
AN14259
SDK Example to Write CFPA with Monotonic Counter for MCXN947
Rev. 2.0 — 6 February 2025 Application note

Document information
Information Content

Keywords AN14259, monotonic counter, CFPA

Abstract This application note provides an example of how the CFPA bit field can be changed through the
ROM APIs.

https://www.nxp.com

NXP Semiconductors AN14259
SDK Example to Write CFPA with Monotonic Counter for MCXN947

1 Introduction

This document provides an example of changing the Customer Field Programmable Area (CFPA) bit field
using the ROM APIs. However, it can also be done using the MCUXpresso Secure Provisioning Tool, see
MCUXpresso Secure Provisioning Tool. MCUXpresso Secure Provisioning Tool has a GUI-based interface
that provides a streamlined development flow, making it simpler to prepare (change CFPA bit field, generate
keys, and so on), flash and fuse images along with the provisioning of the bootable executables on NXP MCU
devices. The ROM APIs or the MCUXpresso Secure Provisioning Tool also allows the programming of One
Time Programmable (OTP) fuses, which can lock areas of CMPA and CFPA with specific settings. Such locking
is necessary for the finished products, which are released using the MCXNx4x device.

The CMPA and CFPA are part of the Protected Flash Region (PFR) of the MCX devices. The PFR region
contains settings for the boot configuration, security policy, PRINCE (internal and external), SoC-specific
parameters, and so on. PFR has a fixed address in flash memory, which starts at address 0x1000000. Figure 1
shows different regions of the PFR layout. The PFR contains a CFPA scratch page, CFPA ping and pong
pages, CMPA page, customer key store page (part of CMPA), and NXP Manufacturing Programmable Area
(NMPA) page.

Note: The information provided in this document does not lock areas of CMPA and CFPA with specific settings
when using OTP.

AN14259 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Application note Rev. 2.0 — 6 February 2025 Document feedback
2 / 15

https://www.nxp.com/design/design-center/software/development-software/mcuxpresso-software-and-tools-/mcuxpresso-secure-provisioning-tool:MCUXPRESSO-SECURE-PROVISIONING
https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_AN14259

NXP Semiconductors AN14259
SDK Example to Write CFPA with Monotonic Counter for MCXN947

CFPA Page

CMPA Page

NMPA Page

IFR 1

PUF Activation
Code

Address (Hex) Name

0x1000000 Header

0x1000004 CFPA_PAGE_VERSION

0x1000008 Secure_FW_Version

0x100000C NS_FW_Version

0x1000014 SECBOOT_FLAGS

0x1000018 IMAGE_KEY_REVOKE

0x100001C LP_VECTOR_ADDR

0x1000020 DBG_REVOKE_VU

0x1000024 DCFG_CC_SOCU_NS_PIN

0x1000028 DCFG_CC_SOCU_NS_DFLT

0x1000030 MCTR_NPX_CTX0

0x100003C MCTR_NPX_CTX3

0x1000040 MCTR_IPED_CTX0

0x100005C MCTR_IPED_CTX7

0x1000060 ERR_AUTH_FAIL_COUNT

0x1000064 ERR_ITRC_COUNT

0x1000068 ERR_CFG_FAIL_COUNT

0x100006C ERR_CONT3

0x100007C ERR_CONT7

0x1000080 MCTR_CUST_CTR0

0x100009C MCTR_CUST_CTR7

0x10000A0 MFLAG_CUST_0

0x10000BC MFLAG_CUST_7

0x10000C0 FLASH_ACL_0_7

0x10000DC FLASH_ACL_55_63

0x1000190 IPED_GCM_AAD_CTX0

0x10001AC IPED_GCM_AAD_CTX7

0x10001EC CFPA CRC32

…

…

…

…

0x1000100 DICE Certificate

IMG1_CMAC0x10000F0

SBL_IMG0_CMAC0x10000E0

CFPA0 CMAC0x10001F0

…

…

…

Address (Hex) Name

0x1004000 BOOT_CFG

0x1004004 FLASH_CFG

0x1004008 BOOT_LED_STATUS

0x100400C BOOT_TIMERS

0x1004010 FLEXSPI_BOOT_CFG0

0x1004014 FLEXSPI_BOOT_CFG1

0x1004018 REC_SPI_FLASH_CFG0

0x100401C REC_SPI_FLASH_CFG1

0x1004020 ISP_UART_CFG

0x1004024 ISP_I2C_CFG

0x1004028 ISP_CAN_CFG

0x100402C ISP_SPI_CFG0

0x1004030 ISP_SPI_CFG1

0x1004034 ISP_USB_ID

0x1004038 ISP_USB_CFG

0x100403C ISP_MISC_CFG

0x1004040 CC_SOCU_PIN

0x1004044 CC_SOCU_DFLT

0x1004048 VENDOR_USAGE

0x1004050 SECURE_BOOT_CFG

0x1004054 RoTK_USAGE

0x1004060 ROTKH[383:352]

