raising its D+ signal. On attachment of a mini-A plug the driver switches to host mode.

3. When a mini-B plug is connected to the OTG port, and the cable opposite end is connected by a
mini-A (or A-type) plug to a PC, then the OTG initiates operation as peripheral and responds to
USB protocol from the host.

Table 28-4. HS Host2 Driver Summary

Driver Attribute Definition

Target Platform (TGTPLAT) MX35-3DS-PDK1_7

Target SOC (TGTSOC) MX35_FSL_V2_PDK1_7

CSP Driver Path ..\SOC\<Common SOC>\ms\USBH\EHCI
..\SOC\<Common SOC>\ms\USBH\EHCIPDD
..\SOC\<Common SOC>\ms\USBH\USB2COM

CSP Static Library usbh_ehcdmdd_<Common SOC>.lib
usbh_ehcdpdd_<Common SOC>.lib
usbh_usb2com_<Common SOC>.lib

Platform Driver Path \PLATFORM\<Target Platform>\SRC\DRIVERS\USBH\HSH2

Import Library N/A

Driver DLL hcd_hsh2.dll

Catalog Item Third Party > BSP > Freescale <Target Platform>: ARMV4I > Device Drivers > USB
Devices > USB High Speed Host
To support only host mode, choose .. >High Speed Host Function.

SYSGEN Dependency SYSGEN_USB=1

BSP Environment Variable BSP_NOUSB=
BSP_USB_HSH2=1

Universal Serial Bus (USB) OTG Driver

Windows Embedded CE 6.0 BSP Reference Manual

Freescale Semiconductor 28-5

4. When a mini-A plug is connected to the OTG port and the cable opposite end is connected by a
mini-B plug to another OTG device, then the OTG initializes/re-initializes itself into host mode and
begin to act as a host. The OTG port remains in host mode whenever a mini-A plug is mated to the
OTG socket connector.

5. OTG port as client/peripheral supports mass storage, RNDIS and serial clients
6. OTG port as host or HS Host supports mass storage, HID and RNDIS classes
7. When nothing is attached to the OTG port, the driver configures the controller and transceiver into

a low power state
8. When the system is suspended with nothing attached to the OTG/Host port, the system does not

create a wake condition upon attachment of the port to a host or attachment of a device with mini-A
plug

9. When the system is suspended while the OTG/Host port is connected to a host or to a device with
a mini-A plug, the system remains suspended when the OTG port connection is unplugged

10. When the system resumes after suspend, any attached devices are enumerated and their class
drivers loaded appropriately

11. Data transfer rates on the client port exceeds 40 Mbits/sec in Mass Storage client

28.4 Hardware Operation
The USBOH module on i.MX35 contains all of the functionality required to support two independent USB
ports compatible with the USB 2.0 specification. In addition to the normal USB functionality, the module
also provides support for direct connections to on-board USB peripherals with Serial, UTMI or ULPI
protocol, and supports multiple interface types for ULPI and Serial Transceivers. In addition to the USB
cores, the module provides for Full-Speed Transceiver less Link (TLL) operation on the host port and the
OTG core also supplies the UTMI interface for the internal UTMI PHY.

28.4.1 Conflicts with Other Peripherals and Catalog Items

28.4.1.1 Conflicts with SoC Peripherals
The High Speed OTG port conflicts with CAN

28.4.1.2 Conflicts with Board Peripherals
No conflicts.

Universal Serial Bus (USB) OTG Driver

Windows Embedded CE 6.0 BSP Reference Manual

28-6 Freescale Semiconductor

28.5 Software Operation

28.5.1 USB OTG Host Controller Driver
This driver enables the USB host functionality for the OTG port. It is part of the standard Windows USB
software architecture as shown in Figure 28-1.

Figure 28-1. Windows USB Driver Architecture

For further details of the Windows CE USB driver architecture and usage, see the Platform Builder
Windows CE 6.0 help topic:

Developing a Device Driver > Windows Embedded CE Drivers > USB Host Drivers

and

Developing a Device Driver > Windows Embedded CE Drivers > USB Host Drivers > USB Host
Controller Drivers > USB Host Controller Driver Development Concepts

When transceiver mode is included, the host driver is activated when a USB Mini-A plug is connected to
the Mini USB OTG socket. When Pure Host mode only is selected, the host driver is always in control of
the relevant USB controller. When a USB device is connected to the Mini USB OTG socket, the host
controller driver enumerates and activates the appropriate class driver (see Section 28.5.1, “USB OTG
Host Controller Driver,”).

Class Driver (e.g.
Mass Storage Class)

USB Host device
driver

Application or user
interface

USB Host controller
driver

MX31 USB
controller hardware
& PHY

device controller and
PHY

Client Device
(controller) Driver

Function controller
(client) driver

Function driver (e.g.
Mass Storage
Function)

Application or e.g.
storage device

USB cable physical
signalling

logical pipes /
endpoints

function/class
specific protocol

(IssueTransfer) (IssueTransfer)

USB packets USB packets

Universal Serial Bus (USB) OTG Driver

Windows Embedded CE 6.0 BSP Reference Manual

Freescale Semiconductor 28-7

The BSP supports the following USB class drivers:
• Mass Storage—SD cards, CF cards, HDD drive, thumb drive (disk-on-key); some card reader

firmware is not supported by the Microsoft standard Mass Storage class driver
• HID—Keyboard and mouse
• RNDIS—Network Device Interface communication class

Hubs are supported in all configurations with Full and Low Speed peripherals.

28.5.1.1 User Interface
User access to the USB host driver is by class drivers. For further details on these Host Client Drivers refer
to the Windows CE 6.0 Platform Builder help topic:

Developing a Device Driver > Windows Embedded CE Drivers > USB Host Drivers > USB Host
Controller Drivers > USB Host Client Drivers.

Where new class driver code is to be developed, refer to the Host client driver interface functions (for
example IssueBulkTransfer) as documented in:

Developing a Device Driver > Windows Embedded CE Drivers > USB Host Drivers > USB Host
Controller Drivers > USB Host Client Drivers > Host Client Driver Reference.

28.5.1.2 Host Controller Configuration
The driver is configured into the BSP build by dragging and dropping the appropriate catalog item for USB
HS OTG. By default, host support is included along with peripheral/device and transceiver support.
Additional classes to be supported must also be selected from the Core OS catalog. See Section 28.5.1.5,
“Registry Settings,” for details on excluding OTG host support from the build.

The internal i.MX USB OTG signals can be multiplexed to a choice of pins on the IC as described in the
IOMUX chapter of the i.MX35 Applications Processor Reference Manual.

28.5.1.3 Memory Configuration
The USB Host drivers (for all USB host ports) use DMA to perform all USB transfers. The physical
memory for these transfer buffers is allocated as a pool at driver initialization. Unless physical addresses
are specified in API accesses at the class-driver interface, the driver copies data between the
user/class-provided data buffers and the DMA buffer from the driver physical memory pool.

The default DMA physical memory pool size is 128 Kbyte. This value can be altered by registry setting
PhysicalPageSize.

28.5.1.4 Vbus/Configured Power
USB provides a means to monitor the configured power of devices attached to a USB host. The host driver
verifies that each attached device does not exceed the configured power limit.

This power limit is implemented via the platform-specific function BSPUsbhCheckConfigPower() as
described in Section 28.5.1.8.1, “BSPCheckConfigPower,” and located in:

Universal Serial Bus (USB) OTG Driver

Windows Embedded CE 6.0 BSP Reference Manual

28-8 Freescale Semiconductor

\PLATFORM\<Target Platform>\SRC\DRIVERS\USBH\Common\hwinit.c

This function must be modified to correspond with the platform hardware capabilities.

The i.MX system can supply a total of 100 mA to attached devices on the OTG port and the default
behavior does not need to be modified. All bus powered hubs that have been tested require 500 mA and
therefore are not supported for use. Self-powered hubs are required to expand the number of USB sockets
and also to support devices that require greater than 100 mA.

28.5.1.5 Registry Settings
The USB OTG host controller settings are values located under the registry key:

[HKEY_LOCAL_MACHINE\Drivers\BuiltIn\HCD_HSOTG]

The values under this registry key are automatically included in the image by platform.reg. They do not
normally require customization. Table 28-5 shows the default values contained in hsotg.reg.

28.5.1.6 Host USB Test Modes
The USB 2.0 specification defines PHY-level test modes for the USB host ports (see definitions in USB
2.0 specification section 7.1.20). The i.MX USB host drivers support packet test mode. The test mode is
configured by compiling the BSP with the compilation flag OTG_TEST_MODE defined within
bsp_cfg.h:

#define OTG_TEST_MODE

This configures the appropriate host controller within the platform-specific hardware initialization
function (ConfigOTG()), located in:

Table 28-5. hsotg.reg Default Values

Value Type Content Description

Dll sz hcd_hsotg.dll Driver dynamic link library

OTGSupport dword 01 This value must be set to 1 to enable host driver on the OTG. If no host
support is required (client only) then this value can be set to 0, though
the HCD_HSOTG key is not normally configured in the image at all
when pure Host function is selected.

OTGGroup sz 01 This unique string (example “00” to “99”) is used to combine/correlate
instances of the host, function, and transceiver driver within one USB
OTG instance.

HcdCapability dword 4 HCD_SUSPEND_ON_REQUEST.
Note: HCD_SUSPEND_RESUME is always assumed.

