
AN14567
How to implement USB microphone on MCX Series MCUs
Rev. 1.0 — 18 February 2025 Application note

Document information
Information Content

Keywords AN14567, USB, Audio Class, PDM

Abstract This application note describes how to implement the USB microphone function on MCX series
microcontrollers. In this application note, we use USB Audio Class 1.0 and USB Audio Class 2.0
for USB audio transfer class and an external digital microphone or generated data as data source.

https://www.nxp.com

NXP Semiconductors AN14567
How to implement USB microphone on MCX Series MCUs

1 Introduction

This documentation describes how to implement a USB microphone on MCX Series MCUs. The data source
could be an external digital microphone or generated data. A USB Audio Class 1.0 (UAC 1.0) and USB Audio
Class 2.0 (UAC 2.0) microphone is used in this document.

The USB microphone function could not only be used as a normal microphone, but as a tool to debug multiple
channels time series data. This documentation takes FRDM-MCXN947 as an example of how to implement the
USB microphone function.

2 USB Audio Class introduction

Refer to the USB-IF documentation Universal Serial Bus Device Class Definition for Audio Devices that
describes how a USB audio device is defined, works properly, and defines the USB descriptors. However, this
documentation only defines the functions of the audio devices, the specific operation depends on how the USB
Host is implemented. For example, the UAC 2.0 device supports multiple clock sources following the USB-IF’s
documentation. On Windows OS, the multiple clock source function does not support the following Microsoft’s
UAC2.0 driver documentation.

2.1 USB Audio Class 1.0
USB Audio Class 1.0 is introduced in 1998. It is the first specification for audio devices. Limited to USB 1.1
speed and platform drivers, the UAC 1.0 device supports only stereo or mono audio.

A UAC 1.0 device must implement exactly one Audio Control interface and one or more Audio Streaming
interfaces. They are used to control the configuration of the audio device and perform the actual audio data
transmission.

To be able to manipulate the physical properties of audio function, “Unit” and “Terminal” are introduced.

The seven types of standard Units and Terminals in the USB Audio Class 1.0 specification are the following:
Input Terminal, Output Terminal, Mixer Unit, Selector Unit, Feature Unit, Processing Unit, Extension Unit. For
more information, please visit the USB-IF website.

To build a basic UAC 1.0 microphone device, an Input Terminal and Output Terminal are needed. The Input
Terminal (IT) is used to interface between the audio functions’ “outside world” and other Units. The Output
Terminal (OT) is used to interface between Units and the “outside world”.

Audio control interface

Audio function

aaa-059155

IT OT

Audio streaming interface

USB IN ENDPOINT

Figure 1. Basic UAC 1.0 microphone device

Audio Streaming interfaces are used to interchange digital audio data streams between the USB Host and
the audio function. Each Audio Streaming interface can have at most one isochronous data endpoint. An
Audio Streaming interface can have alternate settings that can be used to change certain characteristics of the
AN14567 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Application note Rev. 1.0 — 18 February 2025 Document feedback
2 / 19

https://www.usb.org/sites/default/files/audio10.pdf
https://www.usb.org/sites/default/files/audio10.pdf
https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_AN14567

NXP Semiconductors AN14567
How to implement USB microphone on MCX Series MCUs

interface and underlying endpoint. A typical usage is providing an empty endpoint that does not change any
data to save the USB bandwidth.

2.2 USB Audio Class 2.0
The USB Audio Class 2.0 is introduced in 2006, it mainly focuses on the limitations of UAC 1.0 in bandwidth,
sampling rate, and audio quality. UAC 2.0 supports USB 2.0 HS 480 MHz rather than UAC 1.0 ‘s USB 1.1 FS 12
MHz.

Same as UAC 1.0, UAC 2.0 needs an Audio Control interface and one or more Audio Streaming interfaces. A
basic UAC 2.0 microphone device topology is shown in Figure 2. The difference between UAC 1.0 and UAC 2.0
is that there is a Clock Source Unit.

Audio control interface

Audio function

Clock
source

aaa-059156

IT OT

Audio streaming interface

USB IN ENDPOINT

Figure 2. Basic UAC 2.0 microphone device

3 USB Audio Class implementation with MCUXpresso Config Tools

Handwriting USB code is difficult, NXP offers MCUXpresso Config Tools to generate USB-related code to
simplify this process. MCUXpresso Config Tools can be download at the NXP website. MCUXpresso IDE
provides the built-in version of MCUXpresso Config Tools.