0x100408C ROTKH[31:0]

0x1004090 NPX_CTX0_WD0

0x1004094 NPX_CTX0_WD1

0x10040A8 NPX_CTX3_WD0

0x10040AC NPX_CTX3_WD1

0x10040B0 IPED0_START

0x10040B4 IPED0_END

0x10040E8 IPED7_START

0x10040EC IPED7_END

0x10040F0 REC_IMG_EXT0

0x10040F4 REC_IMG_EXT1

0x1004120 QUICK_SET_GPIO_0

0x1004124 QUICK_CLR_GPIO_0

0x1004148 QUICK_SET_GPIO_5

0x100414C QUICK_CLR_GPIO_5

0x10041EC CMPA _CRC32

0x10041F0 CMPA CMAC

…

0x1004160
CUST_MK_SK

key blob

…

…

…

0x01000000

0x01004000

0x01006000

0x01100000

0x01100200

Figure 1. PFR layout

AN14259 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Application note Rev. 2.0 — 6 February 2025 Document feedback
3 / 15

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_AN14259

NXP Semiconductors AN14259
SDK Example to Write CFPA with Monotonic Counter for MCXN947

1.1 CMPA
The CMPA region provides the following configuration settings:

1. Boot configuration: Contains configurations related to the boot modes, speed, timeout, default boot
source, USB product/vendor IDs, and so on.

2. RoT key table hash: Contains 48 bytes for Root Key Table Hash (ROTKH), which is an SHA-384 or
SHA-256 digest computed over four OEM public keys. Four OEM private-public key pairs are stored so that
extra key pairs are available when one private key is compromised. ROTKH is also called 'hash of hashes'
as this hash is computed over the four OEM public key hashes.

3. Debug configuration: Configurations such as enabling/disabling debug access are also present. These
configurations are used to determine the life cycle and debug authentication status.

4. PRINCE configuration: Allows runtime decryption of encrypted flash code and data. Contains external
flash memory Inline Prince Encryption/Decryption (IPED) and internal flash memory PRINCE-related
settings.

5. FlexSPI configuration: Contains configuration settings for the FlexSPI interface, which connects to
external SPI flash memory, 1, 2, 4, and 8 bits are supported. FlexSPI supports Execute-In-Place (XIP) and
on-the-fly decryption using an IPED module.

The CMPA also contains fields for the calculated CMAC/CRC32 for the CMPA region allowing an integrity
check over the data in the CMPA region. The calculated value is written to the CMPA by the ROM when the
CMAC_UPD[CMPA_UPD] field in the CFPA area is either set to 0b010 or 0b011. The ROM also write this value
to the CMPA_CMAC OTP if the CMAC_UPD[CMPA_UPD] bit is set to 0b011, and after the CMPA_CMAC fuses
are burned, the user cannot change the CMPA bit fields. The CMPA_CMAC fuses can generally be burned if a
transition in the development stage of the MCU is required or if the chip is ready to be deployed in the field.

The CMPA also provides a customer key store page that can be used to store different keys required for the
customers application purposes along with some preshared keys that must be supplied externally into Crypto
Sub System (CSS), for example, the CUST_MK_SK key that is stored in the form of RFC3394 blob at address
0x1004160. For more details, see MCXNx4x Reference Manual (document MCXNX4XRM) and its attachments
MCXNx4x_IFR.xlsx.

1.2 CFPA
The CFPA scratch, ping, and pong pages have the same structure. However, the CFPA ping and pong pages
are used to select the actual CFPA page (the one with the higher version number), while the scratch page
is used to update the CFPA page. It means that whenever application code uses FLASH APIs to update the
CFPA page, data is first written onto the scratch page, and then after the core reset, the contents of the scratch
page are copied to either ping or pong page based on the CFPA page version number. The one with the lower
version gets updated to the newest version.

The CFPA provides the following configuration settings:

1. ROTKH revocation: There can be a maximum of four RoT keys, each of which can be revoked. When
trying to boot images that are signed using a revoked RoT key, they get rejected during the authentication
process and fail to boot if SEC_BOOT_EN is set to boot only signed images.

