
AN14473
Run Two Linux Operating Systems in Parallel Using Jailhouse and a RAM
Disk on i.MX 95 EVK
Rev. 1.0 — 24 October 2024 Application note

Document information
Information Content

Keywords AN14473, Jailhouse, RAM disk, Linux, i.MX 95, Real-Time, Multiple OSes, Dual kernel

Abstract This application note guides how to run two Linux Operating Systems in parallel, using Jailhouse
and a RAM disk.

https://www.nxp.com

NXP Semiconductors AN14473
Run Two Linux Operating Systems in Parallel Using Jailhouse and a RAM Disk on i.MX 95 EVK

1 Introduction

This document guides how to run two Linux Operating Systems in parallel, using Jailhouse and a RAM disk.

Jailhouse is a partitioning Hypervisor based on Linux. It can run bare-metal, or other operating systems, along
the main Linux operating system. Its main purpose is to ensure resource isolation, by splitting the existing
hardware into blocks called cells, preventing concurrent access to the same peripheral. The main operating
system runs in the root cell, while the guest software/operating system runs in the inmate cell.

Figure 1 shows the architecture we are trying to achieve. There is a Linux root cell running Linux BSP
LF-6.6.36-2.1.0 and a Linux inmate cell running the same kernel. The root cell starts from the SD card and has
the exclusive access to several peripherals (for example, four A55 cores, 1.5 G RAM, ETH1, and LPUART4-8).
The inmate cell uses a RAM disk for the root file system and have exclusive access to two A55 cores, 7 G RAM,
LPUART3, ETH0, and so on. The two cells can communicate through the Messaging Units (MU) and the shared
memory (IVSHMEM) implemented by Jailhouse, visible as virtual PCI devices. This communication can be
demonstrated with two connected virtual Ethernet devices.

Inmate CellRoot Cell

1.5 G RAM

USBLPUART

ETH0

LPUART3

USDHC1

EDMA3EDMA

Linux kernel Linux kernel

SD card RootFS Linux BSP RAM Disk
RootFS

BusyBox/Linux BSP

Jailhouse IVSHMEM

4 x A55 VirtPCI

USDHC2 ETH1 MU1,2,4

2 x A55 7 G RAM VirtPCI

MU3

Figure 1. System architecture

Section 2 presents the implementation of this architecture. Section 3 provides additional explanations about the
inner workings and configuration.

AN14473 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

Application note Rev. 1.0 — 24 October 2024 Document feedback
2 / 11

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_AN14473

NXP Semiconductors AN14473
Run Two Linux Operating Systems in Parallel Using Jailhouse and a RAM Disk on i.MX 95 EVK

2 Implementation

2.1 Hardware
• i.MX 95 19 × 19 LPDDR5 EVK
• Ubuntu PC + SD card reader

2.2 Outline
Follow the below steps:

1. Build and write the Linux BSP image on the SD card.
2. Create and add the initramfs to the SD card.
3. Start the root cell and the inmate cell.
4. Test the communication.

2.3 Build and write the Linux BSP image
The LF-6.6.36_2.1.0 version is used.

• On the Linux PC, set up the Yocto environment according to Section 3 - Section 5 from the i.MX Yocto
Project User's Guide (document UG10164). Stop at Section 5.3, and do not build the image yet.

• Use the Jailhouse configuration for the System Manager. Add in the conf/local.conf file the following
variant: IMXBOOT_VARIANT = "jailhouse".

$ echo "IMXBOOT_VARIANT = \"jailhouse\"" >> conf/local.conf

• Build the image:

$ bitbake imx-image-full

• Write the resulted imx-image-full-imx95-19x19-lpddr5-evk.rootfs.wic image located in the
tmp/deploy/images/imx95-19x19-lpddr5-evk directory on the SD card using the following command:

$ zstd –fdc imx-image-full-imx95-19x19-lpddr5-evk.rootfs.wic.zst | sudo dd of=/
dev/mmcblk<x> bs=1M status=progress && sync

2.4 Create the ramdisk image
The inmate cell uses a RAM disk for the root file system. The ramdisk image is a compressed (.gz) cpio
archive containing the file system, including an init script.

