

Power management IC for i.MX 91 Rev. 1.0 — 14 August 2024

Objective short data sheet

1 General description

The PF9453 is a single chip Power Management IC (PMIC) specifically designed for the i.MX 91 processor. It provides power supply solutions for IoT (Internet of Things), smart appliance, and portable applications where size and efficiency are critical.

The device provides four high efficiency step-down regulators, three LDOs in QFN package or two LDOs for WLCSP package, one 400 mA load switch and a 32.768 kHz crystal oscillator driver. One buck regulator supports dynamic voltage scaling (DVS) along with programmable ramping up and down time. This device is characterized across -40 °C to 105 °C ambient temperature range for the HVQFN40 package or -40 °C to 85 °C ambient temperature range for WLCSP36 package, making it a good option for the industrial, extended industrial, and consumer markets. The four step-down regulators are designed to provide power for the i.MX 91 processor and the associated DRAM memory. One always-on LDO is for Secure Non-Volatile Storage (SNVS) core power supply, remaining LDOs are purposed to supply power to processor and peripheral devices. One 400 mA load switch supplies 3.3 V power to SD card, which has an internal discharge resistor, used to discharge the electric charge stored in the output when the equipment is turned off, for safety reasons.

The PF9453 is offered in two packages: 40-pin HVQFN package, 5 mm x 5 mm, 0.4 mm pitch, and 36-bump wafer-level CSP package, 2.48 mm x 2.48 mm, 0.4 mm pitch.

2 Features and benefits

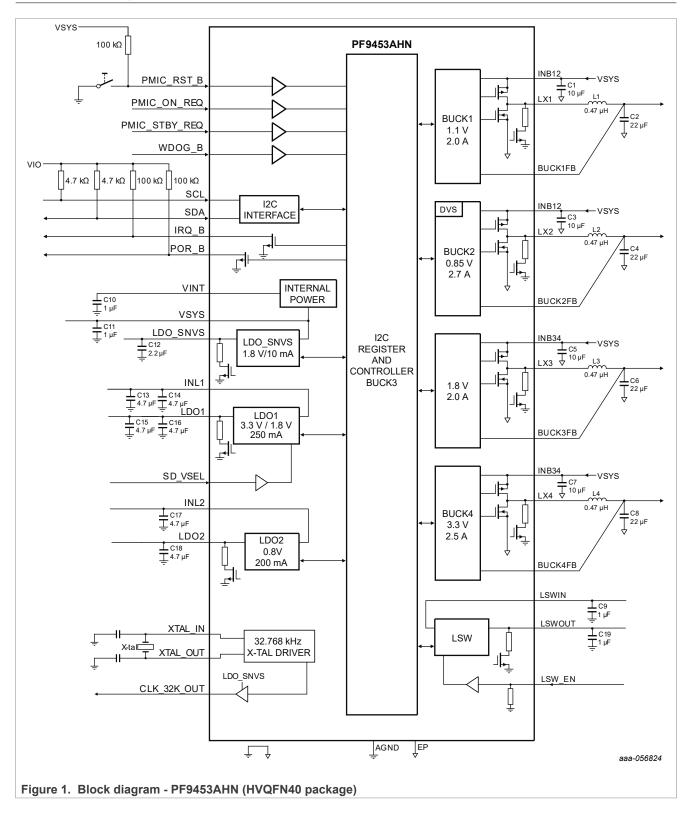
- Four buck regulators
 - BUCK1: 0.6 V to 3.775 V, 25 mV step, 2000 mA
 - BUCK2: 0.6 V to 2.1875 V, 12.5 mV step, 2700 mA (QFN) / 2000 mA (WLCSP)
 - BUCK3: 0.6 V to 3.775 V, 25 mV step, 2000 mA
 - BUCK4: 0.6 V to 3.775 V, 25 mV step, 2500 mA
 - Dynamic Voltage Scaling on BUCK2
 - Monitor fault condition
- Linear regulators
 - LDO_SNVS, always-on, 1.2 V to 3.4 V in QFN or 0.8 V to 3.0 V in WLCSP with 25 mV step, 10 mA
 - LDO1, 0.8 V to 3.3 V with 25 mV step, 250 mA, voltage selection through SD_VSEL pin
 - LDO2 (QFN only), 0.5 V to 1.95 V with 25 mV step, 200 mA
- One 400 mA load switch with a built-in active discharge resistor and GPIO/I²C control, multiplexed with DBUS debounce filter
- 32.768 kHz crystal oscillator driver and buffer output
- Power control IO
 - Power ON/OFF control
 - Standby/Run mode control
 - Watchdog reset input
- Flexible power ON/OFF sequence, One Time Programmable (OTP) device configuration
- Built-in active discharge resistor
- Fm+ 1 MHz I²C Interface
- ESD protection
 - Human Body Model (HBM) : ± 2000 V
 - Charged Device Model (CDM) : ± 500 V
- Available in two packages
 - HVQFN40: 40-pins, 5 mm x 5 mm, 0.4 mm pitch
 - WLCSP36: 36 bumps in 6x6 array, 2.48 mm x 2.48 mm, 0.4 mm pitch

PF9453_SDS

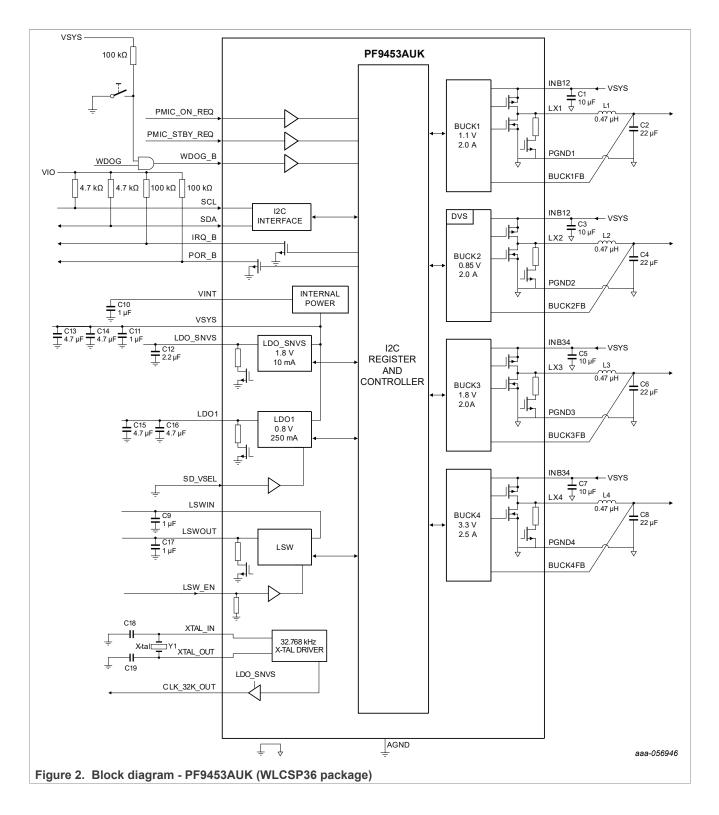
3 Applications

- IoT Devices
- White goods appliances
- Industrial application
- Portable devices