2. Image revocation: An image key revocation ID is present, which can be used to revoke an image. For
more details, see Chapter "Secure Boot ROM" Section "CFPA page" in MCXNx4x Security Reference
Manual (document MCXNx4xSRM).

3. Storage for PRINCE region IV codes: Includes monotonic erase counters for internal and external
PRINCE regions. However, these fields are entirely handled by the ROM, and the user must not write
anything in these fields. For more details, see Chapter "Secure Boot ROM" Section "CFPA page" in
MCXNx4x Security Reference Manual (document MCXNx4xSRM).

AN14259 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Application note Rev. 2.0 — 6 February 2025 Document feedback
4 / 15

https://www.nxp.com/doc/MCXNX4XRM
https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_AN14259

NXP Semiconductors AN14259
SDK Example to Write CFPA with Monotonic Counter for MCXN947

4. Debug configuration: Configurations such as enabling/disabling debug access are also present. These
configurations are used to determine the life cycle and debug authentication status. For details, see Chapter
"Debug Subsystem" in MCXNx4x Reference Manual (document MCXNX4XRM).

Apart from the above-mentioned configurations, the CFPA page also contains fields for various versions, such
as the CFPA page version and the secure and nonsecure firmware versions. Fields for storing the CMAC
values for the dual boot images that can be stored in the flash are also present. For more details, see MCXNx4x
Reference Manual (document MCXNX4XRM) and its attachments MCXNx4x_IFR.xlsx.

1.2.1 Monotonic counter

Specific fields such as various versions, vendor usage, erase count for internal and external PRINCE regions,
and customer-defined monotonic counter fields are implemented using a monotonic (incrementing) counter. A
monotonic counter is implemented to produce incrementing or decrementing values. For the implementation of
the incrementing values, once the count value changes to a higher number, it must not thereafter exhibit any
value less than the higher number. For either implementation, the monotonic nature of the count value must
be maintained throughout the life of the device, in which the monotonic counter operates, including across any
number of power ON and power OFF cycles. Causing a monotonic counter not to maintain its count value and
revert to an earlier value can result in a compromise in the device security.

1.3 NMPA
The NMPA is the last area of the PFR, which contains die and chip-specific data such as the PUF activation
code, NXP-issued device genuineness proof certificates, UUID. For more details, see MCXNx4x Reference
Manual (document MCXNX4XRM) and its attachments MCXNx4x_IFR.xlsx.

1.4 ROM API structure
The ROM API structure is shown in Figure 2. It contains several API drivers that contain absolute ROM API
function addresses, which can be called using function pointers. Some of the functionalities provided by the
ROM API are providing support for both the programmable FLASH region (store application code and data) and
the FLASH firewall region (store device configurations, boot configuration, in-field programmable data). It also
enables external serial NOR FLASH, on-chip OTP-eFUSE read and programming, support for crypto functions,
in-application programming, and so on. The FLASH APIs are used through the FLASH API driver to update both
the programmable flash area and specify the parameters in the CMPA and CFPA areas.

AN14259 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Application note Rev. 2.0 — 6 February 2025 Document feedback
5 / 15

https://www.nxp.com/doc/MCXNX4XRM
https://www.nxp.com/doc/MCXNX4XRM
https://www.nxp.com/doc/MCXNX4XRM
https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_AN14259

NXP Semiconductors AN14259
SDK Example to Write CFPA with Monotonic Counter for MCXN947