PhysicalPageSize dword 20000 This value represents the number of bytes allocated for the physical
memory pool of the OTG host driver, and defaults to 128 Kbytes. From
this buffer, 75% are allocated for transfer descriptors and the remaining
buffer is available for allocation to simultaneous transfers. In most
cases, only one transfer is active at any time (for example, in the Mass
Storage Class). A good value is at least 3x as large as the largest data
buffer transferred using IssueTransfer(). This key is optional, if it does
not exists in the registry, it takes the default value, otherwise a specific
value can be assigned.

Universal Serial Bus (USB) OTG Driver

Windows Embedded CE 6.0 BSP Reference Manual

Freescale Semiconductor 28-9

\PLATFORM\<Target Platform>\SRC\DRIVERS\USBH\Common\hwinit.c

The test mode is entered upon initialization, and cannot be exited. Normal USB operation is disabled when
test mode support is compiled into the image.

28.5.1.7 Unit Test
The USB driver has many devices to be tested. Tests are performed manually and include connecting the
devices, and confirming the attach, detach (on unplug) re-attach (on subsequent plug in of device), and
transferring and verifying data (and/or functions).

To verify the RNDIS class device, a CEPC containing Netchip 2280 USB function is attached and used to
access a remote file server on the CEPC. To verify the low-level transport for Bulk, Interrupt and
Isochronous transfers, the CETK Host test kit is performed. This requires a CEPC configured with Netchip
2280 USB function and loopback driver.

28.5.1.7.1 USB Host Controller Driver Test

Documentation for the Windows CE 6.0 CETK USB Host tests is normally found under the Platform
Builder Windows CE product documentation:

Debugging and Testing > Windows CE Test Kit > CE Test Kit

28.5.1.7.2 Build the Test Image

The following steps are used to build the image to be tested:
1. Checkout the RTM to be tested or install the MSI provided
2. Add the following components from the catalog:

— Freescale <Target Platform> :ARMV4I-Device Drivers-USB Devices-USB High Speed
Host1-High Speed Host 1

— Core OS > Windows CE devices > Core OS Services > USB HOST Support; and all the
sub-components of this catalog item (Sub-Components like USB Storage Class Driver.)

— Core OS > Windows CE devices > File Systems And Data store > Storage Manager;
(Sub-Components: FAT File System, Partition Driver, Storage Manager Control Panel Applet)

— Device Drivers > USB Function > USB Function Clients-Serial.
3. Sysgen and build the image

28.5.1.7.3 Abstract

This test suite can be used to test USB host controller drivers that provide the same interface as Windows
CE USB host controller driver does (for more information, see Section 28.5.1.1, “User Interface,”). It also
can be used to verify whether a certain USB host controller (either stand alone card or onboard logic) can
operate with Windows CE. The test setup and scenario is shown in Figure 28-2.

This test suite acts as a client driver above the USB bus driver (usbd.dll). It is loaded when a test device
is connected to the host through a USB cable. The test device is a CEPC with a NetChip2280 USB function
controller card in it. After this CEPC is booted up and net2280lpbk.dll is loaded, the CEPC acts as a

Universal Serial Bus (USB) OTG Driver

Windows Embedded CE 6.0 BSP Reference Manual

28-10 Freescale Semiconductor

generic USB data loopback device. The USB test suite (the test client driver on the host side) can then
stream data or issue device requests to or from this data loopback device. This is how the USB host
controller and its corresponding host controller drivers are exercised.

The NetChip2280 USB function PCI controller card is a USB2.0 compatible USB function device. It can
be used to test both USB2.0 and USB1.1 host controllers (EHCI/OHCI/UHCI) and corresponding drivers.

The Netchip2280 controller has six endpoints besides endpoint 0. The data loopback driver
(net2280lpback.dll) configures these endpoints to be three pairs: one bulk IN/OUT pair, one Interrupt
IN/OUT pair, and one Isochronous IN/OUT pair. The data loopback tests are done by sending data from
host side to device side through the OUT pipe, receiving it back through the IN pipe, and then verify the
data.

Figure 28-2. Test Setup

28.5.1.7.4 Unit Test Hardware
• Test platform
• Host Controller Card (if not onboard logic)
• CEPC
• Netchip2280 Card

Test platform with
USB controller

CEPC with
NetChip2280 USB
function controller

Hardware

Software

OHCI/UHCI/EHCI
Host Controller
Driver

USB Bus Driver
(usbd.dll)

USB Function
Bus Driver
(net2280.dll)

USB Test
Client Driver
(usbtest.dll)

Data loopback
Client Driver
(net2280lpbk.dll)

<Bus Level>

<Client Level>

Host Side Device Side

Universal Serial Bus (USB) OTG Driver

Windows Embedded CE 6.0 BSP Reference Manual

Freescale Semiconductor 28-11

• USB cable

28.5.1.7.5 Unit Test Software

Host side requirements:
• Tux.exe
• Ddlx.dll
• Usbtest.dll
• Tooltalk.dll
• Kato.dll
• USB component (usbd.dll, EHCI/OHCI/UHCI host controller driver(s)) must be included in the

run time image

 Device side requirements:
• Lufldrv.exe
• Net2280lpbk.dll
• NetChip2280 USB function support (net2280.dll) must be included in the CEPC run time image

28.5.1.7.6 Running the Test

The test procedure is as follows:
1. Download the runtime image to the CEPC (Windows Embedded CE PC-based hardware platform)

with the Netchip2280 card on it
2. After the system is booted up, run s lufldrv, the tester should verify that net2280lpbk.dll is

loaded
3. Download the runtime image to the test platform with a USB host controller on it
4. After the system is booted up, make sure there is no connection between the host side and the

device through the USB cable. Then launch command s tux –o –d ddlx –c “usbtest” “–xYYYY”,
where YYYY is the test case(s) to be run

5. The test indicates that there should be no connection between host and device side. Then after
seven seconds, the test asks to connect two sides with a USB cable

6. The test main body starts to run
7. After test(s) is(are) done, and if other tests in the test suite are to be run, do not disconnect the two

sides of the USB cable. Type the next test command, and the tests starts directly. If the USB
connection was disconnected before the next test, the tests asks to make the connection again
before the test begins

Universal Serial Bus (USB) OTG Driver

Windows Embedded CE 6.0 BSP Reference Manual

28-12 Freescale Semiconductor

28.5.1.7.7 Test Cases

Table 28-6 shows the test cases contained in the test suite.

By default, the data loopback device configures the endpoints with some often-used packet sizes that are
DWORD aligned, and neither too big nor too small. By having all tests in Table 28-6 pass under this
configuration is more than sufficient for a BVT-type test pass. However, testers can change the packet sizes
(these values are hard-coded in the source code for net2280lpbk.dll) for each endpoint by themselves and
run these test cases again for more comprehensive testing.

This test suite provides a way to change packet sizes of on NetChip2280 device on the fly. They are:
• Test case 3001—Using very small packet sizes in NetChip2280 device full speed configuration
• Test case 3002—Using very small packet sizes in NetChip2280 device high speed configuration
• Test case 3003—Using irregular packet sizes (like non DWORD-aligned size) in NetChip2280

device full speed configuration
• Test case 3004—Using irregular packet sizes (like non DWORD-aligned size) in NetChip2280

device high speed configuration

Table 28-6. USB Host Controller Driver Test Cases

Test Case ID Test Description

1001-1315,
1501-1515

Data loopback tests:
Concerning the transfer type, there are five categories:
1) Bulk pipe loopback tests (tests with ID end with 1, like xxx1)
2) Interrupt pipe loopback tests (tests with ID end with 2, xxx2)
3) Isochronous pipe loopback tests (tests with ID end with 3, xxx3)
4) All pipe transfer simultaneously (tests with ID end with 4, xxx4)
5) All three types transfers carry on simultaneously (tests with ID end with 5, xxx5) 1

There are five categories for how data is transferred:
1) Normal loopback tests (tests with ID start with 10, like 10)
2) loopback tests using physical memory (tests with ID start with 11, 11xx)
3) loopback tests using a part of allocated physical memory (tests with ID start with 12, 12xx)
4) Normal short transfer loopback tests (tests with ID start with 13, 13xx)
5) Stress short transfer loopback tests (tests with ID start with 15, 15xx)

Also both synchronous and asynchronous transfer methods are exercised (test cases like xx1x using
asynchronous transfer method, test cases like xx0x using synchronous method

There are a total of 5×5×2 = 50 test cases

1 This category of tests is designed for testing some other USB function devices which have more endpoints than host
controller driver can handle. When using Netchip2280, it should be the same as category 4). Tester can just ignore this
category.

1401-1413 Additional data loopback tests. that mainly focus on testing APIs like GetTransferStatus(), AbortTransfer()
and CloseTransfer()

2001-2013 Test related to Device requests

9001-9004 Special tests that test APIs such as SuspendDevice(), ResumeDevice() and DisableDevice()

9005 Test that stresses EP0 transfer (Vendor Transfer)

Universal Serial Bus (USB) OTG Driver

Windows Embedded CE 6.0 BSP Reference Manual

Freescale Semiconductor 28-13

• Test case 3005 (High Speed only)—Using very large packet sizes (like 2×1024 for Isochronous
endpoints) in NetChip2280 device full speed configuration. In the real world, Netchip2280 cannot
handle transfers using such large packet size because its onboard FIFO buffer is small

Run one of the test case above, then after 15–20 seconds, usbtest.dll is unloaded and loaded again
automatically through the Platform Builder. The packets sizes on netchip2280 side have already been
changed. Then those normal tests can be run. Use test case 3011 (for full speed config) and 3012 (for high
speed) to restore the default packet sizes.

