
AN14509
How to Use SmartMDA to Implement MDIO Slave Interface on MCX MCU
Rev. 1.0 — 29 November 2024 Application note

Document information
Information Content

Keywords AN14509, MDIO, SmartDMA, MCX N947

Abstract This application note describes the use of SmartDMA to implement the MDIO slave interface on
MCX series MCUs.

https://www.nxp.com

NXP Semiconductors AN14509
How to Use SmartMDA to Implement MDIO Slave Interface on MCX MCU

1 Introduction

This application note describes the use of SmartDMA to implement the MDIO slave interface on MCX series
MCUs.

It includes the introduction of MDIO interface, features and API routines, and a demo. In MCX N947, there is a
co-processor, called by SmartDMA, which can be used to implement MDIO slave interface.

Performance:

The SmartDMA can use the system clock (150 MHz) of the MCU as its clock source.

1. For example, to generate a 2 kHz PWM wave, the resolution per cycle can reach 16 bits.
2. If generating a 250 kHz PWM wave with a period of 40 microseconds, the resolution can reach 600 points

(40 microseconds divided by the inverse of 150 MHz). it is about 9-bit resolution for full range tuning.

2 MDIO interface

Management Data Input/Output (MDIO) is the serial bus protocol defined in the IEEE 802.3 standard for
Ethernet for the Media Independent Interface (MII). MII connects Media Access Control (MAC) devices to
Ethernet physical layer (PHY) circuits. The MDIO bus has two signal lines: Management Data Clock (MDC) and
Management Data Input/Output (MDIO). MDIO was originally defined in Clause 22 of IEEE 802.3.

The following is an introduction to the relevant timing.

2.1 Management frame structure
Frames transmitted on the MII Management Interface have the frame structure, as shown in Table 1. The order
of bit transmission must be from left to right.

Management frame fields

PRE ST OP PHYAD REGAD TA DATA IDLE

READ 1...1 01 10 AAAAA RRRRR Z0 DDDDDD
DDDDDD
DDDD

Z

WRITE 1...1 01 01 AAAAA RRRRR 10 DDDDDD
DDDDDD
DDDD

Z

Table 1. Management frame format

2.1.1 PRE (preamble)

The IDLE condition on MDIO is a high-impedance state. All the three state drivers must be disabled and the
pull-up resistor of the PHY pulls the MDIO line to a logic one. At the beginning of each transaction, the station
management entity sends a sequence of 32 contiguous logic one bits on MDIO with 32 corresponding cycles
on MDC to provide the PHY with a pattern that it can use to establish synchronization. A PHY shall observe a
sequence of 32 contiguous one bit on MDIO with 32 corresponding cycles on MDC before it responds to any
transaction.

If the STA determines that every PHY connected to the MDIO signal is able to accept management frames that
are not preceded by the preamble pattern, then the STA may suppress the generation of the preamble pattern,
and may initiate management frames with the ST (Start of Frame) pattern.

AN14509 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

Application note Rev. 1.0 — 29 November 2024 Document feedback
2 / 15

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_AN14509

NXP Semiconductors AN14509
How to Use SmartMDA to Implement MDIO Slave Interface on MCX MCU

2.1.2 ST (start of frame)

The start of frame is indicated by a <01> pattern. This pattern assures transitions from the default logic one line
state to zero and back to one.

2.1.3 OP (operation code)

The operation code for a read transaction is <10>, while the operation code for a write transaction is <01>.

2.1.4 PHYAD (PHY address)

The PHY Address is five bits, allowing 32 unique PHY addresses. The first PHY address bit transmitted
and received is the MSB of the address. A PHY that is connected to the station management entity via the
mechanical interface defined in 22.6 responds to transactions addressed to PHY Address zero <00000>. A
station management entity that is attached to multiple PHYs must have prior knowledge of the appropriate PHY
Address for each PHY.

2.1.5 REGAD (register address)

The operation code for a read transaction is <10>, while the operation code for a write transaction is <01>. The
register address is five bits, allowing 32 individual registers to be addressed within each PHY. The first register
address bit transmitted and received is the MSB of the address.

2.1.6 TA (turnaround)

The start of frame is indicated by a <01> pattern. This pattern assures transitions from the default logic one line
state to zero and back to one. The turnaround time is a 2-bit time spacing between the Register Address field
and the Data field of a management frame to avoid contention during a read transaction. For a read transaction,
both the STA and the PHY remain in a high-impedance state for the first bit time of the turnaround. The PHY
drives a zero bit during the second bit time of the turnaround of a read transaction. During a write transaction,
the STA drives a one bit for the first bit time of the turnaround and a zero bit for the second bit time of the
turnaround.

