
MCUXPRESSO IDE, SDK

AND CONFIG TOOLS

TRAINING
HAND ON BASED ON LPC54608

7th Jul 2017

1

AGENDA

• MCUXpresso Software And Tools Overview

• MCUXpresso SDK

� Web Builder

� File Structure

• MCUXpresso IDE

� Importing/Building

� Debugging

• MCUXpresso Config Tool

� Project Cloner

� Pins Tool

� Clocks Tool

• LPC54608 LCD Lab, Key API and EmWin Demo

2

MCUXPRESSO
SOFTWARE AND

TOOLS OVERVIEW

3

MCUXpresso IDE
Edit, compile, debug and optimize in an intuitive and

powerful IDE

MCUXpresso Software and Tools
for Kinetis and LPC microcontrollers

MCUXpresso SDK
Runtime software including peripheral drivers,

middleware, RTOS, demos and more

MCUXpresso Config Tools
Online and desktop tool suite for system configuration

and optimization

4

MCUXpresso Software and Tools

• Common toolkit across Kinetis and LPC
microcontrollers

• Easy to use

• High quality

• Shared software experience and broader
portfolio support

• Offers easy migration and scalability

• Supports large ARM® Cortex®-M ecosystem

• Built on the ‘best of’ Kinetis SDK, LPCXpresso
and Kinetis Design Studio IDEs

MCUXpresso
Software and Tools

• IDE
• SDK
• Config Tools

For NXP’s ARM® Cortex®-M
controllers
• Kinetis MCUs
• LPC Microcontrollers
• i.MX Application

Processors

5

MCUXpresso Software & Tools — Products

• Offers edit, compile, debug, and many more tools with an intuitive and powerful interface

• Brings “best of” legacy IDEs (LPCXpresso and Kinetis® Design Studio) together, including GNU tool integration and library,
multicore capable debugger, as well as trace functionality

• Debug connections that support all Freedom, Tower®, and LPCXpresso development boards plus industry leading
commercial debug probes

Integrated Development Environment (IDE)

• The software framework and reference for application development with NXP’s MCUs based on ARM® Cortex®-M cores

• Includes production-grade software with integrated RTOS, integrated stacks and middleware, reference software, and more

• Highest quality with MISRA compliance on all drivers; checked with Coverity® static analysis tools

• Available in custom downloads based on user selections of MCU, evaluation board, and optional software components

Software Development Kit (SDK)

• Integrated configuration and development tools for Kinetis, LPC and i.MX products

• A suite of evaluation and configuration tools that helps guide users from first evaluation to production software development

• Includes SDK builder, power estimator, pins and clocks tools

• Available in online and desktop versions

System Configuration Tools

6

MCUXpresso IDE

Origins of MCUXpresso Software & Tools

MCUXpresso SDK

MCUXpresso Config Tools

Kinetis SDKv2

LPCXpresso IDE

& Kinetis Design Studio

Kinetis Expert

MCUXpresso Software and Tools
Supporting Kinetis & LPC Cortex-M MCUs

Kinetis and LPC SW
Independent software and tools

7

MCUXpresso IDE

Free Eclipse and GCC-based IDE for C/C++

development on Kinetis and LPC MCUs

Learn more at: www.nxp.com/mcuxpresso/ide

Product Features

• Feature-rich, unlimited code size,
optimized for ease-of-use, based on
industry standard Eclipse framework for
NXP’s Kinetis and LPC MCUs

• Application development with Eclipse and
GCC-based IDE for advanced editing,
compiling and debugging

• Supports custom development boards,
Freedom, Tower and LPCXpresso boards
with debug probes from NXP, P&E and
Segger

• Free Edition: Full Featured, unlimited Code
Size, no special activation needed,
community based support

• Pro Edition: Email IDE support, Advanced
Trace Features

MCUXpresso IDEMCUXpresso IDE

Eclipse Framework for C/C++, extensible with many plugins

Quickstart

Panel

Advanced

Build Scripts

Support for

SDK and

LPCOpen for

ARM®

Cortex®-M

Cores

New Project

Wizard

Linker and

Memory

Configuration

Combined

Development

Perspective

Peripheral

View

Instruction

Trace

Data

Watching

Power

Measurement

SWO Trace /

Profiling

FreeRTOS Kernel

Awareness

ARM GCC

newlib
newlib-
nano

RebLib

ARM GDBC
CMSIS-

DAP
P&E Segger

8

MCUXpresso SDK

The software framework and
reference for Kinetis & LPC
MCU application development Architecture:

� CMSIS-CORE compatible

� Single driver for each peripheral
� Transactional APIs w/ optional DMA

support for communication
peripherals

Integrated RTOS:
� FreeRTOS v9
� RTOS-native driver wrappers

Integrated Stacks and Middleware
� USB Host, Device and OTG
� lwIP, FatFS

� Crypto acceleration plus wolfSSL &
mbedTLS

� SD and eMMC card support

Reference Software:
� Peripheral driver usage examples
� Application demos

� FreeRTOS usage demos

License:
� BSD 3-clause for startup, drivers, USB

stack

Toolchains:
� MCUXpresso IDE

� IAR®, ARM® Keil®, GCC w/ Cmake

Quality
� Production-grade software

� MISRA 2004 compliance
� Checked with Coverity® static analysis

tools

Learn more at: www.nxp.com/mcuxpresso/sdk

Product Features

CMSIS-CORE and CMSIS-DSP

Microcontroller Hardware

Stacks /
Middleware

Board
Support

Application Code

RTOS Peripheral Drivers

CMSIS-CORE and CMSIS-DSP

Microcontroller Hardware

Stacks /
Middleware

Board
Support

Application Code

RTOS Peripheral Drivers

9

MCUXpresso Config Tools is a suite of evaluation and
configuration tools that helps guide users from first evaluation
to production software development.

Integrated configuration and
development tools for LPC
and Kinetis MCUs

MCUXpresso Config Tools

SDK Builder packages custom SDKs based on user

selections of MCU, evaluation board, and optional
software components.

Pins, Clocks, and Peripheral tools generate
initialization C code for custom board support. Features
validation of inputs and cross-tool conflict resolution.

Project Generator creates new SDK projects with
generated Pins and Clocks source files.

Project Cloning creates a standalone SDK project
based on a example application available within SDK
release.

Power Estimation tool provides energy and battery-life
estimates based on a user’s application model.
Available as a standalone tool for select devices.