4 Ordering information

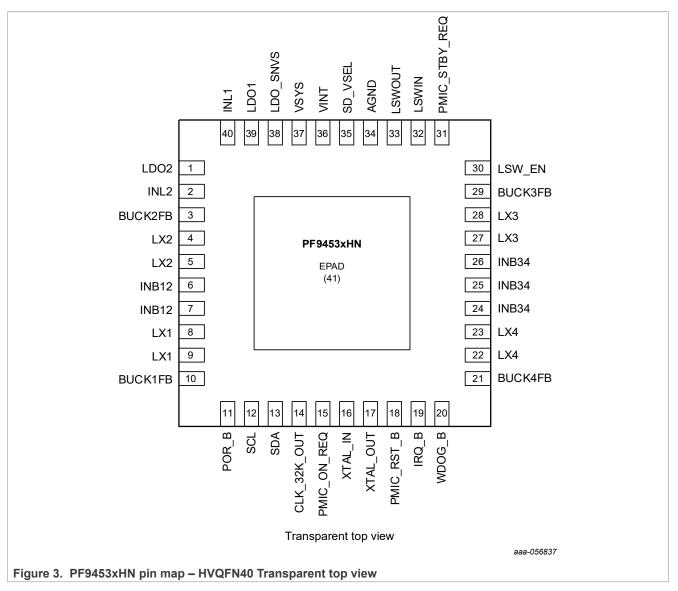

Table 1.	Orderina	information
14010 11	0.409	

Part number Orderable part number Topside marking Ambient temperature			Ambient temperature	Package			
		Name	Description	Version			
PF9453AHN	PF9453AHN		-40 °C to +105 °C	HVQFN40	40-pin QFN, 5.0 mm x 5.0 mm with exposed pad, 0.4 mm pitch	SOT2231-1	
PF9453AUK	PF9453AUK		-40 °C to +85 °C	WLCSP36	Wafer Level Chip Scale Package; 36 bumps; 2.48 mm x 2.48 mm x 0.53 mm body (backside coating included), 0.4 mm pitch	SOT1780-14	
PF9453BUK	PF9453BUK		-40 °C to +85 °C	WLCSP36	Wafer Level Chip Scale Package; 36 bumps; 2.48 mm x 2.48 mm x 0.53 mm body (backside coating included), 0.4 mm pitch	SOT1780-14	


Details of the OTP programming for each device can be found in <u>Table 5</u>.

Power management IC for i.MX 91

5 Block diagram



Power management IC for i.MX 91

6 Pinning information

6.1 Pinning

Power management IC for i.MX 91

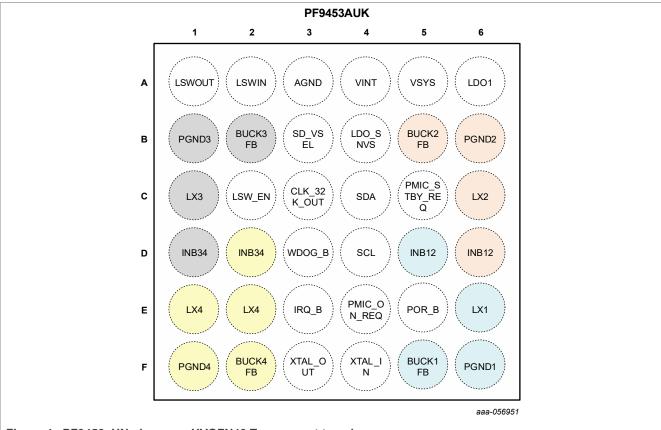


Figure 4. PF9453xHN pin map – HVQFN40 Transparent top view

6.2 Pin description

Table 2.	Pin	description -	PF9453xHN
----------	-----	---------------	-----------

Symbol	Pin	Туре	Description
LDO2	1	Р	LDO2 output, bypass with a 4.7 µF to Ground
INL2	2	Р	LDO2 input pin, bypass with a 4.7 µF to Ground
BUCK2FB	3	AI	Buck 2 feedback pin
LX2	4, 5	Р	Buck 2 switching node
INB12	6, 7	Р	Buck 1 and Buck 2 input pins, bypass with 2 x 10 μF
LX1	8, 9	Р	Buck 1 switching node
BUCK1FB	10	AI	Buck 1 feedback pin
POR_B	11	DO	Power On reset output pin. Open drain output requiring external pull up resistor
SCL	12	DI	I ² C serial clock pin
SDA	13	DIO	I ² C serial data pin
CLK_32K_OUT	14	DO	32.768kHz clock CMOS output with LDO_SNVS power rail
PMIC_ON_REQ	15	DI	PMIC ON input from application processor. When it is asserted high, the device starts
			power on sequence.

Power management IC for i.MX 91

Symbol	Pin	Туре	Description
XTAL_IN	16	AI	32.768kHz crystal oscillator input, tie to GND if XTAL is not used
XTAL_OUT	17	AO	32.768kHz crystal oscillator output, leave float if XTAL is not used
PMIC_RST_B	18	DI	PMIC reset input pin. Once it is asserted low, PMIC performs cold reset.
IRQ_B	19	DO	PMIC interrupt pin, open drain output requiring external pull up resistor
WDOG_B	20	DI	Watchdog reset input from application processor
BUCK4FB	21	AI	Buck 4 feedback pin
LX4	22, 23	Р	Buck 4 switching node
INB34	24, 25, 26	Р	Buck 3 and Buck 4 input pins, bypass with 2 x 10 μ F
LX3	27, 28	Р	Buck 3 switching node
BUCK3FB	29	AI	Buck 3 feedback pin
LSW_EN	30	DI	Load switch enable input pin. It has internal 1.5Mohm pull down resistor.
PMIC_STBY_ REQ	31	DI	Standby mode input from application processor. When it is asserted high, device enters STANDBY mode.
LSWIN	32	Р	Load Switch input pin. Bypass with a 1 µF to Ground
LSWOUT	33	Р	Load Switch output pin. Bypass with a 1 µF to Ground
AGND	34	Р	Analog ground pin. It should be connected to ground plane through Via. Do not short to EPAD directly on top layer.
SD_VSEL	35	DI	LDO1 voltage selection input pin. LDO1 output is 3.3V when it is driven low and 1.8V when driven high.
VINT	36	Р	Internal power supply output, bypass with a 1 μ F to GND
VSYS	37	Р	Internal power input. Bypass with a 1 µF to Ground
LDO_SNVS	38	Р	LDO_SNVS output pin, bypass with a 2.2 µF to Ground
LDO1	39	Р	LDO1 output. Bypass with 2 x 4.7 µF to Ground
INL1	40	Р	LDO1 input pin, bypass with 2 x 4.7 µF to Ground
EPAD	41	Р	Exposed pad, connect to ground.
L			1

Table 2. Pin description – PF9453xHN...continued

Table 3. Pin description - PF9453AUK

Symbol	Pin	Туре	Description
LDO1	A6	Р	LDO1 output. Bypass with 2 x 4.7 µF to Ground.
LDO_SNVS	B4	Р	LDO_SNVS output pin, bypass with a 2.2 µF to Ground.
POR_B	E5	DO	Power On reset output pin. Open drain output requiring external pull up resistor.
IRQ_B	E3	DO	PMIC interrupt pin, open drain output requiring external pull up resistor
VSYS	A5	Р	Internal power input. Bypass with a 1 µF to Ground
XTAL_IN	F4	AI	32.768kHz crystal oscillator input, tie to GND if XTAL is not used