2.1.7 DATA (data)

The data field is 16 bits. The first data bit transmitted and received must be bit 15 of the register being
addressed.

2.2 Clause 45
To meet the growing needs of 10 Gigabit Ethernet devices, clause 45 of the 802.3ae specification is introduced.
Clause 45 added support for low voltage devices down to 1.2 V and extended the frame format to provide
access to many more devices and registers.

Table 2 describes the timing difference.

Clause ST (Start of Frame) OP Code 16-bit ADDRESS/DATA

Clause 22 0b01 for Clause 22 0b01: Write
0b10: Read

Write: Write Data
Read: Read Data

Clause 45 0b00 for Clause 45 0b00: RW Address
0b01: Write
0b11: Read

Address: Reg Address
Write: Write Data
Read: Read Data

Table 2. Time difference

AN14509 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

Application note Rev. 1.0 — 29 November 2024 Document feedback
3 / 15

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_AN14509

NXP Semiconductors AN14509
How to Use SmartMDA to Implement MDIO Slave Interface on MCX MCU

Clause ST (Start of Frame) OP Code 16-bit ADDRESS/DATA
0b10: Read Increment Read: Inc Read Data

Table 2. Time difference...continued

Figure 1 shows the frame structure (OP is the RW address).

Figure 1. Frame structure

3 SmartDMA for MDIO

SmartDMA is a coprocessor unit within the MCX MCU that can execute a reduced instruction set. It can access
GPIO in a single cycle and can receive GPIO input signals as trigger sources. When the MDC clock signal
rises, SmartDMA can synchronously capture the value of the MDIO data signal. When the clock signal falls,
SmartDMA can transmit the signal level of the MDIO data. Additionally, SmartDMA can set an internal timeout
signal to prevent bus hang-ups.

3.1 SmartDMA configuration
SmartDMA, like other peripherals, also has functions, such as reset, clock, and interrupt. Enable the SmartDMA
clock in the SMARTDMA_InitWithoutFirmware() function.

To use SmartDMA functions more friendly, this application keeps SmartDMA code encapsulated into an array,
providing some API functions directly for the user to call.

The SmartDMA code is required to run in the SRAMX at address 0x4000000 when it is packaged. Therefore,
before running the SmartDMA code, the user must first transfer the array to the SRAMX at address 0x4000000
using the function SMARTDMA_InstallFirmware(). SmartDMA has an interrupt function, and a callback
function is executed when an interrupt occurs. Users can install the callback function using the function
SMARTDMA_InstallCallback(). Users can also enable SmartDMA interrupts and set interrupt priority
using the function EnableIRQWithPriority(). The function SMARTDMA_Boot() is the startup function for
SmartDMA, and parameters can be passed to this function as smartdmaParam.

3.2 SmartDMA parameter settings
The parameters consist of two parts: the stack used for SmartDMA operation and the MDIO register settings.
Table 3 shows the settings for the MDIO registers.

The settings of the MDIO registers are for the following purposes:

• To receive information on the bus, include operation code, PHY address, DEV address, and data and memory
address.

AN14509 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

Application note Rev. 1.0 — 29 November 2024 Document feedback
4 / 15

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_AN14509

NXP Semiconductors AN14509
How to Use SmartMDA to Implement MDIO Slave Interface on MCX MCU

• Users can set the MDIO PHY address and DEV address, and can enable related interrupts, such as frame
completion interrupts.

