BMI7018_PB ### Product brief for 18-cell battery-cell controller IC Rev. 1 — 12 August 2024 **Product brief** ### 1 General description The BMI7018 is a lithium-ion battery-cell controller IC designed for industrial applications, such as energy storage systems (ESS) and uninterruptible power supply (UPS) systems. The BMI7018 offers transport protocol link (TPL3 - proprietary isolated daisy chain protocol of NXP) and serial peripheral interface (SPI) for communication with the host MCU. These devices support high-precision cell voltage and temperature measurements, along with various cell-voltage balancing strategies. Aside from a SPI interface to enable direct communication with the host MCU, they alternatively provide a daisy-chain communication interface (TPL), which supports capacitive and inductive isolation between nodes. #### 2 Features and benefits - Ambient temperature range: -20 °C to 60 °C - · Support for cell voltage and cell temperature measurements from the host microcontroller unit (MCU) - · Cell voltage measurement - 4 to 18 cells per device - Operating voltage range from 9 V to 90 V - Supports bus bars voltage measurement with -3 V to +5 V input voltage - 16-bit resolution and up to ±0.8 mV typical measurement accuracy with ultra low long-term drift - Integrated configurable digital filter - · External temperature and auxiliary voltage measurements - One analog input for absolute measurement, 5 V input range - Eight analog inputs configurable as absolute or ratiometric, 5 V input range - 16-bit resolution and ±5 mV typical measurement accuracy - Integrated configurable digital filter - · Internal measurement - Two redundant internal temperature sensors - Supply voltages - External transistor current - · Cell voltage balancing - 18 internal balancing field effect transistors (FET), up to 360 mA peak with 0.5 Ω R_{DSon} per channel (typ.) - Support for simultaneous passive balancing of all channels with automatic odd/even sequence - Global balancing timeout timer - Timer controlled balancing with individual timers with 10 s resolution and up to 45 h duration - Voltage controlled balancing with global and individual undervoltage thresholds - Temperature controlled balancing; if balancing resistors or the IC are in overtemperature, balancing is interrupted - Configurable pulse width modulation (PWM) duty cycle balancing - Automatic pause of balancing during measurement with configurable filter settling time - Configurable delay of the start of balancing after transition to sleep - Automatic discharge of the battery pack (emergency discharge) - Constant current cell balancing to compensate the balancing current variation because of cell voltage variation - I²C-bus master interface to control external devices, for example, EEPROMs and security ICs - · Configurable alarm output - · Cyclic wake-up to monitor the pack and the balancing function during sleep - · Capability to wake up the host MCU via daisy chain in case of a fault event - · Host interface supporting SPI or isolated daisy chain communication (TPL3) - 2 Mbit/s data rate for TPL interface - 4 Mbit/s data rate for SPI interface - · TPL3 daisy chain communication supports - Two-wire daisy chain with capacitive or inductive isolation - Protocol supporting up to six daisy chains and 62 nodes per chain - · Unique device ID with dynamic addressing - Operation modes - Active mode FP (12 mA typ.) - Sleep mode LP (60 µA typ.) - Deep sleep mode ULP (15 μA typ.) ## 3 Applications ### 3.1 Industrial - Energy storage systems (ESS) - Uninterruptible power supply (UPS) ## 4 Ordering information #### Table 1. Ordering information | Type number | Package | | | |-------------|---------|-------------------------------------------------------------------------------------------------------------|-----------| | | Name | Description | Version | | MBMI7018 | LQFP64 | Plastic, thermal enhanced low profile quad flat package; 64 terminals; 0.50 mm pitch; 10 x 10 x 1.4 mm body | SOT1510-2 | ### 4.1 Ordering options #### Table 2. Part numbers | Type number | Description | |---------------|---------------------------------| | MBMI7018TA1AE | Premium version - TPL interface | | MBMI7018SA1AE | Premium version - SPI interface | ### 5 Block diagram Figure 1 shows the general architecture of the BMI7018. ## **Pinning information** #### 6.1 Pinout diagram ### 6.2 Pin description Table 3. Pin description | Table 6. 