
AN14471
Using Hardware Security Module for Code Signing
Rev. 1.0 — 4 November 2024 Application note

Document information
Information Content

Keywords AN14471, HSM, CST, SPSDK

Abstract This application note describes how to generate the final signed image using tool CST or spsdk
with an HSM.

https://www.nxp.com


NXP Semiconductors AN14471
Using Hardware Security Module for Code Signing

1   Introduction

NXP i.MX RT processors provide the secure boot feature, which makes the hardware to have a mechanism
to ensure that the software can be trusted. The secure boot feature is also known as a high-assurance boot
(HAB).

The secure boot feature is based on public key infrastructure. The OEM can use it to make their product reject
any system image, which is not authorized to run. For high levels of security, the OEM needs to control access
and limit the risk to the sensitive private keys. A hardware security module (HSM) protects their private keys and
handles cryptographic operations without exposing private keys.

This application note demonstrates how to generate the final signed image using the Code Signing Tool (CST)
or spsdk with an HSM.

This document targets for the i.MX RT1170 hardware platform. The attached package for the i.MX RT1170
hardware platform is used as an example, although these steps can be applied to other i.MX RT platforms.

1.1  CST
The CST provides support to sign and encrypt images for use with high assurance boot (HAB) and advanced
high assurance boot (AHAB) enabled NXP processors. The signatures generated by the CST can then be
included as part of the end-product software image.

The CST accesses the keys used for signatures locally by default. If a user can run CST locally in the HSM
server, we can use the elftosb tool to generate a bootable signed image for i.MX RT devices. The elftosb calls
the CST to generate the signatures and pack everything to the boot ROM expects the boot image. For more
information, refer to How to use i.MXRT Security Boot (document AN12079) or How to use HAB secure boot in
i.MX RT10xx (document AN12681).

Referring to Appendix B, Replacing the CST Backend Implementation of the Code-Signing Tool User’s
Guide, NXP has architected the Code-Signing Tool in two parts: front-end and back-end. The front-end contains
all the NXP proprietary operations, while the back-end containing all standard cryptographic operations. For
a back-end replacement to interface with a PKCS#11 enabled HSM, refer to Using Code-Signing Tool with
Hardware Security Module (document AN12812).

Sometimes, the OEM may want to sign the firmware from an HSM or server. Pass the signature to CST and run
CST locally. The CST tool has been slightly modified to allow such an asynchronous operation by extracting the
digests to be signed first and embedding the signatures back into the binary in the second step. It demonstrates
the steps for this case in Section 2.

Note:  The signature CST tool request is CMS format.

1.2  SPSDK tool
Secure Provisioning SDK (SPSDK) is a unified, reliable, and easy to use Python SDK library working across
the NXP MCU portfolio. It enables connection and communication with a target device for generation of secure
bootable files image, security features configuration, and generation and management of cryptographic keys
and certificates.

SPSDK allows the users to install plugins and integrate them with SPSDK functionality. A plugin signature
provider allows using a custom provider for the authentication instead of keys stored on a local machine.
Signature provider requires a custom implementation of an HTTP server with a simple API providing the
authentication. SPSDK uses a simple flask REST API service representing the remote HSM machine. It
describes the process of setting up signature provider and building an image signed by the signature provider in
Section 3. User can refer to the online document for the usage of a signature provider.

In this work, we are using SPSDK v2.1.0.

AN14471 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

Application note Rev. 1.0 — 4 November 2024 Document feedback
2 / 19

https://nxp.com/doc/AN12812
https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_AN14471


NXP Semiconductors AN14471
Using Hardware Security Module for Code Signing

2   Using CST

This section describes how to change CST to generate the hash of an image, which can be used to generate
the signature by HSM and then embedding the CMS signatures back into the binary.

2.1  CST workflow
The original CST workflow is described in Figure 1.

bd
configuration

aaa-058315

srec image

elftosb

CST

csf binary

elftosb Signed
image file

Binary image csf
configuration

Figure 1. Original CST workflow

The CST tool is slightly modified to extract the digests to be signed first and embedding the signatures back into
the binary in a second calling elftosb.

The modified tool workflow is described in Figure 2.