3.1 PDM digital microphone
In this document, an external digital microphone is used to generate audio samples. For the digital microphone
module from Adafruit used in this documentation, the following configuration works well.

AN14567 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Application note Rev. 1.0 — 18 February 2025 Document feedback
3 / 19

https://www.nxp.com/design/design-center/software/development-software/mcuxpresso-software-and-tools-/mcuxpresso-config-tools-pins-clocks-and-peripherals:MCUXpresso-Config-Tools?&tab=Documentation_Tab
https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_AN14567

NXP Semiconductors AN14567
How to implement USB microphone on MCX Series MCUs

Figure 3. PDM configuration

A ping-pong transfer must be implemented to achieve continuous audio reception. A full code example can be
found in SDK.

uint8_t pdmBuffer[PDM_BUFFER_SIZE_IN_BYTES * PDM_BUFFER_NUM] __ALIGNED(4) = {0};
uint32_t pdmBufferPosition = 0;
pdm_edma_transfer_t pdmTransfer[] = {
 {
 .data = &pdmBuffer[0],
 .dataSize = PDM_BUFFER_SIZE_IN_BYTES,
 .linkTransfer = &pdmTransfer[1],
 },
 {
 .data = &pdmBuffer[PDM_BUFFER_SIZE_IN_BYTES],
 .dataSize = PDM_BUFFER_SIZE_IN_BYTES,
 .linkTransfer = &pdmTransfer[0],
 },
};

3.2 Implement UAC 1.0
In this document, MCUXpresso IDE and FRDM-MCXN947 are taken as examples.

AN14567 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Application note Rev. 1.0 — 18 February 2025 Document feedback
4 / 19

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_AN14567

NXP Semiconductors AN14567
How to implement USB microphone on MCX Series MCUs

Figure 4. UAC1.0 device configuration

To implement UAC 1.0, follow the steps below:

1. Create a new project in MCUXpresso IDE and enter the MCUXpresso Config Tools page.
2. Create a new middleware component under the “Peripherals” subpage.
3. Choose “USBHS1_USBC” on the Peripheral select box, because the FRDM-MCXN947 board only exposes

the USBHS port.
4. Create an MPU component following the tips.
5. Modify VID, PID, and names accordingly. In this example, set the Product name to “UAC 1.0 microphone”.
6. Add interfaces according to the previous introduction. A basic UAC 1.0 microphone device needs an Audio

Control interface and an Audio Streaming interface.
7. Click the “+” button to create a new interface, then modify the “Class” option and choose “Audio 1.0”.
8. Select “Audio control” in the “Subclass” option, and get an Audio Control interface.

Figure 5. Add UAC1.0 Audio Control interface
9. An Input Terminal (IT) and Output Terminal (OT) are needed in an Audio Control interface. Create these

terminals under the “Audio control interface configuration” block.
10. Modify the Terminal ID after creating the Units to prevent conflicts.
11. In the Output Terminal configuration block, set “Source ID” to the Input Terminal ID to implement the

topology shown in Figure 6 and Figure 7. The Audio Control interface settings are now complete.

AN14567 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Application note Rev. 1.0 — 18 February 2025 Document feedback
5 / 19

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_AN14567

NXP Semiconductors AN14567
How to implement USB microphone on MCX Series MCUs

Figure 6. UAC1.0 Audio Control terminal/unit configuration

Figure 7. UAC1.0 Audio Control terminal/unit configuration

The Audio Streaming interface must include at least one endpoint, and a zero bandwidth endpoint is optional. In
MCUXpresso Config Tools, the zero bandwidth endpoint is required. To create such an endpoint, create a new
endpoint and place it in the first position.

AN14567 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Application note Rev. 1.0 — 18 February 2025 Document feedback
6 / 19

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_AN14567

NXP Semiconductors AN14567
How to implement USB microphone on MCX Series MCUs

Figure 8. Zero bandwidth Audio Stream interface configuration

Create another endpoint called “microphone”, this endpoint can be used to send the microphone data.
Configure this endpoint as shown in Figure 9. For packet size, make sure it is greater than (channels * sample
bits / 4 * sample rate / 1000). An interval could be set to a reasonable value. For USB FS, the actual interval is
1 * 2 ^ (value – 1) microseconds, for USB HS the actual interval is 0.125 * 2 ^ (value – 1) microseconds. With
the configuration in figure, the actual interval is 1 microsecond for both USB FS and HS. The configuration in
Figure 9 is enough for a basic UAC 1.0 microphone device.