You can either use BusyBox, to create a minimal rootfs which provides the most common Linux utilities, or an
NXP image, such as core-image-minimal.

2.4.1 BusyBox

To use BusyBox, perform the following steps:

1. Install the Arm cross-compiler toolchain on the PC, using the following command:

$ sudo apt install gcc-aarch64-linux-gnu

2. Download the latest BusyBox version.

$ wget https://busybox.net/downloads/busybox-1.36.1.tar.bz2
$ tar -xvf busybox-1.36.1.tar.bz2

AN14473 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

Application note Rev. 1.0 — 24 October 2024 Document feedback
3 / 11

https://www.nxp.com/doc/IMX_YOCTO_PROJECT_USERS_GUIDE
https://busybox.net/downloads/
https://busybox.net/downloads/busybox-1.36.1.tar.bz2
https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_AN14473

NXP Semiconductors AN14473
Run Two Linux Operating Systems in Parallel Using Jailhouse and a RAM Disk on i.MX 95 EVK

$ cd busybox-1.36.1

3. Run the menuconfig and make sure to enable Settings ---> Build static binary (no shared
libs)

$ ARCH=arm64 CROSS_COMPILE=aarch64-linux-gnu- make menuconfig

4. Save the new configuration and build the sources.

$ ARCH=arm64 CROSS_COMPILE=aarch64-linux-gnu- make -j $(nproc --all)
$ ARCH=arm64 CROSS_COMPILE=aarch64-linux-gnu- make install

The BusyBox binaries are installed in the _install directory.
5. Create the structure of the root filesystem.

$ cd ..
$ mkdir initramfs
$ mkdir -p initramfs/bin initramfs/sbin initramfs/etc initramfs/proc
 initramfs/sys initramfs/dev initramfs/usr/bin initramfs/usr/sbin
$ cp -a busybox-1.36.1/_install/* ./initramfs

6. Create the init script initramfs/init.

#!/bin/sh
mount -t devtmpfs devtmpfs /dev
mount -t proc none /proc
mount -t sysfs none /sys
exec /bin/sh

7. Make the script executable.

$ chmod +x initramfs/init

8. Add any additional files and executables that you may need in the initramfs directory.
9. Create the initramfs archive.

$ cd initramfs
$ find . -print0 | cpio --null -ov --format=newc | gzip -9 > ../
initramfs.cpio.gz
$ cd ..

10. Copy the resulting archive initramfs.cpio.gz onto the root partition of the SD card, in /root.

2.4.2 NXP’s core-image-minimal

To use an NXP image, perform the following steps:

1. Add to the conf/local.conf file the cpio.gz image type:

$ echo "IMAGE_FSTYPES:append = \" cpio.gz\"" >> conf/local.conf

2. Build the minimal rootfs.

$ bitbake core-image-minimal

3. Go to the deployment directory tmp/deploy/images/imx95-19x19-lpddr5-evk/.
4. Copy the resulting archive core-image-minimal-imx95-19x19-lpddr5-evk.rootfs.cpio.gz onto

the root partition of the SD card, in /root.

2.5 Run the inmate Linux cell
Jailhouse is already built into the NXP Linux kernel. There is no need to compile it separately.

AN14473 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

Application note Rev. 1.0 — 24 October 2024 Document feedback
4 / 11

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_AN14473

NXP Semiconductors AN14473
Run Two Linux Operating Systems in Parallel Using Jailhouse and a RAM Disk on i.MX 95 EVK

1. Connect the USB debug port of the board to the PC using a USB cable. This operation creates four virtual
serial ports on the PC. Open all in a terminal emulator using the following parameters: 115200 baud rate, 8
data bits, no parity, and 1 stop bit. One is the console for the root cell, one for the inmate cell, and one for
the System Manager.