runBootloader

version

copyright pointer

Reserved

Reserved

Reserved

Reserved

Reserved

nbootDriver

flexspiNorDriver

otpDriver

iapApiDriver

0x1303_FC00

0x1303_FC04

0x1303_FC08

0x1303_FC0C

0x1303_FC10

0x1303_FC14

0x1303_FC18

0x1303_FC1C

0x1303_FC20

0x1303_FC24

0x1303_FC28

0x1303_FC2C

0x1303_FC30

0x1303_FC34

version

flash_init

flash_erase

flash_program

flash_verify_erase

flash_verify_program

flash_get_property

reserved

reserved

reserved

ffr_init

ffr_lock

ffr_cust_factory_page_write

reserved

reserved

ffr_infield_page_write

ffr_get_customer_infield_data

flash_read

reserved

ffr_get_cust_keystore

romapi_rng_generate_random

nboot_context_init

nboot_context_deinit

nboot_sb3_load_manifest

nboot_sb3_load_block

nboot_img_authenticate_ecdsa

nboot_img_authenticate_cmac

version

flexspi_nor_flash_init

flexspi_nor_flash_page_program

flexspi_nor_flash_erase_all

flexspi_nor_flash_erase

flexspi_nor_flash_erase_sector

flexspi_nor_flash_erase_block

flexspi_nor_get_config

flexspi_nor_flash_read

flexspi_command_xfer

flexspi_update_lut

otp_init

otp_deinit

otp_read

otp_program
iap_api_init

iap_api_deinit

iap_mem_init

reserved

iap_mem_write

iap_mem_fill

iap_mem_flush

iap_mem_erase

iap_mem_config

iap_mem_erase_all

api_sbloader_init

api_sbloader_pump

api_sbloader_finalize

version

version

flexspi_set_clock_source

flexspi_config_clock

flexspi_nor_flash_partial_program

flash_deinit

ffr_get_uuid

ffr_get_customer_data

ffr_cust_keystore_write

flashDriver

Reserved

Figure 2. ROM API structure

1.5 FLASH API driver
The FLASH API set enables the following features:

1. Initialize the FLASH controller.
2. Erase and verify the specified FLASH area.
3. Program and verify the specified FLASH page.
4. Retrieve FLASH properties.
5. Initialize or lock the FFR.
6. Program and read the CMPA.
7. Program and read the CFPA.
8. Nonblocking FLASH erase/status check API for timing-critical use cases.

The FLASH APIs are organized in the FLASH Driver API Interface structure.

For more details on different APIs, see Chapter "ROM API" Section "FLASH APIs" in MCXNx4x Reference
Manual (document MCXNX4XRM). The whole FLASH API wrapper is also available in the SDK release
package.

2 Setup and SDK example

This section provides information about the hardware and software setup, SDK example, and output.

2.1 Hardware setup
Figure 3 shows the host computer connected to FRDM-MCXN947 board at MCU-Link USB J17. The J17
utilizes the MCU-Link VCOM output, which acts as a serial-to-USB bridge to the host computer and provides the
CMSIS-DAP debug interface.

AN14259 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Application note Rev. 2.0 — 6 February 2025 Document feedback
6 / 15

https://www.nxp.com/doc/MCXNX4XRM
https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_AN14259

NXP Semiconductors AN14259
SDK Example to Write CFPA with Monotonic Counter for MCXN947

J17
MCU-Link USB

J16
MCX 10/100
Ethernet
connector

J11
MCX HS USB

J8
FlexIO / LCD
connector

J9
Camera connector

J7
PMOD connector

J1
Arduino
compatible
header (outer row) /
FRDM header (inner
row)

J2
Arduino
compatible
header (outer row) /
FRDM header (inner
row)

J4
Arduino
compatible
header (outer row) /
FRDM header (inner
row)

J3
Arduino
compatible
header (outer row) /
FRDM header (inner
row)

J5
mikroBUS header

J6
mikroBUS header

J23
MCX SWD

SW1
Reset

D1
MCX RST
LED

SW2
Wakeup

SW3
ISP

J10
CAN
header

D5 LED

D2
RGB LED

Figure 3. FRDM-MCXN947 board connect with MCU-LINK-USB at J17

2.2 Software setup
The following application example uses MCUXpresso IDE v11.8.0 to download, see MCUXpresso Integrated
Development Environment (IDE). An SDK for MCX-N9XX-EVK is also required to build and debug the code.
SDK_2.13.1_MCX-N9XX-EVK is used for the following example.

Note: The output can be displayed on the Tera Term application.

The following settings must be used while using Tera Term or any other terminal application:

• 115200 baud rate
• No parity
• 8 data bits
• 1 stop bits

2.3 SDK example
The SDK example project is embedded in this document. To import the SDK example project (archived folder):

1. Go to File -> Import -> General -> Existing Projects.
2. Into the workspace, click Next.
3. Select .zip archive file.
4. Click Finish.
5. The project must be reflected under the Project Explorer window.
6. To build the project: Click Build button from the MCUXpresso IDE – Quickstart Panel located on the

bottom-left side of the IDE or click on the hammer icon located on the top panel.
7. To flash the project onto the MCU: Right-click Project tab Run as -> 1 Local C/C++ Application.

AN14259 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Application note Rev. 2.0 — 6 February 2025 Document feedback
7 / 15

https://www.nxp.com/design/design-center/software/development-software/mcuxpresso-software-and-tools-/mcuxpresso-integrated-development-environment-ide:MCUXpresso-IDE
https://www.nxp.com/design/design-center/software/development-software/mcuxpresso-software-and-tools-/mcuxpresso-integrated-development-environment-ide:MCUXpresso-IDE
https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_AN14259

NXP Semiconductors AN14259
SDK Example to Write CFPA with Monotonic Counter for MCXN947

8. To debug the project: Select Debug button from the MCUXpresso IDE – Quickstart Panel or click Bug
button from the top panel (highlighted in Blue).

