
AN14567
How to implement USB microphone on MCX Series MCUs
Rev. 1.0 — 18 February 2025 Application note

Document information
Information Content

Keywords AN14567, USB, Audio Class, PDM

Abstract This application note describes how to implement the USB microphone function on MCX series
microcontrollers. In this application note, we use USB Audio Class 1.0 and USB Audio Class 2.0
for USB audio transfer class and an external digital microphone or generated data as data source.

https://www.nxp.com


NXP Semiconductors AN14567
How to implement USB microphone on MCX Series MCUs

1   Introduction

This documentation describes how to implement a USB microphone on MCX Series MCUs. The data source
could be an external digital microphone or generated data. A USB Audio Class 1.0 (UAC 1.0) and USB Audio
Class 2.0 (UAC 2.0) microphone is used in this document.

The USB microphone function could not only be used as a normal microphone, but as a tool to debug multiple
channels time series data. This documentation takes FRDM-MCXN947 as an example of how to implement the
USB microphone function.

2   USB Audio Class introduction

Refer to the USB-IF documentation Universal Serial Bus Device Class Definition for Audio Devices that
describes how a USB audio device is defined, works properly, and defines the USB descriptors. However, this
documentation only defines the functions of the audio devices, the specific operation depends on how the USB
Host is implemented. For example, the UAC 2.0 device supports multiple clock sources following the USB-IF’s
documentation. On Windows OS, the multiple clock source function does not support the following Microsoft’s
UAC2.0 driver documentation.

2.1  USB Audio Class 1.0
USB Audio Class 1.0 is introduced in 1998. It is the first specification for audio devices. Limited to USB 1.1
speed and platform drivers, the UAC 1.0 device supports only stereo or mono audio.

A UAC 1.0 device must implement exactly one Audio Control interface and one or more Audio Streaming
interfaces. They are used to control the configuration of the audio device and perform the actual audio data
transmission.

To be able to manipulate the physical properties of audio function, “Unit” and “Terminal” are introduced.

The seven types of standard Units and Terminals in the USB Audio Class 1.0 specification are the following:
Input Terminal, Output Terminal, Mixer Unit, Selector Unit, Feature Unit, Processing Unit, Extension Unit. For
more information, please visit the USB-IF website.

To build a basic UAC 1.0 microphone device, an Input Terminal and Output Terminal are needed. The Input
Terminal (IT) is used to interface between the audio functions’ “outside world” and other Units. The Output
Terminal (OT) is used to interface between Units and the “outside world”.
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Figure 1. Basic UAC 1.0 microphone device

Audio Streaming interfaces are used to interchange digital audio data streams between the USB Host and
the audio function. Each Audio Streaming interface can have at most one isochronous data endpoint. An
Audio Streaming interface can have alternate settings that can be used to change certain characteristics of the
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interface and underlying endpoint. A typical usage is providing an empty endpoint that does not change any
data to save the USB bandwidth.

2.2  USB Audio Class 2.0
The USB Audio Class 2.0 is introduced in 2006, it mainly focuses on the limitations of UAC 1.0 in bandwidth,
sampling rate, and audio quality. UAC 2.0 supports USB 2.0 HS 480 MHz rather than UAC 1.0 ‘s USB 1.1 FS 12
MHz.

Same as UAC 1.0, UAC 2.0 needs an Audio Control interface and one or more Audio Streaming interfaces. A
basic UAC 2.0 microphone device topology is shown in Figure 2. The difference between UAC 1.0 and UAC 2.0
is that there is a Clock Source Unit.
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Figure 2. Basic UAC 2.0 microphone device

3   USB Audio Class implementation with MCUXpresso Config Tools

Handwriting USB code is difficult, NXP offers MCUXpresso Config Tools to generate USB-related code to
simplify this process. MCUXpresso Config Tools can be download at the NXP website. MCUXpresso IDE
provides the built-in version of MCUXpresso Config Tools.