1 III decomption | | | | |---------------------------|-----|-----------------------------|--| | Symbol | Pin | Description | | | VBAT | 1 | Supply input of the product | | | CT18 | 2 | Cell terminal 18 input | | | CT17 | 3 | Cell terminal 17 input | | | CT16 | 4 | Cell terminal 16 input | | | CT15 | 5 | Cell terminal 15 input | | | CT14 | 6 | Cell terminal 14 input | | | CT13 | 7 | Cell terminal 13 input | | | CT12 | 8 | Cell terminal 12 input | | | CT11 | 9 | Cell terminal 11 input | | | CT10 | 10 | Cell terminal 10 input | | | | | | | BMI7018_PB All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved. Table 3. Pin description...continued | Table 3. Pin descriptioncontinued | | | | | |-----------------------------------|-----|-----------------------------------------------------------------------------------------------------------------------------------------|--|--| | Symbol | Pin | Description | | | | СТ9 | 11 | Cell terminal 9 input | | | | CT8 | 12 | Cell terminal 8 input | | | | CT7 | 13 | Cell terminal 7 input | | | | CT6 | 14 | Cell terminal 6 input | | | | CT5 | 15 | Cell terminal 5 input | | | | CT4 | 16 | Cell terminal 4 input | | | | СТЗ | 17 | Cell terminal 3 input | | | | CT2 | 18 | Cell terminal 2 input | | | | CT1 | 19 | Cell terminal 1 input | | | | СТО | 20 | Cell terminal 0 input | | | | n.c. | 21 | Not connected | | | | CB18 | 22 | Secondary cell terminal 18 input High input for cell 17 balancing | | | | CB17 | 23 | Secondary cell terminal 17 input Low input for cell 17 balancing High input for cell 16 balancing | | | | CB16 | 24 | Secondary cell terminal 16 input Low input for cell 16 balancing High input for cell 15 balancing | | | | CB15 | 25 | Secondary cell terminal 15 input Low input for cell 15 balancing High input for cell 14 balancing | | | | CB14 | 26 | Secondary cell terminal 14 input Low input for cell 14 balancing High input for cell 13 balancing | | | | CB13 | 27 | Secondary cell terminal 13 input Low input for cell 13 balancing High input for cell 12 balancing | | | | CB12 | 28 | Secondary cell terminal 12 input Low input for cell 12 balancing High input for cell 11 balancing | | | | CB11 | 29 | Secondary cell terminal 11 input Low input for cell 11 balancing High input for cell 10 balancing | | | | CB10 | 30 | Secondary cell terminal 10 input Low input for cell 10 balancing High input for cell 9 balancing | | | | CB9 | 31 | Secondary cell terminal 9 input Low input for cell 9 balancing High input for cell 8 balancing | | | | CB8 | 32 | Secondary cell terminal 8 input Low input for cell 8 balancing High input for cell 7 balancing | | | | СВ7 | 33 | Secondary cell terminal 7 input Low input for cell 7 balancing High input for cell 6 balancing | | | Table 3. Pin description...continued | Symbol | Pin | Description | |-------------|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | CB6 | 34 | Secondary cell terminal 6 input Low input for cell 6 balancing High input for cell 5 balancing | | CB5 | 35 | Secondary cell terminal 5 input Low input for cell 5 balancing High input for cell 4 balancing | | CB4 | 36 | Secondary cell terminal 4 input Low input for cell 4 balancing High input for cell 3 balancing | | CB3 | 37 | Secondary cell terminal 3 input Low input for cell 3 balancing High input for cell 2 balancing | | CB2 | 38 | Secondary cell terminal 2 input Low input for cell 2 balancing High input for cell 1 balancing | | CB1 | 39 | Secondary cell terminal 1 input Low input for cell 1 balancing High input for cell 0 balancing | | CB0 | 40 | Secondary cell terminal 0 input Low input for cell 0 balancing | | VDDIO | 41 | External VDDIO supply input. | | VDDC | 42 | External VDDC supply input. | | IMON_VDDC | 43 | External NPN monitoring input. | | DRIVE_VDDC | 44 | External NPN base output. | | VSSC | 45 | VDDIO and VDDC ground reference. | | MISO | 46 | SPI slave data output to master. | | CSN_RXTXLN | 47 | SPI chip select input from master TPLRX negative input from lower node TPLTX negative output to lower node | | RXTXLP | 48 | TPLRX positive input from lower node TPLTX positive output to lower node | | MOSI_RXTXHP | 49 | SPI slave data input from master TPLRX positive input from upper node TPLTX positive output to upper node | | SCLK_RXTXHN | 50 | SPI clock input from master TPLRX negative input from upper node TPLTX negative output to upper node | | GPIO7 | 51 | Analog input AIN7 for ratiometric measurement to VAUX/VDDC Analog input AIN7 for absolute measurement General-purpose input 7 General-purpose output 7 | | GPIO6 | 52 | Analog input AIN6 for ratiometric measurement to VAUX / VDDC Analog input AIN6 for absolute measurement General-purpose input 6 General-purpose output 6 | Table 3. Pin description...continued | Symbol | Pin | Description | | |---------------|----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--| | GPIO5 | 53 | Analog input AIN5 for ratiometric measurement to VAUX/VDDC Analog input AIN5 for absolute measurement General-purpose input 5 General-purpose output 5 I2CSDA | | | GPIO4 | 54 | Analog input AIN4 for ratiometric measurement to VAUX/VDDC Analog input AIN4 for absolute measurement General-purpose input 4 General-purpose output 4 IZCSCL | | | GPIO3 | 55 | Analog input AIN3 for ratiometric measurement to VAUX/VDDC Analog input AIN3 for absolute measurement General-purpose input 3 General-purpose output 3 | | | GPIO2 | 56 | Analog input AIN2 for ratiometric measurement to VAUX/VDDC Analog input AIN2 for absolute measurement General-purpose input 2 General-purpose output 2 | | | GPIO1 | 57 | 1. Analog input AIN1 for ratiometric measurement to VAUX/VDDC 2. Analog input AIN1 for absolute measurement 3. General-purpose input 1 4. General-purpose output 1 5. Wake-up input 1 