
Freescale Semiconductor
Application Note

© 2013 Freescale Semiconductor, Inc. All rights reserved.

1 Introduction
The crossbar switch (XBAR), which was introduced as part
of the new generation of Freescale controllers, together with
the AND/OR/INVERT (AOI) module are implemented in
the MC56F827xx family of Digital Signal Controllers
(DSC), dedicated to motor control.

The crossbar module implements an array of M N-input
combinational muxes. All muxes share the same N inputs in
the same order, but each mux has its own independent select
field. The intended application of this module is to provide a
flexible crossbar switch function that allows any input to be
connected to any output under user control.

The motor control applications are a complex system that
utilizes many peripheries, such as the Pulse Width
Modulation module (PWM), Analog to Digital Converter
(ADC), timers, I/Os, and communication. The crossbar
module is a key element of the system’s versatility. This
application note focuses on the utilization of the XBAR
switch for the motor control applications running on
MC56F827xx DSC.

Document Number: AN4828
Rev. 0, 12/2013

Contents
1. Introduction . 1
2. Digital signal controllers MC56F827xx 2
3. DSC signal paths with the crossbar switches XBARA,

XBARB and AOI module. 2
4. Signal multiplexing with the crossbar switches, GPIO

and SIM GPS 3
5. Motor control application example with the crossbar

XBARA, GPIO and SIM GPS multiplexing 3
6. DSC multiplexing with XBAR B and AOI module . . 8
7. Application example 1 code 11
8. Acronym definitions . 23
9. References . 24

MC56F827xx DSCs Crossbar and Signal
Multiplexing on 56F827xx for Motor Control
Applications
by Libor Prokop

AN4828: MC56F827xx DSCs Crossbar and Signal Multiplexing, Rev. 0

2 Freescale Semiconductor

Digital signal controllers MC56F827xx

2 Digital signal controllers MC56F827xx
One suitable DSC for a motor control application is MC56F827xx. This is a complex device with many
features described in the device reference manual and data sheets. This application note is focused on the
connections of the following features and processor modules:

• Core and peripheral clock 50 MHz (Core clock can be set to 100 MHz in the Fast mode.)
• Input signal multiplexing (SIM_GPS registers)
• Two crossbar units with AOI module to interconnect signals between the peripherals
• Core and peripheral clock 50MHz (Core clock can be set to 100MHz in the Fast Mode.)
• Pulse Width Modulator
• 12-bit ADC converter

3 DSC signal paths with the crossbar switches XBARA,
XBARB, and AOI module

The DSC 56F827xxx internal signals connection between modules is characterized by two crossbar
switches and the AOI module.

The block schematic is shown in Figure 1.

Figure 1. XBARA, XBARB, and AOI integration

AN4828: MC56F827xx DSCs Crossbar and Signal Multiplexing, Rev. 0

Freescale Semiconductor 3

Signal multiplexing with the crossbar switches, GPIO and SIM GPS

4 Signal multiplexing with the crossbar switches, GPIO
and SIM GPS

The DSC MC56F827xx signal path flexible philosophy is based on input pin multiplexing with GPIO and
SIM GPS modules and crossbar switches XBARA and XBARB with AOI modules.

The GPIO_PER register setting indicates if the dedicated pin will be used as general input/output or in
periphery mode. In case the pin is used for periphery this can be connected to one of up to four peripheries
(depending on the pin and device). One of the peripheries can be XBAR input or output.

In the XBARA any of the 32 inputs can be connected to any of the 41 XBARA outputs. The inputs can be
any signal from pins, hardware module triggers, etc.

In the XBARB any of the 26 inputs can be connected to any of the 16 outputs.

These crossbar connections of a dedicated MC56F827xx DSC are described in sections: XBARA and
XBARB Inputs, XBAR Interconnections and XBARA Outputs of the MC56F827xx Reference Manual.

5 Motor control application example with the crossbar
XBARA, GPIO and SIM GPS multiplexing

The first motor control application example in this application note utilizes XBARA only.

A typical 3-phase motor control system requires at least one 3*2 Pulse With Modulation signal with a top
and bottom signal for each phase. The analog signals usually cover phase current, voltage, temperature and
other signals like resolver. The ADC sampling should be synchronized with PWM signals. For debugging
purposes the external synchronization signal is usually required.

Internal DSC connection for such a 3-phase motor control system is displayed in Figure 2.

AN4828: MC56F827xx DSCs Crossbar and Signal Multiplexing, Rev. 0

4 Freescale Semiconductor

Motor control application example with the crossbar XBARA, GPIO and SIM GPS multiplexing

Figure 2. Motor control system internal connectivity example using DSC MC56F827xx

The flexible signal path setting is provided by software. The software initialization of the signal paths
between DSC internal modules and input/outputs is provided as follows:

5.1 Initialization of the phase PWM signal paths
The PWM signals are to be connected to pins GPIOE0 to GPIOE5.

The periphery clock must be enabled in the SIM module Peripheral Clock Enable Register before using
any periphery. The GPIOE port clock enable bit is set:

• SIM_PCE0[GPIOE] = 1 = GPIOE IP Bus Clock Enable - The peripheral is clocked

The syntax is as follows:
SIM_PCE0 |= SIM_PCE0_GPIOE;

The GPIOE0 to GPIOE5 must be initialized as peripherals with the following bit groups:

AN4828: MC56F827xx DSCs Crossbar and Signal Multiplexing, Rev. 0

Freescale Semiconductor 5

Motor control application example with the crossbar XBARA, GPIO and SIM GPS multiplexing

• GPIOE_PER[PE] = 0b0100 000 0011 1111 = Pins 0 to 5 are peripheral (peripheral mode)

This code line is used to initialize GPIO_PER:
GPIOE_PER = (GPIOE_PER_PE_5 | GPIOE_PER_PE_4 | GPIOE_PER_PE_3 | GPIOE_PER_PE_2|\

 GPIOE_PER_PE_1 | GPIOE_PER_PE_0);

The SIM GPS registers are responsible for selecting the ALT functionality available on most pins. The
peripheral pin with pwm signals PWM_0A to PWM_2B has one functionality only. The other PWM_2A
to PWM_2B are to be set as ALT0.

