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1   Introduction

This document guides how to run two Linux Operating Systems in parallel, using Jailhouse and a RAM disk.

Jailhouse is a partitioning Hypervisor based on Linux. It can run bare-metal, or other operating systems, along
the main Linux operating system. Its main purpose is to ensure resource isolation, by splitting the existing
hardware into blocks called cells, preventing concurrent access to the same peripheral. The main operating
system runs in the root cell, while the guest software/operating system runs in the inmate cell.

Figure 1 shows the architecture we are trying to achieve. There is a Linux root cell running Linux BSP
LF-6.6.36-2.1.0 and a Linux inmate cell running the same kernel. The root cell starts from the SD card and has
the exclusive access to several peripherals (for example, four A55 cores, 1.5 G RAM, ETH1, and LPUART4-8).
The inmate cell uses a RAM disk for the root file system and have exclusive access to two A55 cores, 7 G RAM,
LPUART3, ETH0, and so on. The two cells can communicate through the Messaging Units (MU) and the shared
memory (IVSHMEM) implemented by Jailhouse, visible as virtual PCI devices. This communication can be
demonstrated with two connected virtual Ethernet devices.
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Figure 1. System architecture

Section 2 presents the implementation of this architecture. Section 3 provides additional explanations about the
inner workings and configuration.
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2   Implementation

2.1  Hardware
• i.MX 95 19 × 19 LPDDR5 EVK
• Ubuntu PC + SD card reader

2.2  Outline
Follow the below steps:

1. Build and write the Linux BSP image on the SD card.
2. Create and add the initramfs to the SD card.
3. Start the root cell and the inmate cell.
4. Test the communication.

2.3  Build and write the Linux BSP image
The LF-6.6.36_2.1.0 version is used.

• On the Linux PC, set up the Yocto environment according to Section 3 - Section 5 from the i.MX Yocto
Project User's Guide (document UG10164). Stop at Section 5.3, and do not build the image yet.

• Use the Jailhouse configuration for the System Manager. Add in the conf/local.conf file the following
variant: IMXBOOT_VARIANT = "jailhouse".

$ echo "IMXBOOT_VARIANT = \"jailhouse\"" >> conf/local.conf

• Build the image:

$ bitbake imx-image-full

• Write the resulted imx-image-full-imx95-19x19-lpddr5-evk.rootfs.wic image located in the
tmp/deploy/images/imx95-19x19-lpddr5-evk directory on the SD card using the following command:

$ zstd –fdc imx-image-full-imx95-19x19-lpddr5-evk.rootfs.wic.zst | sudo dd of=/
dev/mmcblk<x> bs=1M status=progress && sync

2.4  Create the ramdisk image
The inmate cell uses a RAM disk for the root file system. The ramdisk image is a compressed (.gz) cpio
archive containing the file system, including an init script.

You can either use BusyBox, to create a minimal rootfs which provides the most common Linux utilities, or an
NXP image, such as core-image-minimal.

2.4.1  BusyBox

To use BusyBox, perform the following steps:

1. Install the Arm cross-compiler toolchain on the PC, using the following command:

$ sudo apt install gcc-aarch64-linux-gnu

2. Download the latest BusyBox version.

$ wget https://busybox.net/downloads/busybox-1.36.1.tar.bz2
$ tar -xvf busybox-1.36.1.tar.bz2
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$ cd busybox-1.36.1

3. Run the menuconfig and make sure to enable Settings ---> Build static binary (no shared
libs)

$ ARCH=arm64 CROSS_COMPILE=aarch64-linux-gnu- make menuconfig

4. Save the new configuration and build the sources.

$ ARCH=arm64 CROSS_COMPILE=aarch64-linux-gnu- make -j $(nproc --all)
$ ARCH=arm64 CROSS_COMPILE=aarch64-linux-gnu- make install

The BusyBox binaries are installed in the _install directory.
5. Create the structure of the root filesystem.