Offset Register Function Offset Register Function

0x0 RXOPCODE Operation code received 0x40 MEM0ADDR Memory 0 address

0x4 RXPHYADD PHY address received 0x44 MEM1ADDR Memory 1 address

0x8 RXDEVADD DEV address received 0x48 MEM2ADDR Memory 2 address

0xc RXDAT Data received 0x4c MEM3ADDR Memory 3 address

0x10 RXMEMADD Memory address received 0x50 MEM4ADDR Memory 4 address

0x14 ADDINC Address increased 0x54 MEM0SIZE Memory 0 size

0x18 SETPHYADD PHY address to be set 0x58 MEM1SIZE Memory 1 size

0x1c SETDEVADD DEV address to be set 0x5c MEM2SIZE Memory 2 size

0x20 STA Status 0x60 MEM3SIZE Memory 3 size

0x24 INTEN Interrupt enabled 0x64 MEM4SIZE Memory 4 size

0x28 TIMERADDR Timeout timer 0x68 MEM0ZONE Memory 0 zone

0x2c MDIODEBUG Debug buffer 0x6c MEM1ZONE Memory 1 zone

0x30 RESERVED Reserved 0x70 MEM2ZONE Memory 2 zone

0x34 RESERVED Reserved 0x74 MEM3ZONE Memory 3 zone

0x38 RESERVED Reserved 0x78 MEM4ZONE Memory 4 zone

0x3c RESERVED Reserved 0x7c RESERVED Reserved

Table 3. Settings for MDIO registers

3.3 Block diagram
Figure 2 shows the block diagram of MDIO implemented on the MCXN947. SmartDMA runs the code in
SRAMX, operates the GPIO, and sends the MDIO data from RAM to the master. If it is a read operation from
the master, SmartDMA can send out the data.

SmartDMA MDC
MDIO

RAM
For MDIO data

SRAMX

MCXN947

Figure 2. Block diagram

AN14509 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

Application note Rev. 1.0 — 29 November 2024 Document feedback
5 / 15

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_AN14509

NXP Semiconductors AN14509
How to Use SmartMDA to Implement MDIO Slave Interface on MCX MCU

3.4 Features
In this application, SmartDMA implements the functionality of an MDIO slave. It has the following features:

• Users can configure the PHY address, device address, and memory module definitions.
• Users can receive the operation code, PHY address, and device address of the current frame.
• Users can enable frame completion interrupts.
• The slave can receive MDC clock data up to 4 MHz.
• The entire data reception and transmission do not require the involvement of the Arm core.

4 Demo

In this application, two FRDM-MCXN947 boards are used to implement MDIO communication.

4.1 MDIO master code
The Ethernet peripheral of MCX N947 has MDIO master functionality. Users can demonstrate the MDIO master
function through the example named “txrx_rxpoll” in the corresponding SDK. The example path is SDK_2_16_
000_FRDM-MCXN947\boards\frdmmcxn947\driver_examples\enet\txrx_rxpoll.

The important code routines are as follows:

static void MDIO_Init(void)
{
 (void)CLOCK_EnableClock(s_enetClock[ENET_GetInstance(EXAMPLE_ENET_BASE)]);
 EXAMPLE_ENET_BASE->MAC_MDIO_ADDRESS = ENET_MAC_MDIO_ADDRESS_CR(0);
}

static status_t MDIO_Write(uint8_t phyAddr, uint8_t devAddr,uint16_t regAddra,
 uint16_t data)
{
 uint32_t reg = EXAMPLE_ENET_BASE->MAC_MDIO_ADDRESS &
 ENET_MAC_MDIO_ADDRESS_CR_MASK;

 /* Build MII write command. */
 EXAMPLE_ENET_BASE->MAC_MDIO_ADDRESS =
 reg | ENET_MAC_MDIO_ADDRESS_GOC_0(1) | ENET_MAC_MDIO_ADDRESS_PA(phyAddr)
 | ENET_MAC_MDIO_ADDRESS_RDA(devAddr)| ENET_MAC_MDIO_ADDRESS_C45E(1);
 EXAMPLE_ENET_BASE->MAC_MDIO_DATA = (regAddra << 16) | data;
 EXAMPLE_ENET_BASE->MAC_MDIO_ADDRESS |= ENET_MAC_MDIO_ADDRESS_GB_MASK;

 while (((EXAMPLE_ENET_BASE->MAC_MDIO_ADDRESS &
 ENET_MAC_MDIO_ADDRESS_GB_MASK) != 0U))
 {
 }

}

static status_t MDIO_Read(uint8_t phyAddr, uint8_t devAddr, uint16_t regAddr,
 uint16_t *pData)
{
 uint32_t reg = EXAMPLE_ENET_BASE->MAC_MDIO_ADDRESS &
 ENET_MAC_MDIO_ADDRESS_CR_MASK;

 /* Build MII read command. */

AN14509 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

Application note Rev. 1.0 — 29 November 2024 Document feedback
6 / 15

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_AN14509

NXP Semiconductors AN14509
How to Use SmartMDA to Implement MDIO Slave Interface on MCX MCU

 EXAMPLE_ENET_BASE->MAC_MDIO_ADDRESS = reg | ENET_MAC_MDIO_ADDRESS_GOC_0(1) |
 ENET_MAC_MDIO_ADDRESS_GOC_1(1) |
 ENET_MAC_MDIO_ADDRESS_PA(phyAddr) |
 ENET_MAC_MDIO_ADDRESS_RDA(devAddr)| ENET_MAC_MDIO_ADDRESS_C45E(1);
 EXAMPLE_ENET_BASE->MAC_MDIO_DATA = (regAddr << 16);