This configuration is described in Signal Multiplexing and Pin Assignments in the MC56F827xx
Reference Manual. The initialization of the dedicated GPIOE LSBs Peripheral Select Register
(SIM_GPSEL):

• SIM_GPSEL[E4] = 0 = GPIO E4 Function = PWMA_2B; Peripheral = PWMA; Direction = IO
• SIM_GPSEL[E5] = 0 = GPIO E5 Function = PWMA_2A; Peripheral = PWMA; Direction = IO

The syntax is as follows:
SIM_GPSEL = 0;

5.2 The overcurrent and over-voltage signal initialization
In our example, the overcurrent fault and over-voltage fault pins are connected to GPIOC5 and GPIOC4
respectively. The following initialization must be provided:

GPIOC port clock enable bit setting syntax:
SIM_PCE0 |= SIM_PCE0_GPIOC;

The peripheral mode initialization syntax:
GPIOC_PER[PE] = (GPIOC_PER_PE_4 | GPIOC_PER_PE_5);

As described in the section, “Signal Multiplexing and Pin Assignments” in the reference manual:

The GPIOC4 utilization as XB_IN6 requires to be set as ALT2, GPIOC5 for XB_IN7 is ALT1, which can
be provided with the following syntax:
SIM_GPSC|= (SIM_GPSCL_C5_0| SIM_GPSCL_C4_1);

The signals are connected to the XBARA inputs XB_IN6, XB_IN7 respectively. Further configuration of
the signals is very versatile.

The signal can be connected to any XBARA output. In the example Figure 2, the signals are connected to
PWM_FAULT0, PWM_FAULT1, PWM module inputs. The required XBARA output can be found in the
table titled “XBARA Outputs” in the device reference manual. The table shows the PWM_FAULT0 and
PWM_FAULT1 inputs of the Pulse Width Modulator module are connected to XBARA outputs
XB_OUT29 and XB_OUT30.

In the register section of the reference manual chapter “Inter-Peripheral Crossbar Switch A (XBARA)”,
the setting for output 29 is provided in the Crossbar A Select Register 14.

The input XB_IN7(=GPIOC5 pin) will be connected to the output XB_OUT29 (=PWM_FAULT0) with
the setting:

AN4828: MC56F827xx DSCs Crossbar and Signal Multiplexing, Rev. 0

6 Freescale Semiconductor

Motor control application example with the crossbar XBARA, GPIO and SIM GPS multiplexing

• XBARA_SEL14 [SEL29] = 7 = 000111 = Connects the XB_IN7 to XB_OUT29

And the syntax is:
XBARA_SEL14 |= (XBARA_SEL14_SEL29_2 | XBARA_SEL14_SEL29_1 | XBARA_SEL14_SEL29_0);

The setting for the output 30 is provided in the Crossbar A Select Register 15.

So the input XB_IN6(=GPIOC4 pin) will be connected to the output XB_OUT30 (=PWM_FAULT0) with
the setting of the Crossbar A Select Register 15:

• XBARA_SEL15 [SEL30] = 6 = 0b000110 = Connects the XB_IN7 to XB_OUT29

With the syntax:
XBARA_SEL15 |= (XBARA_SEL15_SEL30_2 | XBARA_SEL15_SEL30_1);

5.3 Initialization of the synchronization trigger
The most important feature of the crossbar module is a versatile configuration of any synchronization
signal (in case they are connected to an crossbar module). In the example from Figure 2, the PWM0_TRG0
signal from the PWM submodule 0 is used to trigger the Analog to Digital Conversion. However the DSC
can be configured to use any other XBARA input as a trigger. And the PWM0_TRG0 signal can be
propagated to any XBARA output. In the example, the PWM0_TRG0 signal is connected to two outputs
XB_OUT4 and XBOUT12.

In the reference manual, table “XBARA and XBARB Inputs” shows that the PWM0_TRG0 is connected
to XBAR input XB_IN18. The table “XBARA Outputs” shows that the XB_OUT12 is connected to
ADCA_TRIG of the ADCA analog-to-digital converter. The XBARA Output XB_OUT4 is connected to
GPIOC14.

The XBARA initialization for the Analog-to-Digital Conversion module trigger signal ADCA_TRIG is
then:

• XBARA_SEL6 [SEL12] = 18 = 0b0010010 Connects the XB_IN18 to XB_OUT12

With the code line:
XBARA_SEL6 |= (XBARA_SEL6_SEL12_4 | XBARA_SEL6_SEL12_1);

For the External Trigger connected to GPIOC14:
• XBARA_SEL2 [SEL4] = 18 = 0b010010 Connects the XB_IN18 to XB_OUT4

The code line is:
XBARA_SEL2 |= (XBARA_SEL2_SEL4_4 | XBARA_SEL2_SEL4_1);

Finally the GPIOC14 pin must be configured in the SIM Peripheral Select Register C (SIM_GPSCH) and
GPIOC14.

According to Signal Multiplexing and Pin Assignments in the reference manual and GPIOC MSBs
Peripheral Select Register (SIM_GPSCH), the XB_OUT4 ALT is ALT1. And so:

• SIM_GPSCH[C14] = 01 = Function = XB_OUT4; Peripheral = XBAR; Direction = OUT
With the syntax:
SIM_GPSCH |= SIM_GPSCH_0;

AN4828: MC56F827xx DSCs Crossbar and Signal Multiplexing, Rev. 0

Freescale Semiconductor 7

Motor control application example with the crossbar XBARA, GPIO and SIM GPS multiplexing

The pin GPIOC14 needs to be initialized to peripheral mode:
• GPIOC_PER[PE] |= 0b0100 000 000 000

With the syntax:
GPIOC_PER |= GPIOE_PER_PE_14;

5.4 The paths of the ADC input signals initialization
The ADC inputs ANA0 to ANA7 are connected to the port GPIOA0 to GPIOA7 multiplex.

The ADC inputs ANB0 to ANB7 are connected to the port GPIOB0 to GPIOB7 multiplex. Before the
ADC module initialization the signal connections must be provided.