2. Boot the board, stop it in U-Boot, and run the jh_mmcboot command. This command sets the kernel
device tree as imx95-19x19-evk-root.dtb, and limits the memory space used by the main kernel, then
boots the Linux kernel. The imx95-19x19-evk-root.dtb device tree disables the peripherals used by
the inmate cell.

u-boot => run jh_mmcboot

3. Run the inmate Linux cell:

root@imx95evk:~# export PATH=$PATH:/usr/share/jailhouse/tools/
root@imx95evk:~# modprobe jailhouse
root@imx95evk:~# jailhouse enable /usr/share/jailhouse/cells/imx95.cell

If the BusyBox is used, run:

root@imx95evk:~# jailhouse cell linux /usr/share/jailhouse/cells/imx95-linux-
demo.cell /run/media/boot-mmcblk1p1/Image -d /run/media/boot-mmcblk1p1/
imx95-19x19-evk-inmate.dtb -i initramfs.cpio.gz -c "clk_ignore_unused
 console=ttyLP2,115200 earlycon=lpuart32,mmio32,0x44380010,115200"

If the core-image-minimal is used, run:

root@imx95evk:~# jailhouse cell linux /usr/share/jailhouse/cells/imx95-
linux-demo.cell /run/media/boot-mmcblk1p1/Image -d /run/media/boot-
mmcblk1p1/imx95-19x19-evk-inmate.dtb -i core-image-minimal-imx95-19x19-
lpddr5-evk.rootfs.cpio.gz -c "clk_ignore_unused console=ttyLP2,115200
 earlycon=lpuart32,mmio32,0x44380010,115200 rdinit=/sbin/init"

4. At this point, the second Linux prompt can be seen on one of the serial ports opened at Step 1.
5. To test the network communication via the virtual Ethernet devices, assign an IP address to the available

Ethernet interface: eth2 in the root cell and eth0 in the inmate cell. You can use the ping command to test
the communication.

Figure 2. Setup in the inmate cell

AN14473 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

Application note Rev. 1.0 — 24 October 2024 Document feedback
5 / 11

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_AN14473

NXP Semiconductors AN14473
Run Two Linux Operating Systems in Parallel Using Jailhouse and a RAM Disk on i.MX 95 EVK

Figure 3. Setup in the root cell

3 Configuration and tuning

During the initial boot, the kernel is started with a special device tree (imx95-19x19-evk-root.dtb) for
the root cell, which disables the devices that are later used by the inmate cell. Initially, the kernel uses all six
cores. After enabling Jailhouse, the hypervisor moves the Linux into the root cell, but still using all the cores.
When creating the inmate cell, the hypervisor partitions the hardware, so that each cell only has access to the
hardware assigned in the configuration. It disables two cores from the root cell and assigns them to the inmate
cell.

The device tree used for the inmate cell is imx95-19x19-evk-inmate.dtb. In it, are configured the
peripherals that the inmate cell can access (for example USDHC1 and LPUART3). These devices are disabled
from the root cell device tree (imx95-19x19-evk-root.dtb). For example, to use the USDHC1 from the root
cell, disable the USDHC1 from the inmate cell device tree, and enable it in the root device tree.

In the imx-jailhouse project, there are some files of interest:

• configs/arm64/* - root/inmate cell configurations: peripheral allocation and isolation.
– imx95.c - root cell configuration.
– imx95-linux-demo.c - inmate cell configuration.
These files are compiled into binaries with the .cell extension.

• tools/ - executable programs to configure and command the Jailhouse hypervisor.
– jailhouse enable <sysconfig.cell> - starts the Jailhouse hypervisor and wraps the running Linux

into the root cell.
– jailhouse cell [collect | create | destroy | linux | load | shutdown | start
| stats] <args> - controls the cells. For more details about each command, check the Jailhouse
Documentation.