Learn more at: www.nxp.com/mcuxpresso/config

10

Web pages

− MCUXpresso Software and Tools – www.nxp.com/mcuxpresso

� MCUXpresso SDK – www.nxp.com/mcuxpresso/sdk

� MCUXpresso IDE – www.nxp.com/mcuxpresso/ide

� MCUXpresso Config Tools – www.nxp.com/mcuxpresso/config

Supported Devices

− Supported Devices Table (Community Doc)

Communities

− MCUXpresso Software and Tools –

https://community.nxp.com/community/mcuxpresso

� MCUXpresso SDK:
https://community.nxp.com/community/mcuxpresso/mcuxpresso-sdk

� MCUXpresso IDE:
https://community.nxp.com/community/mcuxpresso/mcuxpresso-ide

� MCUXpresso Config Tools:
https://community.nxp.com/community/mcuxpresso/mcuxpresso-config

MCUXpresso Software and Tools

Additional Resources

11

AGENDA

• MCUXpresso Software And Tools Overview

• MCUXpresso SDK

� Web Builder

� File Structure

• MCUXpresso IDE

� Importing/Building

� Debugging

• MCUXpresso Config Tool

� Project Cloner

� Pins Tool

� Clocks Tool

• LPC54608 LCD Lab, Key API and EmWin Demo

12

MCUXPRESSO SDK

13

MCUXPRESSO SDK
WEB BUILDER

14

MCUXpresso Homepage

https://mcuxpresso.nxp.com/en/welcome

15

Configuration

• What is a configuration?

− A group of configured settings used across the MCUXpresso configuration tools (SDK

builder, Pins, and Clocks)

• What is included in a configuration?

− SDK builder configuration settings (e.g. Board/Processor, Toolchain, Host OS, etc.)

− Pin assignments in the Pins Tool

− Clock initializations in the Clocks Tool

• Configurations can be saved and shared as a .mex file

16

Get Started

2. Enter account info

1. Login

3. Start New

Configuration

Routed to

nxp.com

Return to

mcuxpresso.nxp.com

17

Create a New Configuration (1/3)

1. Type in

search

18

Create a New Configuration (2/3)

2. Make

selection

Configuration

name
automatically

assigned.
Name can be

modified

19

Create a New Configuration (3/3)

• Select Configuration

• Proceed to builder with default options selected for toolchain, OS, and middleware

• Specify Additional Configuration Settings
• Select toolchain, OS, and middleware other than default.

20

Additional Configuration Settings

• User selects:

− Host OS

− Toolchain/IDE

− Middleware

• Defaults (first

session):

− Host OS -> Windows

− IDE -> MCUXpresso

− Middleware -> FatFS,
USB Stack*, lwIP*

21

Additional Configuration Settings: Choose an OS

Select Host OS

LPC54608J512

22

Additional Configuration Settings: Choose an IDE

Select IDE

LPC54608J512

23

Additional Configuration Settings: Choose Middleware/RTOS

Select

Middleware

24

Change Default Build Settings

• Select “Set as Default” to

save Host OS and
Toolchain to preferences

• Future configurations will

use these build settings

as defaults

25

Finish Settings

26

Build SDK

After reviewing configuration, click to

download SDK

SDK

Configuration

27

Download SDK

Click to Agree to

terms and conditions

SDK download

will begin

Save SDK once build completes

SDK_2.2_LPC54608J512.zip

SDK_2.2 LPC54608J512.xip

Sdk_2.2 LPC54608J512

28

Request Build

• In some occasions, if the

SDK configuration has not
previously been built,
“Request Build” will be
displayed in place of

“Download Now”

• An email notification with

direct link will be sent once

the build is finished

LPC54608J512

SDK_2.2_LPC54608J512

29

Build Archive

Shows all SDK

builds

Download/

Delete SDK
build

Access SDK Archive from Manage menu

30

Download SDK

Click to Agree to

terms and conditions

SDK download

will begin

Save SDK once build completes

31

Configurations Archive
Access Configuration Archive from

Manage menu

Upload a

configuration
Current

configuration

32

Preferences

• First time users may see an error if they have not filled out profile in “Preferences"

as required for export control compliance

− Name

− Company

− Country

− Project Description

33

MCUXPRESSO SDK
STRUCTURE

34

Zip or Unzip an SDK package

• SDK packages are downloaded as .zip files

• When using 3rd party IDEs, the SDK package must be unzipped

• For SDK support in the MCUXpresso Config Tools, the SDK package must also be unzipped

• MCUXpresso IDE can import SDK packages in either zipped or unzipped format.

− Zipped SDKs:

� When creating new projects or importing example projects, SDK source files are copied into the workspace (no
linked references).

− Unzipped SDKs:

� When creating new projects or importing example projects, SDK source files can be copied into the workspace or
referenced directly (linked references).

� Requires additional time to unzip (one-time).

� Provides speed improvement when many examples are imported to the workspace.

35

MCUXpresso SDK File Structure

• boards – All examples and board specific files

• devices – All device and driver files (headers, feature files, linker files)

• middleware – stack source code

• rtos – RTOS source code

36

MCUX Expresso SDK File Structure - Examples

• Each example application has its own unique

copy of the board, pin_mux, and clock_config
files.

• Also each example also contains a pre-

compiled .bin file for easy drag-and-drop

programming

• Readme.txt contains instructions on how to run
the demo and pins used

37

MCUXpresso File Structure - Examples

• Most configuration settings are in board.h file

− UART module

− UART baud

− GPIO pins defined

• Default UART pins defined in pin_mux.c in BOARD_InitPins().

38

MCUXpresso SDK Projects

• All source files are included in the example application projects

• Drivers are found under the drivers folder

• Board specific files under the board folder

• Application specific files under source folder

39

MCUXpresso SDK Startup

• Reset_Handler found in \devices\<device>\<compiler>\startup_<device>.s

− Called ResetISR for MCUXpresso IDE

• SystemInit() found at \devices\<device>\system_<device>.c is used to enable
cache (if available) and disable the watchdog timer.

• Then jumps to main(), and three configuration functions run:

− BOARD_InitPins();

− BOARD_BootClockRUN();

− BOARD_InitDebugConsole();

40

LAB 1

41

Lab 1 : To create a new SDK configuration online

• Pre-requisites

− PC running Windows/Linux/macOS

− Internet connection

• Follow the Lab1 Hand out

• Download SDK_2.2_LPC54608J512

42

WALKTHROUGH
INSTALLED SDK

43

Copy of SDK made in default path

• What happens when an

SDK is dragged/dropped
into the IDE?

• The Drag/Drop feature

creates a copy of the SDK

located at default path:
C:\Users\“user_name”\mc

uxpresso\SDKPackages

44

Install an SDK: Advanced

• Add paths to “SDK search roots:” for IDE to find
current or future stored SDK packages

− Window -> Preferences -> MCUXpresso IDE ->
SDK Options

• SDKs can be zipped or unzipped

• For SDKs stored outside the default location:

− “Delete SDK” function is disabled

− Knowledge of SDKs is per workspace

• If multiple SDKs are found for the same device
in various locations, you can choose which is
loaded by reordering list (top has priority)

• Note: default location for drag/drop:
C:\Users\”user_name”\mcuxpresso\SDKPackag
es