First, the clock for the PORT A and B must be enabled by setting the SIM_PCE0_GPIOA and
SIM_PCE0_GPIOB bits:
SIM_PCE0 |= SIM_PCE0_GPIOA;

SIM_PCE0 |= SIM_PCE0_GPIOB;

Enabling peripheral mode for GPIOA0 to GPIOA7:
• GPIOA_PER[PE] |= 0b0000 000 1111 1111

With the syntax:
GPIOA_PER |= (GPIOE_PER_PE_7 | GPIOE_PER_PE_6 | GPIOE_PER_PE_5 | GPIOE_PER_PE_4|\

GPIOE_PER_PE_3 | GPIOE_PER_PE_2 | GPIOE_PER_PE_1 | GPIOE_PER_PE_0);

Enabling peripheral mode for GPIOB0 to GPIOB7:
• GPIOB_PER[PE] |= 0b0000 000 1111 1111

With the syntax:
GPIOB_PER |= (GPIOB_PER_PE_7 | GPIOB_PER_PE_6 | GPIOB_PER_PE_5 | GPIOB_PER_PE_4|\

GPIOB_PER_PE_3 | GPIOB_PER_PE_2 | GPIOB_PER_PE_1 | GPIOB_PER_PE_0);

The ALT multiplexing setting is:
• SIM_GPSAL[A] = 0
• SIM_GPSBL[B] = 0

This is a default setting.
SIM_GPSAL = SIM_GPSBL = 0;

It is not necessary. The analog input signal connection has been established.

This way the DSC signals and synchronization trigger connections are initialized. Finally the individual
modules like PWM and ADC will be set up according to the required functionality. This will not be
described in detail.

AN4828: MC56F827xx DSCs Crossbar and Signal Multiplexing, Rev. 0

8 Freescale Semiconductor

DSC multiplexing with XBAR B and AOI module

6 DSC multiplexing with XBAR B and AOI module
The second example from Figure 3 utilizes both XBARA, XBARB crossbar switches together with the
AOI module.

Figure 3. Example 2: Multiplexing with the XBAR B and AOI module

6.1 Initialization of PWM Fault2 signal according to comparator
output state

In this example, the PWM Fault2 (PWM_FAULT2) signal is generated according to the comparator out-
put state using the formula:

PWM_FAULT2 = (CMPA_OUT&CMPB_OUT) | (CMPA_OUT&CMPC_OUT) | \
 (CMPB_OUT&CMPC_OUT) | CMPD_OUT

The CMPA_OUT comparator output signals A to D are connected to the XBARB inputs (and XBARA as
well) XB_IN10 to XB_IN13 respectively. The signal can be connected to any AND/OR/INVERT module
inputs. In the example from Figure 3, the signals are connected to AND_OR_INVERT_0 module signals
XBAR_OUT0 to XBAR_OUT3.

This requires the following initialization:
• XBARB_SEL0[SEL0] = 10 = 0b001010 Connects the XB_IN10 to XB_OUT0

AN4828: MC56F827xx DSCs Crossbar and Signal Multiplexing, Rev. 0

Freescale Semiconductor 9

DSC multiplexing with XBAR B and AOI module

• XBARB_SEL0[SEL1] = 11 = 0b001011 Connects the XB_IN11 to XB_OUT1
• XBARB_SEL1[SEL2] = 12 = 0b001100 Connects the XB_IN12 to XB_OUT2
• XBARB_SEL1[SEL3] = 13 = 0b001101 Connects the XB_IN13 to XB_OUT3

This code is used to initialize the four signals XBARB connections:
XBARB_SEL0 = (XBARB_SEL0_SE1_3 | XBARB_SEL0_SEL1_1 | XBARB_SEL0_SEL1_0) |\

 (XBARB_SEL0_SEL0_3 | XBARB_SEL0_SEL0_1);

XBARB_SEL1 = (XBARB_SEL1_SEL3_3 | XBARB_SEL1_SEL3_2 | XBARB_SEL1_SEL3_0) |\

 (XBARB_SEL1_SE2_3 | XBARB_SEL1_SEL2_2);

The AND_OR_INVERT_0 module initialization needs to be:
• AOI_BFCRT010[PT0_AC] = 01 Pass the A input in this product term
• AOI_BFCRT010[PT0_BC] = 01 Pass the B input in this product term
• AOI_BFCRT010[PT0_CC] = 11 Force the C input in this product term to a logical one
• AOI_BFCRT010[PT0_DC] = 11 Force the D input in this product term to a logical one

• AOI_BFCRT010[PT1_AC] = 01 Pass the A input in this product term
• AOI_BFCRT010[PT1_CC] = 01 Pass the C input in this product term
• AOI_BFCRT010[PT1_BC] = 11 Force the B input in this product term to a logical one
• AOI_BFCRT010[PT1_DC] = 11 Force the D input in this product term to a logical one

• AOI_BFCRT230[PT2_BC] = 01 Pass the B input in this product term
• AOI_BFCRT230[PT2_CC] = 01 Pass the C input in this product term
• AOI_BFCRT230[PT2_AC] = 11 Force the A input in this product term to a logical one
• AOI_BFCRT230[PT2_DC] = 11 Force the D input in this product term to a logical one

• AOI_BFCRT230[PT3_AC] = 11 Force the A input in this product term to a logical one
• AOI_BFCRT230[PT3_BC] = 11 Force the B input in this product term to a logical one
• AOI_BFCRT230[PT3_CC] = 11 Force the C input in this product term to a logical one
• AOI_BFCRT230[PT3_DC] = 01 Pass the D input in this product term

The syntax is:
AOI_BFCRT010 = (AOI_BFCRT010_PT0_AC_0 | AOI_BFCRT010_PT0_BC_0 |\

 OI_BFCRT010_PT0_CC | AOI_BFCRT010_PT1_DC |\

 AOI_BFCRT010_PT1_AC_0 | AOI_BFCRT010_PT1_CC_0 |\

 AOI_BFCRT010_PT1_BC | AOI_BFCRT010_PT1_DC);

AOI_BFCRT230 = (AOI_BFCRT230_PT2_BC_0 | AOI_BFCRT230_PT2_CC_0 |\

 AOI_BFCRT230_PT2_AC | AOI_BFCRT230_PT2_DC |\

 AOI_BFCRT230_PT3_AC | AOI_BFCRT230_PT3_BC |\

 AOI_BFCRT230_PT3_CC | AOI_BFCRT230_PT3_DC_0);

AN4828: MC56F827xx DSCs Crossbar and Signal Multiplexing, Rev. 0

10 Freescale Semiconductor

DSC multiplexing with XBAR B and AOI module

According to the XBARA Outputs table in the reference manual, the AND_OR_INVERT_0 output is the
XB_IN28 input of the XBARA. The PWM_FAULT2 is XBAR_OUT31. So the XBARA initialization for
the output 31 is provided in the Crossbar A Select Register 15:

• XBARA_SEL15 [SEL31] = 28 = 0b011100 = Connects the XB_IN28 to XB_OUT31

The code syntax is:
XBARA_SEL15 = (XBARA_SEL15_SEL29_4 | XBARA_SEL15_SEL29_3 | XBARA_SEL15_SEL29_2);

This initialization provides the PWM Fault2 (PWM_FAULT2) generation according to the required
CMPA_OUT to CMPD_OUT comparators outputs logical function.