AN14567 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Application note Rev. 1.0 — 18 February 2025 Document feedback
7 / 19

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_AN14567

NXP Semiconductors AN14567
How to implement USB microphone on MCX Series MCUs

Figure 9. Data Audio Stream endpoint configuration

The configuration in Figure 10 is application-specific. For example, the audio format, PCM, is more common,
and float can also be used. In this document, an external digital microphone is used. The PDM peripheral can
generate a 24-bit sample. The “Subframe size” is set to 3 and “Resolution” to 24 and 16000 is added to Sample
Frequency list.

AN14567 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Application note Rev. 1.0 — 18 February 2025 Document feedback
8 / 19

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_AN14567

NXP Semiconductors AN14567
How to implement USB microphone on MCX Series MCUs

Figure 10. Data Audio Stream interface specific configuration

Now, generate code. To build this project successfully, implement these functions defined in generated/
usb_device_composite.c.

extern usb_status_t USB_DeviceInterface0AudioControlInit(usb_device_composite_struct_t
 *deviceComposite);
extern usb_status_t USB_DeviceInterface0AudioControlCallback(class_handle_t handle, uint32_t
 event, void *param);
extern usb_status_t USB_DeviceInterface0AudioControlSetConfiguration(class_handle_t handle, uint8_t
 configuration_index);
extern usb_status_t USB_DeviceInterface0AudioControlSetInterface(class_handle_t handle, uint8_t
 alternateSetting);
extern usb_status_t USB_DeviceInterface0AudioControlBusReset(usb_device_composite_struct_t
 *deviceComposite);
extern usb_status_t USB_DeviceInterface1AudioStreamingSetInterface(class_handle_t handle, uint8_t
 alternateSetting);

An implementation could reference the following content.

static usb_status_t USB_DeviceAudioRequest(class_handle_t handle, uint32_t event, void *param)
{
 usb_device_control_request_struct_t *request = (usb_device_control_request_struct_t *)param;
 usb_status_t error = kStatus_USB_Success;

 switch (event)
 {

#if USB_DEVICE_CONFIG_AUDIO_CLASS_2_0
 case USB_DEVICE_AUDIO_CS_GET_RANGE_SAMPLING_FREQ_CONTROL:
 request->buffer = (uint8_t *)&usbAudiofreqRange;
 request->length = sizeof(usbAudiofreqRange);
 break;
 case USB_DEVICE_AUDIO_CS_GET_CUR_SAMPLING_FREQ_CONTROL:
 request->buffer = (uint8_t *)&usbAudioCurFreq;
 request->length = sizeof(usbAudioCurFreq);
 break;

AN14567 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Application note Rev. 1.0 — 18 February 2025 Document feedback
9 / 19

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_AN14567

NXP Semiconductors AN14567
How to implement USB microphone on MCX Series MCUs

#endif

 default:
 error = kStatus_USB_InvalidRequest;
 break;
 }

 return error;
}

usb_status_t USB_DeviceInterface0AudioControlInit(usb_device_composite_struct_t *deviceComposite)
{
 // reset buffer position and start PDM receiving
 pdmBufferPosition = 0;
 PDM_TransferReceiveEDMA(PDM_PERIPHERAL, &PDM_PDM_eDMA_Handle, pdmTransfer);

 return kStatus_USB_Success;
}

usb_status_t USB_DeviceInterface0AudioControlCallback(class_handle_t handle, uint32_t event, void
 *param)
{
 usb_status_t error = kStatus_USB_InvalidRequest;

 usb_device_endpoint_callback_message_struct_t *ep_cb_param;
 ep_cb_param = (usb_device_endpoint_callback_message_struct_t *)param;

 switch (event)
 {
 case kUSB_DeviceAudioEventStreamSendResponse:
 if (ep_cb_param->length == USB_ISO_IN_ENDP_PACKET_SIZE)
 {
 error = USB_SendAudioData(handle, USB_INTERFACE_1_AUDIO_STREAMING_INDEX);
 }
 break;

 default:
 if (param && (event > 0xFFU))
 {
 error = USB_DeviceAudioRequest(handle, event, param);
 }
 break;
 }

 return error;
}

usb_status_t USB_DeviceInterface0AudioControlSetConfiguration(class_handle_t handle, uint8_t
 configuration_index)
{
 return kStatus_USB_Success;
}

usb_status_t USB_DeviceInterface0AudioControlSetInterface(class_handle_t handle, uint8_t
 alternateSetting)
{
 return kStatus_USB_Success;
}

usb_status_t USB_DeviceInterface0AudioControlBusReset(usb_device_composite_struct_t
 *deviceComposite)
{
 return kStatus_USB_Success;
}

usb_status_t USB_DeviceInterface1AudioStreamingSetInterface(class_handle_t handle, uint8_t
 alternateSetting)
{
 usb_status_t error = kStatus_USB_Success;

 if (alternateSetting == USB_ALTERNATE_SETTING_1)
 {
 error = USB_SendAudioData(handle, USB_INTERFACE_1_AUDIO_STREAMING_INDEX);
 }