3.1  PDM digital microphone
In this document, an external digital microphone is used to generate audio samples. For the digital microphone
module from Adafruit used in this documentation, the following configuration works well.
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Figure 3. PDM configuration

A ping-pong transfer must be implemented to achieve continuous audio reception. A full code example can be
found in SDK.

uint8_t pdmBuffer[PDM_BUFFER_SIZE_IN_BYTES * PDM_BUFFER_NUM] __ALIGNED(4) = {0};
uint32_t pdmBufferPosition = 0;
pdm_edma_transfer_t pdmTransfer[] = {
 {
  .data = &pdmBuffer[0],
  .dataSize = PDM_BUFFER_SIZE_IN_BYTES,
  .linkTransfer = &pdmTransfer[1],
 },
 {
  .data = &pdmBuffer[PDM_BUFFER_SIZE_IN_BYTES],
  .dataSize = PDM_BUFFER_SIZE_IN_BYTES,
  .linkTransfer = &pdmTransfer[0],
 },
};

3.2  Implement UAC 1.0
In this document, MCUXpresso IDE and FRDM-MCXN947 are taken as examples.
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Figure 4. UAC1.0 device configuration

To implement UAC 1.0, follow the steps below:

1. Create a new project in MCUXpresso IDE and enter the MCUXpresso Config Tools page.
2. Create a new middleware component under the “Peripherals” subpage.
3. Choose “USBHS1_USBC” on the Peripheral select box, because the FRDM-MCXN947 board only exposes

the USBHS port.
4. Create an MPU component following the tips.
5. Modify VID, PID, and names accordingly. In this example, set the Product name to “UAC 1.0 microphone”.
6. Add interfaces according to the previous introduction. A basic UAC 1.0 microphone device needs an Audio

Control interface and an Audio Streaming interface.
7. Click the “+” button to create a new interface, then modify the “Class” option and choose “Audio 1.0”.
8. Select “Audio control” in the “Subclass” option, and get an Audio Control interface.

Figure 5. Add UAC1.0 Audio Control interface
9. An Input Terminal (IT) and Output Terminal (OT) are needed in an Audio Control interface. Create these

terminals under the “Audio control interface configuration” block.
10. Modify the Terminal ID after creating the Units to prevent conflicts.
11. In the Output Terminal configuration block, set “Source ID” to the Input Terminal ID to implement the

topology shown in Figure 6 and Figure 7. The Audio Control interface settings are now complete.
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Figure 6. UAC1.0 Audio Control terminal/unit configuration

Figure 7. UAC1.0 Audio Control terminal/unit configuration

The Audio Streaming interface must include at least one endpoint, and a zero bandwidth endpoint is optional. In
MCUXpresso Config Tools, the zero bandwidth endpoint is required. To create such an endpoint, create a new
endpoint and place it in the first position.
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Figure 8. Zero bandwidth Audio Stream interface configuration

Create another endpoint called “microphone”, this endpoint can be used to send the microphone data.
Configure this endpoint as shown in Figure 9. For packet size, make sure it is greater than (channels * sample
bits / 4 * sample rate / 1000). An interval could be set to a reasonable value. For USB FS, the actual interval is
1 * 2 ^ (value – 1) microseconds, for USB HS the actual interval is 0.125 * 2 ^ (value – 1) microseconds. With
the configuration in figure, the actual interval is 1 microsecond for both USB FS and HS. The configuration in
Figure 9 is enough for a basic UAC 1.0 microphone device.
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Figure 9. Data Audio Stream endpoint configuration

The configuration in Figure 10 is application-specific. For example, the audio format, PCM, is more common,
and float can also be used. In this document, an external digital microphone is used. The PDM peripheral can
generate a 24-bit sample. The “Subframe size” is set to 3 and “Resolution” to 24 and 16000 is added to Sample
Frequency list.
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Figure 10. Data Audio Stream interface specific configuration