6.2 Initialization of the Comparator A to D Sample according to PWM
trigger signals

The second required signal path in the application example from Figure4 generates the Comparator A to
D Sample signals as the logical OR function of the PWM trigger signals PWM0_TRG0, PWM1_TRG0
and PWM2_TRG0. All the 4 comparators will be triggered with the same signal. The required logical
function is:

CMPA = CMPB = CMPC = CMPD = PWM0_TRG0 | PWM1_TRG0 | PWM2_TRG0

The PWM0_TRG0 (submodule 0) to PWM2_TRG0 (submodule 2) PWM module trigger signals are
connected to the XBARB inputs (and XBARA as well) XB_IN18 to XB_IN20 and XB_IN22. The signal
can be connected to any AND/OR/INVERT module inputs. In the example from Figure 3, the signals are
connected to the AND_OR_INVERT_1 module signals connected to XBAR_OUT4 to XBAR_OUT6.

This requires the following initialization:

• XBARB_SEL2[SEL4] = 18 = 0b010010 Connects the XB_IN18 to XB_OUT4
• XBARB_SEL2[SEL5] = 20 = 0b010100 Connects the XB_IN20 to XB_OUT5
• XBARB_SEL3[SEL6] = 22 = 0b010110 Connects the XB_IN22 to XB_OUT6

The syntax is:

XBARB_SEL2 = (XBARB_SEL2_SEL4_4 | XBARB_SEL2_SEL4_1) |\
 (XBARB_SEL2_SEL5_4 | XBARB_SEL2_SEL5_2);

XBARB_SEL3 |= (XBARB_SEL3_SEL6_4 | XBARB_SEL3_SEL6_2 | XBARB_SEL3_SEL6_1);

The AND_OR_INVERT_0 module initialization needs to be:

Following initialization:

• AOI_BFCRT010[PT0_AC] = 01 Pass the A input in this product term
• AOI_BFCRT010[PT0_BC] = 01 Pass the B input in this product term
• AOI_BFCRT010[PT0_CC] = 01 Pass the C input in this product term
• AOI_BFCRT010[PT0_DC] = 11 Force the D input in this product term to a logical one

AN4828: MC56F827xx DSCs Crossbar and Signal Multiplexing, Rev. 0

Freescale Semiconductor 11

Application example 1 code

The syntax is:
AOI_BFCRT011 = (AOI_BFCRT011_PT0_AC_0 | AOI_BFCRT011_PT0_BC_0 | AOI_BFCRT011_PT0_CC_0 |

 AOI_BFCRT011_PT0_DC);

According to the “XBARA Outputs” table in the reference manual, the AND_OR_INVERT_1 output is
the XB_IN29 input of the XBARA.

The CMPx Comparator Window/Sample triggering signals are XBAR_OUT16 to XBAR_OUT19. The
XBARA initialization for the outputs 16,17 is provided in the Crossbar A Select Register 8 and outputs
18,19 is provided in the Crossbar A Select Register 9 and:

• XBARA_SEL8 [SEL16] = 29 = 0b011101 Connects the XB_IN29 to XB_OUT16
• XBARA_SEL8 [SEL17] = 29 = 0b011101 Connects the XB_IN29 to XB_OUT17
• XBARA_SEL9 [SEL18] = 29 = 0b011101 Connects the XB_IN29 to XB_OUT18
• XBARA_SEL9 [SEL19] = 29 = 0b011101 Connects the XB_IN29 to XB_OUT19

With the syntax:

XBARA_SEL8 = (XBARA_SEL8_SEL16_4 | XBARA_SEL8_SEL16_3 |\

 XBARA_SEL8_SEL16_2 | XBARA_SEL8_SEL16_0) |\

 (XBARA_SEL8_SEL17_4 | XBARA_SEL8_SEL17_3 |\

 XBARA_SEL8_SEL17_2 | XBARA_SEL8_SEL17_0);

XBARA_SEL9 = (XBARA_SEL9_SEL18_4 | XBARA_SEL9_SEL18_3 |\

 XBARA_SEL9_SEL18_2 | XBARA_SEL9_SEL18_0) |\

 (XBARA_SEL9_SEL19_4 | XBARA_SEL9_SEL19_3 |\

 XBARA_SEL9_SEL19_2 | XBARA_SEL9_SEL19_0);

This initialization provides the generation of the four identical CMPx Comparator Window/Sample
triggering signals. This signal is created as a logical OR function of the PWM trigger signals
PWM0_TRG0, PWM1_TRG0 and PWM2_TRG0.

7 Application example 1 code
The following sections elaborate an example software with the connections from Figure 2.

All the code lines used in the context of this application are given below. The code incorporates input
settings and crossbar settings. The final code is more complex than the previous samples, as it also
provides interrupt vectors, the Pulse Width Modulation Module, and the Analog-to-Digital Converter
settings. The signal path initializations, described in Section 5, “Motor control application example with
the crossbar XBARA, GPIO and SIM GPS multiplexing are provided by the functions GPIOA_Init(),
GPIOB_Init(), GPIOC_Init(), GPIOE_Init() and XBARA_Init().

AN4828: MC56F827xx DSCs Crossbar and Signal Multiplexing, Rev. 0

12 Freescale Semiconductor

Application example 1 code

7.1 Interrupt Vector Table
The file MC56F827xx_vector.asm is located in Project_Settings\Startup_Code.
JSR >ADC12_EOS_ISR ; /* 0x3c Interrupt no. 30 - ivINT_ADC_CC0 */

7.2 Included Header Files
The most important headers used in the following code:
#include "MC56F82723.h" /* MC56F82723 Peripheral description header */
#include <intrinsics_56800E.h> /* intrinsics arithmetic header */

7.3 Constants and definitions
typedef struct

{

 Word16 adc_result0;

 Word16 adc_result1;

 Word16 adc_result2;

 Word16 adc_result3;

 Word16 adc_result4;

 Word16 adc_result5;

 Word16 adc_result6;

 Word16 adc_result7;

 Word16 adc_result8;

 Word16 adc_result9;

 Word16 adc_result10;

 Word16 adc_result11;

 Word16 adc_result12;

 Word16 adc_result13;

 Word16 adc_result14;

 Word16 adc_result15;