$ cd ..
$ mkdir initramfs
$ mkdir -p initramfs/bin initramfs/sbin initramfs/etc initramfs/proc
 initramfs/sys initramfs/dev initramfs/usr/bin initramfs/usr/sbin
$ cp -a busybox-1.36.1/_install/* ./initramfs

6. Create the init script initramfs/init.

#!/bin/sh 
mount -t devtmpfs devtmpfs /dev 
mount -t proc none /proc 
mount -t sysfs none /sys 
exec /bin/sh

7. Make the script executable.

$ chmod +x initramfs/init

8. Add any additional files and executables that you may need in the initramfs directory.
9. Create the initramfs archive.

$ cd initramfs
$ find . -print0 | cpio --null -ov --format=newc | gzip -9 > ../
initramfs.cpio.gz
$ cd ..

10. Copy the resulting archive initramfs.cpio.gz onto the root partition of the SD card, in /root.

2.4.2  NXP’s core-image-minimal

To use an NXP image, perform the following steps:

1. Add to the conf/local.conf file the cpio.gz image type:

$ echo "IMAGE_FSTYPES:append = \" cpio.gz\"" >> conf/local.conf

2. Build the minimal rootfs.

$ bitbake core-image-minimal

3. Go to the deployment directory tmp/deploy/images/imx95-19x19-lpddr5-evk/.
4. Copy the resulting archive core-image-minimal-imx95-19x19-lpddr5-evk.rootfs.cpio.gz onto

the root partition of the SD card, in /root.

2.5  Run the inmate Linux cell
Jailhouse is already built into the NXP Linux kernel. There is no need to compile it separately.
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1. Connect the USB debug port of the board to the PC using a USB cable. This operation creates four virtual
serial ports on the PC. Open all in a terminal emulator using the following parameters: 115200 baud rate, 8
data bits, no parity, and 1 stop bit. One is the console for the root cell, one for the inmate cell, and one for
the System Manager.

2. Boot the board, stop it in U-Boot, and run the jh_mmcboot command. This command sets the kernel
device tree as imx95-19x19-evk-root.dtb, and limits the memory space used by the main kernel, then
boots the Linux kernel. The imx95-19x19-evk-root.dtb device tree disables the peripherals used by
the inmate cell.

u-boot => run jh_mmcboot

3. Run the inmate Linux cell:

root@imx95evk:~# export PATH=$PATH:/usr/share/jailhouse/tools/
root@imx95evk:~# modprobe jailhouse
root@imx95evk:~# jailhouse enable /usr/share/jailhouse/cells/imx95.cell

If the BusyBox is used, run:

root@imx95evk:~# jailhouse cell linux /usr/share/jailhouse/cells/imx95-linux-
demo.cell /run/media/boot-mmcblk1p1/Image -d /run/media/boot-mmcblk1p1/
imx95-19x19-evk-inmate.dtb -i initramfs.cpio.gz -c "clk_ignore_unused
 console=ttyLP2,115200 earlycon=lpuart32,mmio32,0x44380010,115200"

If the core-image-minimal is used, run:

root@imx95evk:~# jailhouse cell linux /usr/share/jailhouse/cells/imx95-
linux-demo.cell /run/media/boot-mmcblk1p1/Image -d /run/media/boot-
mmcblk1p1/imx95-19x19-evk-inmate.dtb -i core-image-minimal-imx95-19x19-
lpddr5-evk.rootfs.cpio.gz -c "clk_ignore_unused console=ttyLP2,115200
 earlycon=lpuart32,mmio32,0x44380010,115200 rdinit=/sbin/init"

4. At this point, the second Linux prompt can be seen on one of the serial ports opened at Step 1.
5. To test the network communication via the virtual Ethernet devices, assign an IP address to the available

Ethernet interface: eth2 in the root cell and eth0 in the inmate cell. You can use the ping command to test
the communication.