Now, generate code. To build this project successfully, implement these functions defined in generated/
usb_device_composite.c.

extern usb_status_t USB_DeviceInterface0AudioControlInit(usb_device_composite_struct_t
 *deviceComposite);
extern usb_status_t USB_DeviceInterface0AudioControlCallback(class_handle_t handle, uint32_t
 event, void *param);
extern usb_status_t USB_DeviceInterface0AudioControlSetConfiguration(class_handle_t handle, uint8_t
 configuration_index);
extern usb_status_t USB_DeviceInterface0AudioControlSetInterface(class_handle_t handle, uint8_t
 alternateSetting);
extern usb_status_t USB_DeviceInterface0AudioControlBusReset(usb_device_composite_struct_t
 *deviceComposite);
extern usb_status_t USB_DeviceInterface1AudioStreamingSetInterface(class_handle_t handle, uint8_t
 alternateSetting);

An implementation could reference the following content.

static usb_status_t USB_DeviceAudioRequest(class_handle_t handle, uint32_t event, void *param)
{
 usb_device_control_request_struct_t *request = (usb_device_control_request_struct_t *)param;
 usb_status_t error = kStatus_USB_Success;

 switch (event)
 {

#if USB_DEVICE_CONFIG_AUDIO_CLASS_2_0
 case USB_DEVICE_AUDIO_CS_GET_RANGE_SAMPLING_FREQ_CONTROL:
  request->buffer = (uint8_t *)&usbAudiofreqRange;
  request->length = sizeof(usbAudiofreqRange);
  break;
 case USB_DEVICE_AUDIO_CS_GET_CUR_SAMPLING_FREQ_CONTROL:
  request->buffer = (uint8_t *)&usbAudioCurFreq;
  request->length = sizeof(usbAudioCurFreq);
  break;
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#endif

 default:
  error = kStatus_USB_InvalidRequest;
  break;
 }

 return error;
}

usb_status_t USB_DeviceInterface0AudioControlInit(usb_device_composite_struct_t *deviceComposite)
{
 // reset buffer position and start PDM receiving
 pdmBufferPosition = 0;
 PDM_TransferReceiveEDMA(PDM_PERIPHERAL, &PDM_PDM_eDMA_Handle, pdmTransfer);

 return kStatus_USB_Success;
}

usb_status_t USB_DeviceInterface0AudioControlCallback(class_handle_t handle, uint32_t event, void
 *param)
{
 usb_status_t error = kStatus_USB_InvalidRequest;

 usb_device_endpoint_callback_message_struct_t *ep_cb_param;
 ep_cb_param = (usb_device_endpoint_callback_message_struct_t *)param;

 switch (event)
 {
 case kUSB_DeviceAudioEventStreamSendResponse:
  if (ep_cb_param->length == USB_ISO_IN_ENDP_PACKET_SIZE)
  {
   error = USB_SendAudioData(handle, USB_INTERFACE_1_AUDIO_STREAMING_INDEX);
  }
  break;

 default:
  if (param && (event > 0xFFU))
  {
   error = USB_DeviceAudioRequest(handle, event, param);
  }
  break;
 }

 return error;
}

usb_status_t USB_DeviceInterface0AudioControlSetConfiguration(class_handle_t handle, uint8_t
 configuration_index)
{
 return kStatus_USB_Success;
}

usb_status_t USB_DeviceInterface0AudioControlSetInterface(class_handle_t handle, uint8_t
 alternateSetting)
{
 return kStatus_USB_Success;
}

usb_status_t USB_DeviceInterface0AudioControlBusReset(usb_device_composite_struct_t
 *deviceComposite)
{
 return kStatus_USB_Success;
}

usb_status_t USB_DeviceInterface1AudioStreamingSetInterface(class_handle_t handle, uint8_t
 alternateSetting)
{
 usb_status_t error = kStatus_USB_Success;

 if (alternateSetting == USB_ALTERNATE_SETTING_1)
 {
  error = USB_SendAudioData(handle, USB_INTERFACE_1_AUDIO_STREAMING_INDEX);
 }
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 return error;
} 

Function USB_DeviceAudioRequest is used to receive a request from the Audio Control interface. In this
basic UAC 1.0 device demo, there is no feature unit, so there will not be any requests.