In the following SDK example, three options are provided:

1. Display UUID and contents of the CFPA page.
2. Increase the CFPA page version.
3. Increase the vendor usage.

The CFPA page version and the vendor usage fields are implemented as a monotonic counter. Therefore, once
their values are changed, the new values must always be higher than the old values. It is essential that every
time a change is made to the CFPA page, the user must ensure that the CFPA page version is incremented
(monotonic counter). Since CFPA changes are made to the CFPA scratch page, there must be a core reset for
the new values to be copied from the CFPA scratch page onto the main CFPA page (either ping or pong page,
based on the page version).

The example project uses functions from the FLASH API wrapper (available in the SDK release package as
the fsl_flash.h header file and fsl_flash.c source file), which uses the underlying FLASH APIs. The
following subsections provide information on some of the wrapper APIs used.

Note: The function calls use a maximum of 2 kB of stack to read-modify-write PFR pages. Adjust the stack size
accordingly.

2.3.1 FFR_GetUUID

1. Underlying FLASH API: ffr_get_uuid.
2. Prototype: status_t FFR_GetUUID(flash_config_t *config, uint8_t *uuid).
3. Parameters:

• config - Pointer to flash_config_t data structure in memory to store driver runtime state.
• uuid - Pointer to value address, the value is read back from the nmpa configuration uuid.

4. Code snippets from the example project:

volatile uint32_t g_UUID[4];
/* Initialize flash driver */
FLASH_Init(&flashInstance);
if (FFR_Init(&flashInstance) == kStatus_Success)
 PRINTF("Flash init successfull!!. Halting...\r\n");
else
 error_trap();

status = FFR_GetUUID(&flashInstance, (uint8_t *)g_UUID);
PRINTF("\nUUID 0x%8x 0x%8x 0x%8x 0x%8x\r\n", g_UUID[0], g_UUID[1], g_UUID[2],
 g_UUID[3]);

2.3.2 FFR_GetCustomerInfieldData

1. Underlying FLASH API: ffr_get_customer_infield_data.
2. Prototype: status_t FFR_GetCustomerInfieldData(flash_config_t *config, uint8_t

*pData, uint32_t offset, uint32_t len).
3. Parameters:

• config - Pointer to flash_config_t data structure in memory to store driver runtime state.
• pData - Point to the destination buffer of data that stores data read from the customer In-field page.
• offset - Pointer to the offset value based on the CFPA address 0x3dc00 of the device.
• len - Point to the length of data to read, and the offset + len <= 512 B.

AN14259 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Application note Rev. 2.0 — 6 February 2025 Document feedback
8 / 15

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_AN14259

NXP Semiconductors AN14259
SDK Example to Write CFPA with Monotonic Counter for MCXN947

4. Code snippets from the example project:

flash_config_t flashInstance;
uint32_t g_CFPAData[FLASH_FFR_MAX_PAGE_SIZE / sizeof(uint32_t)];

/* Read data stored on the Customer Factory page */
status = FFR_GetCustomerInfieldData(&flashInstance, (uint8_t *)g_CFPAData,
 0x0,
FLASH_FFR_MAX_PAGE_SIZE);

PRINTF("\r\nCFPA page data:\r\n");
PRINTF("Header 0x%08x , Version 0x%08x , SecureFW Version 0x%08x ,
NonSecureFW Version 0x%08x\r\n", g_CFPAData[0], g_CFPAData[1],
 g_CFPAData[2],
g_CFPAData[3]);
PRINTF("ImageKey Revoke 0x%08x , RothRevoke 0x%08x , Vendor Usage 0x%08x\r
\n",
g_CFPAData[4], g_CFPAData[20], g_CFPAData[21]);
PRINTF("NS PIN 0x%08x , NS DFLT 0x%08x , Enable FA Mode 0x%08x\r
\n",
g_CFPAData[22], g_CFPAData[23], g_CFPAData[24]);

2.3.3 FFR_InfieldPageWrite

1. Underlying FLASH API: ffr_infield_page_write.
2. Prototype: status_t FFR_InfieldPageWrite(flash_config_t *config, uint8_t

*page_data, uint32_t valid_len).
3. Parameters:

• config - Pointer to flash_config_t data structure in memory to store driver runtime state.
• page_data - Pointer to the source buffer of data that is to be programmed into the in-field page.
• valid_len - The length in bytes to be programmed, the length must equal the page size.