Figure 2. Setup in the inmate cell
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Figure 3. Setup in the root cell

3   Configuration and tuning

During the initial boot, the kernel is started with a special device tree (imx95-19x19-evk-root.dtb) for
the root cell, which disables the devices that are later used by the inmate cell. Initially, the kernel uses all six
cores. After enabling Jailhouse, the hypervisor moves the Linux into the root cell, but still using all the cores.
When creating the inmate cell, the hypervisor partitions the hardware, so that each cell only has access to the
hardware assigned in the configuration. It disables two cores from the root cell and assigns them to the inmate
cell.

The device tree used for the inmate cell is imx95-19x19-evk-inmate.dtb. In it, are configured the
peripherals that the inmate cell can access (for example USDHC1 and LPUART3). These devices are disabled
from the root cell device tree (imx95-19x19-evk-root.dtb). For example, to use the USDHC1 from the root
cell, disable the USDHC1 from the inmate cell device tree, and enable it in the root device tree.

In the imx-jailhouse project, there are some files of interest:

• configs/arm64/* - root/inmate cell configurations: peripheral allocation and isolation.
– imx95.c - root cell configuration.
– imx95-linux-demo.c - inmate cell configuration.
These files are compiled into binaries with the .cell extension.

• tools/ - executable programs to configure and command the Jailhouse hypervisor.
– jailhouse enable <sysconfig.cell> - starts the Jailhouse hypervisor and wraps the running Linux

into the root cell.
– jailhouse cell [collect | create | destroy | linux | load | shutdown | start
| stats] <args> - controls the cells. For more details about each command, check the Jailhouse
Documentation.

Cell configuration file explained

Each (non-)root cell is statically configured through a *.c file, describing which hardware resources
the cell can access. The configuration parameters are assigned through some predefined structures
implemented in the include/jailhouse/cell-config.h file. The root cell structure must have the
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struct jailhouse_system in the header, while the non-root cell structure must have the struct
jailhouse_cell_desc. Some configurations of interest are commented below:

.cpus = {
      0x18, /* the mask of cores to be used: 011000 => CPU3 & CPU4 */
},
/*memory regions to which the cell has access and with which rights (flags)*/
.mem_regions = {
      ...
      /* lpuart3 */  // Example of allocating LPUART3 exclusive access
      {
            .phys_start = 0x42570000,
            .virt_start = 0x42570000,
            .size = 0x1000,
            .flags = JAILHOUSE_MEM_READ | JAILHOUSE_MEM_WRITE |
            JAILHOUSE_MEM_IO,
      },
      ...
}
.irqchips = {
      {
            /* lpuart3/usdhc1 */
            .address = 0x48000000,
            .pin_base = 32,
            .pin_bitmap = {
                  // 86 = USDHC1 interrupt number
                  // 64 = LPUART3 interrupt number
                  0, 0, (1 << (86 + 32 - 32 - 64)) | (1 << (64 + 32 - 32 - 64)),
 0
                  // interrupts 0-31, 32-63, 64-95, 96-127
            },
      },
      ...
},

The communication between the cells is ensured via shared memory using virtual Inter-VM Shared Memory
(ivshmem) PCI devices implemented by Jailhouse. Most of the memory regions described in the file above are
pertaining to ivshmem. For more details, please check the ivshmem documentation.

4   Note about the source code in the document

The example code shown in this document has the following copyright and BSD-3-Clause license:

Copyright 2024 NXP Redistribution and use in source and binary forms, with or without modification, are
permitted provided that the following conditions are met:

1. Redistributions of source code must retain the above copyright notice, this list of conditions and the
following disclaimer.

2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the
following disclaimer in the documentation and/or other materials must be provided with the distribution.

3. Neither the name of the copyright holder nor the names of its contributors may be used to endorse or
promote products derived from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY
EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT
SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
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INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
DAMAGE.

5   Revision history

Table 1 summarizes the revisions to this document.

Document ID Release date Description

AN14473 v.1.0 24 October 2024 Initial public release

Table 1. Revision history
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