Another category test that is important for USB2.0 host controllers and drivers is called the golden bridge
tests, which means USB2.0 host controller is connected with a full speed (USB1.1) device. This is the only
scenario that USB2.0 host controller performs split transfers.

NetChip2280 can be forced to be a full speed device. In the test setup stage, instead of run s lufldrv to
load loopback driver, run s lufldrv –f. This forces the Netchip2280 to be configured as a full speed
device.

Also testers are encouraged to do some manual tests. Here are some examples:
• Plug in real USB devices, suspend system, and then resume; USB devices should still be there
• Plug in real USB devices, suspend system, unplug it, plug in another device, then resume; system

should enumerate that new device properly
• Run one of the data transfer tests, in the middle of transfer stage, suspend the system (host side),

then resume; tests may fail, but system should not crash
• Run one of the data transfer tests, in the middle of transfer stage, disconnect the USB connection;

tests should fail, but system should not crash

28.5.1.8 Platform-Specific API
This section describes the platform-specific API functions.

28.5.1.8.1 BSPCheckConfigPower

This function is used to evaluate whether a device can be supported on the specified USB port.

Parameters
UCHAR bPort [in] Unused. Each USB controller has only one port
DWORD dwCfgPower [in] Power requirement (number of milliamps) requested by the device being

evaluated for attachment support on this port
DWORD dwTotalPower [in] current total power (number of milliamps) used by other previously

attached devices on this port
Return Value Return TRUE if device requesting dwCfgPower can be safely attached

Return FALSE if device can not be attached

28.5.1.8.2 BSPUsbSetWakeUp

This function enables or disables the wakeup on the USB port. This function does not actually enable
wake-up when a device is currently attached to the port.

Universal Serial Bus (USB) OTG Driver

Windows Embedded CE 6.0 BSP Reference Manual

28-14 Freescale Semiconductor

Parameters
BOOL bEnable [in] TRUE to enable wakeup, FALSE to disable wakeup

28.5.1.8.3 BSPUsbCheckWakeUp

This function evaluates the wake-up condition for the relevant USB port, and clears the condition and
interrupt.
Parameters None
Return Value Return TRUE when a wake-up condition was detected

Return FALSE when no wake-up condition was present

28.5.1.8.4 SetPHYPowerMgmt

This function is called by the USB driver when transitioning to or from the suspended state (for example,
during system suspend). The function does what is necessary to place the transceiver hardware into a
suspended (fSuspend = TRUE) or running (fSuspend = FALSE) state.

The standard implementation for a i.MX system uses a ULPI-bus based ISP1504 transceiver for the HS
OTG port, and this function configures the ULPI-bus for sleep state. If platform hardware uses other
transceivers, this function must be modified appropriately.

Parameters
BOOL fSuspend [in] TRUE: system/controller is going to suspend mode. FALSE: resuming

28.5.2 USB Client Driver
This driver enables the USB device functionality for the i.MX device. It is activated when a USB Mini B
connector is connected to the Mini USB OTG socket. When the i.MX System is connected to a USB host
system (for example, high speed or full speed port of PC), it is enumerated according to the current
configuration settings, and the appropriate class driver is loaded on the PC. By default the system is
configured for USB serial class. The system can be configured as one of the following USB functions by
setting the appropriate environment variable during build (drag/drop from the catalog):

• Serial class—Serial ActiveSync
• Mass storage—expose local storage (ATA hard disk, RAMDISK or other store) as USB drive
• RNDIS class—Remote Network Driver Interface Specification

28.5.2.1 User Interface
The USB client driver provides a standard Windows CE USB driver implementation. For an overview see:

Developing a Device Driver > Windows Embedded CE Drivers > USB Function Drivers > USB
Function Controller Drivers.

User access to the USB client driver is through function drivers such as Mass Storage or RNDIS. For
further details on these USB Function drivers, refer to the Windows CE 6.0 Platform Builder help topic:

Developing a Device Driver > Windows Embedded CE Drivers > USB Function Client Drivers.

Universal Serial Bus (USB) OTG Driver

Windows Embedded CE 6.0 BSP Reference Manual

Freescale Semiconductor 28-15

Where new function driver code is to be developed, refer to the Function controller driver interface
functions (for example, IssueTransfer) as documented in:

Developing a Device Driver > Windows Embedded CE Drivers > USB Function Controller Drivers
> USB Function Controller Driver Reference.

28.5.2.2 Client Driver Configuration
The OTG client driver is configured into the BSP build by dragging and dropping the appropriate catalog
item (see Section 28.1.1, “USB OTG Client Driver Summary,”). When the Pure Client functionality is
selected, the OTG port acts only as a device. When Full OTG functionality is selected, the OTG port can
be either device or host (see transceiver driver configuration).

28.5.2.3 Registry Settings
The USB OTG function/client settings are values located under the registry key:

[HKEY_LOCAL_MACHINE\Drivers\BuiltIn\UFN]

The values under this registry key are automatically included in the image through platform.reg. They do
not normally require customization. Table 28-7 shows the USB OTG client registry settings.

28.5.2.4 Device USB Test Modes
The USB 2.0 specification defines PHY-level test modes for USB device ports (see definitions in USB 2.0
specification section 7.1.20). This mechanism allows a host to configure a device into test mode by
commanding the device with a specific SET_FEATURE request. Once test mode is entered, the device is
not able to leave test mode. The device port does not by default support the USB test modes. Sample code
for test mode support (SET_FEATURE on the device) is included in:

..\PLATFORM\COMMON\SRC\SOC\<Target SOX>\MS\USBFN\CONTROLLER\MDD

In addition, USBFN_TEST_MODE_SUPPORT must be defined during compilation of the CSP USBD
device driver library.

28.5.2.5 Unit Test
There is no CETK test case for USB client (function) drivers. The USB function is tested by configuring
the i.MX system as either USB serial function, USB mass storage or RNDIS function and connecting it
directly to a host PC. The test verifies basic USB peripheral/client functionality, including attach, detach,

Table 28-7. USB OTG Client Registry Settings

Value Type Content Description

Dll sz usbfn.dll Driver dynamic link library

OTGSupport dword 01 This value must be set to 1 to enable the function/client on the OTG. If no client support
is required (host only) then this value can be 0, though the UFN key is not normally
configured in the image at all when pure Host function is selected

OTGGroup sz 01 This unique string (example 00 to 99) is used to combine/correlate instances of the host,
function, and transceiver driver within one USB OTG instance

Universal Serial Bus (USB) OTG Driver

Windows Embedded CE 6.0 BSP Reference Manual

28-16 Freescale Semiconductor

and data transfer. Separate images must be built and downloaded for each of the three peripheral function
tests.

28.5.2.5.1 Unit Test Hardware

Table 28-8 lists the required hardware to run the unit tests.

28.5.2.5.2 Unit Test Software

Table 28-9 shows the software requirements for the USB Function controller driver test.

Table 28-8. Hardware Requirements

Requirement Description

Host system To test if control reaches the Host controller driver

USB cable having Mini USB OTG plug A at one
end and Mini USB OTG plug B on the other side

For connecting between the host and the device

ATA drive configured in UDMA mode 2 as DSK1 Required as a storage device when the board is
configured as mass storage class

Table 28-9. Software Requirements

Requirement Description

ActiveSync 4.1 and above Host side software that is required to be available for testing the Serial class functionality

Universal Serial Bus (USB) OTG Driver

Windows Embedded CE 6.0 BSP Reference Manual

Freescale Semiconductor 28-17

28.5.2.5.3 Running the USB Function Controller Driver Tests

Table 28-10 lists USB function controller driver tests.

28.5.2.6 Platform-Specific API
This section describes the platform-specific API functions.

Table 28-10. USB Function Controller Driver Tests

Test Cases Entry Criteria/Procedure/Expected Results

Board configured as
USB Serial class and
connected to a host
system after the board
boots up completely

Entry Criteria:
Make sure there is no mini USB OTG plug B is connected and the board is turned on and wait until the
board boots-up completely
Procedure:
1. Connect the mini USB OTG plug B to the mini USB OTG socket
2. Observe that the ActiveSync on the host side gets connected and is synchronized
3. Copy files from Host system to the Mobile Device. Files are copied
4. Copy files from the Mobile Device to the Host system. Files gets copied
5. Unplug the mini USB OTG plug B from the i.MX mini USB OTG socket to unload the Serial class
driver
Expected Result:
ActiveSync should get synchronized and copying of files should happen between the Host and the
System

Board configured as
USB Mass storage
client, with ATA drive as
DSK1 mounted, and
connected to a host
system after the board
boots up completely

Entry Criteria:
Make sure there is no mini USB OTG plug B is connected and the board is turned on and wait until the
board boots-up completely
Procedure:
1. Connect the mini USB OTG plug B to the mini USB OTG socket
2. Observe that a new disk in My Computer having as Removable Disk appearing in it
3. Copy files from Host system to the new disk drive. Files are copied
4. Copy files from the new disk drive to the Host system. Files gets copied
5. Unplug the mini USB OTG plug B from the mini USB OTG socket to unload the mass storage class
driver
Expected Result:
Files copied into mass storage client device match those copied out (when compared on Windows XP
PC using file compare utility). Note that files are not visible from within the System until the system has
been reset. The file system should not be used inside the System when it is being accessed via USB
as a mass storage client.