45

AGENDA

• MCUXpresso Software And Tools Overview

• MCUXpresso SDK

� Web Builder

� File Structure

• MCUXpresso IDE

� Importing/Building

� Debugging

• MCUXpresso Config Tool

� Project Cloner

� Pins Tool

� Clocks Tool

• LPC54608 LCD Lab, Key API and EmWin Demo

46

MCUXPRESSO IDE

47

Open MCUXpresso IDE

• Open MCUXpresso IDE on your system

• At the dialog box, enter a location for
your workspace then click OK

− Example)
C:\NXP\MCUXpressoIDE\workspace

• Note: A workspace is a directory used to
store projects that you want to actively
work on during the IDE session

www.nxp.com/mcuxpresso/ide

48

Develop Perspective

• MCUXpresso IDE will startup in a
new workspace with no projects in
the Develop Perspective

• A “perspective” is a collection of
different “views”

• The Develop perspective provides
a single combined project
management and debugging view

• In addition to the default Develop
perspective, the MCUXpresso IDE
also supports traditional Eclipse
C/C++ and Debug perspectives

Quickstart

Panel View

Console / Install SDK / Problems /

Trace Views / Power Measurement

Editor

View

Project

Explorer
View

49

Changing the Layout of the Develop Perspective

• Layout of views within a perspective can be tailored to meet your personal needs

• For example, if we wanted to have the Registers view always visible…

Click and hold

down on the View
you want to move

Continue to hold

down and drag
the cursor to the

location you want
to view to be

displayed

Then release the

mouse click, and
the view will be

placed at the
required position

Right click on the

Perspective
button (top right

of IDE window) to
reset the layout

back to the
default

50

Installing an SDK in the IDE

• Part support is added by
installing MCUXpresso SDKs
into the IDE

• Allows example projects and
driver examples from SDK to
be easily imported

• New project generation
based on board or processor
in SDK

• The IDE is only compatible
with SDKs built for
MCUXpresso

Hyperlink displays

MCUXpresso SDK
builder in IDE

51

Install an SDK: Drag and Drop

• Drag/Drop SDK packages

directly into the IDE in the
Installed SDKs view

• Can drag SDK as folder
or zip (archive). IDE uses

separate icon for each
type

• SDKs installed in the
default location are

shared across
workspaces

Drag and Drop SDK Folder

52

Inspect SDK

Click on SDK package

to explore contents

Expand each section to

view attributes

53

MCUXpresso Config Tools is a suite of evaluation and
configuration tools that helps guide users from first evaluation
to production software development.

Integrated configuration and
development tools for LPC
and Kinetis MCUs

MCUXpresso Config Tools

SDK Builder packages custom SDKs based on user

selections of MCU, evaluation board, and optional
software components.

Pins, Clocks, and Peripheral tools generate
initialization C code for custom board support. Features
validation of inputs and cross-tool conflict resolution.

Project Generator creates new SDK projects with
generated Pins and Clocks source files.

Project Cloning creates a standalone SDK project
based on a example application available within SDK
release.

Power Estimation tool provides energy and battery-life
estimates based on a user’s application model.
Available as a standalone tool for select devices.

Learn more at: www.nxp.com/mcuxpresso/config

54

MCUXPRESSO IDE
IMPORTING/BUILDING

55

Import an SDK Example into the workspace

• SDK examples are board specific

1. Click “Import SDK examples…”

from Quickstart panel

Opens selection

wizard

Processors

from installed
SDKs

Boards from installed SDKs

and preinstalled LPC boards

56

Import an SDK Example into the workspace

2. Click on board

image to import
an SDK example

3. Select Next to

continue

Installed SDK for

selected board

57

SDK Example Import Wizard

4. Expand

examples

5. Select

project

6. Click Next 8. Click Finish

7. Check box to

print to serial port

58

Copy Sources

• If copy sources is selected, files needed for example project are copied from the

installed SDK into the project folder located in your workspace

• If the SDK was zipped this option would be selected automatically and greyed out

• If Copy Sources is not selected, SDK source files used in the project are linked
directly from the installed SDK

• NOTE: Linking sources will modify the installed SDK

59

Sharing Projects

• If a project is built using part support from an SDK and is then exported – for

example to share the project with a colleague who also uses MCUXpresso IDE,
then the colleague must also install an SDK providing part support for the project’s
MCU.

• Note: Because device support is included in the SDK, it is recommended that any

required SDKs are installed before a project requiring SDK part support is
imported. However, if this is not done beforehand, simply select the imported

project in the project explorer and right click and select: C/C++ Build -> MCU

settings ensure the correct MCU is selected and click Refresh MCU Cache.

60

Building an Example

Click project in

explorer

View Build

Status in
Console

Click Build

Note: After selecting a
project, options to build,
clean, and debug become
active

61

Memory Usage in Build Console

62

Build Results

• Link step will generate an AXF file

− Standard ARM Executable Format – ELF/DWARF

− MCUXpresso IDE can directly download to target

− Post build step can be used to convert to other
formats, such as binary or hex (using arm-none-
eabi-objcopy)

• Linker scripts, controlling placement of code and
data in memory, generated automatically by IDE

• MAP file generated by linker can be very useful
too

− Shows where code and data has been placed, and
sizes of individual sections

63

Create Binary

• Useful for drag-and-drop programming via OpenSDA

• Right Click on .axf file: Binary Utilities -> Create Binary

64

Symbol Viewer

• Right-click .axf
file in explorer,

then select Tools
> View Symbols

• Expand each
section to

examine its
symbols

• Symbol

viewer will
move to

front of view

65

New Project for Board (Defaults)

Packages: Package
of processor on board
selected

Drivers: None
selected by default.
Can be added by
marking checkbox

OS: Baremetal
selected by default

Project Name:
Automatically named
but can be modified.

Project Location:
Defaults to current
workspace

Utilities: None
selected by default.
Can be added by
marking checkbox

Source files are
copied by default. De-
select for linked
references (only
available if SDK is
unzipped)

Semihosting enabled
by default

CMSIS-Core files are
added by default

Board Files: Board
files have no
initialization by default

Project Type: C
project by default

LPC54608 Project

66

New Project for Board

Adds drivers to support

initialization

Adds debug_console

support for board

4. Select

Default Board files

Adds initialization

code in board
files for pins,

clocks, and
debug console

5. Select Next to

continue

LPC54608 Project

67

New Project Advanced Settings

Memory

Configuration

7. Click

Finish

6. Check box to

print to serial port

Compiler

selection

Floating

Point
Setup

Library

Selection

68

Changing Project Settings

Or use “Properties” entry
on Project Explorer right-
click menu or press
Alt-Menu (Windows)

Settings are for specified

Build Configuration

Open the Properties for

the “myproj” project via
the Quickstart Panel

Switch to Compiler

Optimization settings

Change optimization

level, click OK, then
trigger a build

Default Build at -O0

Project changed to -Os

Note : We have only changed the application, not library projects

69

Import Project from File System

70

Library Variants

• Libraries are provided in number of variants, with different
underlying “stub” providing support functions:

− None

� Smallest footprint. Excludes low-level file I/O

� For Newlib, excludes memory handling functions

− Nohost and Nohost-nf

� Provides memory handling functions and some file I/O.