AN14567 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Application note Rev. 1.0 — 18 February 2025 Document feedback
10 / 19

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_AN14567

NXP Semiconductors AN14567
How to implement USB microphone on MCX Series MCUs

 return error;
}

Function USB_DeviceAudioRequest is used to receive a request from the Audio Control interface. In this
basic UAC 1.0 device demo, there is no feature unit, so there will not be any requests.

Build the project and connect the USB port to the PC. Open System Settings and check connected devices, it
must be similar to the one shown Figure 11.

Figure 11. UAC1.0 microphone device in system settings

Use an audio tools like system sound recorder or Audacity to record and playback the sound to confirm it
functions properly.

Figure 12. record with UAC1.0 microphone device in Audacity

AN14567 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Application note Rev. 1.0 — 18 February 2025 Document feedback
11 / 19

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_AN14567

NXP Semiconductors AN14567
How to implement USB microphone on MCX Series MCUs

3.3 Implement UAC 2.0
Same as UAC 1.0, create an Audio Control interface and an Audio Streaming interface with similar
configuration. Add a Clock Source Unit in the Audio Control interface, to achieve the topology shown in the UAC
2.0 introduction. The final configurations should be similar to those below.

Figure 13. Audio Control interface configuration

AN14567 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Application note Rev. 1.0 — 18 February 2025 Document feedback
12 / 19

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_AN14567

NXP Semiconductors AN14567
How to implement USB microphone on MCX Series MCUs

Figure 14. Data Audio Stream interface configuration

AN14567 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Application note Rev. 1.0 — 18 February 2025 Document feedback
13 / 19

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_AN14567

NXP Semiconductors AN14567
How to implement USB microphone on MCX Series MCUs

Figure 15. Data Audio Stream interface configuration

After generating the code, implement the interface defined in generated/usb_device_composite.c. They
have the same definition as UAC 1.0.

extern usb_status_t USB_DeviceInterface0AudioControlInit(usb_device_composite_struct_t
 *deviceComposite);
extern usb_status_t USB_DeviceInterface0AudioControlCallback(class_handle_t handle, uint32_t
 event, void *param);
extern usb_status_t USB_DeviceInterface0AudioControlSetConfiguration(class_handle_t handle, uint8_t
 configuration_index);
extern usb_status_t USB_DeviceInterface0AudioControlSetInterface(class_handle_t handle, uint8_t
 alternateSetting);
extern usb_status_t USB_DeviceInterface0AudioControlBusReset(usb_device_composite_struct_t
 *deviceComposite);
extern usb_status_t USB_DeviceInterface1AudioStreamingSetInterface(class_handle_t handle, uint8_t
 alternateSetting);

The implementation is the same as UAC 1.0, except the USB_DeviceAudioRequest function. In this function,
implement the behavior when a specific request is sent.

static usb_status_t USB_DeviceAudioRequest(class_handle_t handle, uint32_t event, void *param)
{
 usb_device_control_request_struct_t *request = (usb_device_control_request_struct_t *)param;
 usb_status_t error = kStatus_USB_Success;

 switch (event)
 {

#if USB_DEVICE_CONFIG_AUDIO_CLASS_2_0
 case USB_DEVICE_AUDIO_CS_GET_RANGE_SAMPLING_FREQ_CONTROL:
 request->buffer = (uint8_t *)&usbAudiofreqRange;
 request->length = sizeof(usbAudiofreqRange);

AN14567 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Application note Rev. 1.0 — 18 February 2025 Document feedback
14 / 19

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_AN14567

NXP Semiconductors AN14567
How to implement USB microphone on MCX Series MCUs

 break;
 case USB_DEVICE_AUDIO_CS_GET_CUR_SAMPLING_FREQ_CONTROL:
 request->buffer = (uint8_t *)&usbAudioCurFreq;
 request->length = sizeof(usbAudioCurFreq);
 break;
#endif

 default:
 error = kStatus_USB_InvalidRequest;
 break;
 }

 return error;

Build and flash, the USB device must work properly.