 EXAMPLE_ENET_BASE->MAC_MDIO_ADDRESS |= ENET_MAC_MDIO_ADDRESS_GB_MASK;
 while (((EXAMPLE_ENET_BASE->MAC_MDIO_ADDRESS &
 ENET_MAC_MDIO_ADDRESS_GB_MASK) != 0U))
 {
 }

 *pData = (EXAMPLE_ENET_BASE->MAC_MDIO_DATA & ENET_MAC_MDIO_DATA_GD_MASK);

}

The operations code is as below:

MDIO_Init();
 for(uint32_t i = 0; i < 8*4; i = i+4)
 {
 MDIO_Write(0x10, 0x20, 0x8000+i, i);
 SDK_DelayAtLeastUs(10, SystemCoreClock);
 }
 for(uint32_t i = 0; i < 8*4; i = i+4)
 {
 MDIO_Write(0x10, 0x20, 0x9000+i, i+0x100);
 SDK_DelayAtLeastUs(10, SystemCoreClock);
 }
 for(uint32_t i = 0; i < 8*4; i = i+4)
 {
 MDIO_Write(0x10, 0x20, 0xa000+i, i+0x200);
 SDK_DelayAtLeastUs(10, SystemCoreClock);
 }
 for(uint32_t i = 0; i < 8*4; i = i+4)
 {
 MDIO_Write(0x10, 0x20, 0xb000+i, i+0x300);
 SDK_DelayAtLeastUs(10, SystemCoreClock);
 }
 for(uint32_t i = 0; i < 8*4; i = i+4)
 {
 MDIO_Read(0x10, 0x20, 0x8000+i, &g_rec_data);
 PRINTF("addr:0x%4x,RxD:0x%4x.\r\n",0x8000+i,g_rec_data);
 }
 for(uint32_t i = 0; i < 8*4; i = i+4)
 {
 MDIO_Read(0x10, 0x20, 0x9000+i, &g_rec_data);
 PRINTF("addr:0x%4x,RxD:0x%4x.\r\n",0x9000+i,g_rec_data);
 }
 for(uint32_t i = 0; i < 8*4; i = i+4)
 {
 MDIO_Read(0x10, 0x20, 0xa000+i, &g_rec_data);
 PRINTF("addr:0x%4x,RxD:0x%4x.\r\n",0xa000+i,g_rec_data);
 }
 for(uint32_t i = 0; i < 8*4; i = i+4)
 {
 MDIO_Read(0x10, 0x20, 0xb000+i, &g_rec_data);
 PRINTF("addr:0x%4x,RxD:0x%4x.\r\n",0xb000+i,g_rec_data);
 }

AN14509 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

Application note Rev. 1.0 — 29 November 2024 Document feedback
7 / 15

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_AN14509

NXP Semiconductors AN14509
How to Use SmartMDA to Implement MDIO Slave Interface on MCX MCU

4.2 MDIO slave code
For the MDIO slave, the main functions are implemented by SmartDMA. Users primarily provides register
configuration parameters, correctly initiates SmartDMA, and handles pin initialization and interrupt processing.

The important routines are as below:

 INPUTMUX_Init(INPUTMUX0);
 /* CTIMER4_CH3 is selected for SMARTDMA arch B 0 */
 INPUTMUX_AttachSignal(INPUTMUX0, 0U, kINPUTMUX_Ctimer4M3ToSmartDma);