AN14471 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

Application note Rev. 1.0 — 4 November 2024 Document feedback
3 / 19

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_AN14471


NXP Semiconductors AN14471
Using Hardware Security Module for Code Signing

bd
configuration

aaa-058316

srec image

elftosb

CST csf digest
image digest

csf binary CST Signature HSM

elftosb Signed
image file

Binary image csf
configuration

Figure 2. Modified CST workflow

2.2  Get sources
User can search CST and download the Code Signing Tool package from http://www.nxp.com. The latest
version is CST v3.4.0.

2.3  Change sources
The CST tool has a front-end supporting the NXP proprietary operations. The back-end perform all
cryptographic operations related to digital signature generation and encryption and accesses key material
directly in the filesystem. The default CST backend uses OpenSSL to perform signature generation and data
encryption.

The default CST backend implementation is located at cst-3.4.0\code\back_end-ssl\src. The function
gen_sig_data_cms in the file adapt_layer_openssl.c is used to sign the data or image. Users can
slightly modify this function to allow for getting the hash of data to be signed and embedding the signatures
back into the final binary.

The modified function gen_sig_data_cms is as below:

int32_t gen_sig_data_cms(const char *in_file, X509 *cert,
    EVP_PKEY *key, hash_alg_t hash_alg,
    uint8_t *sig_buf, size_t *sig_buf_bytes)
{
    FILE *sig_fp = NULL;
    int size = 0;
    char cms_sig_path[] = "./csf_sig.bin";
    int32_t err_value = CAL_SUCCESS;

    if (strcmp(in_file, "csfsig.bin") == 0)
    {
        FILE *hashFile = NULL;
        uint8_t *hash;
        int hash_bytes = HASH_BYTES_MAX;;

AN14471 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

Application note Rev. 1.0 — 4 November 2024 Document feedback
4 / 19

http://www.nxp.com
https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_AN14471


NXP Semiconductors AN14471
Using Hardware Security Module for Code Signing

        hash = OPENSSL_malloc(HASH_BYTES_MAX);
        /* Generate hash of data from in_file */
        err_value = calculate_hash(in_file, hash_alg, hash, &hash_bytes);
        if (err_value != CAL_SUCCESS) {
            return err_value;
        }
 /* Save hash value of CSF data */
        hashFile = fopen("csfhash.bin", "wb");
        fwrite(hash, sizeof(uint8_t), hash_bytes, hashFile);
        fclose(hashFile);
        OPENSSL_free(hash);

        printf("Waiting for signature of CSF\r\n");
    }
    else if (strcmp(in_file, "imgsig.bin") == 0)
    {
        FILE *hashFile = NULL;
        uint8_t *hash;
        int hash_bytes = HASH_BYTES_MAX;

        hash = OPENSSL_malloc(HASH_BYTES_MAX);

        /* Generate hash of data from in_file */
        err_value = calculate_hash(in_file, hash_alg, hash, &hash_bytes);
        if (err_value != CAL_SUCCESS) {
            return err_value;
        }
/* Save image hash value */
        hashFile = fopen("imghash.bin", "wb");
        fwrite(hash, sizeof(uint8_t), hash_bytes, hashFile);
        fclose(hashFile);
        OPENSSL_free(hash);

        strcpy(cms_sig_path,"./img_sig.bin");
        printf("Waiting for signature of image\r\n");
    }
    else
    {
        printf("Unknown in_file!");
    }
    /* Wating for the HSM signature */
    while ((sig_fp = fopen(cms_sig_path, "rb")) == NULL)
    {
        system("pause");
    }

    fseek(sig_fp, 0, SEEK_END);
    size = ftell(sig_fp);
    rewind(sig_fp);
    fread(sig_buf, sizeof(uint8_t), size, sig_fp);
    fclose(sig_fp);

    *sig_buf_bytes = size; 

    return CAL_SUCCESS;

The parameter in_file keeps the data to be signed. The updated function generates the hash value and
saves it as a file, then waits for the signature generated by HSM.

AN14471 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

Application note Rev. 1.0 — 4 November 2024 Document feedback
5 / 19

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_AN14471


NXP Semiconductors AN14471
Using Hardware Security Module for Code Signing

2.4  Compile sources
The README in the CST package explains how to create a build environment using the Dockerfile and build
the CST source code.