Cell configuration file explained

Each (non-)root cell is statically configured through a *.c file, describing which hardware resources
the cell can access. The configuration parameters are assigned through some predefined structures
implemented in the include/jailhouse/cell-config.h file. The root cell structure must have the

AN14473 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

Application note Rev. 1.0 — 24 October 2024 Document feedback
6 / 11

https://github.com/nxp-imx/imx-jailhouse
https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_AN14473

NXP Semiconductors AN14473
Run Two Linux Operating Systems in Parallel Using Jailhouse and a RAM Disk on i.MX 95 EVK

struct jailhouse_system in the header, while the non-root cell structure must have the struct
jailhouse_cell_desc. Some configurations of interest are commented below:

.cpus = {
 0x18, /* the mask of cores to be used: 011000 => CPU3 & CPU4 */
},
/*memory regions to which the cell has access and with which rights (flags)*/
.mem_regions = {
 ...
 /* lpuart3 */ // Example of allocating LPUART3 exclusive access
 {
 .phys_start = 0x42570000,
 .virt_start = 0x42570000,
 .size = 0x1000,
 .flags = JAILHOUSE_MEM_READ | JAILHOUSE_MEM_WRITE |
 JAILHOUSE_MEM_IO,
 },
 ...
}
.irqchips = {
 {
 /* lpuart3/usdhc1 */
 .address = 0x48000000,
 .pin_base = 32,
 .pin_bitmap = {
 // 86 = USDHC1 interrupt number
 // 64 = LPUART3 interrupt number
 0, 0, (1 << (86 + 32 - 32 - 64)) | (1 << (64 + 32 - 32 - 64)),
 0
 // interrupts 0-31, 32-63, 64-95, 96-127
 },
 },
 ...
},

The communication between the cells is ensured via shared memory using virtual Inter-VM Shared Memory
(ivshmem) PCI devices implemented by Jailhouse. Most of the memory regions described in the file above are
pertaining to ivshmem. For more details, please check the ivshmem documentation.

4 Note about the source code in the document

The example code shown in this document has the following copyright and BSD-3-Clause license:

Copyright 2024 NXP Redistribution and use in source and binary forms, with or without modification, are
permitted provided that the following conditions are met:

1. Redistributions of source code must retain the above copyright notice, this list of conditions and the
following disclaimer.

2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the
following disclaimer in the documentation and/or other materials must be provided with the distribution.

3. Neither the name of the copyright holder nor the names of its contributors may be used to endorse or
promote products derived from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY
EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT
SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,

AN14473 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

Application note Rev. 1.0 — 24 October 2024 Document feedback
7 / 11

https://github.com/siemens/jailhouse/blob/master/Documentation/ivshmem-v2-specification.md
https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_AN14473

NXP Semiconductors AN14473
Run Two Linux Operating Systems in Parallel Using Jailhouse and a RAM Disk on i.MX 95 EVK

INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
DAMAGE.

5 Revision history

Table 1 summarizes the revisions to this document.

Document ID Release date Description

AN14473 v.1.0 24 October 2024 Initial public release

Table 1. Revision history

AN14473 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

Application note Rev. 1.0 — 24 October 2024 Document feedback
8 / 11

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_AN14473

NXP Semiconductors AN14473
Run Two Linux Operating Systems in Parallel Using Jailhouse and a RAM Disk on i.MX 95 EVK

Legal information

Definitions
Draft — A draft status on a document indicates that the content is still
under internal review and subject to formal approval, which may result
in modifications or additions. NXP Semiconductors does not give any
representations or warranties as to the accuracy or completeness of
information included in a draft version of a document and shall have no
liability for the consequences of use of such information.