 PRINTF("MCXN947 SmartDMA MDIO Demo.\r\n");
 memset((void *)&g_mdio_registers, 0, sizeof(g_mdio_registers));
 memset((void *)g_mdio_mem0, 0x0, sizeof(g_mdio_mem0));
 memset((void *)g_mdio_mem1, 0x0, sizeof(g_mdio_mem1));
 memset((void *)g_mdio_mem2, 0x0, sizeof(g_mdio_mem2));
 memset((void *)g_mdio_mem3, 0x0, sizeof(g_mdio_mem3));
 g_mdio_registers.SETPHYADD = 0x10;
 g_mdio_registers.SETDEVADD = 0x0;
 g_mdio_registers.TIMERADDR =(uint32_t)&CTIMER4_PERIPHERAL->TCR;
 g_mdio_registers.MDIODEBUG = (uint32_t)g_mdio_debug;
 g_mdio_registers.MEM0ADDR =(uint32_t)g_mdio_mem0;
 g_mdio_registers.MEM0SIZE = MEM0_SIZE;
 g_mdio_registers.MEM0ZONE = MEM0_ZONE;
 g_mdio_registers.MEM1ADDR =(uint32_t)g_mdio_mem1;
 g_mdio_registers.MEM1SIZE = MEM1_SIZE;
 g_mdio_registers.MEM1ZONE = MEM1_ZONE;
 g_mdio_registers.MEM2ADDR =(uint32_t)g_mdio_mem2;
 g_mdio_registers.MEM2SIZE = MEM2_SIZE;
 g_mdio_registers.MEM2ZONE = MEM2_ZONE;
 g_mdio_registers.MEM3ADDR =(uint32_t)g_mdio_mem3;
 g_mdio_registers.MEM3SIZE = MEM3_SIZE;
 g_mdio_registers.MEM3ZONE = MEM3_ZONE;
 g_mdio_registers.INTEN = (1<<0);
 PRINTF("g_mdio_registers.MEM0ADDR:0x%8x\r\n", g_mdio_registers.MEM0ADDR);
 PRINTF("g_mdio_registers.MEM1ADDR:0x%8x\r\n", g_mdio_registers.MEM1ADDR);
 PRINTF("g_mdio_registers.MEM2ADDR:0x%8x\r\n", g_mdio_registers.MEM2ADDR);
 PRINTF("g_mdio_registers.MEM3ADDR:0x%8x\r\n", g_mdio_registers.MEM3ADDR);

 /* Initialize components */
 SMARTDMA_InitWithoutFirmware();
 SMARTDMA_InstallFirmware(SMARTDMA_MDIO_MEM_ADDR,s_smartdmaMDIOFirmware,
 SMARTDMA_MDIO_FIRMWARE_SIZE);
 SMARTDMA_InstallCallback((smartdma_callback_t)SMARTDMA_Callbck, NULL);
 EnableIRQWithPriority(SMARTDMA_IRQn, 3);
 smartdmaParam.smartdma_stack = (uint32_t*)g_samrtdma_stack;
 smartdmaParam.p_registers_base_address = (uint32_t *)&g_mdio_registers;
 SMARTDMA_Boot(kSmartDMA_MDIO_Slave, &smartdmaParam, 0x2);

4.3 Hardware preparation
This application requires two FRDM-MCXN947 boards to implement MDIO communication, with one acting
as the MDIO master and the other as the MDIO slave. The two boards are connected through two pins and
ground. Table 4 describes the hardware connections.

AN14509 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

Application note Rev. 1.0 — 29 November 2024 Document feedback
8 / 15

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_AN14509

NXP Semiconductors AN14509
How to Use SmartMDA to Implement MDIO Slave Interface on MCX MCU

Function Position on MDIO slave FRDM-MCXN947 boards Position on MDIO slave FRDM-MCXN947
boards

MDIO J1-1 (P3_16) J1-1 (P3_16)

MDC Pad 1 of R191 (remove R191) (P1_20) J8-10 (P1_0)

GND J5-8 (GND) J5-8 (GND)

Table 4. Hardware connection

Figure 3 is a physical diagram of the hardware connections. The logical device can capture the MDIO waveform
and analyze the data format.

Figure 3. Physical diagram of the hardware connection

Board: FRDM-MCXN947

Logic device: Saleae logic pro16

1. Connect the logic device to the personal computer with USB cable and the logical device to the MDIO
signal.

2. Connect FRDM-MCXN947 boards to the personal computer with a USB type-c cable.
3. Connect the signal pins of the two FRDM-MCXN947 boards.

4.4 Software preparation
To modify SDK example txrx_rxpoll with MDIO master code as below, download the master firmware into
the master board. Unzip the attached MDIO slave software project and open it with MCUXpresso IDE.