} ADC_RESULT;

typedef volatile unsigned short int vuint16_t;

typedef struct

{

 unsigned short int pwmsminit;

AN4828: MC56F827xx DSCs Crossbar and Signal Multiplexing, Rev. 0

Freescale Semiconductor 13

Application example 1 code

 vuint16_t pwmsmval0;

 vuint16_t pwmsmval1;

 vuint16_t pwmsmval2;

 vuint16_t pwmsmval3;

 vuint16_t pwmsmval4;

 vuint16_t pwmsmval5;

} PWMA_REG;

typedef struct

{

 PWMA_REG SM0;

 PWMA_REG SM1;

 PWMA_REG SM2;

 PWMA_REG SM3;

} PWMA_REGS;

7.4 Variables
ADC_RESULT udtADCresults;

PWMA_REGS udtPWMAreg;

unsigned int uwPWM_Update = 0;

unsigned int uwPWM_ClearFaults = 0;

unsigned int uwOverCurrentHWFault;

unsigned int uwOverVoltageHWFault;

7.5 Prototypes
static void GPIOA_Init(void);

static void GPIOB_Init(void);

static void GPIOC_Init(void);

static void XBARA_Init(void);

static void PWM_A_Init(PWMA_REGS_ALL *ptr);

static void ADC12_Init(void);

void PWM_A_Update(PWMA_REGS_ALL *ptr);

void PWM_Clear_Faults(PWMA_REGS *ptr);

void ADC12_EOS_ISR(void);

AN4828: MC56F827xx DSCs Crossbar and Signal Multiplexing, Rev. 0

14 Freescale Semiconductor

Application example 1 code

7.6 Functions
static void GPIOA_Init(void)

{

 /* Enable GPIOA */

 SIM_PCE0 |= SIM_PCE0_GPIOA;

 /* ADC Inputs A setting */

 /* Set GPIOA0 to GPIOA7 as peripheral (ANB0 to ANB7) */

 GPIOA_PER |= (GPIOE_PER_PE_7 | GPIOE_PER_PE_6 | GPIOE_PER_PE_5 | GPIOE_PER_PE_4|\

 GPIOE_PER_PE_3 | GPIOE_PER_PE_2 | GPIOE_PER_PE_1 | GPIOE_PER_PE_0);

 /* Select ANA0 to ANA7 */

 SIM_GPSAL = 0;

}

static void GPIOB_Init(void)

{

 /* Enable GPIOA, GPIOB clock */

 SIM_PCE0 |= SIM_PCE0_GPIOB;

 /* ADC Inputs B setting */

 /* set GPIOB0 to GPIOB7 as peripheral (ANB0 to ANB7) */

 GPIOB_PER |= (GPIOB_PER_PE_7 | GPIOB_PER_PE_6 | GPIOB_PER_PE_5 | GPIOB_PER_PE_4|\

 GPIOB_PER_PE_3 | GPIOB_PER_PE_2 | GPIOB_PER_PE_1 | GPIOB_PER_PE_0);

 /* Select ANB0 to ANB7 */

 SIM_GPSBL = 0;

}

static void GPIOC_Init(void)

{

 /* Enable GPIOC clock */

 SIM_PCE0 |= SIM_PCE0_GPIOC;

 /* Over-current and over-voltage fault inputs multiplex setting */

 /* Set GPIOC4 as XB_IN6, GPIOC5 as XB_IN7 XBAR inputs */

 SIM_GPSC|= (SIM_GPSCL_C5_0| SIM_GPSCL_C4_1);

 /* GPIOC4(over-voltage) and Set GPIOC5(over-current) pins are for peripheral */

 GPIOC_PER[PE] = (GPIOC_PER_PE_4 | GPIOC_PER_PE_5);

AN4828: MC56F827xx DSCs Crossbar and Signal Multiplexing, Rev. 0

Freescale Semiconductor 15

Application example 1 code

 /* XB_OUT4 to GPIOC14 to External Trigger Pin */

 /* Set GPIOC14 as XB_OUT4 XBAR outputs */

 SIM_GPSCH |= SIM_GPSCH_0;

 /* GPIOC14 pin is for (XB_OUT4 XBAR) peripheral */

 PIOC_PER |= GPIOE_PER_PE_14;

}

static void GPIOE_Init (void)

{

 /* Enable GPIOE clock */

 SIM_PCE0 |= SIM_PCE0_GPIOE;

 /* PWM_0A to PWM_2B set as peripheral */

 GPIOE_PER = (GPIOE_PER_PE_5 | GPIOE_PER_PE_4| GPIOE_PER_PE_3 | GPIOE_PER_PE_2|\

 GPIOE_PER_PE_1 | GPIOE_PER_PE_0);

 /* PWM_0A to PWM_2B select */

 SIM_GPSEL = 0;

}

static void XBARA_Init(void)

{

 /* Over-current and Over-voltage signals */

 /* XB_IN7 to XB_OUT29 */

 XBARA_SEL14 |= (XBARA_SEL14_SEL29_2 | XBARA_SEL14_SEL29_1 | XBARA_SEL14_SEL29_0);

 /* XB_IN6 to XB_OUT30 */

 XBARA_SEL15 |= (XBARA_SEL15_SEL30_2 | XBARA_SEL15_SEL30_1);

 /* PWM to ADC and GPIOC14 synchronization trigger signals */

 /* ADC Sync pulse generated through XBARA_12 */

 /* XB_IN18 to XB_OUT12 */

 XBARA_SEL6 |= (XBARA_SEL6_SEL12_4 | XBARA_SEL6_SEL12_1);

 /* XB_IN18 to XB_OUT4 */

 XBARA_SEL2 |= (XBARA_SEL2_SEL4_4 | XBARA_SEL2_SEL4_1);

}

static void PWM_A_Init(PWMA_REGS *ptr)

AN4828: MC56F827xx DSCs Crossbar and Signal Multiplexing, Rev. 0

16 Freescale Semiconductor

Application example 1 code

{

 /* enable PWMA clock to SM0, SM1, SM2 */

 SIM_PCE3 |= (SIM_PCE3_PWMACH0 | SIM_PCE3_PWMACH1 | SIM_PCE3_PWMACH2);

/***/

 /* SM0 Module */

 PWMA_SM0CTRL = /* PWMA_SM0CTRL_FULL |*/ PWMA_SM0CTRL_HALF; /* half reload cycle */