Dim	Tune	Description
		Description
F3	AO	32.768kHz crystal oscillator output, leave float if XTAL is not used
C3	DO	32.768kHz clock CMOS output with LDO_SNVS power rail.
F2	AI	Buck 4 feedback pin
F1	Р	Buck 4 Power ground
E1, E2	Р	Buck 4 switching node
D1, D2	Р	Buck 3 and Buck 4 input pins, bypass with 2 x 10 μF
C1	Р	Buck 3 switching node
B2	AI	Buck 3 feedback pin
B1	Р	Buck 3 Power ground
A2	Ρ	Load Switch input pin. Bypass with a 1 μ F to Ground.
A1	Р	Load Switch output pin. Bypass with a 1 μ F to Ground.
D4	DI	I ² C serial clock pin
C4	DIO	I ² C serial data pin
B5	AI	Buck 2 feedback pin
C6	Р	Buck 2 switching node
B6	Р	Buck 2 Power ground
D5, D6	Р	Buck 1 and Buck 2 input pins, bypass with 2 x 10 μ F
E6	Р	Buck 1 switching node
F5	AI	Buck 1 feedback pin
F6	Р	Buck 1 Power ground
D3	DI	Watchdog reset input from application processor.
C5	DI	Standby mode input from application processor. When it is asserted high, device enters STANDBY mode.
E4	DI	PMIC ON input from application processor. When it is asserted high, the device starts power on sequence.
A4	Р	Internal power supply output, bypass with a 1 μ F to GND.
В3	DI	LDO1 voltage selection input pin. LDO1 outputs voltage set by L1_OUT_ L[6:0] when it is driven low and L1_OUT_H[6:0] when driven high.
C2	DI	Load switch enable input pin. It has internal 1.5Mohm pull down resistor.
		Analog ground pin. It should be connected to ground plane through Via.
	F2 F1 E1, E2 D1, D2 C1 B2 B1 A2 A1 D4 C4 B5 C6 B6 D5, D6 E6 F5 F6 D3 C5 E4 A4	F3 AO C3 DO F2 AI F1 P E1, E2 P D1, D2 P C1 P B2 AI B1 P A2 P D4 DI C4 DIO B5 AI C6 P B6 P D5, D6 P E6 P D3 DI C5 DI E4 DI A4 P B3 DI C2 DI

Table 3. Pin description - PF9453AUK...continued

7 Functional description

7.1 Functional diagram

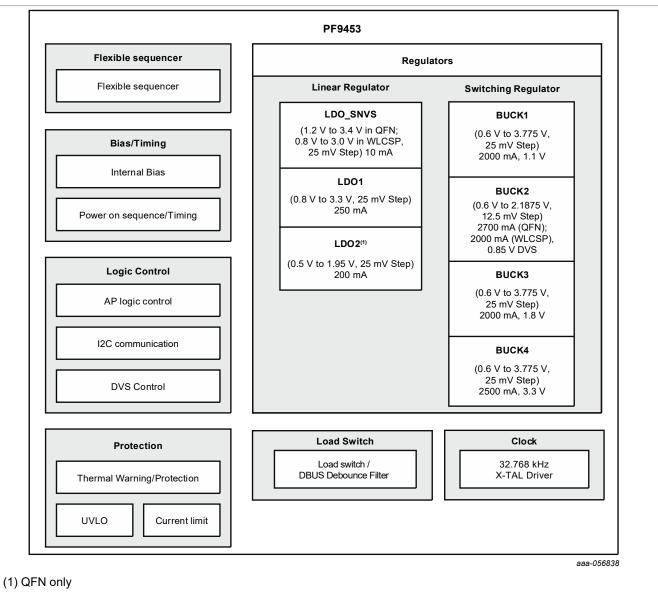


Figure 5. PF9453xHN functional block diagram

7.2 PF9453 OTP version

The PF9453 can be configured to each regulator default voltage and start-up sequence from the internal OTP configuration. <u>Table 4</u> shows power up sequence.

Table	4	. P	ower	up	sequence	
						-

Regulator	PF9453AHN	PF9453AUK	PF9453BUK
LDO_SNVS	1.8V, always-on	1.8V, always-on	1.8V, always-on
BUCK1	T4, 1.1 V	T4, 1.1V	T4, 1.1V

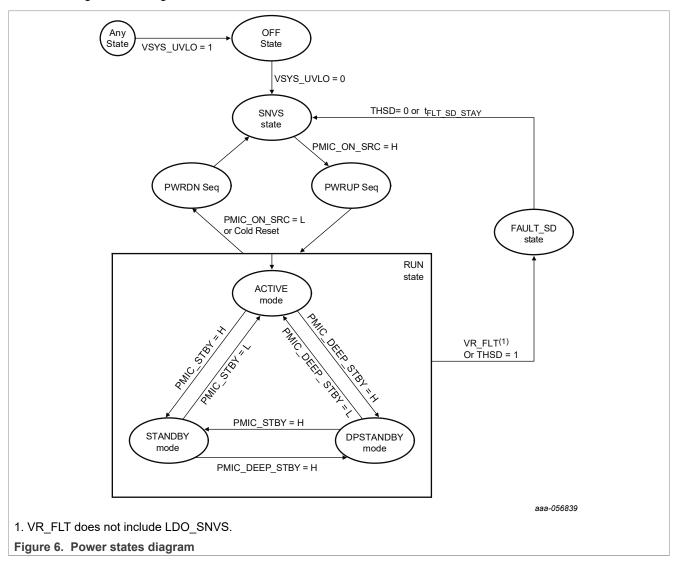
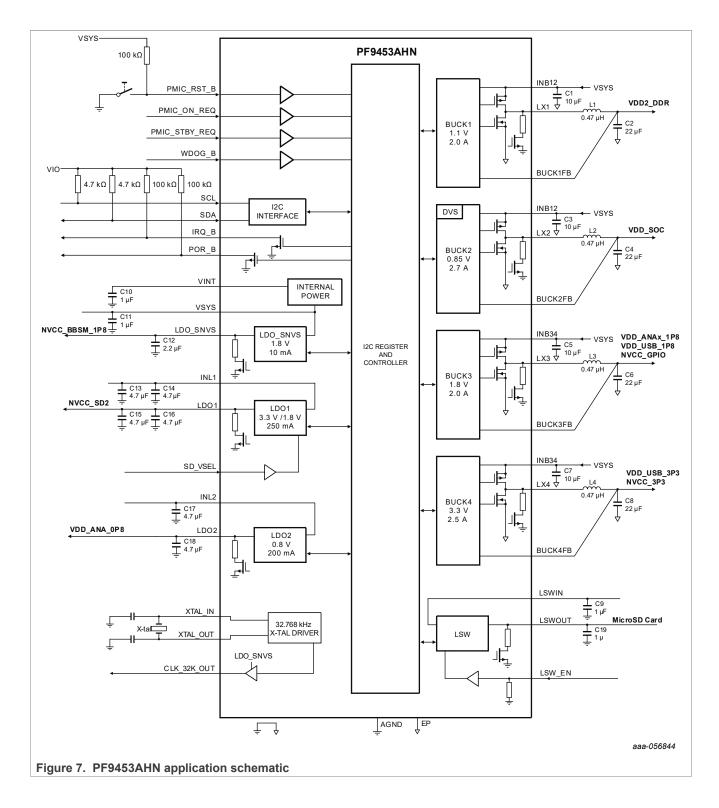

Table 4. Power up sequencecontinuea					
Regulator	PF9453AHN	PF9453AUK	PF9453BUK		
BUCK2	T1, 0.85 V	T1, 0.85V	T1, 0.85V		
BUCK3	T3, 1.8 V	T3, 1.8V	T3, 1.8V		
BUCK4	T5, 3.3 V	T5, 3.3V	T5, 3.3V		
LDO1	T6, 3.3 V / 1.8 V	T2, 0.8 V	T2, 0.8 V		
LDO2 ^[1]	T2, 0.8V	n/a	n/a		
Load Switch	Т5	-	Т5		