Board configured as
USB RNDIS client and
connected to a host
system after the board
boots up completely.
Browsing the Internet

Entry Criteria:
Make sure there is no mini USB OTG plug B is connected and the board is turned on and wait until the
board boots-up completely. See to it that the NIC’s local area connection is not having any IP address
Procedure:
1. Connect the mini USB OTG plug B to the mini USB OTG socket
2. Observe that a new Local area connection in the Network and Dial up connections appears on the
Windows XP machine. Bridge the NIC’s local area connection and the RNDIS’s local area connection
3. Configure the bridge by giving IP address, Subnetmask, Default gateway, DNS
4. On the System, a new Local area connection can be found in the Network and dial up connections.
Configure the local area connection by giving IP address, Subnetmask, Default gateway, DNS
5. In the Internet explorer on the System, configure the Lan settings as per the local area settings
Expected Result:
Browsing the Internet should be possible

Universal Serial Bus (USB) OTG Driver

Windows Embedded CE 6.0 BSP Reference Manual

28-18 Freescale Semiconductor

28.5.2.6.1 InitializeMux

This function is called to initialize the IOMUX connection within i.MX, from the USB controller to the
appropriate device pins for the transceiver. This function is implemented for the Pure Client situation.
Parameters
int Speed [in] Unused
Return Value Return TRUE if device requesting dwCfgPower can be safely attached

28.5.2.6.2 HardwarePullupDP

This function is called by the USB client driver when D+ must be pulled-up, in preparation for connection
to a USB host. The standard code configures for ISP1504/ISP1301 transceiver. It is possible to modify this
routine to conditionally soft-disable USB connection.
Parameters
CSP_USB_REGS *pRegs [in] pointer to the registers for the USB controller
Return Value Return TRUE if D+ signal was pulled-up

28.5.3 USB Transceiver Driver (ID Pin Detect Driver—XCVR)
This driver is responsible for detecting the type of USB connector plugged into the Mini USB OTG socket
of the system. Upon detection the driver activates the USB host controller driver or USB function
controller driver.

28.5.3.1 User Interface
There is no user interface to the transceiver driver. This driver merely manages the USB host or client
drivers, which provide the appropriate programming API. The driver can be configured through its
platform-specific routines to provide different behavior for power management (wake-up, D+ soft
connect.).

28.5.3.2 Transceiver Driver Configuration
The transceiver driver is configured into the BSP automatically upon dragging and dropping the USB HS
OTG catalog item. If transceiver functionality is not required, it can be disabled as described below.

28.5.3.3 Registry Settings
The USB OTG transceiver settings are values located under the registry key:

[HKEY_LOCAL_MACHINE\Drivers\BuiltIn\XVC]

Universal Serial Bus (USB) OTG Driver

Windows Embedded CE 6.0 BSP Reference Manual

Freescale Semiconductor 28-19

The values under this registry key are automatically included in the image via platform.reg. They do not
normally require customization. Table 28-11 shows the USB OTG transceiver registry settings.

28.5.3.4 Unit Test
There is no CETK test case for USB transceiver driver. The transceiver driver is tested using the Mini USB
OTG plug A and Mini USB OTG plug B. The test is done by manually plugging in the Mini USB OTG
plug into the Mini USB OTG socket of the system. The test verifies that the USB host or function
controller driver is activated on cable plug-in.

28.5.3.4.1 Unit Test Hardware

Table 28-12 lists the required hardware to run the unit tests.

Table 28-11. USB OTG Transceiver Registry Settings

Value Type Content Description

Dll sz imx_xvc.dll Driver dynamic link library

OTGSupport dword 01 This value must be set to 1 to enable the transceiver-driven mode switching on the
OTG. If no transceiver support is required (host or client only) then this value can be
set to 0, though the XVC key are not normally configured in the image when OTG
Pure Host or OTG Pure Client is configured

OTGGroup sz 01 This unique string (example 00 to 99) is used to combine/correlate instances of the
host, function, and transceiver driver within one USB OTG instance

Table 28-12. Hardware Requirements

Requirement Description

 System to act as a device System is configured as USB Mass storage class

USB LS Mouse To test if control reaches the Host controller driver

USB cable having A-type plug at one end and Mini USB OTG plug B
on the other end. To plug in USB LS mouse, a USB extension cable
having mini-A at one end and USB A-type socket at the other end

For connecting between the host and the device

Universal Serial Bus (USB) OTG Driver

Windows Embedded CE 6.0 BSP Reference Manual

28-20 Freescale Semiconductor

28.5.3.4.2 Running the Transceiver Test

Table 28-13 lists transceiver tests.

28.5.3.5 Platform-Specific API
The transceiver driver library code contains i.MX chip-specific implementation, and is located in:

..\PLATFORM\COMMON\SRC\SOC\<Target SOC>\USBXVR

The transceiver driver operation can be customized through the platform-specific code located in:
..\PLATFORM\<Target Platform>\SRC\Drivers\USBXVR

The standard implementation located in hwinit.c is provided for the System with ISP1504 transceiver
attached to the High Speed OTG port. Customizations permit different power management and wake-up
behavior, including when the device generates soft connect/disconnect (D+ pull-up) or what wake-up
conditions are supported when nothing is attached to the OTG port.

The library USB transceiver code communicates with the platform-specific code by callback functions.
Only one globally-defined specific routine (RegisterCallback) is required for using this interface. Standard
code is supplied for full transceiver operation using the System Platform.

Table 28-13. Transceiver Tests

Test Cases Entry Criteria/Procedure/Expected Results

Idle case when no
cable plugged in

Entry Criteria:
Make sure there is no mini USB OTG plug connected and the board is turned on and wait until the
board boots-up completely
Procedure:
When the board is powered and completely booted-up, the board should be idle (and as mass storage
client, not verifiable)
Expected Result:
Device boots up and is stable

Mass storage client
visible from PC

Entry Criteria:
Make sure there is no mini USB OTG plug connected and the board is turned on and wait until the
board boots-up completely
Procedure:
When the board is powered and completely booted-up, verify that board responds as a mass storage
client when plugged into PC.
Expected Result:
New storage must be visible on PC.

Mini USB OTG plug-A
connected to the mini
USB OTG socket of
System and mouse
plugged into OTG port
via this cable

Entry Criteria:
Unplug board from PC (in previous step)
Procedure:
1. Connect the USB HID device (Mouse) which has a Mini USB OTG plug-A to it. The control goes to
the USB Host controller driver
2. The corresponding device gets enumerated and starts functioning. For example, if a USB mouse is
connected, on movement of the mouse, the pointer in the LCD screen is seen moving
Expected Result:
Device should start functioning

Universal Serial Bus (USB) OTG Driver

Windows Embedded CE 6.0 BSP Reference Manual

Freescale Semiconductor 28-21

28.5.3.5.1 Structure BSP_USB_CALLBACK_FNS

Structure BSP_USB_CALLBACK_FNS is defined in MX35_usb.h. This is a structure containing all the
USB callback functions as called by the USB CSP drivers. Currently only the transceiver driver
(USBXVR) uses these callback functions. The callback functions are registered using RegisterCallback()
(see Section 28.5.3.6.2, “RegisterCallback,”).
typedef struct {

// pfnUSBPowerDown - function pointer for platform to call during power down.
// pfnUSBPowerUp - function pointer for platform to call during power up.
// Parameter: 1) regs - USB registers
// 2) pUSBCoreClk - pointer to boolean to indicate the status of USB Core Clk
// if it is on or off. Platform is responsible to update this value if

they change
// the status of USBCoreClk. [TRUE - USBCoreClk ON, FALSE - USBCoreClk OFF]
// 3) pPanicMode - pointer to boolean to indicate the status of panic mode
// if it is on or off. Platform is responsible to update this value if

they change
// the status of panic mode. [TRUE - PanicMode ON, FALSE - USBCoreClk OFF]
void (*pfnUSBPowerDown)(CSP_USB_REGS *regs, BOOL *pUSBCoreClk);
void (*pfnUSBPowerUp)(CSP_USB_REGS *regs, BOOL *pUSBCoreClk);
// pfnUSBSetPhyPowerMode - function pointer for platform to call when they want to

suspend/resume the PHY
// Parameter: 1) regs - USB registers
// 2) bResume - TRUE - request to resume, FALSE - request suspend
void (*pfnUSBSetPhyPowerMode)(CSP_USB_REGS *regs, BOOL bResume);

} BSP_USB_CALLBACK_FNS;

28.5.3.5.2 pfnUSBPowerDown

This callback function is called during the Windows Embedded CE 6.0 power down sequence. The actual
platform specific power down routine should be registered as this callback function. This function is only
called if the system is in USB transceiver mode only (for example, when nothing is attached to the OTG
port.).

There is no standard implementation for this callback, since by default the transceiver driver automatically
suspends the port when nothing is attached. This enables wake-up on device or host attachment, and
enables the D+ pull-up during the suspended condition.
Parameters
CSP_USB_REGS *regs [in] Mapped pointer to the USB registers in i.MX, from physical address

space to a non-paged, process-dependent address space. This is mapped
during the transceiver initialization routine (XVC_Init).

BOOL *pUSBCoreClock [in/out] Pointer to a Boolean variable in transceiver to indicate whether the
USB Core Clock has been stopped.
The platform-specific callback function must update this flag to reflect the
current USB Core Clock status, if the status of the USB Core Clock is changed
within the platform code (for example using DDKClockSetGatingMode()).
This ensures consistency of the clock status within the CSP transceiver driver.