� However, it assumes no host, and so file I/O will do nothing

− Semihost-nf (no files)

� Reldlib only

� Similar to Semihost but only supports 3 standard built in streams
(stdin, stdout, stderr)

� Reduces memory overhead, but application cannot open files

− Semihost

� Full functionality

� I/O resources are on the host side

• More C library information at:

− http://community.nxp.com
(MCUXpresso IDE FAQs)

C library

Printf function

Semihosting stub

Debug interface

Debugger on host

Nohost stubNone

Unresolved
references
from linker

71

C/C++ Library Selection

• C projects

− Default to Redlib

− C90 library, with some C99 extensions

− Optimized for code size

− Select use of integer printf in wizard

• C++

− Default to Newlib

− Provides C++ support, plus full C99

− Can switch C projects to use Newlib if required

• MCUXpresso also supports “Newlib-Nano”

− Code size optimized version of Newlib

− Can switch C or C++ projects to use this

− Integer only printf by default – enable floating point in Linker options

72

Change to UART Console

• If user forgets to check the box to redirect printf/scanf to UART, can change in

project via the Quick Settings:

• Verify setting in Project Settings->Preprocessor that SDK_DEBUGCONSOLE=1

73

MCUXPRESSO IDE

DEBUG

74

Open Quickstart Panel

Click Debug

Start a Debug Session

Note: By default, selecting “Debug” will trigger a build before
the debug session is launched, so it is not required to run a
“build” first

Note: Do not use this icon,
Use the Quickstart Panel instead

These settings will be
remembered
for next time you
debug this project

75

Debug Perspective

Editor

View

Registers

and
Peripherals

View

Variables,

Expressions,
and

Breakpoints
View

Console,

Memory, and
Trace

Views

Debug

View

Run Controls

76

Stopped At Main()

• Image downloaded to flash and
execution started

− Default breakpoint set on
function main()

• Debug View displayed
automatically

− Shows / controls current
scope and target (multicore)

− Run controls are on main
toolbar

• But before you begin to run
the code …

Resume (F8)
Step
Into (F5)

Suspend

Assembly
Instruction
stepping mode

Step
Over (F6)

Terminate (Ctrl-F2)

Restart

Step
Return (F7)

Multi-processor
Resume/Pause/etc.

77

Debug: Step Over

78

Debug: Step Into Function

79

Debug: Step Return

80

Registers, Local Variables, and Memory Views

Variables View:

- In-scope local variables displayed
- Locals displayed will change as

move up and down the call stack

Registers View:

- CPU registers are displayed. Will
highlight in yellow when contents

update

Memory View:

- Add address to display view of
memory contents starting at that

location

81

Add a Global Variable

1) Switch to the Global Variables View and click on

the “Add global variables” button

2) Scroll down and select

“SystemCoreClock”, which will
hold the main CPU clock speed3) SystemCoreClock global is now visible in

the Expressions View

82

Peripherals View

- In Peripherals View, click

checkbox next to peripheral to
select it

- This will open the peripheral in the

Memory View
- Expand the peripheral to see details of

registers

83

Sharing Projects

• If a project is built using part support from an SDK and is then exported – for

example to share the project with a colleague who also uses MCUXpresso IDE,
then the colleague must also install an SDK providing part support for the project’s
MCU.

• Note: it is recommended that any required SDKs are installed before a project

requiring SDK part support is imported. However, if this is not done, simply select
the imported project in the project explorer and right click and select: C/C++ Build -

> MCU settings ensure the correct MCU is selected and click Refresh MCU

Cache.

84

LAB 2

85

Lab 2 : To import SDK example and run in MCUXpressor

• Pre-requisites
• Boards

− OM13092(LPCXpresso54608)

• Software

− SDK_2.2_LPC54608J512 : https://mcuxpresso.nxp.com/en/welcome

− MCUXpresso IDE: http://nxp.com/mcuxpresso/ide

− Terminal Software (like TeraTerm or PuTTY)

− mbed Serial Driver: https://developer.mbed.org/handbook/Windows-serial-configuration

� Need to install with the board plugged in. Only need to do once per computer.

• Follow Lab 2 instruction

86

AGENDA

• MCUXpresso Software And Tools Overview

• MCUXpresso SDK

� Web Builder

� File Structure

• MCUXpresso IDE

� Importing/Building

� Debugging

• MCUXpresso Config Tool

� Project Cloner

� Pins Tool

� Clocks Tool

• LPC54608 LCD Lab, Key API and EmWin Demo

87

MCUXPRESSO
CONFIG TOOLS

88

Configurations

• What is a configuration?

− A group of settings used across the MCUXpresso configuration tools (Pins, Clocks, and

Project Generator)

• SDK provides configurations to start development with specific to the board or

processor.

• Users can import a configuration, modify clocks and pin settings, and export the

configuration.

• If no SDK is selected, default configurations for boards and processors are

available.

• Configurations can be saved and shared as a .mex file

89

MCUXPRESSO
CONFIG TOOLS

PROJECT CLONE

90

Configuration Tool Wizard

Select an SDK

to build
configurations

Point to SDK

installation
folder

(unzipped)
Start a

configuration

Once finished,

select Continue

91

Creating a New Configuration using SDK

• New Board Configuration

− Board-specific pin initialization (e.g. UART, LEDs, etc.)

− Board-specific clock initialization (e.g. External OSC)

• Example Based Board Configuration

− Pin initialization specific to board and example (e.g. I2C, SPI, etc.)

− Clock initialization specific to board and examples

• Processor Based Board Configuration

− Empty pin initialization

− Supports reset clock configuration

92

Create a New Configuration

Name

configuration

Finish

Search for example

Board-

based

Processor-

based

New configuration

based on example

Kit-based

93

MCUXPRESSO
CONFIG TOOLS

PINS TOOL

94

Pins Tool Views
Package view

Pins/

Peripherals
View

Sources/

Registers/
Log

View

Routed Pins

view

Problems

View

95

Package View

• Provides overview of
package

• Available peripherals are
indicated inside the
package

• Pin names are listed next
to each pin

• Color Coding:

− Green indicates
pin/peripheral is routed

− Yellow indicates
pin/peripheral is currently
selected

− Red indicates an error

− Light grey indicates
pin/peripheral is available
but is not currently routed

Unrouted Pin

Unused peripheral

Zoom Rotate
Switch
Package

96

Pins View

• Provides a table of all the

pins for the device /
package

• Pins are listed by number

and name

• Signals available for each

pin are listed in columns
across the pin’s row

• The checkbox next to the
pin name indicates whether

the pin is routed

Pin Error

Routed Pins

Signal routed to pin

Unrouted Pins

97

Routed Pins View

• View shows table of every routed pin

• 'Functions' are used to group a set of routed pins

• Functions create code which can be called by the application.