In this work, it creates a build environment using the MSYS2 console on the Windows platform with the below
steps:

1. Download and install MSYS2.
2. Run MSYS2 MINGW32 and install software gcc, bison, and flex with the below commands:

pacman -S bison flex mingw-w64-i686-gcc
3. Change byacc to yacc in file cst-3.4.0\code\build\make\init.mk.
4. Run the below command under the CST root folder to initiate the build process:

OSTYPE=mingw32 make install

The CST makefile downloads, unpack, configure, and build OpenSSL version 3.2.0 in the current directory. User
can locate Openssl with environment variable OPENSSL_PATH in the next build as below:

OSTYPE=mingw32 make install OPENSSL_PATH="./openssl-mingw32"

The build result cst.exe is located in the directory cst-3.4.0\build\mingw32\bin.

2.5  Prepare the secure boot image
A command sequence description file is parsed and processed by the CST application. It generates a binary file
containing the command sequence file commands (valid only for HAB), certificates, and signatures, which are
interpreted by ROM. The user can use CST directly. Here, we use the elftosb tool instead of CST. The elftosb
can generate the description file, then pass this file to CST, and call CST to get the final signed image.

It takes the RT1170 as an example. To generate a signed bootable image using the elftosb, the steps are as
below:

2.5.1  Building application executable

To build an SREC format application executable, refer to section 4.3.1 of How to use HAB secure
boot in i.MX RT10xx (document AN12681). For the user of MCUXpressoIDE, change the macro
XIP_BOOT_HEADER_ENABLE to 0 in Settings > Preprocessor in the project. For more details about building
an application executable with MCUXpresso, see Getting Started with MCUXpresso SDK for MIMXRT1170-
EVK.pdf in SDK.

2.5.2  Keys and certificate generation

Users must generate keys and certificates. To generate ecc p256 keys and certificates using the MCUXpresso
Secure Provisioning tool, perform the following steps:

1. Retrieve and install the MCUXpresso Secure Provisioning tool from the NXP website.
2. Run this tool, click the button to switch the processor, select MIMXRT11xx. To select a processor from a

different family, the user must create a workspace.
Note:  The user can open the MCUXpresso Secure Provisioning tool with administrator mode. Otherwise,
some important material is not generated.

AN14471 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

Application note Rev. 1.0 — 4 November 2024 Document feedback
6 / 19

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_AN14471


NXP Semiconductors AN14471
Using Hardware Security Module for Code Signing

Figure 3. Create a workspace
3. In the Keys Management view, click the Generated keys button, then specify all parameters in this menu.

Figure 4. Generate ecc keys and certs
4. The user can find generated keys and certificates in the "keys" and "crts" folder in the workspace directory.

AN14471 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

Application note Rev. 1.0 — 4 November 2024 Document feedback
7 / 19

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_AN14471


NXP Semiconductors AN14471
Using Hardware Security Module for Code Signing

2.6  Create BD file
An example *.bd file for ecc p256 keys and certificates is as below:

options {
    flags = 0x08;
    startAddress = 0x30000000;
    ivtOffset = 0x1000;
    initialLoadSize = 0x2000;
}

sources {
    elfFile = extern(0);
}

constants {
    SEC_CSF_HEADER              = 20;
    SEC_CSF_INSTALL_SRK         = 21;
    SEC_CSF_INSTALL_CSFK        = 22;
    SEC_CSF_INSTALL_NOCAK       = 23;
    SEC_CSF_AUTHENTICATE_CSF    = 24;
    SEC_CSF_INSTALL_KEY         = 25;
    SEC_CSF_AUTHENTICATE_DATA   = 26;
    SEC_CSF_INSTALL_SECRET_KEY  = 27;
    SEC_CSF_DECRYPT_DATA        = 28;
    SEC_NOP                     = 29;
    SEC_SET_MID                 = 30;
    SEC_SET_ENGINE              = 31;
    SEC_INIT                    = 32;
    SEC_UNLOCK                  = 33;
}

section (SEC_CSF_HEADER; 
    Header_Version="4.2", 
    Header_HashAlgorithm="sha256", 
    Header_Engine="ANY",
    Header_EngineConfiguration=0, 
    Header_CertificateFormat="x509",
    Header_SignatureFormat="CMS"
    )
{
}

section (SEC_CSF_INSTALL_SRK; 
    InstallSRK_Table="gen_hab_certs/SRK_hash.bin", // "valid file path"
    InstallSRK_SourceIndex=0 
    )
{
}

section (SEC_CSF_INSTALL_CSFK; 
    InstallCSFK_File="crts/CSF1_1_sha256_p256_v3_usr_crt.pem", // "valid file
 path"
    InstallCSFK_CertificateFormat="x509" // "x509"
    )
{
}