6. Alarm input | | | GPIO0 | 58 | Analog input AIN0 for ratiometric measurement to VAUX/VDDC Analog input AIN0 for absolute measurement General-purpose input 0 General-purpose output 0 Wake-up input 0 | | | AINA_ALARMOUT | 59 | Analog input AINA for absolute measurement Alarm output | | | VAUX | 60 | Supply output for external sensors. | | | VSSD | 61 | Digital ground. | | | VDDA | 62 | Internal analog supply. Should be connected to a 100 nF capacitor. Should not be used for application. | | | VSSA | 63 | Analog ground. | | | n.c. | 64 | Not connected. | | | GNDFLAG | Expad 65 | Grounded exposed pad. | | **BMI7018_PB** Product brief for 18-cell battery-cell controller IC ## 7 Revision history #### **Revision history** | Revision | Date | Description | |----------------|----------------|-----------------| | BMI7018_PB v.1 | 12 August 2024 | Initial version | ## Legal information #### **Definitions** **Draft** — A draft status on a document indicates that the content is still under internal review and subject to formal approval, which may result in modifications or additions. NXP Semiconductors does not give any representations or warranties as to the accuracy or completeness of information included in a draft version of a document and shall have no liability for the consequences of use of such information. #### **Disclaimers** Limited warranty and liability — Information in this document is believed to be accurate and reliable. However, NXP Semiconductors does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such information. NXP Semiconductors takes no responsibility for the content in this document if provided by an information source outside of NXP Semiconductors. In no event shall NXP Semiconductors be liable for any indirect, incidental, punitive, special or consequential damages (including - without limitation - lost profits, lost savings, business interruption, costs related to the removal or replacement of any products or rework charges) whether or not such damages are based on tort (including negligence), warranty, breach of contract or any other legal theory. Notwithstanding any damages that customer might incur for any reason whatsoever, NXP Semiconductors' aggregate and cumulative liability towards customer for the products described herein shall be limited in accordance with the Terms and conditions of commercial sale of NXP Semiconductors. Right to make changes — NXP Semiconductors reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof. **Applications** — Applications that are described herein for any of these products are for illustrative purposes only. NXP Semiconductors makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification. Customers are responsible for the design and operation of their applications and products using NXP Semiconductors products, and NXP Semiconductors accepts no liability for any assistance with applications or customer product design. It is customer's sole responsibility to determine whether the NXP Semiconductors product is suitable and fit for the customer's applications and products planned, as well as for the planned application and use of customer's third party customer(s). Customers should provide appropriate design and operating safeguards to minimize the risks associated with their applications and products. NXP Semiconductors does not accept any liability related to any default, damage, costs or problem which is based on any weakness or default in the customer's applications or products, or the application or use by customer's third party customer(s). Customer is responsible for doing all necessary testing for the customer's applications and products using NXP Semiconductors products in order to avoid a default of the applications and the products or of the application or use by customer's third party customer(s). NXP does not accept any liability in this respect. Limiting values — Stress above one or more limiting values (as defined in the Absolute Maximum Ratings System of IEC 60134) will cause permanent damage to the device. Limiting values are stress ratings only and (proper) operation of the device at these or any other conditions above those given in the Recommended operating conditions section (if present) or the Characteristics sections of this document is not warranted. Constant or repeated exposure to limiting values will permanently and irreversibly affect the quality and reliability of the device. Terms and conditions of commercial sale — NXP Semiconductors products are sold subject to the general terms and conditions of commercial sale, as published at https://www.nxp.com/profile/terms, unless otherwise agreed in a valid written individual agreement. In case an individual agreement is concluded only the terms and conditions of the respective agreement shall apply. NXP Semiconductors hereby expressly objects to applying the customer's general terms and conditions with regard to the purchase of NXP Semiconductors products by customer. **No offer to sell or license** — Nothing in this document may be interpreted or construed as an