4. Code snapshot from the example project:

flash_config_t flashInstance;
uint32_t g_CFPAData[FLASH_FFR_MAX_PAGE_SIZE / sizeof(uint32_t)];

status_t markStatus = FFR_InfieldPageWrite(&flashInstance, (uint8_t
 *)g_CFPAData,
 FLASH_FFR_MAX_PAGE_SIZE);
if (kStatus_FLASH_Success == markStatus)
{
 status = kStatus_Success;
 PRINTF("CFPA Write Done!\r\n");
}
else
{
 status = kStatus_Fail;
 PRINTF("CFPA Write Failed!\r\n");
}

/* Core reset to allow updating the main CFPA page */
NVIC_SystemReset();
break;

AN14259 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Application note Rev. 2.0 — 6 February 2025 Document feedback
9 / 15

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_AN14259

NXP Semiconductors AN14259
SDK Example to Write CFPA with Monotonic Counter for MCXN947

2.4 Output
The output is displayed on the Tera Term application using the UART COM5 port. After the successful build and
flashing of the code onto the MCU, the user gets a prompt with three options, see Section 2.3.

1. If the user chooses the first option by typing 0, the output is shown in Figure 4. The output includes the
device-specific UUID and the contents of the CFPA page displayed.

aaa-055497

Figure 4. Generated output displayed on Tera Term for option 0
2. If the user chooses the second option by typing 1, the new version of the CFPA page that is written into the

version field is shown in Figure 5. After the confirmation message is printed (“CFPA Write Done!”), the user
can type 0 again to see the updated CFPA page contents.

aaa-055498

Figure 5. Generated output displayed on Tera Term for option 1
3. If the user chooses the third option by typing 2, the new version of the vendor usage page that will be

written into the corresponding field is shown in Figure 6 along with the updated CFPA page version. After
the confirmation message is printed CFPA Write Done!, the user can type “0” again to see the updated
CFPA page contents.

AN14259 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Application note Rev. 2.0 — 6 February 2025 Document feedback
10 / 15

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_AN14259

NXP Semiconductors AN14259
SDK Example to Write CFPA with Monotonic Counter for MCXN947

aaa-055499

Figure 6. Generated output displayed on Tera Term for option 2

The CFPA page is updated based on the user input, therefore displaying the successful working of the software.

3 References

Table 1 lists additional documents and resources that can be referred to for more information. Some of the
documents listed below may be available only under a non-disclosure agreement (NDA). To request access to
these documents, contact local field applications engineer (FAE) or sales representative.

Document Link/how to access

MCUXpresso Secure Provisioning Tool MCUXPRESSO-SECURE-PROVISIONING

MCUXpresso Integrated Development Environment (IDE) MCUXpresso-IDE

MCXNx4x Reference Manual (document MCXNX4XRM) MCXNX4XRM

MCXNx4x Security Reference Manual (document MCXNx4x
SRM)

Contact local FAE or sales representative

Table 1. Related documentation/resources

4 Acronyms

Table 2 defines the acronyms used in this document.

Acronym Definition

API Application Programming Interface

CFPA Customer Field Programmable Area

CMPA Customer Manufacturing/Factory Programmable Area

COM Communications Port

FAE Field Applications Engineer

GUI Graphical User Interface

IPED Inline Prince Encryption/Decryption

MCU Microcontroller Unit

Table 2. Acronyms

AN14259 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Application note Rev. 2.0 — 6 February 2025 Document feedback
11 / 15

https://www.nxp.com/design/design-center/software/development-software/mcuxpresso-software-and-tools-/mcuxpresso-secure-provisioning-tool:MCUXPRESSO-SECURE-PROVISIONING
https://www.nxp.com/design/design-center/software/development-software/mcuxpresso-software-and-tools-/mcuxpresso-integrated-development-environment-ide:MCUXpresso-IDE
https://www.nxp.com/doc/MCXNX4XRM
https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_AN14259

NXP Semiconductors AN14259
SDK Example to Write CFPA with Monotonic Counter for MCXN947

Acronym Definition

NDA Non-Disclosure Agreement

NMPA NXP Manufacturing Programmable Area

NOR Negative-OR

OEM Original Equipment Manufacturer

OTP One Time Programmable

PFR Protected Flash Region

ROTKH Root Key Table Hash

ROM Read-Only Memory

SDK Software Development Kit

System-on-Chip SoC

SPI Serial Peripheral Interface

UART Universal Asynchronous Receiver Transmitter

USB Universal Serial Bus

VCOM Virtual COM

XIP Execute-In-Place

Table 2. Acronyms...continued

5 Note about the source code in the document

Example code shown in this document has the following copyright and BSD-3-Clause license:

Copyright 2024-2025 NXP Redistribution and use in source and binary forms, with or without modification, are
permitted provided that the following conditions are met:

1. Redistributions of source code must retain the above copyright notice, this list of conditions and the
following disclaimer.