section (SEC_CSF_AUTHENTICATE_CSF)
{

AN14471 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

Application note Rev. 1.0 — 4 November 2024 Document feedback
8 / 19

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_AN14471


NXP Semiconductors AN14471
Using Hardware Security Module for Code Signing

}

section (SEC_CSF_INSTALL_KEY;
    InstallKey_File="crts/IMG1_1_sha256_p256_v3_usr_crt.pem", 
    InstallKey_VerificationIndex=0, // Accepts integer or string 
    InstallKey_TargetIndex=2) // Accepts integer or string 
{
}

section (SEC_CSF_AUTHENTICATE_DATA;
    AuthenticateData_VerificationIndex=2, 
    AuthenticateData_Engine="ANY",
    AuthenticateData_EngineConfiguration=0) 
{
}

section (SEC_SET_ENGINE;
    SetEngine_HashAlgorithm = "sha256", // "sha1", "Sha256", "sha512" 
    SetEngine_Engine = "CAAM", // "ANY", "SAHARA", "RTIC", "DCP", "CAAM" and
 "SW" 
    SetEngine_EngineConfiguration = "0") // "valid engine configuration values"
{
}

2.7  Generate signed image
To generate a signed bootable image using elftosb, perform the following steps:

1. Retrieve the elftosb package from the NXP website.
2. Copy the SREC application image into the same folder that holds the elftosb executable.
3. Copy the compiling "cst" executable, "crts", "gen_hab_certs", and "keys" folders from the MCUXpresso

Secure Provisioning RT1176 workspace to the same folder that holds the elftosb executable.
4. Generate a bootable image using elftosb.

elftosb -f imx -V -c .\imx-flexspinor-normal-signed.bd -o .\iled_blinky.bin.
\iled_blinky.srec

As we change the CST source, the tool generates imghash.bin and wait for the signature of the image first.
After we provide a signature binary file img_sig.bin, press any key to go ahead. The CST generates the
hash value of CSF data csfhash.bin and wait for the signature of it. The procedure completes after providing
CSF signature data csf_sig.bin.

After the above operation, there are two bootable images generated by elftosb.

• The first one is iled_blinky.bin. The memory region from 0 until ivt_offset is fill with padding bytes
(all 0x00s).

• The second one is iled_blinky_nopadding.bin, which starts from ivt_offset directly.

For test, user can use the below openssl command to generate the signature.

openssl cms -sign -nosmimecap -nocerts -partial_chain -digest <hash
 value> -passin file:keys/key_pass.txt -inform pem -outform der
 -signer ./crts/IMG1_1_sha256_p256_v3_usr_crt.pem -inkey ./keys/
IMG1_1_sha256_p256_v3_usr_key.pem -out img_sig.bin

openssl cms -sign -nosmimecap -nocerts -partial_chain -digest <hash
 value> -passin file:keys/key_pass.txt -inform pem -outform der

AN14471 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

Application note Rev. 1.0 — 4 November 2024 Document feedback
9 / 19

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_AN14471


NXP Semiconductors AN14471
Using Hardware Security Module for Code Signing

 -signer ./crts/CSF1_1_sha256_p256_v3_usr_crt.pem -inkey ./keys/
CSF1_1_sha256_p256_v3_usr_key.pem -out csf_sig.bin

Note:  Openssl parameter digest provides the hash value in hexadecimal form and openssl provides -digest
starting from v3.2.

3   Using SPSDK

This section describes how to set up signature provider and build an image signed by the signature provider
with the "nxpimage" tool. The nxpimage in spsdk is a tool for generating TrustZone, master boot image, and
secure binary images. This tool is used to create various kinds of NXP images. The configuration file for
nxpimage contains all possible configuration settings.

SPSDK uses a simple flask REST API service representing the remote HSM machine. However, in the real
world, it is expected that the implementation is changed by communication with hardware HSM module or
custom HTTPS communication to a server. We have used the secp256r1 key type in this work.

3.1  Signature provider workflow
Figure 5 describes a workflow for signing an image with a signature provider. The nxpimage tool sends requests
to the signature provider. The signature provider should pass the request to an HSM or server and then pass
the response back to the spsdk tool.

aaa-058317

Signature
provider HSM

HTTPSSPSDK
nxpimage

Local computer

Sign/verify
public key

Response

Figure 5. Signature provider workflow

3.2  Set up config file
The configuration file is needed for successful generation of signed image using the nxpimage application.