Return Value TRUE—USB Core Clock is running
FALSE—USB Core Clock is stopped

Universal Serial Bus (USB) OTG Driver

Windows Embedded CE 6.0 BSP Reference Manual

28-22 Freescale Semiconductor

28.5.3.6 pfnUSBPowerUp
Similar to pfnUSBPowerDown, this is called during the Windows Embedded CE 6.0 power up sequence.
The actual platform specific power up (resume) routine should be registered to this pointer. This is only
called when USB is in transceiver mode (when nothing is attached to the OTG port).

There is no standard implementation for this callback, since by default the transceiver driver automatically
suspends the port when nothing is attached and the port need not perform any wake-up activity until a
device or host attachment is detected.
Parameters For parameter details see pfnUSBPowerDown, Section 28.5.3.5.2,

“pfnUSBPowerDown,”

28.5.3.6.1 pfnUSBSetPhyPowerMode

This function is called when the system is in USB transceiver mode with no USB activity. With standard
implementation on the system, if the system is in transceiver mode and there is no activity in USB port for
one second, the transceiver driver suspends the ULPI PHY (in this case, it is ISP1504, disable the USB
Clock gating, and set the system to non-panic mode allowing core voltage to drop).

When there is USB activity (for example, device attach), the transceiver driver sets the system to panic
mode (requiring core voltage to stay high using DDKClockEnablePanicMode(), supported for i.MX),
enables USB Clock gating and puts the ULPI PHY transceiver to resume.

This callback function is responsible for handling the suspend and resume of ULPI PHY transceiver. The
developer must register this pointer with the actual platform specific function for suspend and resume of
ULPI PHY transceiver. Custom wake-up conditions can be enabled here.
Parameters
CSP_USB_REGS *regs [in] Mapped pointer to the USB registers in i.MX, from physical address space

to a non-paged, process-dependent address space. This is mapped during the
transceiver initialization routine (XVC_Init).

BOOL resume [in] This boolean variable indicates whether the callback function must resume
or suspend the ULPI PHY transceiver.

Return Value TRUE—callback function must resume transceiver activity
FALSE—callback function must suspend transceiver activity

28.5.3.6.2 RegisterCallback

This is used to register all the callback functions defined in BSP_USB_CALLBACK_FNS. This function
is called by the USB driver during the initialization process of the transceiver driver (XVC_Init). The
developer must implement a function by this name in their platform directory. A standard implementation
is provided for the ISP1504 transceiver of the System. When no callback function is required, those
elements of the BSP_USB_CALLBACK_FNS structure should be initialized to NULL.

Universal Serial Bus (USB) OTG Driver

Windows Embedded CE 6.0 BSP Reference Manual

Freescale Semiconductor 28-23

Parameters
BSP_USB_CALLBACK_FNS *pFn

[in/out] Pointer to BSP_USB_CALLBACK_FNS structure for the developer to
register the callback function inside the BSP_USB_CALLBACK_FNS. The
callback functions inside this structure is used by the CSP transceiver code.

28.5.4 Power Management
There are four aspects of power management for the USB device drivers:

• Special i.MX Vcore requirements
• Clock gating to the USB peripheral block within the i.MX
• Setting the transceiver to a lower power mode or suspend
• Transceiver auto-power-down on inactivity

The USB device driver(s) support an On and Off/Standby (low power) state, with wake-up capability. The
On state is entered whenever a host or device is attached to the relevant USB port. The driver enters the
standby state automatically after timeout with no device or host attached to the USB port. As well, the
standby state is entered when the system suspends. (In the latter case, system wake-up capability is enabled
for the port).

28.5.4.1 Special Vcore Requirements
When ULPI-bus transceivers are used with the USB controller (for example, ISP1504 transceivers for
High Speed OTG port and High Speed Host 2 port on the i.MX System), normal DVFS scaling of the i.MX
Vcore must be suspended whenever there is potential of ULPI bus communication. This is the case
whenever a device is connected (in host mode) or the device is connected to a host (in client mode). The
USB OTG transceiver driver, and USB host and client drivers constrain the DVFS behavior by calling
DDKClockEnablePanicMode() whenever a device or host connection is detected, and calling
DDKClockDisablePanicMode() when a timeout period expires with no device or host connected to the
port. No configuration is required, just note the effect on the DVFS (DVFC driver) behavior.

28.5.4.2 Clock Gating
The USB driver(s) for the various USB ports automatically manages clock gating to the i.MX USB
controller cores. The drivers for the ports coordinate their use of the USB core clock, and when nothing is
connected on any of the ports (all drivers are in their lowest power state) the clock is gated on or off using:

DDKClockSetGatingMode(DDK_CLOCK_GATE_INDEX_USBOTG, DDK_CLOCK_GATE_MODE_ENABLED_ALL)
DDKClockSetGatingMode(DDK_CLOCK_GATE_INDEX_USBOTG, DDK_CLOCK_GATE_MODE_DISABLED)

28.5.4.3 Transceiver Auto Power Down
The USB transceivers automatically enter a lower-power/suspended mode when no USB traffic is detected
for several milliseconds. This internally sets a suspended state for the USB port. Software timeout is used
to establish whether the driver power mode can be switched to its lowest power state.

Universal Serial Bus (USB) OTG Driver

Windows Embedded CE 6.0 BSP Reference Manual

28-24 Freescale Semiconductor

28.5.4.4 Transceiver Power Mode
Software timeout is used to establish whether the transceivers and their related bus needs to be set to a
suspended condition. In the lowest-power state, the transceiver is configured to generate wake-up
signalling on attachment of devices or host (to the OTG port). The transceiver driver provides callback
routines to manage this transition.

28.5.4.5 PowerUp
Each of the OTG client, host and transceiver drivers have PowerUp routine associated. (For the host driver,
this is referenced by the MDD to a function PowerMgmtCallback()).

For the host, the routine does the following:
• Ungate the USB peripheral block clock
• Force the port to resume and clear PHCD bit in the portsc register
• Reset and configure USB host controller
• Disable the wake-up conditions
• Set the PHY to normal work mode using SetPHYPowerMgmt(FALSE) platform routine
• Enable the interrupts and start the USB controller

For the client, the routine does the following:
• Ungate the USB peripheral block clock
• Force the port to resume
• Disable the wake-up conditions
• Enable the interrupts and start the USB controller

For the transceiver driver, the PowerUp routine calls the relevant platform-specific callback routine,
pfnUSBPowerUp().

Under normal circumstances there is nothing to be done in this routine, since the OTG port is normally in
a suspended state within the transceiver mode. (It is only in transceiver mode when nothing is connected
to the port, and thus has already been automatically suspended).

28.5.4.6 PowerDown
As for the PowerUp routine, OTG client, host and transceiver drivers have PowerDown routine associated.
(For the host driver, this is referenced via the MDD to a function PowerMgmtCallback()).

For the host, the routine does the following:
• Verify the wake-up conditions using the BSPUsbCheckWakeUp() platform routine
• Stop the host controller
• Suspend the relevant port
• Set the PHY to low power mode using SetPHYPowerMgmt(TRUE) platform routine
• Gate the USB peripheral block clock

Universal Serial Bus (USB) OTG Driver

Windows Embedded CE 6.0 BSP Reference Manual

Freescale Semiconductor 28-25

For the client, the routine does the following:
• Stop the USB controller
• Clear any outstanding interrupts
• Enable appropriate wake-up condition
• Suspend the relevant port (suspends the PHY)
• Gate the USB peripheral block clock

For the transceiver driver, the PowerDown routine calls the relevant platform-specific callback routine,
pfnUSBPowerDown().

Under normal circumstances there is nothing to be done in this routine, since the transceiver remains in its
suspended state while nothing is connected to the port. Should any attachment have been made, the
transceiver wakes through its wake-up mechanism and launch the appropriate (client or host) driver.

28.5.4.7 Suspend/Resume Operations
• Mass Storage Host/Client—Device is mounted automatically, but any unfinished browse/copy is

terminated
• ActiveSync Client—Once browsing into the content of device. A system suspend/resume causes

device to not be mounted until unplug and plug cable again
• HID Host—Client is recognized again automatically

28.5.5 Function Drivers
The function drivers can be configured into the image using the Windows CE 6.0 Platform Builder catalog,
and are located at:

Device Drivers > USB Function > USB Function Clients

The default function driver is launched when the USB device port is attached to a host. This default
function driver is selected by the registry key (the last instance of this value in reginit.ini applies):

[HKEY_LOCAL_MACHINE\Drivers\USB\FunctionDrivers]
 "DefaultClientDriver"=-; erase previous default
[HKEY_LOCAL_MACHINE\Drivers\USB\FunctionDrivers]
 "DefaultClientDriver"="Mass_Storage_Class"

or
 "DefaultClientDriver"="RNDIS"

or
 "DefaultClientDriver"="Serial_Class"

Unless the BSP is configured with persistent registry storage, it only makes sense to configure a single
function driver into the image, and this one becomes default.