Table 4. Power up sequence...continued

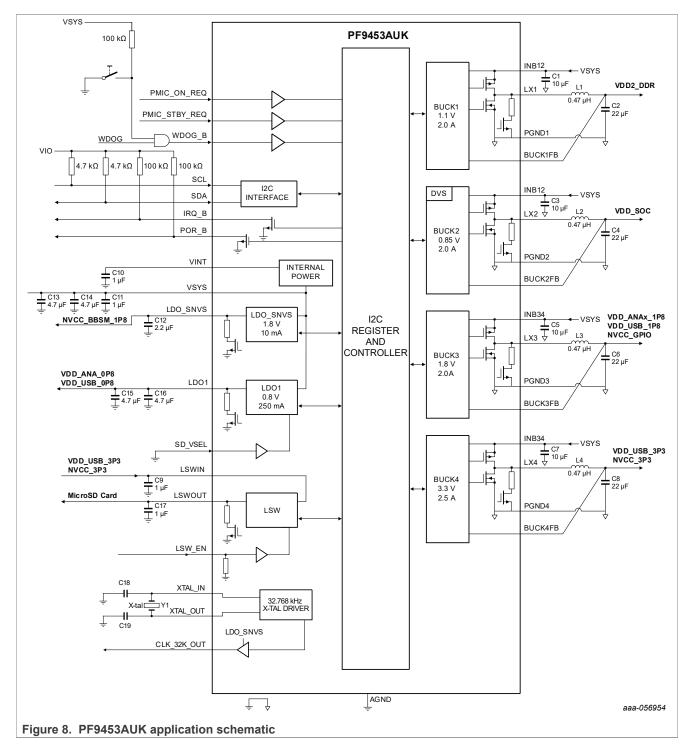
[1] Not available in WLCSP

7.3 Power states

PF9453 has six power states: OFF, SNVS, RUN, PWRDN, PWRUP and FAULT_SD. Figure 6 shows the state transition diagram showing the conditions to enter and exit each state.

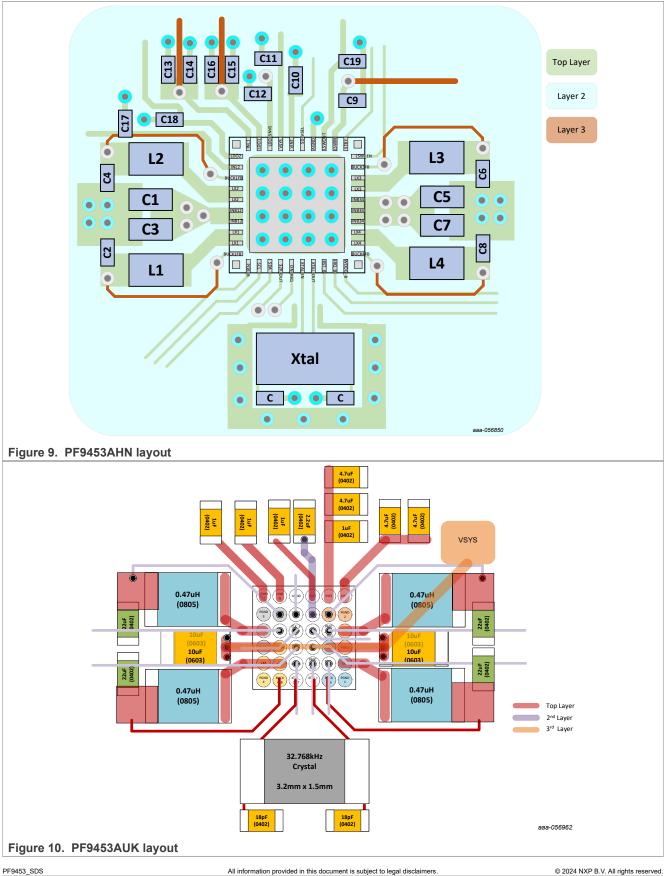


8 Application design-in information


8.1 Reference schematic

8.2 PF9453 Reference schematic

PF9453 (HVQFN40 and WLCSP36 package) reference schematics with i.MX 91 processor are illustrated in Figure 7 and Figure 8.



Power management IC for i.MX 91

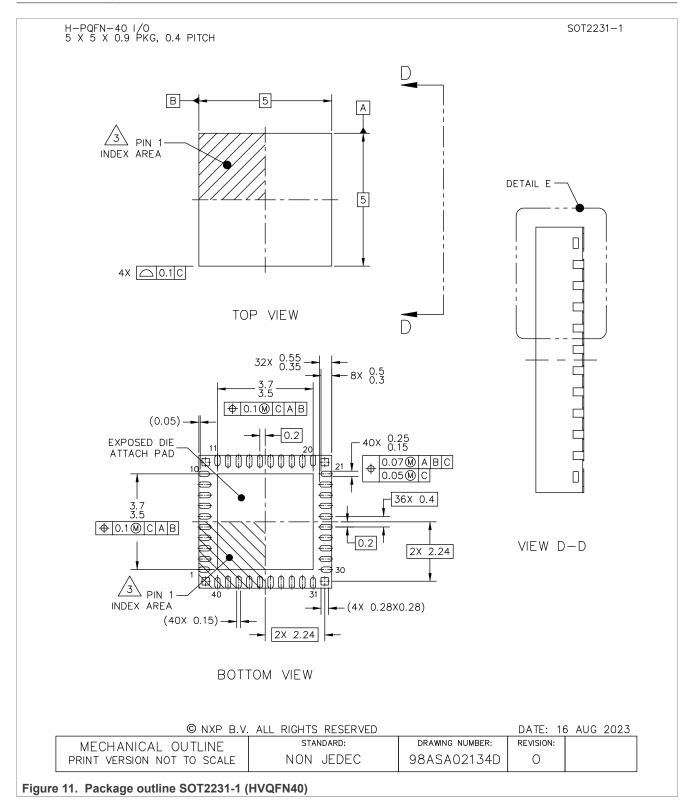
8.3 Layout guide

Figure 9 and Figure 10 show layout guidance.