2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the
following disclaimer in the documentation and/or other materials must be provided with the distribution.

3. Neither the name of the copyright holder nor the names of its contributors may be used to endorse or
promote products derived from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY
EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT
SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
DAMAGE.

6 Revision history

Table 3 summarizes revision to this document.

AN14259 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Application note Rev. 2.0 — 6 February 2025 Document feedback
12 / 15

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_AN14259

NXP Semiconductors AN14259
SDK Example to Write CFPA with Monotonic Counter for MCXN947

Document ID Release date Description

AN14259 v.2.0 6 February 2025 Updated the Title and Introduction section of this document.

AN14259 v.1.0 18 July 2024 Initial public version

Table 3. Revision history

AN14259 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Application note Rev. 2.0 — 6 February 2025 Document feedback
13 / 15

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_AN14259

NXP Semiconductors AN14259
SDK Example to Write CFPA with Monotonic Counter for MCXN947

Legal information

Definitions
Draft — A draft status on a document indicates that the content is still
under internal review and subject to formal approval, which may result
in modifications or additions. NXP Semiconductors does not give any
representations or warranties as to the accuracy or completeness of
information included in a draft version of a document and shall have no
liability for the consequences of use of such information.

Disclaimers
Limited warranty and liability — Information in this document is believed
to be accurate and reliable. However, NXP Semiconductors does not give
any representations or warranties, expressed or implied, as to the accuracy
or completeness of such information and shall have no liability for the
consequences of use of such information. NXP Semiconductors takes no
responsibility for the content in this document if provided by an information
source outside of NXP Semiconductors.
In no event shall NXP Semiconductors be liable for any indirect, incidental,
punitive, special or consequential damages (including - without limitation -
lost profits, lost savings, business interruption, costs related to the removal
or replacement of any products or rework charges) whether or not such
damages are based on tort (including negligence), warranty, breach of
contract or any other legal theory.
Notwithstanding any damages that customer might incur for any reason
whatsoever, NXP Semiconductors’ aggregate and cumulative liability
towards customer for the products described herein shall be limited in
accordance with the Terms and conditions of commercial sale of NXP
Semiconductors.

Right to make changes — NXP Semiconductors reserves the right to
make changes to information published in this document, including without
limitation specifications and product descriptions, at any time and without
notice. This document supersedes and replaces all information supplied prior
to the publication hereof.

Suitability for use — NXP Semiconductors products are not designed,
authorized or warranted to be suitable for use in life support, life-critical or
safety-critical systems or equipment, nor in applications where failure or
malfunction of an NXP Semiconductors product can reasonably be expected
to result in personal injury, death or severe property or environmental
damage. NXP Semiconductors and its suppliers accept no liability for
inclusion and/or use of NXP Semiconductors products in such equipment or
applications and therefore such inclusion and/or use is at the customer’s own
risk.

Applications — Applications that are described herein for any of these
products are for illustrative purposes only. NXP Semiconductors makes no
representation or warranty that such applications will be suitable for the
specified use without further testing or modification.
Customers are responsible for the design and operation of their
applications and products using NXP Semiconductors products, and NXP
Semiconductors accepts no liability for any assistance with applications or
customer product design. It is customer’s sole responsibility to determine
whether the NXP Semiconductors product is suitable and fit for the
customer’s applications and products planned, as well as for the planned
application and use of customer’s third party customer(s). Customers should
provide appropriate design and operating safeguards to minimize the risks
associated with their applications and products.
NXP Semiconductors does not accept any liability related to any default,
damage, costs or problem which is based on any weakness or default
in the customer’s applications or products, or the application or use by
customer’s third party customer(s). Customer is responsible for doing all
necessary testing for the customer’s applications and products using NXP
Semiconductors products in order to avoid a default of the applications
and the products or of the application or use by customer’s third party
customer(s). NXP does not accept any liability in this respect.