Figure 16. UAC2.0 microphone device in system settings

Figure 17. Record with UAC2.0 microphone device in Audacity

4 Revision history

Document ID Release date Description

AN14567 v.1.0 18 February 2025 Initial version

Table 1. Revision history

5 Note about the source code in the document

Example code shown in this document has the following copyright and BSD-3-Clause license:

Copyright 2025 NXP Redistribution and use in source and binary forms, with or without modification, are
permitted provided that the following conditions are met:

1. Redistributions of source code must retain the above copyright notice, this list of conditions and the
following disclaimer.

AN14567 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Application note Rev. 1.0 — 18 February 2025 Document feedback
15 / 19

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_AN14567

NXP Semiconductors AN14567
How to implement USB microphone on MCX Series MCUs

2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the
following disclaimer in the documentation and/or other materials must be provided with the distribution.

3. Neither the name of the copyright holder nor the names of its contributors may be used to endorse or
promote products derived from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY
EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT
SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
DAMAGE.

AN14567 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Application note Rev. 1.0 — 18 February 2025 Document feedback
16 / 19

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_AN14567

NXP Semiconductors AN14567
How to implement USB microphone on MCX Series MCUs

Legal information

Definitions
Draft — A draft status on a document indicates that the content is still
under internal review and subject to formal approval, which may result
in modifications or additions. NXP Semiconductors does not give any
representations or warranties as to the accuracy or completeness of
information included in a draft version of a document and shall have no
liability for the consequences of use of such information.

Disclaimers
Limited warranty and liability — Information in this document is believed
to be accurate and reliable. However, NXP Semiconductors does not give
any representations or warranties, expressed or implied, as to the accuracy
or completeness of such information and shall have no liability for the
consequences of use of such information. NXP Semiconductors takes no
responsibility for the content in this document if provided by an information
source outside of NXP Semiconductors.
In no event shall NXP Semiconductors be liable for any indirect, incidental,
punitive, special or consequential damages (including - without limitation -
lost profits, lost savings, business interruption, costs related to the removal
or replacement of any products or rework charges) whether or not such
damages are based on tort (including negligence), warranty, breach of
contract or any other legal theory.
Notwithstanding any damages that customer might incur for any reason
whatsoever, NXP Semiconductors’ aggregate and cumulative liability
towards customer for the products described herein shall be limited in
accordance with the Terms and conditions of commercial sale of NXP
Semiconductors.

Right to make changes — NXP Semiconductors reserves the right to
make changes to information published in this document, including without
limitation specifications and product descriptions, at any time and without
notice. This document supersedes and replaces all information supplied prior
to the publication hereof.

Suitability for use — NXP Semiconductors products are not designed,
authorized or warranted to be suitable for use in life support, life-critical or
safety-critical systems or equipment, nor in applications where failure or
malfunction of an NXP Semiconductors product can reasonably be expected
to result in personal injury, death or severe property or environmental
damage. NXP Semiconductors and its suppliers accept no liability for
inclusion and/or use of NXP Semiconductors products in such equipment or
applications and therefore such inclusion and/or use is at the customer’s own
risk.

Applications — Applications that are described herein for any of these
products are for illustrative purposes only. NXP Semiconductors makes no
representation or warranty that such applications will be suitable for the
specified use without further testing or modification.
Customers are responsible for the design and operation of their
applications and products using NXP Semiconductors products, and NXP
Semiconductors accepts no liability for any assistance with applications or
customer product design. It is customer’s sole responsibility to determine
whether the NXP Semiconductors product is suitable and fit for the
customer’s applications and products planned, as well as for the planned
application and use of customer’s third party customer(s). Customers should
provide appropriate design and operating safeguards to minimize the risks
associated with their applications and products.
NXP Semiconductors does not accept any liability related to any default,
damage, costs or problem which is based on any weakness or default
in the customer’s applications or products, or the application or use by
customer’s third party customer(s). Customer is responsible for doing all
necessary testing for the customer’s applications and products using NXP
Semiconductors products in order to avoid a default of the applications
and the products or of the application or use by customer’s third party
customer(s). NXP does not accept any liability in this respect.

Terms and conditions of commercial sale — NXP Semiconductors
products are sold subject to the general terms and conditions of commercial
sale, as published at https://www.nxp.com/profile/terms, unless otherwise
agreed in a valid written individual agreement. In case an individual
agreement is concluded only the terms and conditions of the respective
agreement shall apply. NXP Semiconductors hereby expressly objects to
applying the customer’s general terms and conditions with regard to the
purchase of NXP Semiconductors products by customer.