Build the project and connect the USB port to the PC. Open System Settings and check connected devices, it
must be similar to the one shown Figure 11.

Figure 11. UAC1.0 microphone device in system settings

Use an audio tools like system sound recorder or Audacity to record and playback the sound to confirm it
functions properly.

Figure 12. record with UAC1.0 microphone device in Audacity
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3.3  Implement UAC 2.0
Same as UAC 1.0, create an Audio Control interface and an Audio Streaming interface with similar
configuration. Add a Clock Source Unit in the Audio Control interface, to achieve the topology shown in the UAC
2.0 introduction. The final configurations should be similar to those below.

Figure 13. Audio Control interface configuration
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Figure 14. Data Audio Stream interface configuration
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Figure 15. Data Audio Stream interface configuration

After generating the code, implement the interface defined in generated/usb_device_composite.c. They
have the same definition as UAC 1.0.

extern usb_status_t USB_DeviceInterface0AudioControlInit(usb_device_composite_struct_t
 *deviceComposite);
extern usb_status_t USB_DeviceInterface0AudioControlCallback(class_handle_t handle, uint32_t
 event, void *param);
extern usb_status_t USB_DeviceInterface0AudioControlSetConfiguration(class_handle_t handle, uint8_t
 configuration_index);
extern usb_status_t USB_DeviceInterface0AudioControlSetInterface(class_handle_t handle, uint8_t
 alternateSetting);
extern usb_status_t USB_DeviceInterface0AudioControlBusReset(usb_device_composite_struct_t
 *deviceComposite);
extern usb_status_t USB_DeviceInterface1AudioStreamingSetInterface(class_handle_t handle, uint8_t
 alternateSetting);

The implementation is the same as UAC 1.0, except the USB_DeviceAudioRequest function. In this function,
implement the behavior when a specific request is sent.

static usb_status_t USB_DeviceAudioRequest(class_handle_t handle, uint32_t event, void *param)
{
 usb_device_control_request_struct_t *request = (usb_device_control_request_struct_t *)param;
 usb_status_t error = kStatus_USB_Success;

 switch (event)
 {

#if USB_DEVICE_CONFIG_AUDIO_CLASS_2_0
 case USB_DEVICE_AUDIO_CS_GET_RANGE_SAMPLING_FREQ_CONTROL:
  request->buffer = (uint8_t *)&usbAudiofreqRange;
  request->length = sizeof(usbAudiofreqRange);
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  break;
 case USB_DEVICE_AUDIO_CS_GET_CUR_SAMPLING_FREQ_CONTROL:
  request->buffer = (uint8_t *)&usbAudioCurFreq;
  request->length = sizeof(usbAudioCurFreq);
  break;
#endif

 default:
  error = kStatus_USB_InvalidRequest;
  break;
 }

 return error;

Build and flash, the USB device must work properly.

Figure 16. UAC2.0 microphone device in system settings

Figure 17. Record with UAC2.0 microphone device in Audacity

4   Revision history

Document ID Release date Description

AN14567 v.1.0 18 February 2025 Initial version

Table 1. Revision history

5   Note about the source code in the document

Example code shown in this document has the following copyright and BSD-3-Clause license:

Copyright 2025 NXP Redistribution and use in source and binary forms, with or without modification, are
permitted provided that the following conditions are met:

1. Redistributions of source code must retain the above copyright notice, this list of conditions and the
following disclaimer.
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2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the
following disclaimer in the documentation and/or other materials must be provided with the distribution.

3. Neither the name of the copyright holder nor the names of its contributors may be used to endorse or
promote products derived from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY
EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT
SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
DAMAGE.
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