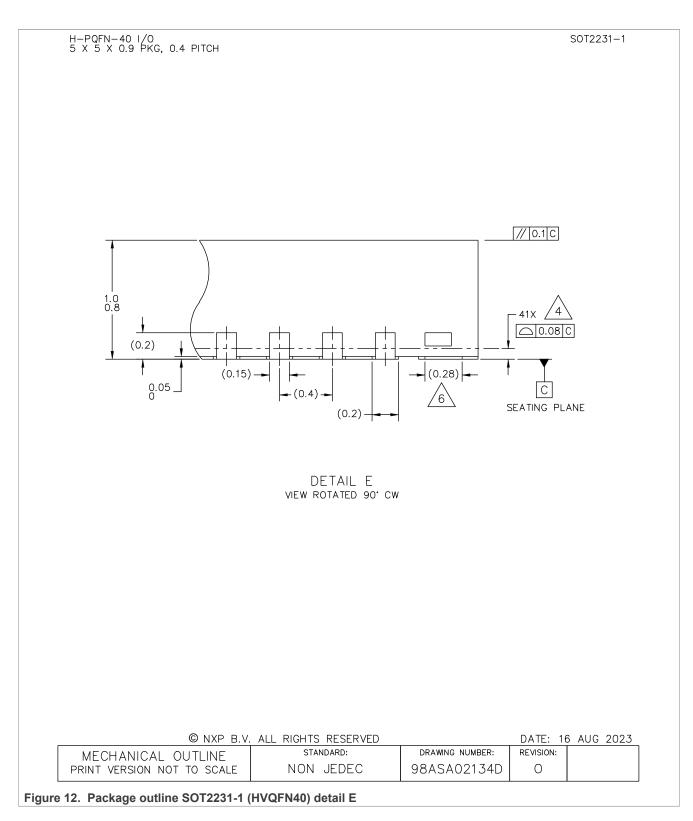
PF9453 QFN/WLCSP OTP version 9

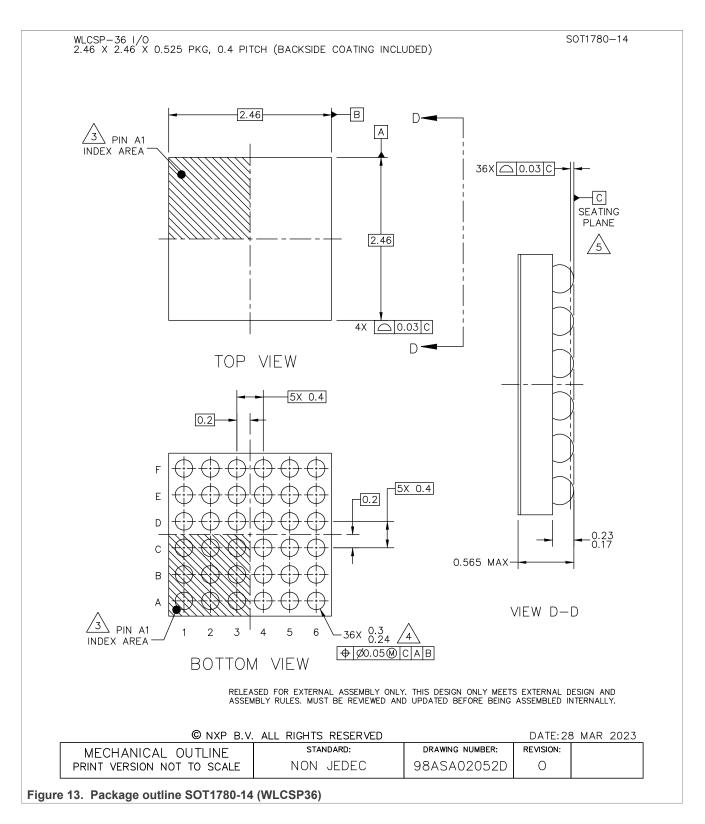
The PF9453 can be configured to each regulator default voltage and start-up sequence from the internal OTP configuration. <u>Table 5</u> shows each OTP configuration for all devices.

Register	Pre-programmed OTP configuration					
	PF9453AHN	PF9453AUK	PF9453BUK			
OTP_LDO_SNVS	1.80 V	1.80 V	1.80 V			
OTP_BUCK1_VOUT	1.10 V	1.10 V	1.10 V			
OTP_BUCK1_SEQ	T4	T4	T4			
OTP_BUCK2_VOUT	0.85 V	0.85 V	0.85 V			
OTP_BUCK2_SEQ	T1	T1	T1			
OTP_BUCK2_VOUT_MAX	1.3 V	0.90 V	0.90 V			
OTP_BUCK2_VOUT_MIN	0.7 V	0.6125 V	0.6125 V			
OTP_BUCK2_DVS_SPEED	25 mV / 2 μs	25 mV / 2 μs	25 mV / 2 μs			
OTP_BUCK3_VOUT	1.80 V	1.80 V	1.80 V			
OTP_BUCK3_SEQ	Т3	Т3	Т3			
OTP_BUCK4_VOUT	3.30 V	3.30 V	3.30 V			
OTP_BUCK4_SEQ	Т5	T5	Т5			
OTP_LDO1_VOUT_L	3.30 V	0.80 V	0.80 V			
OTP_LDO1_VOUT_H	1.80 V	0.80 V	0.80 V			
OTP_LDO1_SEQ	Тб	T2	T2			
OTP_LDO2_VOUT	0.80 V	n/a	n/a			
OTP_LDO2_SEQ	T2	n/a	n/a			
LOAD SWITCH / DBUS Debounce Filter Configuration, OTP_LSW_CONFIG	LOAD SWITCH	DBUS Debounce Filter	LOAD SWITCH			
DBUS Filter Debounce Time, OTP_DBUS_DEB	-	5 ms	-			
Load Switch SEQ, OTP_LSW_SEQ	Т5	-	T5			
PU CONFIG, OTP_PSQ_TON_STEP	2 ms	2 ms	2 ms			
PU CONFIG, OTP_PSQ_TOFF_STEP	8 ms	8 ms	8 ms			
BUCK1 Force PWM mode, OTP_BUCK1_ FPWM	Auto	Auto	Auto			
BUCK2 Force PWM mode, OTP_BUCK2_ FPWM	Auto	Auto	Auto			
BUCK3 Force PWM mode, OTP_BUCK3_ FPWM	Auto	Auto	Auto			
BUCK4 Force PWM mode, OTP_BUCK4_ FPWM	Auto	Auto	Auto			
BUCK1 Active Discharge, OTP_BUCK1_AD	Enabled	Enabled	Enabled			
BUCK2 Active Discharge, OTP_BUCK2_AD	Enabled	Enabled	Enabled			