1. Import the project in IDE.
2. Build the project code.

AN14509 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

Application note Rev. 1.0 — 29 November 2024 Document feedback
9 / 15

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_AN14509

NXP Semiconductors AN14509
How to Use SmartMDA to Implement MDIO Slave Interface on MCX MCU

3. Download the firmware.

3. Download

1. Import project

2. Build

Figure 4. Steps to prepare software

4.5 Result
1. Open the PC host software connected to the serial port of the MDIO master board and then reset the

boards.
2. Open the logic device host software tool.
3. Reset the demo boards: first the MDIO slave board and then the MDIO master board.
4. You can see the serial log printed by the MDIO master board as follows:

• addr:0x8000,RxD:0x 0.
• addr:0x8004,RxD:0x 4.
• addr:0x8008,RxD:0x 8.
• addr:0x800c,RxD:0x c.
• addr:0x8010,RxD:0x c.
• addr:0x8014,RxD:0x c.
• addr:0x8018,RxD:0x c.
• addr:0x801c,RxD:0x 1c.
• addr:0x9000,RxD:0x 1c.
• addr:0x9004,RxD:0x 1c.
• addr:0x9008,RxD:0x 108.
• addr:0x900c,RxD:0x 10c.
• addr:0x9010,RxD:0x 110.
• addr:0x9014,RxD:0x 114.
• addr:0x9018,RxD:0x 118.
• addr:0x901c,RxD:0x 11c.
• addr:0xa000,RxD:0x 200.
• addr:0xa004,RxD:0x 204.

AN14509 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

Application note Rev. 1.0 — 29 November 2024 Document feedback
10 / 15

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_AN14509

NXP Semiconductors AN14509
How to Use SmartMDA to Implement MDIO Slave Interface on MCX MCU

• addr:0xa008,RxD:0x 208.
• addr:0xa00c,RxD:0x 20c.
• addr:0xa010,RxD:0x 210.
• addr:0xa014,RxD:0x 214.
• addr:0xa018,RxD:0x 218.
• addr:0xa01c,RxD:0x 21c.
• addr:0xb000,RxD:0x 300.
• addr:0xb004,RxD:0x 304.
• addr:0xb008,RxD:0x 308.
• addr:0xb00c,RxD:0x 30c.
• addr:0xb010,RxD:0x 310.
• addr:0xb014,RxD:0x 314.
• addr:0xb018,RxD:0x 318.
• addr:0xb01c,RxD:0x 31c.

5. The MDIO waveform can be observed on the logic device host software tool as follows:

Figure 5. MDIO waveform

Figure 6. MDIO waveform

AN14509 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

Application note Rev. 1.0 — 29 November 2024 Document feedback
11 / 15

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_AN14509

NXP Semiconductors AN14509
How to Use SmartMDA to Implement MDIO Slave Interface on MCX MCU

5 Reference document

• IEEE Standard for Ethernet (IEEE Std 802.3™-2018)
• CFP MSA Management Interface Specification v2.0
• CFP MSA Hardware Specification v1.4

6 Note about the source code in the document.

The example code shown in this document has the following copyright and BSD-3-Clause license:

Copyright 2024 NXP Redistribution and use in source and binary forms, with or without modification, are
permitted provided that the following conditions are met:

1. Redistributions of source code must retain the above copyright notice, this list of conditions and the
following disclaimer.

2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the
following disclaimer in the documentation and/or other materials must be provided with the distribution.

3. Neither the name of the copyright holder nor the names of its contributors may be used to endorse or
promote products derived from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY
EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT
SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
DAMAGE.

7 Revision history

Table 5 summarizes the revisions to this document.

Document ID Release date Description

AN14509 v.1.0 29 November 2024 Initial public release

Table 5. Revision history

AN14509 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

Application note Rev. 1.0 — 29 November 2024 Document feedback
12 / 15

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_AN14509

NXP Semiconductors AN14509
How to Use SmartMDA to Implement MDIO Slave Interface on MCX MCU

Legal information

Definitions
Draft — A draft status on a document indicates that the content is still
under internal review and subject to formal approval, which may result
in modifications or additions. NXP Semiconductors does not give any
representations or warranties as to the accuracy or completeness of
information included in a draft version of a document and shall have no
liability for the consequences of use of such information.

Disclaimers
Limited warranty and liability — Information in this document is believed
to be accurate and reliable. However, NXP Semiconductors does not give
any representations or warranties, expressed or implied, as to the accuracy
or completeness of such information and shall have no liability for the
consequences of use of such information. NXP Semiconductors takes no
responsibility for the content in this document if provided by an information
source outside of NXP Semiconductors.
In no event shall NXP Semiconductors be liable for any indirect, incidental,
punitive, special or consequential damages (including - without limitation -
lost profits, lost savings, business interruption, costs related to the removal
or replacement of any products or rework charges) whether or not such
damages are based on tort (including negligence), warranty, breach of
contract or any other legal theory.
Notwithstanding any damages that customer might incur for any reason
whatsoever, NXP Semiconductors’ aggregate and cumulative liability
towards customer for the products described herein shall be limited in
accordance with the Terms and conditions of commercial sale of NXP
Semiconductors.