Add rowRemove row

Add function

Click on fields

to modify

Functions

98

Functions

• Functions in Routed Pins

View are used to generate
functions in source code

• Pins that are routed in the

Routed pins view will be

initialized in the
corresponding function in

the source code

99

Labels and Identifiers

• Board and kit configurations
have predefined pin labels
and identifiers

• Label

− Can be defined for any pin for
easy identification

• Identifier

− Used to generate the #define
in the pin_mux.h file

− Can be modified in Pins View

100

Peripherals View

• Displays list of all peripherals

of device

• Expand peripheral to see
available signals

• Peripherals with marks in

checkbox have signals routed

101

Sources View

• The pins tool modifies
and creates code in

pin_mux.c and
pin_mux.h files

• The pin configuration

info is stored in YAML

format

• YAML code is not

intended for user
modification

102

Register View

• Shows Register name, current
value, and value at Reset

• Recently updated fields are

highlighted in yellow

103

Problems View

• Level – Lists the severity of the problem: Information, Warning, or Error.

• Issue – Description of the problem.

• Origin – Information on the dependency source.

• Target – Lists the tool that handled the dependency and where it should be fulfilled.

• Resource – Lists the resource which is related to the problem,. For example, the signal name, the
clock signal, and so on.

• Type – The type of the problem. It is either the validation that is

104

Export Source Files

• Export a configuration to a pin_mux.c

and pin_mux.h file

• Includes functions with initialization
for routed pins in configurations

• Accessed from menu:

• File->Export
• Can also access by selecting the

export icon in the Sources view

• Select directory to export pin_mux.c
and pin_mux.h

export

105

MCUXPRESSO
CONFIG TOOLS

CLOCK TOOL

106

Clocks Tool Views

Clocks

Diagram

Clocks

Table

Global

Settings

Clock

Configuration tabs

Status bar

Details

View
Selected

Problems

View

107

Clocks Diagram View

• Provides a block diagram of the
clock generation for the device

• Solid lines indicate connections
between elements

− Dark lines indicate currently active
clock paths

− Gray lines indicate inactive clock
paths

• Clock settings can be edited
within the diagram

• When an active clock output is
selected (e.g. Core clock), the
clock path highlights in blue

108

Elements of Clock Diagram

• Clock Source

− Provides a clock frequency

• Multiplexer

− Selects between clock options

• Prescaler

− Divides clock frequency

• Clock Output

− Marks the clock signal output

109

Elements of Clock Diagram (cont)

• FLL (Frequency Locked Loop)

− Multiplies an incoming frequency by
a given factor

• PLL (Phase Locked Loop)

− Contains pre-divider and thus is able
to divide/multiply with a given value.

• Clock Component

− Group of clock elements surrounded
with a border. The clock component
usually corresponds to the processor
modules or peripherals.

110

Details View: Overview

• The details for any
element in the block
diagram are displayed in
the Details view when
selected in the diagram

• The MCG component is
selected in the figure to
the right. The details for
clocks, mux settings,
and dividers in the MCG
are shown in the details
view

111

Details View: Clock Path Details

• Clock path details are
shown in the Details View

when a clock output is
selected (in Clock Diagram

or Clock Table)

• The Details view shows
information for each

element in the clock path

(e.g. OSC, PLL, mux
selections, divider settings)

112

Clocks Table View

• Provides overview of

the clocking system
and its current state

• Available clock

sources are shown in

the left panel

• Clock outputs and
their current

frequencies are

shown in the right
panel

113

Locked Settings

• Lock Icon indicates that a

setting (that may be
automatically adjusted by the
tool) is locked to prevent any
automatic adjustment.

• If the setting can be locked,

they are automatically locked
when you change the value.

• To add/remove the lock

manually, use the pop-up
menu command

Lock/Unlock.

114

Dependency Arrows

• Arrows between the

Clock Sources and Clock
Outputs indicate
dependency

• Arrows lead from the

clock source used for the

selected output

• Arrows lead to clock

outputs that are using the

signal from the same
clock source (as selected

output)

115

Enabling External Clock Sources in Clocks Table View

• External clock

sources can be
enabled in the Clock
Sources panel

• External clock settings

can also be changed
in this view

116

Module Clocks View

• Provides list of peripherals

and currently selected
clock sources

117

Registers View

• Displays register

values for current
clock configuration

• Current register value

and default value after

reset are shown

• Recently changed

registers are

highlighted in yellow.

118

Configuration Tabs

• Switch between clock configurations using the tabs

119

Clocks Diagram: Change Clock Output Frequency

• Clock output frequency
can be typed directly
into the field (e.g. core
clock)

• Tool will attempt to
achieve target
frequency by increasing
divider (e.g. OUTDIV1)

• Bus/Flexbus/Flash
divide values also
update to meet
requirement (must be
less than or equal to
core clock)

120

Clocks Diagram: Component Settings

• Double click on a

component in the block
diagram to view/modify

its configuration

• Pop-up box shows
current configuration of

component

• Element settings (e.g.

frequency, etc.) can be
modified in pop-up box

121

Clocks Diagram: Change a Clock Mux

• Click once on a
multiplexer for drop
down of clock
options

• Select from
available clocks in
the drop-down to
change the mux

• Clock source must
be enabled.
Otherwise, an error
will occur.

122

Clocks Diagram: Set a Clock Divider

• Click once on a

divider for a
drop-down of
available divide
values

• Select divide
value from the list

and the clock

output frequency
automatically

updates

123

Details View

• Elements can be
modified in the

Details View

124

Enable/Disable A Clock Source

• Clock sources such as
the Slow/Fast IRCLK
and OSCERCLK have
clock gates that can be
enabled/disabled

• Select the component
containing the clock
(e.g. MCG for
MCGIRCLK)

• Disable the MCGIRLCK
in the Details VIew

Select component

Enable/Disable

Clock

125

Peripheral Clocks in SIM

• Peripheral clock
selections are often
controlled through the
SIM

• The multiplexers in the
SIM component can be
used to change the clock
source for a peripheral

• The clock source must be
enabled to change the
mux

126

Reset To Defaults

• Reset to Defaults

− Resets clock configuration to the default reset clock

configuration for the processor

− Not the same as Board_BootClock configuration

• PEE at 120 MHz • FEI at 21 MHz (reset)

127

Copy Clock Configuration

• To Copy an existing clock
configuration:

1. Select an existing configuration tab

2. Select Clocks > Copy Configuration

3. Name the configuration. Select ok

4. Copied Configuration will be created

128

Configuration Errors

• Errors may occur when changing
the clock configurations

• Error conditions will cause the
status bar to become RED

• Potential Problems:

− Requirement(s) not satisfiable:
Indicates that there are one or more
locked frequency or frequency
constraints for which the tool is not
able to find a valid settings and
satisfy those requirements.

− Invalid settings or requirements:
[element list] – Indicates that the
value of some settings is not valid.
For example:The current state of
settings is beyond the acceptable
range.