Universal Serial Bus (USB) OTG Driver

Windows Embedded CE 6.0 BSP Reference Manual

28-26 Freescale Semiconductor

NOTE
When no USB client functionality is included in the image (No OTG port,
or OTG Pure Host only), ensure that no function drivers have been
configured. If function drivers are configured, then USB client driver
libraries are also included in the image through logic in:
PUBLIC\CEBASE\OAK\Misc\winceos.bat

28.5.5.1 Mass Storage Function

The Mass Storage function exposes a local data store as a USB peripheral storage device. The device used
can be specified in registry. In platfrom.reg, the following template is provided:

PUBLIC\Common\OAK\Files\common.reg
"DeviceName"=-;
; "DeviceName"="ATA HARD DISK"
; "DeviceName"="SDMEMORY CARD"
; "DeviceName"="MMC CARD"
; "DeviceName"="USB HARD DISK"
; "DeviceName"="NAND FLASH"

Any item from this list can be specified to act as the mass storage medium. Uncomment the corresponding
line and rebuild the BSP to make that item active. If none of the items are specified explicitly, a pre-coded
priority is used to determine what active drive acts as mass storage medium. The priority is described as
the following:

ATA HARD DISK > SDMEMORY CARD (MMC CARD) > USB HARD DISK > NAND FLASH

platform.reg can also over-ride other USBMSFN related default settings. This allows customizing the
following values which must be properly configured for a commercial device:

[HKEY_LOCAL_MACHINE\Drivers\USB\FunctionDrivers\Mass_Storage_Class]
; idVendor must be changed. 045E belongs to Microsoft and is only to be used for
; prototype devices in your labs. Visit http://www.usb.org to obtain a vendor id.
 "idVendor"=dword:045E
 "Manufacturer"="Generic Manufacturer (PROTOTYPE--Remember to change idVendor)"
 "idProduct"=dword:FFFF
 "Product"="Generic Mass Storage (PROTOTYPE--Remember to change idVendor)"
 "bcdDevice"=dword:0

Table 28-14. Mass Storage Function

Driver Attribute Definition

CSP Driver Path ..\PLATFORM\COMMON\SRC\SOC\<Common SOC>\ms\USBFN\CLASS

CSP Static Library N/A

Platform Driver Path N/A

Import Library USBMSFN_LIB_<Common SOC>.lib
UFNCLIENTLIB.LIB

Driver DLL usbmsfn.dll

Catalog Item Device Drivers > USB Function > USB Function Clients > Mass Storage

SYSGEN Dependency SYSGEN_USBFN_STORAGE

Universal Serial Bus (USB) OTG Driver

Windows Embedded CE 6.0 BSP Reference Manual

Freescale Semiconductor 28-27

28.5.5.2 Serial Function
The primary use for the serial function is ActiveSync.

NOTE
ActiveSync has been tested using connection to a PC with ActiveSync
version 4.1 installed. See Microsoft.com to download the latest ActiveSync
software for the PC. In some cases, DEBUGCHK may be triggered during
attachment to ActiveSync in DEBUG builds.

When SYSGEN_USBFN_SERIAL is defined, the default registry entry is automatically included from:
PUBLIC\Common\OAK\FILES\common.reg

For commercial products, this registry entry must be copied into platform.reg and modified to over-ride
the defaults. This allows customizing the following values which must be properly configured for a
commercial device:

[HKEY_LOCAL_MACHINE\Drivers\USB\FunctionDrivers\Serial_Class]
; idVendor must be changed. 045E belongs to Microsoft and is only to be used for
; prototype devices in your labs. Visit http://www.usb.org to obtain a vendor id.
 "idVendor"=dword:045E
 "Manufacturer"="Generic Manufacturer (PROTOTYPE--Remember to change idVendor)"
 "idProduct"=dword:00ce
 "Product"="Generic Serial (PROTOTYPE--Remember to change idVendor)"
 "bcdDevice"=dword:0

Table 28-15. Serial Function

Driver Attribute Definition

CSP Driver Path N/A

PUBLIC driver path PUBLIC\Common\OAK\Drivers\USBFN\CLASS\SERIAL

CSP Static Library N/A

Platform Driver Path N/A

Export Library serialusbfn.lib

Import Library com_mdd2.lib
serpddcm.lib
ufnclientlib.lib

Driver DLL SerialUsbFn.dll

Catalog Item Device Drivers > USB Function > USB Function Clients > Serial Client

SYSGEN Dependency SYSGEN_USBFN_SERIAL

Universal Serial Bus (USB) OTG Driver

Windows Embedded CE 6.0 BSP Reference Manual

28-28 Freescale Semiconductor

28.5.5.3 RNDIS Function
The RNDIS function allows communication over USB to be supplied to ethernet NDIS interface of
protocol stack.

RNDIS function has been tested using Freescale RNDIS class driver as located at:
Support\RNDIS\ce6_rndis.inf
%WINDIR%\System32\drivers\usb8023x.sys

When SYSGEN_USBFN_ETHERNET is defined, the default registry entry is automatically included
from:

PUBLIC\Common\OAK\FILES\common.reg

For commercial products, this registry entry must be copied into platform.reg and modified to over-ride
the defaults. This allows customizing the following values which must be properly configured for a
commercial device:

[HKEY_LOCAL_MACHINE\Drivers\USB\FunctionDrivers\RNDIS]
; idVendor must be changed. 045E belongs to Microsoft and is only to be used for
; prototype devices in your labs. Visit http://www.usb.org to obtain a vendor id.
"idVendor"=dword:045E
"Manufacturer"="Generic Manufacturer (PROTOTYPE--Remember to change idVendor)"
"idProduct"=dword:0301
"Product"="Generic RNDIS (PROTOTYPE--Remember to change idVendor)"
"bcdDevice"=dword:0

28.5.6 Class Drivers
All host ports (OTG Host, High Speed Host (H2), and Full Speed Host (H1)) support the same class
drivers, and this configuration is common to all host ports. Class drivers must also be configured for the
USB host ports. Class driver configuration is common to all host ports—there is no port-specific
configuration to be completed on any class driver.

Table 28-16. RNDIS Function

Driver Attribute Definition

CSP Driver Path N/A

CSP Static Library N/A

Platform Driver Path N/A

PUBLIC Driver Path PUBLIC\COMMON\OAK\Drivers\USBFN\Class\RNDIS

Import Library ndis.lib

Driver DLL RNDISFN.DLL

Catalog Item Device Drivers > USB Function > USB Function Clients > RNDIS Client

SYSGEN Dependency SYSGEN_USBFN_ETHERNET

Universal Serial Bus (USB) OTG Driver

Windows Embedded CE 6.0 BSP Reference Manual

Freescale Semiconductor 28-29

Table 28-17 shows the standard Microsoft-supplied drivers that are available by drag and drop from the
catalog.

Drag and drop all the class drivers required for the USB Host class.

NOTE
When no USB host ports are configured in the image, ensure that no class
drivers are selected, otherwise host libraries are included by default from
logic in: PUBLIC\CEBASE\OAK\Misc\winceos.bat

28.5.6.1 HID Mouse
For mouse support, the cursor is required to test and use the mouse as shown in Table 28-18.

28.5.6.2 HID Keyboard
The system keyboard key mapping conflicts with that used for the HID keyboard. When USB keyboard
support is included, remove the System keyboard (Table 28-19) and include the appropriate stub keyboard
and keyboard .dll (Table 28-20)

Table 28-17. Class Drivers

Class
Driver Configuration Flag Catalog Item

HID SYSGEN_USB_HID Core OS > Windows CE devices > Core OS Services > USB
Host Support > USB Human Input Device (HID) Class Driver

Printer SYSGEN_USB_PRINTER .. > USB Printer Class Driver1

1 See additional configuration in Section 28.6.2, “Dependencies of Drivers.”

Keyboard SYSGEN_USB_HID_KEYBOARD .. > USB HID Keyboard Only1

SYSGEN_USB_HID_MOUSE .. > USB HID Mouse Only1

RNDIS SYSGEN_ETH_USB_HOST Core OS > Windows CE devices > Core OS Services > USB Host
Support > USB Remote NDIS Class Driver

Storage SYSGEN_USB_STORAGE Core OS > Windows CE devices > Core OS Services > USB Host
Support > USB Storage Class Driver

Table 28-18. HID Mouse Class Driver

Catalog Item Configuration Flag Catalog Item

HID SYSGEN_CURSOR Core OS > Shell and User Interface > User Interface > Mouse

Table 28-19. HID Keyboard Driver to Remove

Remove Item Remove Catalog Item

 Keyboard Third Party > Freescale <Target Platform>: ARMV4I > Device Drivers > Input Devices > Keyboard/Mouse

Universal Serial Bus (USB) OTG Driver

Windows Embedded CE 6.0 BSP Reference Manual

28-30 Freescale Semiconductor

Include stub keyboard:

Also, include the appropriate keyboard .dll. For example, define SYSGEN_KBD_US and add the
following lines in the platform.bib (immediately before the FILES section):

IF BSP_KEYBD_NOP
 kbdmouse.dll $(_FLATRELEASEDIR)\KbdnopUs.dll NK SH
ENDIF; BSP_KEYBD_NOP

28.6 Basic Elements for Driver Development
This section provides details of the basic elements for driver development in the Platform System.

28.6.1 BSP Environment Variables
Table 28-21 shows the system environment variables.

Pin conflicts between default driver implementations for the pin muxing (platform-specific
implementation) mean certain configurations are mutually exclusive, as listed in Table 28-22.