 /* Complementary PWM

 * Initialization Local Sync

 * Local force signal

 * Force enabled - force initializes the counter

 * Clock IP Bus

 * Local Reload */

 PWMA_SM0CTRL2 = PWMA_SM0CTRL2_FRCEN;

 /* set 25kHz PWM period --> 40.0us = 10ns * 2000 * 2 */

 PWMA_SM0INIT = -2000;

 PWMA_SM0VAL0 = 0;

 PWMA_SM0VAL1 = 1999;

 PWMA_SM0VAL2 = -((PWMA_SM0VAL1+1)>>1); /* 50% duty cycle */

 PWMA_SM0VAL3 = (PWMA_SM0VAL1+1)>>1; /* 50% duty cycle */

 /* dead time = 1us */

 PWMA_SM0DTCNT0 = 100;

 PWMA_SM0DTCNT1 = 100;

 /* enable PWM 0 A, B mask at Fault 1 and Fault 2 inputs */

 PWMA_SM0DISMAP0 = (PWMA_SM0DISMAP0_DIS0B | PWMA_SM0DISMAP0_DIS0B)|\

 (PWMA_SM0DISMAP0_DIS0A | PWMA_SM0DISMAP0_DIS0A);

 PWMA_SM0DISMAP1 = 0;

/***/

 /* SM1 Module */

AN4828: MC56F827xx DSCs Crossbar and Signal Multiplexing, Rev. 0

Freescale Semiconductor 17

Application example 1 code

 PWMA_SM1CTRL = PWMA_SM1CTRL_HALF; /* half reload cycle */

 /* Fractinal PWM enable for 2,3 registers */

 PWMA_SM1FRCTRL = PWMA_SM1FRCTRL_FRAC_PU | PWMA_SM1FRCTRL_FRAC23_EN;

 ptr->SM1.pwmfrctrl = PWMA_SM1FRCTRL;/* prepare for modifications */

 /* Complementary PWM

 * Initialization Sync from SM0

 * Master force signal from submodule 0 causes initialisation

 * Force enabled - force initializes the counter

 * Clock from SM0

 * Reload from SM0 */

 PWMA_SM1CTRL2 = PWMA_SM1CTRL2_INIT_SEL_1 | PWMA_SM1CTRL2_FRCEN | \

 PWMA_SM1CTRL2_FORCE_SEL_0| PWMA_SM1CTRL2_RELOAD_SEL | \

 PWMA_SM1CTRL2_CLK_SEL_1;

 /* set 25kHz PWM period --> 40.0us = 10ns * 2000 * 2 */

 PWMA_SM1INIT = -2000;

 PWMA_SM1VAL0 = 0;

 PWMA_SM1VAL2 = -((PWMA_SM0VAL1+1)>>1); /* 50% duty cycle */

 PWMA_SM1VAL3 = (PWMA_SM0VAL1+1)>>1; /* 50% duty cycle */

 /* dead time = 1us */

 PWMA_SM1DTCNT0 = 100;

 PWMA_SM1DTCNT1 = 100;

 /* enable PWM 1 A, B mask at Fault 1 and Fault 2 inputs */

 PWMA_SM1DISMAP0 = (PWMA_SM1DISMAP0_DIS0B | PWMA_SM1DISMAP0_DIS0B)|\

 (PWMA_SM1DISMAP0_DIS0A | PWMA_SM1DISMAP0_DIS0A);

 PWMA_SM1DISMAP1 = 0;

/***/

 /* SM2 Module */

 PWMA_SM2CTRL = /* PWMA_SM2CTRL_FULL |*/ PWMA_SM2CTRL_HALF; /* half reload cycle */

 /* Fractinal PWM enable for 2,3 registers */

AN4828: MC56F827xx DSCs Crossbar and Signal Multiplexing, Rev. 0

18 Freescale Semiconductor

Application example 1 code

 PWMA_SM2FRCTRL = PWMA_SM2FRCTRL_FRAC_PU | PWMA_SM2FRCTRL_FRAC23_EN;

 ptr->SM2.pwmfrctrl = PWMA_SM2FRCTRL;/* prepare for modifications */

 /* Complementary PWM

 * Initialization Sync from SM0

 * Force enabled - force initializees the counter

 * Master force signal from submodule 0

 * Reload from SM0

 * Clock from SM0 */

 PWMA_SM2CTRL2 = PWMA_SM2CTRL2_INIT_SEL_1 | PWMA_SM2CTRL2_FRCEN | \

 PWMA_SM2CTRL2_FORCE_SEL_0 | PWMA_SM2CTRL2_RELOAD_SEL |\

 PWMA_SM2CTRL2_CLK_SEL_1 ;

 /* set 25kHz PWM period --> 40.0us = 10ns * 2000 * 2 */

 PWMA_SM2INIT = -2000;

 PWMA_SM2VAL0 = 0;

 PWMA_SM2VAL2 = -((PWMA_SM0VAL1+1)>>1); /* 50% duty cycle */

 PWMA_SM2VAL3 = (PWMA_SM0VAL1+1)>>1; /* 50% duty cycle */

 /* dead time = 1us */

 PWMA_SM2DTCNT0 = 100;

 PWMA_SM2DTCNT1 = 100;

 /* enable PWM 1 A, B mask at Fault 1 and Fault 2 inputs */

 PWMA_SM2DISMAP0 = (PWMA_SM2DISMAP0_DIS0B | PWMA_SM2DISMAP0_DIS0B)|\

 (PWMA_SM2DISMAP0_DIS0A | PWMA_SM2DISMAP0_DIS0A);

 PWMA_SM2DISMAP1 = 0;

 /* Enable output on PWMA_A0, PWMA_A1, PWMA_A2, PWMA_A3 */

 PWMA_OUTEN = (PWMA_OUTEN_PWMA_EN_0 | PWMA_OUTEN_PWMA_EN_1 |\

 PWMA_OUTEN_PWMA_EN_2 | PWMA_OUTEN_PWMA_EN_3);

 /* Enable output on PWMA_B0, PWMA_B1, PWMA_B2, PWMA_B3 */

 PWMA_OUTEN |= (PWMA_OUTEN_PWMB_EN_0 | PWMA_OUTEN_PWMB_EN_1 |\

AN4828: MC56F827xx DSCs Crossbar and Signal Multiplexing, Rev. 0

Freescale Semiconductor 19

Application example 1 code

 PWMA_OUTEN_PWMB_EN_2 | PWMA_OUTEN_PWMB_EN_3);