129

Export Clock Configuration

• Export a configuration to clock_config.c

and clock_config.h files

• Exports source files, and generates code

to initialize current clock configurations

• Access from menu:

− File->Export

− Can also be accessed from Export icon in
Sources view

• Select the directory to export
clock_config.c and clock_config.h.

export

130

LAB 3

131

Lab 2 : To use Config Tools to generate code for pins and clock configuration

• Pre-requisites
• Boards

− OM13092(LPCXpresso54608)

• Software

− MCUXpresso IDE: http://nxp.com/mcuxpresso/ide

− MCUXpresso Config Tools v3.0 : http://nxp.com/mcuxpresso/config

− SDK_2.2_LPCXpresso54608 (Thumbdrive)

− Terminal Software (like TeraTerm or PuTTY)

− mbed Serial Driver: https://developer.mbed.org/handbook/Windows-serial-configuration

− Pin_clk config code file (Thumbdrive)

• Follow Lab 3 instruction

132

Outline

• Create a new configuration based on hello_world example to be use in

hot_pin&clock config project.

• Modify pins and generate the code to pin_mux.c and pin_mux.h files

• Generate the clock code to clock_config.c and clock_config.h

• Export pin and clock sources to workspace by dragging the files to Board directory

in the pin&clock config project

• Initiate pins and clocks in hot_pin&clock_config.c by adding “BOARD_InitPins();

and BOARD_BootClockFROHF48M();

• Build,debug and run the project.

• Result in Tera Term : Success in Pin Config and Success in Clock Config!

133

AGENDA

• MCUXpresso Software And Tools Overview

• MCUXpresso SDK

� Web Builder

� File Structure

• MCUXpresso IDE

� Importing/Building

� Debugging

• MCUXpresso Config Tool

� Project Cloner

� Pins Tool

� Clocks Tool

• LPC54608 LCD Lab, Key API and EmWin Demo

134

LPC54608

HMI & FLEXIBLE COMMUNICATION INTERFACES FOR IOT APPLICATIONS

LPC546XX MCU FAMILY
SCALABLE AND POWER-EFFICIENT MULTI-MARKET MCUS

136

2017 LPC Roadmap

137

Introducing LPC54000 Series of MCU
Mainstream, Power Efficient Microcontrollers

Cortex-M4F at 100 MHz
1.62 V to 3.6 V

256-512 KB Flash
104 KB RAM

Differentiating Features:
• Optional Dual Core

(Cortex-M0+)
• <100uA / MHz (Cortex-M4)

• Digital Mic Subsystem

Cortex-M4F at 100 MHz
1.62 V to 3.6 V

128-256 KB Flash
96-192 KB RAM

FRO, FS USB

Differentiating Features:
• Optional Dual Core

(Cortex-M0+)
• <80uA / MHz (Cortex-M4)

• Flexible Comm Interface
• Digital Mic Subsystem

Cortex-M4F at 180 MHz
1.71 V to 3.6 V

256-512 KB Flash
136-200 KB RAM

FRO, FS/HS USB

Differentiating Features:
• 120uA / MHz (Cortex-M4)

• Flexible Comm Interfaces
• TFT-LCD Controller

• External Memory Interface
• Ethernet PTP IEE1588 v2

• Dual CAN2.0 / CAN-FD
• Digital Mic Subsystem

LPC5410x LPC5411x LPC546xx

Baseline Cortex-M4
FS USB

Large Internal SRAM
Performance &

Integration

Available Now Available Now Available Now

LQFP64
CSP49

LQFP64
CSP49

LQFP208, TFBGA180 (NOW)
LQFP100, TFBGA100 (MAY)

138

LPC546xx Family Introduction
Power-efficiency, Advanced HMI & Flexible Comms for next-generation IoT

Comprehensive Enablement
• Complimentary MCUXpresso IDE and Software Development Kit (SDK)

• Integration of Segger’s emWIN Graphics Library into SDK

• Faster time to market with comprehensive development hardware and
reference designs

Extremely Low Active Current with 180MHz Performance
• ARM Cortex-M4 core running up to 180MHz at 120 µA / MHz

Advanced HMI & Flexible Communication Peripherals
• Up to 21 flexible communication peripherals to interface with memory,

connectivity modules, and a variety of sensors

• Numerous wake-up sources, ample timers

• Integrated TFT control allows to keep the overall cost and complexity to a
minimum

139

• Satellite Radio

• Portable GPS Tracker

• Data aggregator for
Infotainment/Navigation

• Fleet Management/Telematics

• Vehicle Diagnostic

• Tachograph

• OBD-II

• Small Appliance

• White Goods HMI

• Thermostat

• In Home Display (IHD)

• IOT gateway

• Security monitoring

• High end gaming accessories

• Fitness equipment

• Audio accessories

• Diagnostic equipment

• Industrial control devices

• PLC

• Data Aggregator & Comms Hub

• Building control & automation

• HVAC control

• Multi-protocol bridge

• Data acquisition

• Medical/industrial grade scale

• Scanners / Mini printers

Industrial, Building, Energy,
General Embedded

Consumer, Smart Home
& Automation Automotive Aftermarket

LPC546xx Target Applications

140

LPC546xx Series Block Diagram

INTERFACES

FLEX

COMM

(Choose

any 10)SYSTEM

ANALOG

ADC
12b 12ch 5Msps

ADC
12b 12ch 5Msps

MEMORY

CORE

M
u

lt
il
a

y
e

r
B

u
s

M
a

tr
ix

RAM

Up to 200 KB

RAM

Up to 200 KB

ROMROM

ARM Cortex-M4

Up to 180 MHz

ARM Cortex-M4

Up to 180 MHz

USARTS
/LIN 2.2

(10)

USARTS
/LIN 2.2

(10)

I2C FM+

(10)

I2C FM+

(10)

DMA

Up to 30ch

DMA

Up to 30ch

GPIO Up to 171GPIO Up to 171TIMERS

SCTimer/PWMSCTimer/PWM

RTCRTC

32-bit Timers (5)32-bit Timers (5)

WWDTWWDTMulti-Rate TimerMulti-Rate Timer

Alarm TimerAlarm Timer

Clock Generation Unit
FRO 12/48/96 MHz, System PLL

Clock Generation Unit
FRO 12/48/96 MHz, System PLL

Power Control
Single Vdd power supply, POR, BOD,

reduced power modes

Power Control
Single Vdd power supply, POR, BOD,

reduced power modes

SPI (10) SPI (10) I2S (2)I2S (2)

Dual CAN2.0 / Dual CAN2.0 /
Dual CAN FD

HS USB (1)

FS USB (1)

HS USB (1)

FS USB (1)

FLASH

Up to 512KB

FLASH

Up to 512KB

USB

PLL

USB

PLL

Ext. Mem. CtrlExt. Mem. Ctrl SPIFISPIFI

SDIO (SD/MMC)SDIO (SD/MMC)

EEPROM 16 KBEEPROM 16 KB

Ethernet

DMIC SubsysDMIC Subsys

TFT LCD

Temp SensorTemp Sensor

Smart Card (2)Smart Card (2)

Audio

PLL

Audio

PLL

CPU
• 180MHz Cortex-M4 with floating point unit

Memory
• Up to 512 KB Flash, Up to 200 KB RAM

• 16 KB EEPROM

Interfaces for connectivity & sensors
• Dual CAN2.0 or CAN FD Controller Options

• XTAL-less FS USB (H/D)

• 10 SPI, 10 I2C, 10 USART, 2 I2S channels.