Right to make changes — NXP Semiconductors reserves the right to
make changes to information published in this document, including without
limitation specifications and product descriptions, at any time and without
notice. This document supersedes and replaces all information supplied prior
to the publication hereof.

Suitability for use — NXP Semiconductors products are not designed,
authorized or warranted to be suitable for use in life support, life-critical or
safety-critical systems or equipment, nor in applications where failure or
malfunction of an NXP Semiconductors product can reasonably be expected
to result in personal injury, death or severe property or environmental
damage. NXP Semiconductors and its suppliers accept no liability for
inclusion and/or use of NXP Semiconductors products in such equipment or
applications and therefore such inclusion and/or use is at the customer’s own
risk.

Applications — Applications that are described herein for any of these
products are for illustrative purposes only. NXP Semiconductors makes no
representation or warranty that such applications will be suitable for the
specified use without further testing or modification.
Customers are responsible for the design and operation of their
applications and products using NXP Semiconductors products, and NXP
Semiconductors accepts no liability for any assistance with applications or
customer product design. It is customer’s sole responsibility to determine
whether the NXP Semiconductors product is suitable and fit for the
customer’s applications and products planned, as well as for the planned
application and use of customer’s third party customer(s). Customers should
provide appropriate design and operating safeguards to minimize the risks
associated with their applications and products.
NXP Semiconductors does not accept any liability related to any default,
damage, costs or problem which is based on any weakness or default
in the customer’s applications or products, or the application or use by
customer’s third party customer(s). Customer is responsible for doing all
necessary testing for the customer’s applications and products using NXP
Semiconductors products in order to avoid a default of the applications
and the products or of the application or use by customer’s third party
customer(s). NXP does not accept any liability in this respect.

Limiting values — Stress above one or more limiting values (as defined in
the Absolute Maximum Ratings System of IEC 60134) will cause permanent
damage to the device. Limiting values are stress ratings only and (proper)
operation of the device at these or any other conditions above those
given in the Recommended operating conditions section (if present) or the
Characteristics sections of this document is not warranted. Constant or
repeated exposure to limiting values will permanently and irreversibly affect
the quality and reliability of the device.

Terms and conditions of commercial sale — NXP Semiconductors
products are sold subject to the general terms and conditions of commercial
sale, as published at https://www.nxp.com/profile/terms, unless otherwise
agreed in a valid written individual agreement. In case an individual
agreement is concluded only the terms and conditions of the respective
agreement shall apply. NXP Semiconductors hereby expressly objects to
applying the customer’s general terms and conditions with regard to the
purchase of NXP Semiconductors products by customer.

No offer to sell or license — Nothing in this document may be interpreted
or construed as an offer to sell products that is open for acceptance or
the grant, conveyance or implication of any license under any copyrights,
patents or other industrial or intellectual property rights.

Quick reference data — The Quick reference data is an extract of the
product data given in the Limiting values and Characteristics sections of this
document, and as such is not complete, exhaustive or legally binding.

Export control — This document as well as the item(s) described herein
may be subject to export control regulations. Export might require a prior
authorization from competent authorities.

Suitability for use in non-automotive qualified products — Unless
this document expressly states that this specific NXP Semiconductors
product is automotive qualified, the product is not suitable for automotive
use. It is neither qualified nor tested in accordance with automotive testing
or application requirements. NXP Semiconductors accepts no liability for
inclusion and/or use of non-automotive qualified products in automotive
equipment or applications.
In the event that customer uses the product for design-in and use in
automotive applications to automotive specifications and standards,
customer (a) shall use the product without NXP Semiconductors’ warranty
of the product for such automotive applications, use and specifications, and
(b) whenever customer uses the product for automotive applications beyond
NXP Semiconductors’ specifications such use shall be solely at customer’s
own risk, and (c) customer fully indemnifies NXP Semiconductors for any
liability, damages or failed product claims resulting from customer design and
use of the product for automotive applications beyond NXP Semiconductors’
standard warranty and NXP Semiconductors’ product specifications.

HTML publications — An HTML version, if available, of this document is
provided as a courtesy. Definitive information is contained in the applicable
document in PDF format. If there is a discrepancy between the HTML
document and the PDF document, the PDF document has priority.

Translations — A non-English (translated) version of a document, including
the legal information in that document, is for reference only. The English
version shall prevail in case of any discrepancy between the translated and
English versions.