 PWMA_MCTRL |= PWMA_MCTRL_CLDOK; /* Clear LDOK bits */

 PWMA_MCTRL |= PWMA_MCTRL_LDOK; /* LDOK */

 PWMA_MCTRL |= PWMA_MCTRL_RUN; /* Enable clock */

 ptr->pwmmctrl = PWMA_MCTRL;

 /* Module SM0 */

 ptr->SM0.pwmsminit = PWMA_SM0INIT;

 ptr->SM0.pwmsmval0 = PWMA_SM0VAL0;

 ptr->SM0.pwmsmval1 = PWMA_SM0VAL1;

 ptr->SM0.pwmsmval2 = PWMA_SM0VAL2;

 ptr->SM0.pwmsmval3 = PWMA_SM0VAL3;

 ptr->SM0.pwmsmval4 = PWMA_SM0VAL4;

 ptr->SM0.pwmsmval5 = PWMA_SM0VAL5;

 /* Module SM1 */

 ptr->SM1.pwmsminit = PWMA_SM1INIT;

 ptr->SM1.pwmsmval0 = PWMA_SM1VAL0;

 ptr->SM1.pwmsmval1 = PWMA_SM1VAL1;

 ptr->SM1.pwmsmval2 = PWMA_SM1VAL2;

 ptr->SM1.pwmsmval3 = PWMA_SM1VAL3;

 ptr->SM1.pwmsmval4 = PWMA_SM1VAL4;

 ptr->SM1.pwmsmval5 = PWMA_SM1VAL5;

 /* Module SM2 */

 ptr->SM2.pwmsminit = PWMA_SM2INIT;

 ptr->SM2.pwmsmval0 = PWMA_SM2VAL0;

 ptr->SM2.pwmsmval1 = PWMA_SM2VAL1;

 ptr->SM2.pwmsmval2 = PWMA_SM2VAL2;

 ptr->SM2.pwmsmval3 = PWMA_SM2VAL3;

 ptr->SM2.pwmsmval4 = PWMA_SM2VAL4;

 ptr->SM2.pwmsmval5 = PWMA_SM2VAL5;

 /* trigger signal 0 used to synchronize ADC via XBAR */

AN4828: MC56F827xx DSCs Crossbar and Signal Multiplexing, Rev. 0

20 Freescale Semiconductor

Application example 1 code

 PWMA_SM0TCTRL |= (PWMA_SM0TCTRL_OUT_TRIG_EN_0);

}

static void ADC12_Init(void)

{

 /* enable clock to ADC modules */

 SIM_PCE2 |= SIM_PCE2_CYCADC;

 /* ADC registers */

 /* SMODE - triggered parallel, SYNC0 - enabled, End of scan ISR enabled */

 ADC_CTRL1 = 0x1805U;

 /* Simultaneous parallel mode; DIV0 = 0_0100 10MHz at PLL 50MHZ */

 ADC_CTRL2 |= ADC_CTRL2_DIV0_2 | ADC_CTRL2_SIMULT;

 /* SAMPLE3 - ANA3, SAMPLE2 - ANA2,SAMPLE1 - ANA1, SAMPLE0 - ANA0 */

 ADC_CLIST1 = 0x3210U;

 /* SAMPLE7 - ANA7, SAMPLE6 - ANA6,SAMPLE5 - ANA5, SAMPLE4 - ANA4 */

 ADC_CLIST2 = 0x7654U;

 /* SAMPLE11 - ANB3, SAMPLE10 - ANB2,SAMPLE9 - ANB1, SAMPLE8 - ANB0 */

 ADC_CLIST3 = 0xBA98U;

 /* SAMPLE14 - ANB7, SAMPLE14 - ANB6,SAMPLE13 - ANB5, SAMPLE12 - ANB4 */

 ADC_CLIST4 = 0xFEDCU;

 /* enable ADC channels 0to7&8to15 -> ANA0toANA7, ANB0toANB7 */

 ADC_SDIS = 0x0000U;

 /* power-up delay set to 26 clocks*/

 ADC_PWR = 0x01A0U;

 /* DIV1 = 100 */

 ADC_PWR2 = ADC_PWR2_DIV1_2;

 /* Enable End of Scan interrupt - priority 1 */

 INTC_IPR2 |= INTC_IPR2_ADC_CC0_1;

} /* Module SM0 */

 PWMA_SM0INIT = ptr->SM0.pwmsminit;

 PWMA_SM0VAL0 = ptr->SM0.pwmsmval0;

 PWMA_SM0VAL1 = ptr->SM0.pwmsmval1;

 PWMA_SM0VAL2 = ptr->SM0.pwmsmval2;

 PWMA_SM0VAL3 = ptr->SM0.pwmsmval3;

AN4828: MC56F827xx DSCs Crossbar and Signal Multiplexing, Rev. 0

Freescale Semiconductor 21

Application example 1 code

 PWMA_SM0VAL4 = ptr->SM0.pwmsmval4;

 PWMA_SM0VAL5 = ptr->SM0.pwmsmval5;

 /* Module SM1 */

 PWMA_SM1INIT = ptr->SM1.pwmsminit;

 PWMA_SM1VAL0 = ptr->SM1.pwmsmval0;

 PWMA_SM1VAL1 = ptr->SM1.pwmsmval1;

 PWMA_SM1VAL2 = ptr->SM1.pwmsmval2;

 PWMA_SM1VAL3 = ptr->SM1.pwmsmval3;

 PWMA_SM1VAL4 = ptr->SM1.pwmsmval4;

 PWMA_SM1VAL5 = ptr->SM1.pwmsmval5;

 /* Module SM2 */

 PWMA_SM2INIT = ptr->SM2.pwmsminit;

 PWMA_SM2VAL0 = ptr->SM2.pwmsmval0;

 PWMA_SM2VAL1 = ptr->SM2.pwmsmval1;

 PWMA_SM2VAL2 = ptr->SM2.pwmsmval2;

 PWMA_SM2VAL3 = ptr->SM2.pwmsmval3;

 PWMA_SM2VAL4 = ptr->SM2.pwmsmval4;

 PWMA_SM2VAL5 = ptr->SM2.pwmsmval5;

 /* Set LDOK LDOK0 for SM0,1,2 update, LDOK3 for SM3 update*/

 PWMA_MCTRL |= PWMA_MCTRL_LDOK_0;

}

void PWM_Clear_Faults(PWMA_REGS *ptr)

{

 PWMA_FSTS0 |= PWMA_FSTS0_FFLAG;

 PWMA_FSTS1 |= PWMA_FSTS1_FFLAG;