Two configuration settings, signPrivateKey and signProvider, are used to control if nxpimage signs the image
with a local private key or using remote signing. These two configuration values are mutually exclusive, so only
one can be chosen.

In the config file, the field AuthenticateData_SignProvider is used to set image private key file. The field
AuthenticateCsf_SignProvider sets private key file for CSF data.

The configuration value format is "type=<sp_type>;<key1>=<value1>;<key2>=<value2>;…"

The sp_type is super awesome signature provider (sasp), which is defined in the custom signature provider
(plugins/sasp.py).

The example for AuthenticateData_SignProvider is as below:

AuthenticateData_SignProvider:
type=sasp;key_number=1;key_type=secp256r1

There is an RT1176 HSM example project that includes an example config file rt1176_xip_signed.yaml.
User can unzip the project and copy folder RT1176 to folder spsdk\examples\signature_provider.

AN14471 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

Application note Rev. 1.0 — 4 November 2024 Document feedback
10 / 19

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_AN14471


NXP Semiconductors AN14471
Using Hardware Security Module for Code Signing

3.3  Install SPSDK
For SPSDK, ensure to have Python 3.9+ installed.

To install the SPSDK from source code, create a virtual Python environment using the console command
window:

1. Create a virtual environment (for example, venv):

python -m venv <name>

2. Activate the virtual environment (for windows):

<name>\Scripts\activate

3. Download the SPSDK source code:

git clone https://github.com/nxp-mcuxpresso/spsdk.git

4. Enter the folder spsdk and install SPSDK from the source code.

pip install -U -e

For other platform, refer to the installation guide available at: https://spsdk.readthedocs.io/en/latest/usage/
installation.html.

3.4  Install jupyter
Jupyter notebook is a web-based interactive development environment. We provide jupyter notebooks as an
interactive documentation.

Install additional development requirements using the below command to run jupyter notebooks:

pip install spsdk[examples]

3.5  Set up HSM
HSM example in SPSDK does not enable secp256r1 key type and the private keys are encrypted in the
procedure of generation. So, there are two changes in the file spsdk\examples\signature_provider
\common\hsm\sahsm.py.

The first change is to enable secp256r1 key type in the HSM demo as below:

SUPPORTED_KEY_TYPES = ["rsa2048", "secp256r1", "secp384r1"]

The second change is to set a password to decrypt private keys correctly. Change is in the function
_load_private_key.

private_key = PrivateKey.load(private_key_file, 'test')

In the HSM example, the private key name format is hsm_k{num}_{key_type}.pem (for example,
hsm_k0_secp384r1.pem).

The signature provider passes 'num' and 'key type' parameters to HSM. So, a user should rename private keys
and copy them to the folder spsdk\examples\signature_provider\common\hsm.

For example, rename CSF1_1_sha256_p256_v3_usr_key.pem to hsm_k0_secp256r1.pem and rename
IMG1_1_sha256_p256_v3_usr_key.pem to hsm_k1_secp256r1.pem. The keys are generated in
Section 2.5.2.

AN14471 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

Application note Rev. 1.0 — 4 November 2024 Document feedback
11 / 19

https://spsdk.readthedocs.io/en/latest/usage/installation.html
https://spsdk.readthedocs.io/en/latest/usage/installation.html
https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_AN14471


NXP Semiconductors AN14471
Using Hardware Security Module for Code Signing

3.6  Generate signed image
This section describes how to use a custom remote signing service for generating a signed image using the
nxpimage tool.

To generate a signed bootable image, perform the following steps:

1. Copy user demo image to spsdk\examples\signature_provider\RT1176\data_img\. The
attached project provides a demo project evkbmimxrt1170_hello_world_demo_cm7.s19.

2. Copy the 'crts' and 'gen_hab_certs' folders from the MCUXpresso Secure Provisioning RT1176 workspace
to the folder spsdk\examples\signature_provider\RT1176\data_img\.

3. Launch jupyter notebook in python virtual environment with below command:

jupyter notebook

Figure 6. Jupyter environment
4. Navigate to examples\signature_provider\common and open signature_provider.ipynb.

AN14471 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

Application note Rev. 1.0 — 4 November 2024 Document feedback
12 / 19

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_AN14471


NXP Semiconductors AN14471
Using Hardware Security Module for Code Signing

Figure 7. Open Signature Provider
5. Press shift+enter to run the first cell to set up the Signature Provider plugin.