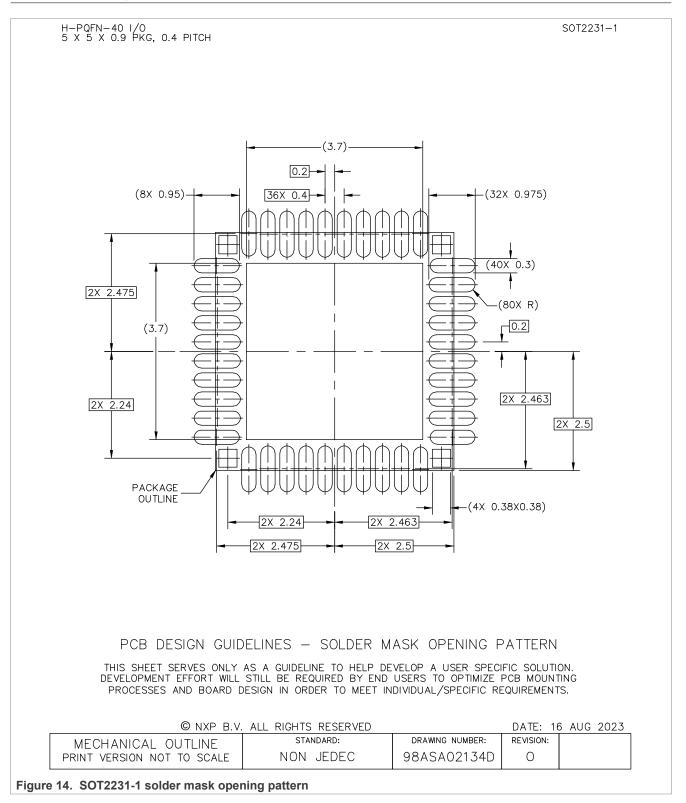

PF9453_SDS

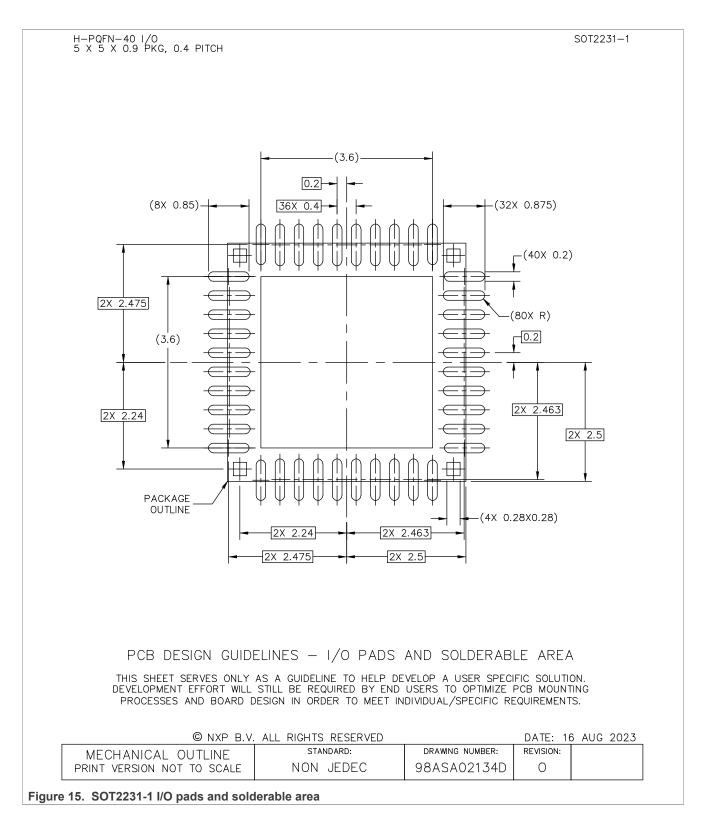
Objective short data sheet

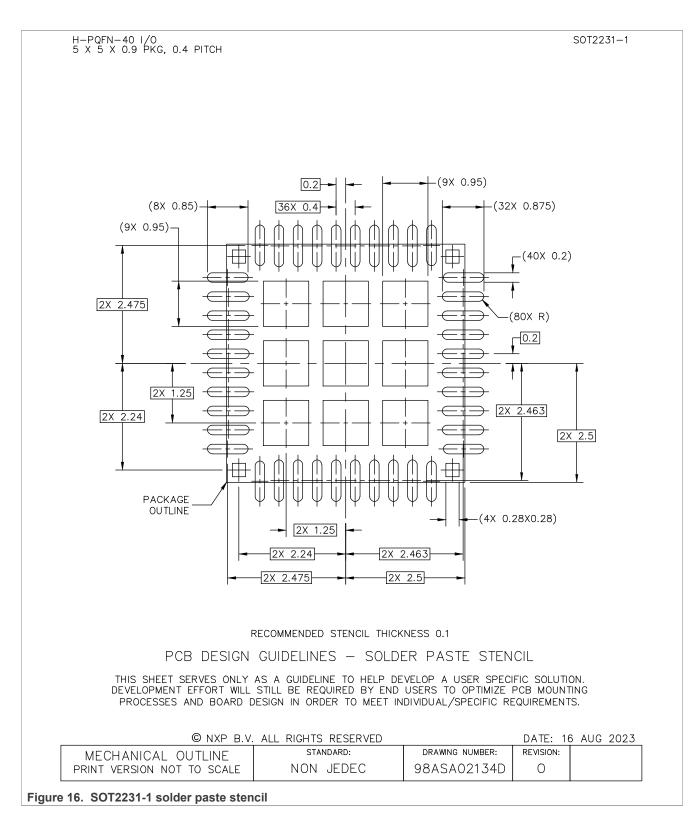

Table 5.	OTP	configurationcontinued
----------	-----	------------------------


Register	Pre-programmed OTP configuration		
	PF9453AHN	PF9453AUK	PF9453BUK
BUCK3 Active Discharge, OTP_BUCK3_AD	Enabled	Enabled	Enabled
BUCK4 Active Discharge, OTP_BUCK4_AD	Enabled	Enabled	Enabled
LDO_SNVS Active Discharge, OTP_LDO_SNVS_AD	Enabled	Enabled	Enabled
LDO1 Active Discharge, OTP_LDO1_AD	Enabled	Enabled	Enabled
LDO2 Active Discharge, OTP_LDO2_AD	Enabled	n/a	n/a
Load Switch Active Discharge, OTP_LSW_AD	Enabled	Enabled	Enabled
OTP_VSYS_UVLO	2.85 V	2.85 V	2.85 V
Cold Reset Duration, OTP_TRESTART	250ms	250 ms	250ms