AN14509 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

Application note Rev. 1.0 — 29 November 2024 Document feedback
13 / 15

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_AN14509

NXP Semiconductors AN14509
How to Use SmartMDA to Implement MDIO Slave Interface on MCX MCU

Security — Customer understands that all NXP products may be subject to
unidentified vulnerabilities or may support established security standards or
specifications with known limitations. Customer is responsible for the design
and operation of its applications and products throughout their lifecycles
to reduce the effect of these vulnerabilities on customer’s applications
and products. Customer’s responsibility also extends to other open and/or
proprietary technologies supported by NXP products for use in customer’s
applications. NXP accepts no liability for any vulnerability. Customer should
regularly check security updates from NXP and follow up appropriately.
Customer shall select products with security features that best meet rules,
regulations, and standards of the intended application and make the
ultimate design decisions regarding its products and is solely responsible
for compliance with all legal, regulatory, and security related requirements
concerning its products, regardless of any information or support that may be
provided by NXP.
NXP has a Product Security Incident Response Team (PSIRT) (reachable
at PSIRT@nxp.com) that manages the investigation, reporting, and solution
release to security vulnerabilities of NXP products.

NXP B.V. — NXP B.V. is not an operating company and it does not distribute
or sell products.

Trademarks
Notice: All referenced brands, product names, service names, and
trademarks are the property of their respective owners.
NXP — wordmark and logo are trademarks of NXP B.V.
AMBA, Arm, Arm7, Arm7TDMI, Arm9, Arm11, Artisan, big.LITTLE,
Cordio, CoreLink, CoreSight, Cortex, DesignStart, DynamIQ, Jazelle,
Keil, Mali, Mbed, Mbed Enabled, NEON, POP, RealView, SecurCore,
Socrates, Thumb, TrustZone, ULINK, ULINK2, ULINK-ME, ULINK-
PLUS, ULINKpro, μVision, Versatile — are trademarks and/or registered
trademarks of Arm Limited (or its subsidiaries or affiliates) in the US and/or
elsewhere. The related technology may be protected by any or all of patents,
copyrights, designs and trade secrets. All rights reserved.
Microsoft, Azure, and ThreadX — are trademarks of the Microsoft group of
companies.

AN14509 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

Application note Rev. 1.0 — 29 November 2024 Document feedback
14 / 15

mailto:PSIRT@nxp.com
https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_AN14509

NXP Semiconductors AN14509
How to Use SmartMDA to Implement MDIO Slave Interface on MCX MCU

Contents
1 Introduction .. 2
2 MDIO interface ... 2
2.1 Management frame structure2
2.1.1 PRE (preamble) ...2
2.1.2 ST (start of frame) ...3
2.1.3 OP (operation code) .. 3
2.1.4 PHYAD (PHY address)3
2.1.5 REGAD (register address)3
2.1.6 TA (turnaround) ..3
2.1.7 DATA (data) ... 3
2.2 Clause 45 .. 3
3 SmartDMA for MDIO ..4
3.1 SmartDMA configuration4
3.2 SmartDMA parameter settings 4
3.3 Block diagram ..5
3.4 Features ...6
4 Demo ...6
4.1 MDIO master code .. 6
4.2 MDIO slave code ...8
4.3 Hardware preparation .. 8
4.4 Software preparation ... 9
4.5 Result ...10
5 Reference document 12
6 Note about the source code in the

document. ...12
7 Revision history ...12

Legal information ...13

Please be aware that important notices concerning this document and the product(s)
described herein, have been included in section 'Legal information'.

© 2024 NXP B.V. All rights reserved.
For more information, please visit: https://www.nxp.com Document feedback

Date of release: 29 November 2024
Document identifier: AN14509

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_AN14509

	1 Introduction
	2 MDIO interface
	2.1 Management frame structure
	2.1.1 PRE (preamble)
	2.1.2 ST (start of frame)
	2.1.3 OP (operation code)
	2.1.4 PHYAD (PHY address)
	2.1.5 REGAD (register address)
	2.1.6 TA (turnaround)
	2.1.7 DATA (data)

	2.2 Clause 45

	3 SmartDMA for MDIO
	3.1 SmartDMA configuration
	3.2 SmartDMA parameter settings
	3.3 Block diagram
	3.4 Features

	4 Demo
	4.1 MDIO master code
	4.2 MDIO slave code
	4.3 Hardware preparation
	4.4 Software preparation
	4.5 Result

	5 Reference document
	6 Note about the source code in the document.
	7 Revision history
	Legal information
	Contents