Figure 8. Setup signature provider plugin
6. Open examples\signature_provider\common\sahsm.ipynb and start the custom HSM by running

the cell.

AN14471 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

Application note Rev. 1.0 — 4 November 2024 Document feedback
13 / 19

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_AN14471


NXP Semiconductors AN14471
Using Hardware Security Module for Code Signing

Figure 9. Start HSM
7. Switch to signature_provider.ipynb. Run below cell to set the environment variable SASP_PLUGIN

for Signature Provider plugin.

Figure 10. Set Signature Provider plugin env variable
After changing _load_private_key function in Section 3.5, the test for the functionality of HSM in this
notebook is failed as the SPSDK test private keys is not encrypted.

8. Navigate to examples\signature_provider\RT1176 and open rt1170_hab.ipynb.
9. In rt1170_hab.ipynb, run the first cell to initiate the notebook.

AN14471 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

Application note Rev. 1.0 — 4 November 2024 Document feedback
14 / 19

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_AN14471


NXP Semiconductors AN14471
Using Hardware Security Module for Code Signing

Figure 11. Initiate the notebook
10. Run the second cell to generate a configuration template and set the path for the demo configuration file

rt1176_xip_signed.yaml.

Figure 12. Show template file
Note:  Template is available at workspace\img folder. The configuration file data_img/
rt1176_xip_signed.yaml is used in this example.

11. Run the third cell to copy all the working files from folder data_img to folder workspace\img.

Figure 13. Copy working files
Note:  User may need to update the item entryPointAddress in the configuration yaml file for the user
image.

12. Run the last cell to generate the signed image.

Figure 14. Generate the signed image

As the command line shows, the output image is hello_world_demo_cm7_hab.bin at the folder workspace.

AN14471 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

Application note Rev. 1.0 — 4 November 2024 Document feedback
15 / 19

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_AN14471


NXP Semiconductors AN14471
Using Hardware Security Module for Code Signing

4   References

• Code-Signing Tool User’s Guide
• How to use i.MXRT Security Boot (document AN12079)
• How to use HAB secure boot in i.MX RT10xx (document AN12681)
• SPSDK Signature Provider doc: https://spsdk.readthedocs.io/en/latest/examples/signature_prov.html

5   Note about the source code in the document

The example code shown in this document has the following copyright and BSD-3-Clause license:

Copyright 2024 NXP Redistribution and use in source and binary forms, with or without modification, are
permitted provided that the following conditions are met:

1. Redistributions of source code must retain the above copyright notice, this list of conditions and the
following disclaimer.

2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the
following disclaimer in the documentation and/or other materials provided with the distribution.

3. Neither the name of the copyright holder nor the names of its contributors may be used to endorse or
promote products derived from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY
EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT
SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
DAMAGE.

6   Revision history

Table 1 summarizes the revisions to this document

Document ID Release date Description

AN14471 v.1.0 4 November 2024 Initial public release

Table 1. Revision history

AN14471 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

Application note Rev. 1.0 — 4 November 2024 Document feedback
16 / 19

https://spsdk.readthedocs.io/en/latest/examples/signature_prov.html
https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_AN14471


NXP Semiconductors AN14471
Using Hardware Security Module for Code Signing

Legal information

Definitions
Draft — A draft status on a document indicates that the content is still
under internal review and subject to formal approval, which may result
in modifications or additions. NXP Semiconductors does not give any
representations or warranties as to the accuracy or completeness of
information included in a draft version of a document and shall have no
liability for the consequences of use of such information.

Disclaimers
Limited warranty and liability — Information in this document is believed
to be accurate and reliable. However, NXP Semiconductors does not give
any representations or warranties, expressed or implied, as to the accuracy
or completeness of such information and shall have no liability for the
consequences of use of such information. NXP Semiconductors takes no
responsibility for the content in this document if provided by an information
source outside of NXP Semiconductors.
In no event shall NXP Semiconductors be liable for any indirect, incidental,
punitive, special or consequential damages (including - without limitation -
lost profits, lost savings, business interruption, costs related to the removal
or replacement of any products or rework charges) whether or not such
damages are based on tort (including negligence), warranty, breach of
contract or any other legal theory.
Notwithstanding any damages that customer might incur for any reason
whatsoever, NXP Semiconductors’ aggregate and cumulative liability
towards customer for the products described herein shall be limited in
accordance with the Terms and conditions of commercial sale of NXP
Semiconductors.