10 Package outline



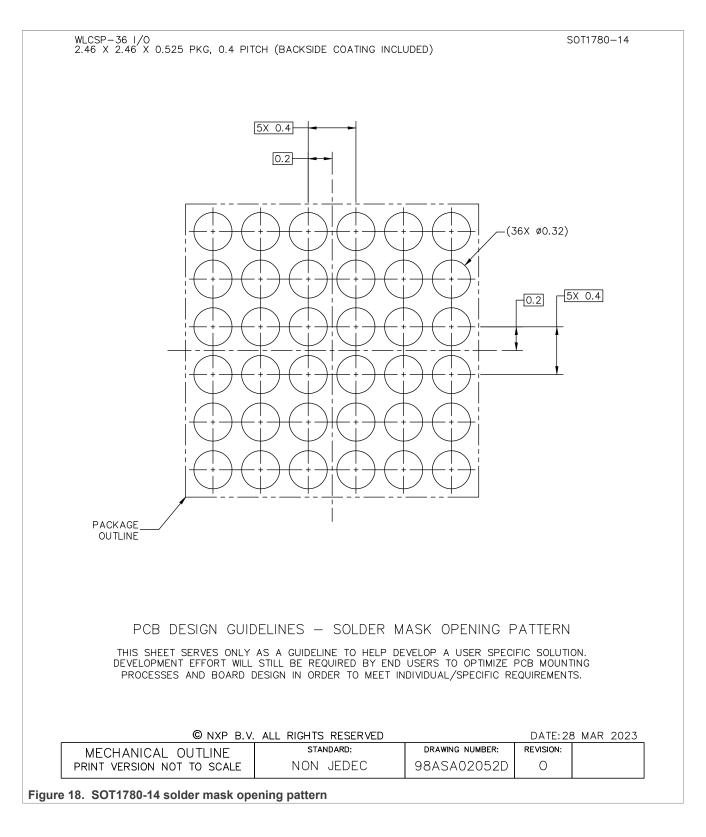

Power management IC for i.MX 91



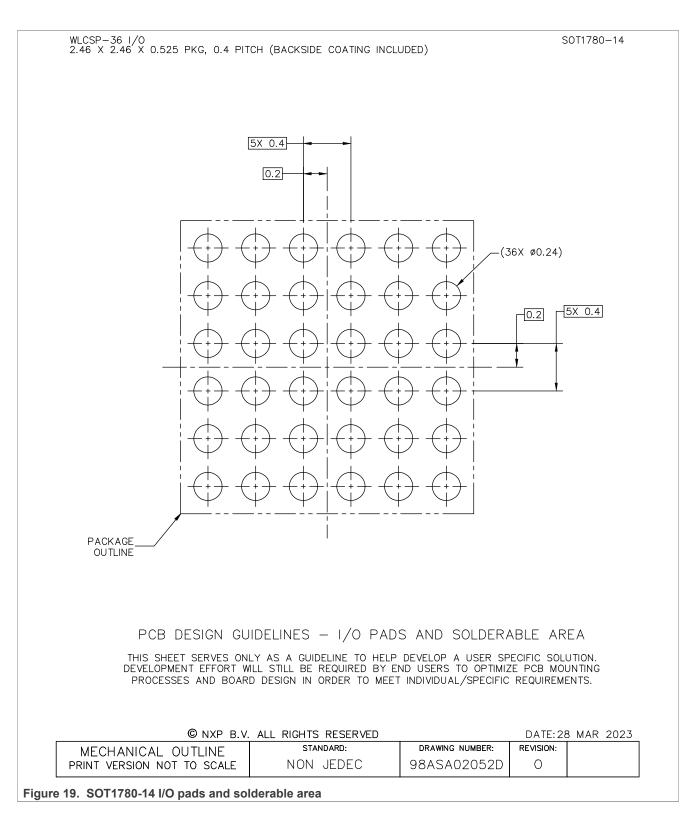
11 Soldering

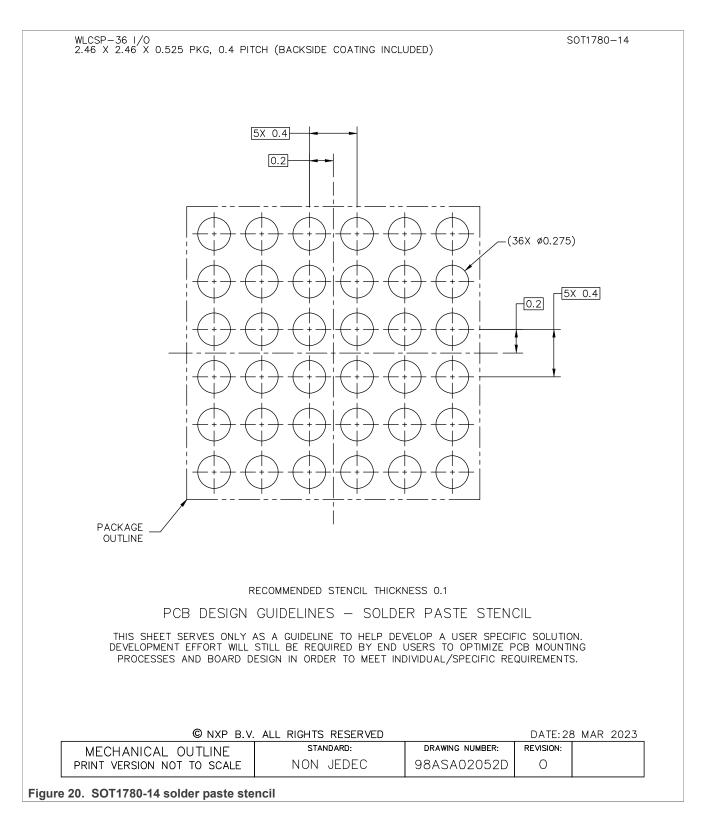
PF9453_SDS Objective short data sheet

PF9453_SDS Objective short data sheet


NXP Semiconductors

PF9453


H-PQFN-40 I/O 5 X 5 X 0.9 PKG, 0.4 PITCH				SOT2231-1
NOTES:				
1. ALL DIMENSIONS ARE IN MILLI	METERS.			
2. DIMENSIONING AND TOLERANC				
$\frac{3}{3}$ PIN 1 FEATURE SHAPE, SIZE	AND LOCATION MAY VARY.			
4. COPLANARITY APPLIES TO LE	ADS AND DIE ATTACH PAD.			
5. MIN. METAL GAP FOR LEAD T	O EXPOSED PAD SHALL BE	0.25 MM.		
6. ANCHORING PADS.				
			DATE: 16	
© NXP B.V. MECHANICAL OUTLINE	ALL RIGHTS RESERVED STANDARD:	DRAWING NUMBER:	DATE: 16 REVISION:	5 AUG 2023


PF9453_SDS Objective short data sheet

Power management IC for i.MX 91

Power management IC for i.MX 91

PF9453_SDS Objective short data sheet

WLCSP-36 1/0 2.46 X 2.46 X 0.525 PKG, 0.4 PI	TCH (BACKSIDE COATING INCL	UDED)		SOT1780-14	
NOTES:					
1. ALL DIMENSIONS IN MILLIME	TERS.				
2. DIMENSIONING AND TOLERAN	NCING PER ASME Y14.5M-199	4.			
3. PIN A1 FEATURE SHAPE, SI	ZE AND LOCATION MAY VARY				
4. MAXIMUM SOLDER BALL DIA	METER MEASURED PARALLEL	TO DATUM C.			
$\overline{\Lambda}$	ANE, IS DETERMINED BY THE		F THE SOL	DER BALLS.	
	K SIDE COATING THICKNESS C				
MECHANICAL OUTLINE	ALL RIGHTS RESERVED STANDARD:	DRAWING NUMBER:	DATE:20 REVISION:	8 MAR 2023	
PRINT VERSION NOT TO SCALE	NON JEDEC	98ASA02052D	0		
Figure 21. SOT1780-14 notes					
v					

PF9453_SDS Objective short data sheet

12 Revision history

Table 6. Revision hi	story
----------------------	-------

Document ID	Release date	Description
PF9453_SDS v.1.0	14 August 2024	Initial version

Legal information

Data sheet status

Document status ^{[1][2]}	Product status ^[3]	Definition
Objective [short] data sheet	Development	This document contains data from the objective specification for product development.
Preliminary [short] data sheet	Qualification	This document contains data from the preliminary specification.
Product [short] data sheet	Production	This document contains the product specification.

[1] Please consult the most recently issued document before initiating or completing a design.

[2] The term 'short data sheet' is explained in section "Definitions".

[3] The product status of device(s) described in this document may have changed since this document was published and may differ in case of multiple devices. The latest product status information is available on the Internet at URL <u>https://www.nxp.com</u>.

Definitions

Draft — A draft status on a document indicates that the content is still under internal review and subject to formal approval, which may result in modifications or additions. NXP Semiconductors does not give any representations or warranties as to the accuracy or completeness of information included in a draft version of a document and shall have no liability for the consequences of use of such information.

Short data sheet — A short data sheet is an extract from a full data sheet with the same product type number(s) and title. A short data sheet is intended for quick reference only and should not be relied upon to contain detailed and full information. For detailed and full information see the relevant full data sheet, which is available on request via the local NXP Semiconductors sales office. In case of any inconsistency or conflict with the short data sheet, the full data sheet shall prevail.

Product specification — The information and data provided in a Product data sheet shall define the specification of the product as agreed between NXP Semiconductors and its customer, unless NXP Semiconductors and customer have explicitly agreed otherwise in writing. In no event however, shall an agreement be valid in which the NXP Semiconductors product is deemed to offer functions and qualities beyond those described in the Product data sheet.

Disclaimers

Limited warranty and liability — Information in this document is believed to be accurate and reliable. However, NXP Semiconductors does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such information. NXP Semiconductors takes no responsibility for the content in this document if provided by an information source outside of NXP Semiconductors.

In no event shall NXP Semiconductors be liable for any indirect, incidental, punitive, special or consequential damages (including - without limitation - lost profits, lost savings, business interruption, costs related to the removal or replacement of any products or rework charges) whether or not such damages are based on tort (including negligence), warranty, breach of contract or any other legal theory.

Notwithstanding any damages that customer might incur for any reason whatsoever, NXP Semiconductors' aggregate and cumulative liability towards customer for the products described herein shall be limited in accordance with the Terms and conditions of commercial sale of NXP Semiconductors.

Right to make changes — NXP Semiconductors reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.