Max 10 channels

• Graphic LCD with resolutions up to 1024x768

• 10/100 Ethernet Controller with PTP

• Stereo DMIC subsystem

• (PDM, decimator, HW VAD)

• 1x HS USB (H/D) w/ on-chip HS PHY

• XIP from QSPI via SPIFI

• External Memory Ctrl (up to 32 bits)

Other
• Operating voltage: 1.71 to 3.6V

• Temperature range: -40 to 105 °C

• LQFP208, LQFP100

• TFBGA180, TFBGA100

141

Typical Application
Connected, HMI Control Panel/Edge Node in Industrial Applications

Key Features:

• 30 channel Direct Memory Access (DMA)

• Fast wake-up & mode transitions with 12 MHz Free
Running Oscillator (FRO) trimmed to +/- 1% accuracy
over voltage & temperature (selectable 48/96 MHz
outputs)

• Code Security with Enhanced Code Read Protection
(eCRP) and a 128 bit unique device serial number for
identification

• Powerful, feature rich 32-bit timers, including State
Configurable Timer (SCT/PWM)

• Flexible communication interface with up to 10x
USARTS, I2C (supporting FM+) and SPI, along with up
to two I2S

• Large availability of GPIOs (up to 171) with fast access
(on AHB), DMA support of GPIO ports

• Ethernet with IEEE1588 PTP, Dual CAN supporting
CAN-FD and CAN2.0

• FS & HS USB with integrated PHY

• Flexible wake-up & clock sources

LPC546xx Family of MCUs Combine a 180MHz Cortex-M4,

for real-time performance, with its unique architecture for

outstanding power-efficiency.

Display

NXP

LPC54608
180MHz Cortex-M4F

NXP

PART

NON-NXP

PART

SPI/I2C

Parallel
Graphics

Interface

UART /
SPI

LED/

Buttons GPIO

12b
ADC

Battery

Monitor

RS485 Network RS485 Network

Comms
UART

QSPI Flash

& SDRAM

Relay,

Valve

Relay,

Actuator,

Valve

Digital

Sensors

LCD-TFT Controller

Wireless

ConnectivityEMC SPIFI SCT

I2C

Secure

MCU

Dedicated
16-, 32-bit interface

142

LPC’s Complete Offering of Graphics Solutions

Provider / Product Type Language
GUI Tool
Builder

Business model
RTOS

Required

TARA /
Embedded Wizard

Source code
generator

C
Javascript

Yes
Developer seats
Volume based product line license

Optional
(any)

Draupner /
TouchGFX

Library + API C++ Yes
Free developer tools
Volume based product line license

Recommended
(any)

MicroEJ Library + API
C/C++
Java

Yes
Part of MicroEJ platform
Developer seat licenses
Volume based licenses

Yes
(MicroEJ)

expresslogic /
GUIX

Library + API C Yes Source code per product license
Yes
(ThreadX)

Segger emWIN Provided Complementary with NXP’s MCUXpresso SDK

− Offered as Library + API in C language, compatible with any RTOS (although not required)

− GUI tool builder available

− Source Code from Segger available with a per product license fee

− Free/no royalty required

143

Connectivity Solutions

Evaluation Kits:

Comprehensive frameworks and
solutions for low-power,

connected, and secure embedded
systems

Runtime Software

Industry leading IDE support and
intuitive software configuration

tools to accelerate application
development

Software
Development Tools

Low cost hardware platforms for
evaluation and application

development. Partner solutions for
hardware debugging solutions

Hardware
Development Tools

Software frameworks and
development tools for targeted

applications and certified
connectivity solutions

Application Specific

Get started quickly and get
the support you need, when

you need it

Support

NXP Solutions: IDE / Toolchains:

• OOB Walkthroughs
• NXP Community
• Solution Designs
• Application Notes
• Schematics

RTOS, Middleware Partners:

Partner Solutions

• Graphics
• Cloud Connectivity
• Voice activation
• USB Audio
• Touch HMI
• Camera interface

Enablement Overview

802.15.4

Broad Market:

• Professional Support
• Professional Services

High Touch:

144

Enablement: LPC546xx Development Board

Additional (new) on-board features:
• 16MB Micron SDRAM (required for graphics)

• Ethernet (PHY, magnetics & connector)

• DMIC (Knowles Morello)

• I2S connected CODEC with Line In/Out

• SD/MMC card (SDIO)

• Accelerometer on I2C

• 16MB Micron QSPIFI with XIP

• LPC54608 in BGA180 package

− Cortex-M4F@180MHz

• Standard LPCXpresso features:

− Link2 OBD / external debug

− Wake, ISP, Reset buttons

− HS micro USB AB connector

− FS micro USB AB connector

• 4.3” cap touch display (parallel interface)

• 2 x PMod expansion connectors

• Expansion connectors

− Can support Arduino shields such as WiFi
modules

OM13092
Base Development Board

On-board Display
Available Now

OM13094
CAN-FD Enabled Kit

CAN Physical Transceiver Shield
(no display)

Orderable March-2017

145

Graphics – 24-bit LCD Interface Supports up to XGA

Features and Advantages

• Up to 1024x768 resolution

• 24-bit LCD interface supports 24bpp (16M colors)

• Palette table allows display of up to 256 of 64K colors

• Dedicated LCD DMA controller

• Hardware cursor support

Enablement and Third Parties

• Free MCUXpresso IDE with SDK, configuration tools

• LPCXpresso54608 Development Board

• LCD App notes and Design recommendation

• Complementary Segger emWIN to develop GUI applications

• Additional GUI solutions from industry leading partners

Target Applications

• Thermostat

• Appliance/White Goods HMI

• Fitness equipment

• Industrial Panel

External

Frame Buffer
Pixel Write

TFT-LCD Controller
Dedicated DMA

Parallel Interface

4.3”

146

LAB 4

147

Lab 4.1 LCD Basic

• Pre-requiste: Install the SDK(SDK2.2_LPCXpresso54608) from Thumb drive and import
project from file system hot_LCD_1_tft16bpp.

• Build, Debug and run hot_LCD_1_tft16bpp.

• Objective：Understanding how to

− Defines LCD parameters and use SDK APIs to initialize LCD controller, start LCD operation

− Allocate framebuffer in SDRAM w/o having to initialize SDRAM before main()

− Draw on framebuffer

• Description：Initializes LCD controller, SDRAM, and draw on framebuffer

• Result: 8 color stripes moving on LCD screen

148

Key API and codeHOT_LCD_1_tft16bpp

• Initialize SDRAM for framebuffer availability

BOARD_InitSDRAM();

• Enabled clock to LCD controller

CLOCK_SetClkDiv(kCLOCK_DivLcdClk, 1, true);

• Initialize LCD controller with specified parameters, including panel clock, resolution, color format, timings, framebuffer
address.

LCDC_GetDefaultConfig(&lcdConfig);

lcdcInFreq = CLOCK_GetFreq(kCLOCK_LCD);

LCDC_Init(LCD, &lcdConfig, lcdcInFreq);

• Start LCD controller and power up LCD

LCDC_Start(LCD);

LCDC_PowerUp(LCD);

149

Observation and changes

• Change the color of stripes by modifying “colTab” array.