offer to sell products that is open for acceptance or the grant, conveyance or implication of any license under any copyrights, patents or other industrial or intellectual property rights. **Quick reference data** — The Quick reference data is an extract of the product data given in the Limiting values and Characteristics sections of this document, and as such is not complete, exhaustive or legally binding. **Export control** — This document as well as the item(s) described herein may be subject to export control regulations. Export might require a prior authorization from competent authorities. **HTML publications** — An HTML version, if available, of this document is provided as a courtesy. Definitive information is contained in the applicable document in PDF format. If there is a discrepancy between the HTML document and the PDF document, the PDF document has priority. **Translations** — A non-English (translated) version of a document, including the legal information in that document, is for reference only. The English version shall prevail in case of any discrepancy between the translated and English versions. Security — Customer understands that all NXP products may be subject to unidentified vulnerabilities or may support established security standards or specifications with known limitations. Customer is responsible for the design and operation of its applications and products throughout their lifecycles to reduce the effect of these vulnerabilities on customer's applications and products. Customer's responsibility also extends to other open and/or proprietary technologies supported by NXP products for use in customer's applications. NXP accepts no liability for any vulnerability. Customer should regularly check security updates from NXP and follow up appropriately. Customer shall select products with security features that best meet rules, regulations, and standards of the intended application and make the ultimate design decisions regarding its products and is solely responsible for compliance with all legal, regulatory, and security related requirements concerning its products, regardless of any information or support that may be provided by NXP. NXP has a Product Security Incident Response Team (PSIRT) (reachable at PSIRT@nxp.com) that manages the investigation, reporting, and solution release to security vulnerabilities of NXP products. Suitability for use in industrial applications (functional safety) — This NXP product has been qualified for use in industrial applications. It has been developed in accordance with IEC 61508, and has been SIL-classified accordingly. If this product is used by customer in the development of, or for incorporation into, products or services (a) used in safety critical applications or (b) in which failure could lead to death, personal injury, or severe physical or environmental damage (such products and services hereinafter referred to as "Critical Applications"), then customer makes the ultimate design decisions regarding its products and is solely responsible for compliance with all legal, regulatory, safety, and security related requirements concerning its products, regardless of any information or support that may be provided by NXP. As such, customer assumes all risk related to use of any products in Critical Applications and NXP and its suppliers shall not be liable for any such use by customer. Accordingly, customer will indemnify and hold NXP harmless from any claims, liabilities, damages and associated costs and expenses (including attorneys' fees) that NXP may incur related to customer's incorporation of any product in a Critical Application. $\ensuremath{\mathsf{NXP}}\xspace \ensuremath{\mathsf{B.V.}}\xspace - \ensuremath{\mathsf{NXP}}\xspace \ensuremath{\mathsf{B.V.}}\xspace$ is not an operating company and it does not distribute or sell products. BMI7018_PB NXP — wordmark and logo are trademarks of NXP B.V. #### **Trademarks** Notice: All referenced brands, product names, service names, and trademarks are the property of their respective owners. ### **NXP Semiconductors** **BMI7018_PB** ## Product brief for 18-cell battery-cell controller IC ### **Tables** | Tab. 1. | Ordering information4 | Tab. 3. | Pin description6 | |---------|-----------------------|---------|------------------| | Tab. 2. | Part numbers4 | | | **BMI7018_PB** | Figures | | | | | |---------|-------------------------------------|---------|--------|---| | Fig. 1. | Simplified internal block diagram 5 | Fig. 2. | Pinout | 6 | ### **Contents** | 1 | General description | 1 | |-----|-----------------------|---| | 2 | Features and benefits | | | 3 | Applications | | | 3.1 | Industrial | 3 | | 4 | Ordering information | 4 | | 4.1 | Ordering options | | | 5 | Block diagram | | | 6 | Pinning information | | | 6.1 | Pinout diagram | 6 | | 6.2 | Pin description | | | 7 | Revision history | | | | Legal information | | Please be aware that important notices concerning this document and the product(s) described herein, have been included in section 'Legal information'. Document feedback