}

7.7 Main function and initializations
In our example, the position is periodically read in the software main loop, but the position can be read
from any interrupt subroutine (for example, from TimeBaseISR):

AN4828: MC56F827xx DSCs Crossbar and Signal Multiplexing, Rev. 0

22 Freescale Semiconductor

Application example 1 code

thetaKElectrical = ENC_PositionGet(&encElPosParam);

thetaKMechanical = ENC_PositionGet(&encMechPosParam);

The initialization and main software loop is below:
void main (void)

{

 GPIOA_Init()

 GPIOB_Init();

 GPIOC_Init();

 GPIOE_Init()

 XBARA_Init();

 ADC12_Init();

 PWM_A_Init(&udtPWMAreg);

 while(1)

 {

 if (uwPWM_Update)

 {

 PWM_A_Update(&udtPWMAreg);

 /* update PWM duty cycles according to udtPWMAreg */

 PWM_A_Update(&udtPWMAreg);

 uwPWM_Update = 0;

 }

 if (uwPWM_ClearFaults)

 {

 PWM_Clear_Faults(&udtPWMAreg);

 uwPWM_ClearFaults = 0;

 }

 /* check over-current fault flag */

 ((PWMA_FSTS0&PWMA_FSTS0_FFLAG_0)!=0)? (uwOverCurrentHWFault = 1) : \

 (uwOverCurrentHWFault = 0);

 /* check over-voltage fault flag */

 ((PWMA_FSTS0&PWMA_FSTS0_FFLAG_1)!=0)? (uwOverVoltageHWFault = 1) : \

 (uwOverVoltageHWFault = 0);

AN4828: MC56F827xx DSCs Crossbar and Signal Multiplexing, Rev. 0

Freescale Semiconductor 23

Acronym definitions

 }

}

7.8 Time base interrupt subroutine
#pragma interrupt alignsp

void ADC12_EOS_ISR(void)

{

 /* read ADC samples from channels 0&8 */

 udtADCresults.adc_result0 = ADC_RSLT0;

 udtADCresults.adc_result1 = ADC_RSLT1;

 udtADCresults.adc_result2 = ADC_RSLT2;

 udtADCresults.adc_result3 = ADC_RSLT3;

 udtADCresults.adc_result4 = ADC_RSLT4;

 udtADCresults.adc_result5 = ADC_RSLT5;

 udtADCresults.adc_result6 = ADC_RSLT6;

 udtADCresults.adc_result7 = ADC_RSLT7;

 udtADCresults.adc_result8 = ADC_RSLT8;

 udtADCresults.adc_result9 = ADC_RSLT9;

 udtADCresults.adc_result10 = ADC_RSLT10;

 udtADCresults.adc_result11 = ADC_RSLT11;

 udtADCresults.adc_result12 = ADC_RSLT12;

 udtADCresults.adc_result13 = ADC_RSLT13;

 udtADCresults.adc_result14 = ADC_RSLT14;

 udtADCresults.adc_result15 = ADC_RSLT15;

 /* Clear interrupt request flag */

 ADC_STAT |= ADC_STAT_EOSI0;

}

8 Acronym definitions
Table 1. Acronym definitions

ADC Analogue-to-Digital Converter

AOI Crossbar And/Or/Invert Module

CW CodeWarrior

AN4828: MC56F827xx DSCs Crossbar and Signal Multiplexing, Rev. 0

24 Freescale Semiconductor

References

9 References
MC56F827xx Reference Manual (MC56F827XXRM)

DSC Digital Signal Controller

FOC Field Oriented Control

GPIO General Port Input Output

ISR Interrupt Service Routine

PWM Pulse-Width Modulation

SIM System Integration Module

Motor control In this application note, this means a process that controls an
electrical motor such as a BLDC PMSM, AC-induction, etc.

XBAR Cross-Bar Switch

XBARA Cross-Bar Switch A

XBARB Cross-Bar Switch B

Document Number: AN4828
Rev. 0
12/2013

Information in this document is provided solely to enable system and software

implementers to use Freescale products. There are no express or implied copyright

licenses granted hereunder to design or fabricate any integrated circuits based on the

information in this document.

Freescale reserves the right to make changes without further notice to any products

herein. Freescale makes no warranty, representation, or guarantee regarding the

suitability of its products for any particular purpose, nor does Freescale assume any

liability arising out of the application or use of any product or circuit, and specifically

disclaims any and all liability, including without limitation consequential or incidental

damages. “Typical” parameters that may be provided in Freescale data sheets and/or

specifications can and do vary in different applications, and actual performance may

vary over time. All operating parameters, including “typicals,” must be validated for

each customer application by customer’s technical experts. Freescale does not convey

any license under its patent rights nor the rights of others. Freescale sells products

pursuant to standard terms and conditions of sale, which can be found at the following

address: freescale.com/SalesTermsandConditions.

How to Reach Us:
Home Page:
freescale.com

Web Support:
freescale.com/support

Freescale and the Freescale logo are trademarks of Freescale Semiconductor, Inc.,

Reg. U.S. Pat. & Tm. Off. All other product or service names are the property of their

respective owners.

© 2013 Freescale Semiconductor, Inc.

	1 Introduction
	2 Digital signal controllers MC56F827xx
	3 DSC signal paths with the crossbar switches XBARA, XBARB, and AOI module
	Figure 1. XBARA, XBARB, and AOI integration

	4 Signal multiplexing with the crossbar switches, GPIO and SIM GPS
	5 Motor control application example with the crossbar XBARA, GPIO and SIM GPS multiplexing
	Figure 2. Motor control system internal connectivity example using DSC MC56F827xx
	5.1 Initialization of the phase PWM signal paths
	5.2 The overcurrent and over-voltage signal initialization
	5.3 Initialization of the synchronization trigger
	5.4 The paths of the ADC input signals initialization

	6 DSC multiplexing with XBAR B and AOI module
	Figure 3. Example 2: Multiplexing with the XBAR B and AOI module
	6.1 Initialization of PWM Fault2 signal according to comparator output state
	6.2 Initialization of the Comparator A to D Sample according to PWM trigger signals

	7 Application example 1 code
	7.1 Interrupt Vector Table
	7.2 Included Header Files
	7.3 Constants and definitions
	7.4 Variables
	7.5 Prototypes
	7.6 Functions
	7.7 Main function and initializations
	7.8 Time base interrupt subroutine

	8 Acronym definitions
	Table 1. Acronym definitions

	9 References