Disclaimers
Limited warranty and liability — Information in this document is believed
to be accurate and reliable. However, NXP Semiconductors does not give
any representations or warranties, expressed or implied, as to the accuracy
or completeness of such information and shall have no liability for the
consequences of use of such information. NXP Semiconductors takes no
responsibility for the content in this document if provided by an information
source outside of NXP Semiconductors.
In no event shall NXP Semiconductors be liable for any indirect, incidental,
punitive, special or consequential damages (including - without limitation -
lost profits, lost savings, business interruption, costs related to the removal
or replacement of any products or rework charges) whether or not such
damages are based on tort (including negligence), warranty, breach of
contract or any other legal theory.
Notwithstanding any damages that customer might incur for any reason
whatsoever, NXP Semiconductors’ aggregate and cumulative liability
towards customer for the products described herein shall be limited in
accordance with the Terms and conditions of commercial sale of NXP
Semiconductors.

Right to make changes — NXP Semiconductors reserves the right to
make changes to information published in this document, including without
limitation specifications and product descriptions, at any time and without
notice. This document supersedes and replaces all information supplied prior
to the publication hereof.

Suitability for use — NXP Semiconductors products are not designed,
authorized or warranted to be suitable for use in life support, life-critical or
safety-critical systems or equipment, nor in applications where failure or
malfunction of an NXP Semiconductors product can reasonably be expected
to result in personal injury, death or severe property or environmental
damage. NXP Semiconductors and its suppliers accept no liability for
inclusion and/or use of NXP Semiconductors products in such equipment or
applications and therefore such inclusion and/or use is at the customer’s own
risk.

Applications — Applications that are described herein for any of these
products are for illustrative purposes only. NXP Semiconductors makes no
representation or warranty that such applications will be suitable for the
specified use without further testing or modification.
Customers are responsible for the design and operation of their
applications and products using NXP Semiconductors products, and NXP
Semiconductors accepts no liability for any assistance with applications or
customer product design. It is customer’s sole responsibility to determine
whether the NXP Semiconductors product is suitable and fit for the
customer’s applications and products planned, as well as for the planned
application and use of customer’s third party customer(s). Customers should
provide appropriate design and operating safeguards to minimize the risks
associated with their applications and products.
NXP Semiconductors does not accept any liability related to any default,
damage, costs or problem which is based on any weakness or default
in the customer’s applications or products, or the application or use by
customer’s third party customer(s). Customer is responsible for doing all
necessary testing for the customer’s applications and products using NXP
Semiconductors products in order to avoid a default of the applications
and the products or of the application or use by customer’s third party
customer(s). NXP does not accept any liability in this respect.

Terms and conditions of commercial sale — NXP Semiconductors
products are sold subject to the general terms and conditions of commercial
sale, as published at https://www.nxp.com/profile/terms, unless otherwise
agreed in a valid written individual agreement. In case an individual
agreement is concluded only the terms and conditions of the respective
agreement shall apply. NXP Semiconductors hereby expressly objects to
applying the customer’s general terms and conditions with regard to the
purchase of NXP Semiconductors products by customer.

Export control — This document as well as the item(s) described herein
may be subject to export control regulations. Export might require a prior
authorization from competent authorities.

Suitability for use in non-automotive qualified products — Unless
this document expressly states that this specific NXP Semiconductors
product is automotive qualified, the product is not suitable for automotive
use. It is neither qualified nor tested in accordance with automotive testing
or application requirements. NXP Semiconductors accepts no liability for
inclusion and/or use of non-automotive qualified products in automotive
equipment or applications.
In the event that customer uses the product for design-in and use in
automotive applications to automotive specifications and standards,
customer (a) shall use the product without NXP Semiconductors’ warranty
of the product for such automotive applications, use and specifications, and
(b) whenever customer uses the product for automotive applications beyond
NXP Semiconductors’ specifications such use shall be solely at customer’s
own risk, and (c) customer fully indemnifies NXP Semiconductors for any
liability, damages or failed product claims resulting from customer design and
use of the product for automotive applications beyond NXP Semiconductors’
standard warranty and NXP Semiconductors’ product specifications.

HTML publications — An HTML version, if available, of this document is
provided as a courtesy. Definitive information is contained in the applicable
document in PDF format. If there is a discrepancy between the HTML
document and the PDF document, the PDF document has priority.