Table 28-20. ID Keyboard Driver to Include

Catalog Item Configuration Flag Catalog Item

NOP Stub
Keyboard

BSP_KEYBD_NOP Device Drivers > Input Devices > Keyboard/Mouse > NOP (Stub)
Keyboard/Mouse English

Table 28-21. System Environment Variables Summary

Name Definition

BSP_USB Set to configure USB in BSP

BSP_USB_HSOTG_XVC Set to enable Full OTG functionality (transceiver host-client
switching) on the High Speed OTG port

BSP_USB_HSOTG_CLIENT Set to include USB client functionality on High Speed OTG port

BSP_USB_HSOTG_HOST Set to include USB host functionality on High Speed OTG port.

Table 28-22. Mutual Exclusive Driver Summary

Functionality1

B
SP

_A
TA

B
SP

_C
SP

IB
U

S

B
SP

_U
SB

B
SP

_U
SB

_H
SO

TG
_X

VC

B
SP

_U
SB

_H
SO

TG
_C

LI
EN

T

B
SP

_U
SB

_H
SO

TG
_H

O
ST

ATA disk drive yes no — — — —

High Speed OTG Port full function (Host + Client) — — yes yes yes yes

Universal Serial Bus (USB) OTG Driver

Windows Embedded CE 6.0 BSP Reference Manual

Freescale Semiconductor 28-31

28.6.2 Dependencies of Drivers
Table 28-23 summarizes the Microsoft-defined environment variables used in the BSP.

High Speed OTG Port Pure Host only — — yes — — yes

High Speed OTG Port Pure Client only — — yes — yes —

Full Speed Host (H1) no no — — — —

High Speed Host (H2) no no — — — —
1 yes = Required, no = Not permitted, – = Do not care

Table 28-23. USB Driver

Name Definition

SYSGEN_USBFN_SERIAL Set to support serial class for USB Function controller

SYSGEN_USBFN_STORAGE Set to support mass storage class for USB Function controller

SYSGEN_USBFN_ETHERNET Set to support RNDIS class for USB Function controller

SYSGEN_CURSOR Set to support mouse cursor

SYSGEN_FATFS Set to support FAT16 file system

SYSGEN_PCL Set to support PCL printing

SYSGEN_PRINTING Set to support printer

SYSGEN_STOREMGR Set to support storage manager

SYSGEN_UDFS Set to support Universal Disc File System

SYSGEN_USB Set to support USB driver

SYSGEN_USB_HID Set to support Human Interface driver (HID) class

SYSGEN_USB_HID_CLIENTS Set to support HID clients

SYSGEN_USB_HID_KEYBOARD Set to support HID keyboards (keyboard stub and associated .dll are required)

SYSGEN_USB_HID_MOUSE Set to support HID mouse

SYSGEN_USB_PRINTER Set to support Printer
(printer driver support, such as PCL (SYSGEN_PCL), may be required)

SYSGEN_USB_STORAGE Set to support storage medium

Table 28-22. Mutual Exclusive Driver Summary (continued)

Universal Serial Bus (USB) OTG Driver

Windows Embedded CE 6.0 BSP Reference Manual

28-32 Freescale Semiconductor

Windows Embedded CE 6.0 BSP Reference Manual

Freescale Semiconductor 29-1

Chapter 29
USB Boot and KITL
USB Boot and KITL are supported by implementing a RNDIS client device over USB on the target board.
This feature configures the USB OTG port as a USB device and implements the RNDIS USB function
driver. The USB RNDIS device acts as a normal ethernet device and connects to the PC over a USB cable.
Eboot and KITL then operate with the RNDIS ethernet device.

29.1 USB Boot and KITL Summary
Table 29-1 identifies the source code location, library dependencies, and other BSP information.

29.2 Supported Functionality
The USB Boot and KITL provides the following software and hardware support:

1. Image downloading over USB RNDIS
2. KITL over USB
3. Provides menu options to determine whether or not to enable USB Boot and/or USB KITL

29.3 Hardware Operation
For detailed operation and programming information of the USB OTG, see the chapter on the High-Speed
USBOTG_UTMI in the corresponding platform Users Guide.

Table 29-1. USB Boot and KITL Summary

Driver Attribute Definition

Target Platform iMX35-3DS-PDK1_7

Target SOC MX35_FSL_V2_PDK1_7

SOC Common Path WINCE600\PLATFORM\COMMON\SRC\SOC\COMMON_FSL_V2_PDK1_7\MS\RNE_MDD
WINCE600\PLATFORM\COMMON\SRC\SOC\COMMON_FSL_V2_PDK1_7\MS\USBKITL

SOC Specific Path WINCE600\PLATFORM\COMMON\SRC\SOC\<Target SOC>\USBD\KITL

Platform Specific Path ..\PLATFORM\<Target Platform>\SRC\COMMON\USBFN
..\PLATFORM\<Target Platform>\SRC\KITL

Driver DLL fsl_usbfn_rndiskitl_PDK1_7.lib

SDK Library N/A

Catalog Item N/A

SYSGEN Dependency N/A

BSP Environment Variable N/A

USB Boot and KITL

Windows Embedded CE 6.0 BSP Reference Manual

29-2 Freescale Semiconductor

29.3.1 Conflicts with Other Peripherals and Catalog Items
The USB Boot and KITL does not have conflicts with any other module. However, since USB KITL and
USB OTG drivers share the same USB OTG hardware, the USB OTG drivers should be disabled in the
catalog item when USB KITL is enabled. USB boot does not have such limitation.

29.4 Software Operation

29.4.1 Software Architecture
USB Boot and KITL are part of the eboot and KITL subsystem. A RNDIS client device is implemented to
support USB Boot and KITL. Figure 29-1 illustrates the USB Boot and KITL software architecture.

Figure 29-1. USB Boot and KITL Software Architecture Block Diagram

Microsoft has implemented a RNDIS client MDD driver in Windows CE 6.0. The code is in following
location:
%_WINCEROOT%\Public\Common\Oak\Drivers\Ethdbg\Rne_mdd

It generates the static library Rne_mdd.lib.

The USB function controller PDD driver is ported to eboot and KITL to support USB Boot and KITL. For
details of USB function controller PDD driver refer to the Platform Builder for Windows CE 6.0 Help
under the topic:

Developing a Device Driver > Windows Embedded CE Drivers > USB Function Drivers > USB
Function Controller Drivers > USB Function Controller Driver Reference > USB Function
Controller PDD Functions.

Windows CE 6.0 provides an example of USB Boot. It is located at:
%_WINCEROOT%\Platform\MainstoneIII\Src\Common\Usbfn

USB Boot, KITL or other APP

MDD (RNDIS)

PDD
(Porting from USB Function Controller PDD Driver

USB OTG Hardware

USB Boot and KITL

Windows Embedded CE 6.0 BSP Reference Manual

Freescale Semiconductor 29-3

29.4.2 Source Code Layout
Some files are modified or added to support USB Boot and KITL. They are as follows:

• RNDIS PDD driver
%_WINCEROOT%\Platform\COMMON\SRC\SOC\COMMON_FSL_V2_PDK1_7\MS\USBKITL\RNDIS

• USB function controller shared with OS driver
%_WINCEROOT%\Platform\COMMON\SRC\SOC\<Target SOC>\USBD\COMMON

• Add RNDIS device to EBOOT ethernet initialization routines
%_WINCEROOT%\Platform\<Target Platform>\Src\Bootloader\Common\ether.c

• Setup KITL device LogicalLoc and PhysicalLoc to USBOTG physical address if USB KITL
option in EBOOT menu is selected by user
%_WINCEROOT%\Platform\<Target Platform>\Src\Bootloader\Common\main.c

• Implement private OS functions, such as NKCreateStaticMapping(). NKCreateStaticMapping is
defined in OS. It is not defined for EBOOT while USB Boot requires this function. So it is
manually defined. This function just calls OALPAtoUA()
%_WINCEROOT%\Platform\COMMON\SRC\SOC\<Target SOC>\USBD\KITL

• Add USB Boot and KITL options into EBOOT menu
%_WINCEROOT%\Platform\<Target Platform>\Src\Bootloader\Eboot\menu.c

• Add fsl_rne_mdd_$(_COMMONSOCDIR).lib, fsl_rne_pdd_$(_COMMONSOCDIR).lib,
usb_usbfn_$(_SOCDIR).lib, usb_usbfn_eboot_$(_SOCDIR).lib

%_WINCEROOT%\Platform\<Target Platform>\Src\Bootloader\Eboot\sources

• Add USB RNDIS KITL device in KITL initialization routines
%_WINCEROOT%\Platform\<Target Platform>\Src\Kitl\kitl.c

%_WINCEROOT%\Platform\<Target Platform>\Src\Kitl\sources

29.4.3 Power Management
Power management is not implemented in USB Boot and KITL.

29.4.4 Registry Settings
There are no related register settings for the USB Boot and KITL.

29.4.5 DMA Support
Physical contiguous memory is required to support USB DMA. This memory region is hard coded in:
%_WINCEROOT%\Platform\Common\SRC\SOC\<Common Soc>\ms\Usbkitl\Rndis\rndis_pdd.c

It uses the BSP reserved IPL RAM image region (Starting from
IMAGE_USB_KITL_RAM_PA_START). This region is not used by other modules in the BSP, so it can
be used by USB boot and KITL.

USB Boot and KITL

Windows Embedded CE 6.0 BSP Reference Manual

29-4 Freescale Semiconductor

29.5 Unit Test

29.5.1 Building the USB Boot and KITL
There is no special configuration options for building USB Boot and USB KITL. Building the BSP with
default configuration includes the USB Boot and KITL support. The exception is that the USB OTG
drivers should be deselected from the catalog item view before building the NK image to use USB KITL,
because USB KITL and OS USB drivers share the same USB OTG hardware and they can not exist
simultaneously. As a result USB KITL can not used to debug USB OTG drivers.