Right to make changes — NXP Semiconductors reserves the right to
make changes to information published in this document, including without
limitation specifications and product descriptions, at any time and without
notice. This document supersedes and replaces all information supplied prior
to the publication hereof.

Suitability for use — NXP Semiconductors products are not designed,
authorized or warranted to be suitable for use in life support, life-critical or
safety-critical systems or equipment, nor in applications where failure or
malfunction of an NXP Semiconductors product can reasonably be expected
to result in personal injury, death or severe property or environmental
damage. NXP Semiconductors and its suppliers accept no liability for
inclusion and/or use of NXP Semiconductors products in such equipment or
applications and therefore such inclusion and/or use is at the customer’s own
risk.

Applications — Applications that are described herein for any of these
products are for illustrative purposes only. NXP Semiconductors makes no
representation or warranty that such applications will be suitable for the
specified use without further testing or modification.
Customers are responsible for the design and operation of their
applications and products using NXP Semiconductors products, and NXP
Semiconductors accepts no liability for any assistance with applications or
customer product design. It is customer’s sole responsibility to determine
whether the NXP Semiconductors product is suitable and fit for the
customer’s applications and products planned, as well as for the planned
application and use of customer’s third party customer(s). Customers should
provide appropriate design and operating safeguards to minimize the risks
associated with their applications and products.
NXP Semiconductors does not accept any liability related to any default,
damage, costs or problem which is based on any weakness or default
in the customer’s applications or products, or the application or use by
customer’s third party customer(s). Customer is responsible for doing all
necessary testing for the customer’s applications and products using NXP
Semiconductors products in order to avoid a default of the applications
and the products or of the application or use by customer’s third party
customer(s). NXP does not accept any liability in this respect.

Limiting values — Stress above one or more limiting values (as defined in
the Absolute Maximum Ratings System of IEC 60134) will cause permanent
damage to the device. Limiting values are stress ratings only and (proper)
operation of the device at these or any other conditions above those
given in the Recommended operating conditions section (if present) or the
Characteristics sections of this document is not warranted. Constant or
repeated exposure to limiting values will permanently and irreversibly affect
the quality and reliability of the device.

Terms and conditions of commercial sale — NXP Semiconductors
products are sold subject to the general terms and conditions of commercial
sale, as published at https://www.nxp.com/profile/terms, unless otherwise
agreed in a valid written individual agreement. In case an individual
agreement is concluded only the terms and conditions of the respective
agreement shall apply. NXP Semiconductors hereby expressly objects to
applying the customer’s general terms and conditions with regard to the
purchase of NXP Semiconductors products by customer.

No offer to sell or license — Nothing in this document may be interpreted
or construed as an offer to sell products that is open for acceptance or
the grant, conveyance or implication of any license under any copyrights,
patents or other industrial or intellectual property rights.

Quick reference data — The Quick reference data is an extract of the
product data given in the Limiting values and Characteristics sections of this
document, and as such is not complete, exhaustive or legally binding.

Export control — This document as well as the item(s) described herein
may be subject to export control regulations. Export might require a prior
authorization from competent authorities.

Suitability for use in non-automotive qualified products — Unless
this document expressly states that this specific NXP Semiconductors
product is automotive qualified, the product is not suitable for automotive
use. It is neither qualified nor tested in accordance with automotive testing
or application requirements. NXP Semiconductors accepts no liability for
inclusion and/or use of non-automotive qualified products in automotive
equipment or applications.
In the event that customer uses the product for design-in and use in
automotive applications to automotive specifications and standards,
customer (a) shall use the product without NXP Semiconductors’ warranty
of the product for such automotive applications, use and specifications, and
(b) whenever customer uses the product for automotive applications beyond
NXP Semiconductors’ specifications such use shall be solely at customer’s
own risk, and (c) customer fully indemnifies NXP Semiconductors for any
liability, damages or failed product claims resulting from customer design and
use of the product for automotive applications beyond NXP Semiconductors’
standard warranty and NXP Semiconductors’ product specifications.

HTML publications — An HTML version, if available, of this document is
provided as a courtesy. Definitive information is contained in the applicable
document in PDF format. If there is a discrepancy between the HTML
document and the PDF document, the PDF document has priority.