Translations — A non-English (translated) version of a document, including
the legal information in that document, is for reference only. The English
version shall prevail in case of any discrepancy between the translated and
English versions.

Security — Customer understands that all NXP products may be subject to
unidentified vulnerabilities or may support established security standards or
specifications with known limitations. Customer is responsible for the design
and operation of its applications and products throughout their lifecycles
to reduce the effect of these vulnerabilities on customer’s applications
and products. Customer’s responsibility also extends to other open and/or
proprietary technologies supported by NXP products for use in customer’s
applications. NXP accepts no liability for any vulnerability. Customer should
regularly check security updates from NXP and follow up appropriately.
Customer shall select products with security features that best meet rules,
regulations, and standards of the intended application and make the
ultimate design decisions regarding its products and is solely responsible
for compliance with all legal, regulatory, and security related requirements
concerning its products, regardless of any information or support that may be
provided by NXP.
NXP has a Product Security Incident Response Team (PSIRT) (reachable
at PSIRT@nxp.com) that manages the investigation, reporting, and solution
release to security vulnerabilities of NXP products.

NXP B.V. — NXP B.V. is not an operating company and it does not distribute
or sell products.

Trademarks
Notice: All referenced brands, product names, service names, and
trademarks are the property of their respective owners.
NXP — wordmark and logo are trademarks of NXP B.V.

AN14473 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

Application note Rev. 1.0 — 24 October 2024 Document feedback
9 / 11

mailto:PSIRT@nxp.com
https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_AN14473

NXP Semiconductors AN14473
Run Two Linux Operating Systems in Parallel Using Jailhouse and a RAM Disk on i.MX 95 EVK

AMBA, Arm, Arm7, Arm7TDMI, Arm9, Arm11, Artisan, big.LITTLE,
Cordio, CoreLink, CoreSight, Cortex, DesignStart, DynamIQ, Jazelle,
Keil, Mali, Mbed, Mbed Enabled, NEON, POP, RealView, SecurCore,
Socrates, Thumb, TrustZone, ULINK, ULINK2, ULINK-ME, ULINK-
PLUS, ULINKpro, μVision, Versatile — are trademarks and/or registered
trademarks of Arm Limited (or its subsidiaries or affiliates) in the US and/or
elsewhere. The related technology may be protected by any or all of patents,
copyrights, designs and trade secrets. All rights reserved.

Microsoft, Azure, and ThreadX — are trademarks of the Microsoft group of
companies.

AN14473 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

Application note Rev. 1.0 — 24 October 2024 Document feedback
10 / 11

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_AN14473

NXP Semiconductors AN14473
Run Two Linux Operating Systems in Parallel Using Jailhouse and a RAM Disk on i.MX 95 EVK

Contents
1 Introduction .. 2
2 Implementation .. 3
2.1 Hardware ... 3
2.2 Outline ..3
2.3 Build and write the Linux BSP image 3
2.4 Create the ramdisk image 3
2.4.1 BusyBox ...3
2.4.2 NXP’s core-image-minimal 4
2.5 Run the inmate Linux cell4
3 Configuration and tuning6
4 Note about the source code in the

document ..7
5 Revision history ...8

Legal information ...9

Please be aware that important notices concerning this document and the product(s)
described herein, have been included in section 'Legal information'.

© 2024 NXP B.V. All rights reserved.
For more information, please visit: https://www.nxp.com Document feedback

Date of release: 24 October 2024
Document identifier: AN14473

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_AN14473

	1 Introduction
	2 Implementation
	2.1 Hardware
	2.2 Outline
	2.3 Build and write the Linux BSP image
	2.4 Create the ramdisk image
	2.4.1 BusyBox
	2.4.2 NXP’s core-image-minimal

	2.5 Run the inmate Linux cell

	3 Configuration and tuning
	4 Note about the source code in the document
	5 Revision history
	Legal information
	Contents