Suitability for use — NXP Semiconductors products are not designed, authorized or warranted to be suitable for use in life support, life-critical or safety-critical systems or equipment, nor in applications where failure or malfunction of an NXP Semiconductors product can reasonably be expected to result in personal injury, death or severe property or environmental damage. NXP Semiconductors and its suppliers accept no liability for inclusion and/or use of NXP Semiconductors products in such equipment or applications and therefore such inclusion and/or use is at the customer's own risk.

Applications — Applications that are described herein for any of these products are for illustrative purposes only. NXP Semiconductors makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

Customers are responsible for the design and operation of their applications and products using NXP Semiconductors products, and NXP Semiconductors accepts no liability for any assistance with applications or customer product design. It is customer's sole responsibility to determine whether the NXP Semiconductors product is suitable and fit for the customer's applications and products planned, as well as for the planned application and use of customer's third party customer(s). Customers should provide appropriate design and operating safeguards to minimize the risks associated with their applications and products.

NXP Semiconductors does not accept any liability related to any default, damage, costs or problem which is based on any weakness or default in the customer's applications or products, or the application or use by customer's third party customer(s). Customer is responsible for doing all necessary testing for the customer's applications and products using NXP Semiconductors products in order to avoid a default of the applications and the products or of the application or use by customer's third party customer(s). NXP does not accept any liability in this respect.

Limiting values — Stress above one or more limiting values (as defined in the Absolute Maximum Ratings System of IEC 60134) will cause permanent damage to the device. Limiting values are stress ratings only and (proper) operation of the device at these or any other conditions above those given in the Recommended operating conditions section (if present) or the Characteristics sections of this document is not warranted. Constant or repeated exposure to limiting values will permanently and irreversibly affect the quality and reliability of the device.

Terms and conditions of commercial sale — NXP Semiconductors products are sold subject to the general terms and conditions of commercial sale, as published at https://www.nxp.com/profile/terms, unless otherwise agreed in a valid written individual agreement. In case an individual agreement is concluded only the terms and conditions of the respective agreement shall apply. NXP Semiconductors hereby expressly objects to applying the customer's general terms and conditions with regard to the purchase of NXP Semiconductors products by customer.

No offer to sell or license — Nothing in this document may be interpreted or construed as an offer to sell products that is open for acceptance or the grant, conveyance or implication of any license under any copyrights, patents or other industrial or intellectual property rights.

PF9453_SDS

Power management IC for i.MX 91

Quick reference data — The Quick reference data is an extract of the product data given in the Limiting values and Characteristics sections of this document, and as such is not complete, exhaustive or legally binding.

Export control — This document as well as the item(s) described herein may be subject to export control regulations. Export might require a prior authorization from competent authorities.

Suitability for use in non-automotive qualified products — Unless this document expressly states that this specific NXP Semiconductors product is automotive qualified, the product is not suitable for automotive use. It is neither qualified nor tested in accordance with automotive testing or application requirements. NXP Semiconductors accepts no liability for inclusion and/or use of non-automotive qualified products in automotive equipment or applications.

In the event that customer uses the product for design-in and use in automotive applications to automotive specifications and standards, customer (a) shall use the product without NXP Semiconductors' warranty of the product for such automotive applications, use and specifications, and (b) whenever customer uses the product for automotive applications beyond NXP Semiconductors' specifications such use shall be solely at customer's own risk, and (c) customer fully indemnifies NXP Semiconductors for any liability, damages or failed product claims resulting from customer design and use of the product for automotive applications beyond NXP Semiconductors' standard warranty and NXP Semiconductors' product specifications.

HTML publications — An HTML version, if available, of this document is provided as a courtesy. Definitive information is contained in the applicable document in PDF format. If there is a discrepancy between the HTML document and the PDF document, the PDF document has priority.

Translations — A non-English (translated) version of a document, including the legal information in that document, is for reference only. The English version shall prevail in case of any discrepancy between the translated and English versions.

Security — Customer understands that all NXP products may be subject to unidentified vulnerabilities or may support established security standards or specifications with known limitations. Customer is responsible for the design and operation of its applications and products throughout their lifecycles to reduce the effect of these vulnerabilities on customer's applications and products. Customer's responsibility also extends to other open and/or proprietary technologies supported by NXP products for use in customer's applications. NXP accepts no liability for any vulnerability. Customer should regularly check security updates from NXP and follow up appropriately. Customer shall select products with security features that best meet rules, regulations, and standards of the intended application and make the ultimate design decisions regarding its products and is solely responsible for compliance with all legal, regulatory, and security related requirements concerning its products, regardless of any information or support that may be provided by NXP.

NXP has a Product Security Incident Response Team (PSIRT) (reachable at <u>PSIRT@nxp.com</u>) that manages the investigation, reporting, and solution release to security vulnerabilities of NXP products.

NXP B.V. — NXP B.V. is not an operating company and it does not distribute or sell products.

Trademarks

Notice: All referenced brands, product names, service names, and trademarks are the property of their respective owners.

NXP — wordmark and logo are trademarks of NXP B.V.

PF9453 SDS

Tables

Tab. 1.	Ordering information	4
Tab. 2.	Pin description – PF9453xHN	8
Tab. 3.	Pin description - PF9453AUK	9

Tab. 4.	Power up sequence11
	OTP configuration17
Tab. 6.	Revision history30

Figures

Fig. 1.	Block diagram - PF9453AHN (HVQFN40
	package)5
Fig. 2.	Block diagram - PF9453AUK (WLCSP36
	package)6
Fig. 3.	PF9453xHN pin map – HVQFN40
	Transparent top view7
Fig. 4.	PF9453xHN pin map – HVQFN40
	Transparent top view8
Fig. 5.	PF9453xHN functional block diagram11
Fig. 6.	Power states diagram 12
Fig. 7.	PF9453AHN application schematic14
Fig. 8.	PF9453AUK application schematic15
Fig. 9.	PF9453AHN layout16

Fig. 10.	PF9453AUK layout	
Fig. 11.	Package outline SOT2231-1 (HVQFN40)	.19
Fig. 12.	Package outline SOT2231-1 (HVQFN40)	
	detail E	. 20
Fig. 13.	Package outline SOT1780-14 (WLCSP36)	21
Fig. 14.	SOT2231-1 solder mask opening pattern	.22
Fig. 15.	SOT2231-1 I/O pads and solderable area	.23
Fig. 16.	SOT2231-1 solder paste stencil	.24
Fig. 17.	SOT2231-1 notes	.25
Fig. 18.	SOT1780-14 solder mask opening pattern	.26
Fig. 19.	SOT1780-14 I/O pads and solderable area	.27
Fig. 20.	SOT1780-14 solder paste stencil	. 28
Fig. 21.	SOT1780-14 notes	. 29

Contents

1	General description	1
2	Features and benefits	2
3	Applications	3
4	Ordering information	4
5	Block diagram	
6	Pinning information	
6.1	Pinning	
6.2	Pin description	
7	Functional description	
7.1	Functional diagram	
7.2	PF9453 OTP version	
7.3	Power states	12
8	Application design-in information	13
8.1	Reference schematic	
8.2	PF9453 Reference schematic	13
8.3	Layout guide	15
9	PF9453 QFN/WLCSP OTP version	17
10	Package outline	19
11	Soldering	
12	Revision history	
	Legal information	

Please be aware that important notices concerning this document and the product(s) described herein, have been included in section 'Legal information'.

© 2024 NXP B.V.

All rights reserved.

For more information, please visit: https://www.nxp.com

Document feedback Date of release: 14 August 2024 Document identifier: PF9453_SDS