The USB OTG driver auto unloads when it detects USB KITL enabled.

29.5.2 Testing USB Boot and KITL on i.MX35 3-Stack
There are three Ethernet transport devices available on the 3-Stack for image download with Boot and
KITL connection:

• LAN9217 (default)
• FEC
• USB RNDIS.

Follow the steps below to use USB RNDIS for Boot and KITL:
1. Connect target board to PC with USB cable and power on the board.
2. Select USB RNDIS as the Ethernet transport device in EBOOT.

0) IP address: 192.168.0.2
1) Subnet Mask: 255.255.255.0
3) DHCP: Disabled
6) Set MAC Address: 0-12-34-56-78-12
9) Ethernet Device: USB RNDIS

3. Press ‘d’ to download image over USB. If this is the first time running USB Boot or KITL with the
PC, the PC shows a “Found New Hardware Wizard” dialog box and prompt you to install the driver
for Microsoft Windows CE RNDIS virtual adapter on the Windows PC. Refer to
WINCE600\PUBLIC\COMMON\OAK\DRIVERS\ETHDBG\RNDISMINI\HOST\howto.txt

for how to install the driver.
4. After the driver is installed successfully, the Microsoft Windows CE RNDIS virtual adapter should

be displayed in Network Connections on the PC. Configure this network connection properly. Use
a static IP address (such as 192.168.0.3) in the same subnet as the target board.

5. Check Platform Builder Target > Connectivity options to make sure the target device is selected.
6. If KITL is being enabled in the run-time image, the connection is established on USB after the

image downloading is finished.

	i.MX35 3-Stack Windows Embedded CE 6.0
	About This Book
	Audience
	Suggested Reading
	Conventions
	Definitions, Acronyms, and Abbreviations
	Table i. Acronyms and Abbreviated Terms

	Chapter 1 Introduction
	1.1 Getting Started
	1.2 Windows Embedded CE 6.0 Architecture

	Chapter 2 Asynchronous Sample Rate Converter (ASRC) Driver
	2.1 ASRC Driver Summary
	2.2 Supported Functionality
	2.3 Hardware Operation
	2.4 Software Operation
	2.5 Unit Test
	2.6 ASRC Driver API Reference

	Chapter 3 ATA/ATAPI Driver
	3.1 ATA/ATAPI Driver Summary
	3.2 Supported Functionality
	3.3 Hardware Operation
	3.4 Software Operation
	3.5 Unit Test
	3.6 Basic Elements for Driver Development
	3.7 Block Device API Reference

	Chapter 4 Audio Driver
	4.1 Audio Driver Summary
	4.2 Supported Functionality
	4.3 Hardware Operation
	4.4 Software Operation
	4.5 Unit Test
	4.6 System Level Audio Driver Tests
	4.7 Mixer Driver Tests
	4.8 Audio Driver API Reference
	4.9 Audio Driver Troubleshooting Guide

	Chapter 5 Backlight Driver
	5.1 Backlight Driver Summary
	5.2 Supported Functionality
	5.3 Hardware Operation
	5.4 Software Operation
	5.5 Unit Test
	5.6 Backlight API Reference

	Chapter 6 Boot from Secure Digital/MultiMedia Card (SD/MMC)
	6.1 Boot from SD/MMC Summary
	6.2 Supported Functionality
	6.3 Hardware Operation
	6.4 Software Operation

	Chapter 7 Camera Driver
	7.1 Camera Driver Summary
	7.2 Supported Functionality
	7.3 Hardware Operation
	7.4 Software Operation
	7.5 Power Management
	7.6 Unit Test
	7.7 Camera Driver API Reference

	Chapter 8 Configurable Serial Peripheral Interface (CSPI) Driver
	8.1 CSPI Driver Summary
	8.2 Supported Functionality
	8.3 Software Operation
	8.4 Restrictions
	8.5 Unit Test
	8.6 CSPI Driver API Reference

	Chapter 9 Controller Area Network (CAN) Driver
	9.1 CAN Driver Summary
	9.2 Supported Functionality
	9.3 Hardware Operation
	9.4 Software Operation
	9.5 Unit Test

	Chapter 10 Chip Support Package Driver Development Kit (CSPDDK)
	10.1 CSPDDK Driver Summary
	10.2 Supported Functionality
	10.3 Hardware Operation
	10.4 Software Operation
	10.5 Unit Test
	10.6 CSPDDK DLL Reference

	Chapter 11 Display Driver for IPUv1
	11.1 Display Driver Summary
	11.2 Supported Functionality
	11.3 Hardware Operation
	11.4 Software Operation
	11.5 Unit Test
	11.6 Display Driver API Reference

	Chapter 12 Dynamic Voltage and Frequency Control (DVFC) Driver
	12.1 DVFC Driver Summary
	12.2 Supported Functionality
	12.3 Hardware Operation
	12.4 Software Operation
	12.5 Unit Test

	Chapter 13 Enhanced Secure Digital Host Controller (eSDHC) Driver
	13.1 eSDHC Driver Summary
	13.2 Supported Functionality
	13.3 Hardware Operation
	13.4 Software Operation
	13.5 Unit Test
	13.6 Secure Digital Card Driver API Reference

	Chapter 14 Enhanced Serial Audio Interface (ESAI) Driver
	14.1 ESAI Driver Summary
	14.2 Supported Functionality
	14.3 Hardware Operation
	14.4 Software Operation
	14.5 Unit Test

	Chapter 15 Fast Ethernet Controller (FEC) Driver
	15.1 Fast Ethernet Driver Summary
	15.2 Supported Functionality
	15.3 Hardware Operations
	15.4 Software Operations
	15.5 Unit Tests
	15.6 Fast Ethernet Driver API Reference

	Chapter 16 FM Radio Driver
	16.1 Radio Driver Summary
	16.2 Supported Functionality
	16.3 Hardware Operation
	16.4 Software Operation
	16.5 Power Management
	16.6 Unit Test
	16.7 Radio Driver API Reference

	Chapter 17 General Purpose Timer (GPT) Driver
	17.1 GPT Driver Summary
	17.2 Supported Functionality
	17.3 Hardware Operation
	17.4 Software Operation
	17.5 Power Management
	17.6 Unit Test
	17.7 GPT SDK API Reference

	Chapter 18 Global Positioning System (GPS) Driver
	18.1 GPS Driver Summary
	18.2 Supported Functionality
	18.3 Hardware Operation
	18.4 Software Operation
	18.5 Unit Test

	Chapter 19 Graphics Processing Unit (GPU)
	19.1 GPU Driver Summary
	19.2 Supported Functionality
	19.3 Hardware Operation
	19.4 Software Operation
	19.5 Float Pointing Acceleration using the ARM Vector Floating Point (VFP) Library
	19.6 Unit Test
	19.7 GPU Driver API Reference

	Chapter 20 Inter-Integrated Circuit (I2C) Driver
	20.1 I2C Driver Summary
	20.2 Supported Functionality
	20.3 Hardware Operation
	20.4 Software Operation
	20.5 Unit Test
	20.6 Hardware Limitations
	20.7 I2C Driver API Reference

	Chapter 21 MediaLB Device Module (MLB)
	21.1 MLB Summary
	21.2 Supported Functionality
	21.3 Hardware Operation
	21.4 Software Operation
	21.5 Power Management
	21.6 Unit Test

	Chapter 22 Micro Controller Unit (MCU) Driver
	22.1 MCU Driver Summary
	22.2 Supported Functionality
	22.3 Hardware Operation
	22.4 Software Operation
	22.5 Power Management
	22.6 Unit Test

	Chapter 23 NAND Flash Driver
	23.1 Flash Driver Summary
	23.2 Supported Functionality
	23.3 Hardware Operation
	23.4 Software Operation
	23.5 Unit Test

	Chapter 24 Power Management IC (PMIC)
	24.1 PMIC Summary
	24.2 Supported Functionality
	24.3 Hardware Operation
	24.4 Software Operation
	24.5 Unit Test
	24.6 PMIC Driver API Reference

	Chapter 25 Serial Driver
	25.1 Serial Driver Summary
	25.2 Supported Functionality
	25.3 Hardware Operation
	25.4 Software Operation
	25.5 Unit Test
	25.6 Serial Driver API Reference

	Chapter 26 Sony/Philips Digital Interface (SPDIF) Driver
	26.1 SPDIF Driver Summary
	26.2 Supported Functionality
	26.3 Software Operation
	26.4 Power Management
	26.5 Unit Test
	26.6 System Testing
	26.7 SPDIF Driver API Reference

	Chapter 27 Touch Panel Driver
	27.1 Touch Panel Driver Summary
	27.2 Supported Functionality
	27.3 Hardware Operations
	27.4 Software Operations
	27.5 Unit Tests
	27.6 Touch Panel API Reference

	Chapter 28 Universal Serial Bus (USB) OTG Driver
	28.1 USB OTG Driver Summary
	28.2 USB Host Driver Summary
	28.3 Supported Functionality
	28.4 Hardware Operation
	28.5 Software Operation
	28.6 Basic Elements for Driver Development

	Chapter 29 USB Boot and KITL
	29.1 USB Boot and KITL Summary
	29.2 Supported Functionality
	29.3 Hardware Operation
	29.4 Software Operation
	29.5 Unit Test

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