Export control — This document as well as the item(s) described herein
may be subject to export control regulations. Export might require a prior
authorization from competent authorities.

Suitability for use in non-automotive qualified products — Unless
this document expressly states that this specific NXP Semiconductors
product is automotive qualified, the product is not suitable for automotive
use. It is neither qualified nor tested in accordance with automotive testing
or application requirements. NXP Semiconductors accepts no liability for
inclusion and/or use of non-automotive qualified products in automotive
equipment or applications.
In the event that customer uses the product for design-in and use in
automotive applications to automotive specifications and standards,
customer (a) shall use the product without NXP Semiconductors’ warranty
of the product for such automotive applications, use and specifications, and
(b) whenever customer uses the product for automotive applications beyond
NXP Semiconductors’ specifications such use shall be solely at customer’s
own risk, and (c) customer fully indemnifies NXP Semiconductors for any
liability, damages or failed product claims resulting from customer design and
use of the product for automotive applications beyond NXP Semiconductors’
standard warranty and NXP Semiconductors’ product specifications.

HTML publications — An HTML version, if available, of this document is
provided as a courtesy. Definitive information is contained in the applicable
document in PDF format. If there is a discrepancy between the HTML
document and the PDF document, the PDF document has priority.

Translations — A non-English (translated) version of a document, including
the legal information in that document, is for reference only. The English
version shall prevail in case of any discrepancy between the translated and
English versions.

Security — Customer understands that all NXP products may be subject to
unidentified vulnerabilities or may support established security standards or
specifications with known limitations. Customer is responsible for the design
and operation of its applications and products throughout their lifecycles
to reduce the effect of these vulnerabilities on customer’s applications
and products. Customer’s responsibility also extends to other open and/or
proprietary technologies supported by NXP products for use in customer’s
applications. NXP accepts no liability for any vulnerability. Customer should
regularly check security updates from NXP and follow up appropriately.
Customer shall select products with security features that best meet rules,
regulations, and standards of the intended application and make the
ultimate design decisions regarding its products and is solely responsible
for compliance with all legal, regulatory, and security related requirements
concerning its products, regardless of any information or support that may be
provided by NXP.
NXP has a Product Security Incident Response Team (PSIRT) (reachable
at PSIRT@nxp.com) that manages the investigation, reporting, and solution
release to security vulnerabilities of NXP products.

NXP B.V. — NXP B.V. is not an operating company and it does not distribute
or sell products.

Trademarks
Notice: All referenced brands, product names, service names, and
trademarks are the property of their respective owners.
NXP — wordmark and logo are trademarks of NXP B.V.

AN14567 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Application note Rev. 1.0 — 18 February 2025 Document feedback
17 / 19

mailto:PSIRT@nxp.com
https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_AN14567

NXP Semiconductors AN14567
How to implement USB microphone on MCX Series MCUs

Microsoft, Azure, and ThreadX — are trademarks of the Microsoft group of
companies.

AN14567 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Application note Rev. 1.0 — 18 February 2025 Document feedback
18 / 19

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_AN14567

NXP Semiconductors AN14567
How to implement USB microphone on MCX Series MCUs

Contents
1 Introduction .. 2
2 USB Audio Class introduction 2
2.1 USB Audio Class 1.0 ...2
2.2 USB Audio Class 2.0 ...3
3 USB Audio Class implementation with

MCUXpresso Config Tools3
3.1 PDM digital microphone 3
3.2 Implement UAC 1.0 ... 4
3.3 Implement UAC 2.0 ... 12
4 Revision history ...15
5 Note about the source code in the

document ..15
Legal information ...17

Please be aware that important notices concerning this document and the product(s)
described herein, have been included in section 'Legal information'.

© 2025 NXP B.V. All rights reserved.
For more information, please visit: https://www.nxp.com Document feedback

Date of release: 18 February 2025
Document identifier: AN14567

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_AN14567

	1 Introduction
	2 USB Audio Class introduction
	2.1 USB Audio Class 1.0
	2.2 USB Audio Class 2.0

	3 USB Audio Class implementation with MCUXpresso Config Tools
	3.1 PDM digital microphone
	3.2 Implement UAC 1.0
	3.3 Implement UAC 2.0

	4 Revision history
	5 Note about the source code in the document
	Legal information
	Contents