• Change panel clock frequency macro “LCD_PANEL_CLK”, suggested range no
less than 4MHz.

• Learn the members of “lcdc_config_t”, how they map to LCD controller to registers.

• Check the “Flash.sct” and the definition of “s_FB” to see how to make framebuffer

placed into SDRAM w/o involving compiler to generate “zero-init” code to
framebuffer before main().

• Otherwise, Compiler will generate “zero-init” code to framebuffer before jumping to

“main()”; however, w/o having SDRAM initialized, accessing SDRAM will cause
hard fault.

150

Lab 4.2 DUAL FRAMEBUFFER

• Pre-requiste: Import project from file system hot_LCD_2_tft16bpp_2fb

• Build, Debug and run hot_LCD_2_tft16bpp_2fb.

• Objective：Understanding how to

− Defines 2 framebuffers

− Using LCD’s “base address update” interrupt to safely draw to background FB.

− Draw on framebuffer

• Description：Repeating drawings in main loop: first clear the screen to black, then draw color stripes. Use SysTick timer to limit
draw rate.

− If “SW5” is not pressed, then use one FB to draw,

− if “SW5” is pressed, then waits for “base address update” IRQ, then draws on backup FB (the previous active FB), after
drawing, set the next active FB to this FB.

• Result: If “SW5” is not pressed, then black screen and color stripes shows on screen interleaved, get flicker feeling; if “SW5” is
pressed, only the rotating color stripes are shown (like HOT1).

151

Key API and code HOT_LCD_2_tft16bpp_fb

• Enable LCD “base address update” interrupt

LCDC_EnableInterrupts(LCD, kLCDC_BaseAddrUpdateInterrupt);

• IRQ handler: Get LCD interrupt flag and clear in LCD IRQ handler, set the s/w level notify ---- “s_frameAddrUpdated
= true;”

void LCD_IRQHandler(void) {…}

• intStatus = LCDC_GetEnabledInterruptsPendingStatus(LCD);

LCDC_ClearInterruptsStatus(LCD, intStatus);

if (intStatus & kLCDC_BaseAddrUpdateInterrupt) {…}

• Update FB address after background FB drawing is done, and switch the active/background FB.

LCDC_SetPanelAddr(LCD, kLCDC_UpperPanel, (uint32_t)(pFB32)); s_actFBNdx = !s_actFBNdx;

• Background code: Wait for “s_frameAddrUpdated” to become true before drawing next frame.

while (!s_frameAddrUpdated){}

152

Observation with changes

• See different drawing effects when “SW5” is pressed and not pressed.

• Enter debug mode，press ”F10” to step over or “F11” to step into to analyze and

check how the FBs are switched with “s_actFBNdx” variable.

• Experiments :

− Change SysTick rate, check if it can resolve the flicker effect w/o dual-FB,

and/or affects dual-FB effect.

− Comment out the “while (!s_frameAddrUpdated){}”, see if it affects dual-FB

effect.

− Switch “stage1” and “stage2” in code, check the differences of LCD display
for single FB and dual-FB respectively.

153

Lab 4.3 PALETTE

• Pre-requiste: Import project from file system hot_LCD_3_palette

• Build, Debug and run hot_LCD_3_palette

• Objective：Understanding how to

− use palette to put framebuffer in SRAM, instead of SDRAM

− Palette color settings

• Description：Draw moving rectangle periodically. Every period is synchronized to a new
LCD base address update IRQ. The examples implements a rectangle draw & fill routine
with 2bpp mode.

• Result: There is a rectangle moving smoothly and when reach a edge (either left, top,
right ,bottom), it changes color and bounces.

154

Key API and code HOT_LCD_3_palette

• Setup palette colors

static const uint32_t palette[] = {0x001F0000U, 0x7C0003E0U};

• Set palette buffer

LCDC_SetPalette(APP_LCD, palette, ARRAY_SIZE(palette));

• Update FB address after background FB drawing is done, and switch the

active/background FB.

LCDC_SetPanelAddr(LCD, kLCDC_UpperPanel, (uint32_t)(pFB32));

s_actFBNdx = !s_actFBNdx;

155

Observation with changes

• Locate palette color settings and change color to see the result. Color is RGB565

format.

• Change the moving speed of rectangle, either X or Y.

156

Lab 4.4 H/W CURSOR

• Pre-requiste: Import project from file system hot_LCD_4_cursor

• Build, Debug and run hot_LCD_4_cursor

• Objective：Understanding how to

− Understands how to setup cursor bitmap, including transparent and XOR colors

− Set new position of cursor synchronized with LCD vertical back porch.

• Description：Draw and moves cursor periodically. Every period is synchronized to a new LCD vertical back

porch IRQ.

• Result: There is a cursor moving smoothly and when reach a edge (either left, top, right ,bottom), it bounces.

157

Key API and code HOT_LCD_4_cursor

• Defines the bitmap (w/ transparency and XOR “colors”) of cursor

static const uint8_t cursor32Img0[]

• Configure cursor

lcdc_config_t lcdConfig;

LCDC_CursorGetDefaultConfig(&cursorConfig);

cursorConfig.size = kLCDC_CursorSize32;

cursorConfig.syncMode = kLCDC_CursorSync;

cursorConfig.image[0] = (uint32_t *)cursor32Img0;

• Select cursor image number (0 to 3). LCDC supports 64x64, divided into 4 32x32 images like a “田”. As we just setup one left-top 32x32, the number is 0.

LCDC_ChooseCSeursor(APP_LCD, 0);

• Cursor update is synchronized to vertical back porch, so enabled the “vertical compare” IRQ and select vertical back porch as IRQ trigger source.

LCDC_SetVerticalInterruptMode(APP_LCD, kLCDC_StartOfBackPorch);

LCDC_EnableInterrupts(APP_LCD, kLCDC_VerticalCompareInterrupt);

NVIC_EnableIRQ(APP_LCD_IRQn);

• Enable H/W cursor layer

LCDC_EnableCursor(APP_LCD, true);

• Update cursor location after a new vertical back porch IRQ fired.

LCDC_SetCursorPosition(APP_LCD, cursorPosX, cursorPosY);

158

Observation with changes

• cursor position update synchronized to vertical back porch, to verify if this is

required,

• comment out the “while (!s_frameEndFlag){}” and uncomment “while
(!s_isNewTick){}” to see the change of cursor movement (Which one is more
smoother?).

159

EMWIN DEMO

160

Emwin

• Pre-requiste: Import project from file system Emwin_code

• Build, Debug and run Emwin_2_demo

• Objective： Segger’s EmWin provides a complimentary way to

develop your next GUI application

http://www.nxp.com/pages/emwin-graphics-

library:EMWIN-GRAPHICS-LIBRARY

NXP and the NXP logo are trademarks of NXP B.V. All other product or service names are the property of their respective owners. © 2016 NXP B.V.