Translations — A non-English (translated) version of a document, including
the legal information in that document, is for reference only. The English
version shall prevail in case of any discrepancy between the translated and
English versions.

AN14471 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

Application note Rev. 1.0 — 4 November 2024 Document feedback
17 / 19

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_AN14471


NXP Semiconductors AN14471
Using Hardware Security Module for Code Signing

Security — Customer understands that all NXP products may be subject to
unidentified vulnerabilities or may support established security standards or
specifications with known limitations. Customer is responsible for the design
and operation of its applications and products throughout their lifecycles
to reduce the effect of these vulnerabilities on customer’s applications
and products. Customer’s responsibility also extends to other open and/or
proprietary technologies supported by NXP products for use in customer’s
applications. NXP accepts no liability for any vulnerability. Customer should
regularly check security updates from NXP and follow up appropriately.
Customer shall select products with security features that best meet rules,
regulations, and standards of the intended application and make the
ultimate design decisions regarding its products and is solely responsible
for compliance with all legal, regulatory, and security related requirements
concerning its products, regardless of any information or support that may be
provided by NXP.
NXP has a Product Security Incident Response Team (PSIRT) (reachable
at PSIRT@nxp.com) that manages the investigation, reporting, and solution
release to security vulnerabilities of NXP products.

NXP B.V. — NXP B.V. is not an operating company and it does not distribute
or sell products.

Trademarks
Notice: All referenced brands, product names, service names, and
trademarks are the property of their respective owners.
NXP — wordmark and logo are trademarks of NXP B.V.
AMBA, Arm, Arm7, Arm7TDMI, Arm9, Arm11, Artisan, big.LITTLE,
Cordio, CoreLink, CoreSight, Cortex, DesignStart, DynamIQ, Jazelle,
Keil, Mali, Mbed, Mbed Enabled, NEON, POP, RealView, SecurCore,
Socrates, Thumb, TrustZone, ULINK, ULINK2, ULINK-ME, ULINK-
PLUS, ULINKpro, μVision, Versatile — are trademarks and/or registered
trademarks of Arm Limited (or its subsidiaries or affiliates) in the US and/or
elsewhere. The related technology may be protected by any or all of patents,
copyrights, designs and trade secrets. All rights reserved.

AN14471 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

Application note Rev. 1.0 — 4 November 2024 Document feedback
18 / 19

mailto:PSIRT@nxp.com
https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_AN14471


NXP Semiconductors AN14471
Using Hardware Security Module for Code Signing

Contents
1 Introduction ...................................................... 2
1.1 CST ....................................................................2
1.2 SPSDK tool ........................................................2
2 Using CST ........................................................ 3
2.1 CST workflow .................................................... 3
2.2 Get sources ....................................................... 4
2.3 Change sources ................................................ 4
2.4 Compile sources ................................................6
2.5 Prepare the secure boot image ......................... 6
2.5.1 Building application executable ......................... 6
2.5.2 Keys and certificate generation ......................... 6
2.6 Create BD file ....................................................8
2.7 Generate signed image ..................................... 9
3 Using SPSDK ................................................. 10
3.1 Signature provider workflow ............................ 10
3.2 Set up config file ............................................. 10
3.3 Install SPSDK .................................................. 11
3.4 Install jupyter ................................................... 11
3.5 Set up HSM .....................................................11
3.6 Generate signed image ................................... 12
4 References ......................................................16
5 Note about the source code in the

document ........................................................16
6 Revision history .............................................16

Legal information ...........................................17

Please be aware that important notices concerning this document and the product(s)
described herein, have been included in section 'Legal information'.

© 2024 NXP B.V. All rights reserved.
For more information, please visit: https://www.nxp.com Document feedback

Date of release: 4 November 2024
Document identifier: AN14471

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_AN14471

	1  Introduction
	1.1  CST
	1.2  SPSDK tool

	2  Using CST
	2.1  CST workflow
	2.2  Get sources
	2.3  Change sources
	2.4  Compile sources
	2.5  Prepare the secure boot image
	2.5.1  Building application executable
	2.5.2  Keys and certificate generation

	2.6  Create BD file
	2.7  Generate signed image

	3  Using SPSDK
	3.1  Signature provider workflow
	3.2  Set up config file
	3.3  Install SPSDK
	3.4  Install jupyter
	3.5  Set up HSM
	3.6  Generate signed image

	4  References
	5  Note about the source code in the document
	6  Revision history
	Legal information
	Contents