Terms and conditions of commercial sale — NXP Semiconductors
products are sold subject to the general terms and conditions of commercial
sale, as published at https://www.nxp.com/profile/terms, unless otherwise
agreed in a valid written individual agreement. In case an individual
agreement is concluded only the terms and conditions of the respective
agreement shall apply. NXP Semiconductors hereby expressly objects to
applying the customer’s general terms and conditions with regard to the
purchase of NXP Semiconductors products by customer.

Export control — This document as well as the item(s) described herein
may be subject to export control regulations. Export might require a prior
authorization from competent authorities.

Suitability for use in non-automotive qualified products — Unless
this document expressly states that this specific NXP Semiconductors
product is automotive qualified, the product is not suitable for automotive
use. It is neither qualified nor tested in accordance with automotive testing
or application requirements. NXP Semiconductors accepts no liability for
inclusion and/or use of non-automotive qualified products in automotive
equipment or applications.
In the event that customer uses the product for design-in and use in
automotive applications to automotive specifications and standards,
customer (a) shall use the product without NXP Semiconductors’ warranty
of the product for such automotive applications, use and specifications, and
(b) whenever customer uses the product for automotive applications beyond
NXP Semiconductors’ specifications such use shall be solely at customer’s
own risk, and (c) customer fully indemnifies NXP Semiconductors for any
liability, damages or failed product claims resulting from customer design and
use of the product for automotive applications beyond NXP Semiconductors’
standard warranty and NXP Semiconductors’ product specifications.

HTML publications — An HTML version, if available, of this document is
provided as a courtesy. Definitive information is contained in the applicable
document in PDF format. If there is a discrepancy between the HTML
document and the PDF document, the PDF document has priority.

Translations — A non-English (translated) version of a document, including
the legal information in that document, is for reference only. The English
version shall prevail in case of any discrepancy between the translated and
English versions.

Security — Customer understands that all NXP products may be subject to
unidentified vulnerabilities or may support established security standards or
specifications with known limitations. Customer is responsible for the design
and operation of its applications and products throughout their lifecycles
to reduce the effect of these vulnerabilities on customer’s applications
and products. Customer’s responsibility also extends to other open and/or
proprietary technologies supported by NXP products for use in customer’s
applications. NXP accepts no liability for any vulnerability. Customer should
regularly check security updates from NXP and follow up appropriately.
Customer shall select products with security features that best meet rules,
regulations, and standards of the intended application and make the
ultimate design decisions regarding its products and is solely responsible
for compliance with all legal, regulatory, and security related requirements
concerning its products, regardless of any information or support that may be
provided by NXP.
NXP has a Product Security Incident Response Team (PSIRT) (reachable
at PSIRT@nxp.com) that manages the investigation, reporting, and solution
release to security vulnerabilities of NXP products.

NXP B.V. — NXP B.V. is not an operating company and it does not distribute
or sell products.

Trademarks
Notice: All referenced brands, product names, service names, and
trademarks are the property of their respective owners.
NXP — wordmark and logo are trademarks of NXP B.V.

AN14259 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Application note Rev. 2.0 — 6 February 2025 Document feedback
14 / 15

mailto:PSIRT@nxp.com
https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_AN14259

NXP Semiconductors AN14259
SDK Example to Write CFPA with Monotonic Counter for MCXN947

Contents
1 Introduction .. 2
1.1 CMPA ...4
1.2 CFPA ..4
1.2.1 Monotonic counter ... 5
1.3 NMPA ...5
1.4 ROM API structure .. 5
1.5 FLASH API driver .. 6
2 Setup and SDK example 6
2.1 Hardware setup ... 6
2.2 Software setup ...7
2.3 SDK example ...7
2.3.1 FFR_GetUUID ... 8
2.3.2 FFR_GetCustomerInfieldData8
2.3.3 FFR_InfieldPageWrite ..9
2.4 Output .. 10
3 References ..11
4 Acronyms ... 11
5 Note about the source code in the

document ..12
6 Revision history ...12

Legal information ...14

Please be aware that important notices concerning this document and the product(s)
described herein, have been included in section 'Legal information'.

© 2025 NXP B.V. All rights reserved.
For more information, please visit: https://www.nxp.com Document feedback

Date of release: 6 February 2025
Document identifier: AN14259

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_AN14259

	1 Introduction
	1.1 CMPA
	1.2 CFPA
	1.2.1 Monotonic counter

	1.3 NMPA
	1.4 ROM API structure
	1.5 FLASH API driver

	2 Setup and SDK example
	2.1 Hardware setup
	2.2 Software setup
	2.3 SDK example
	2.3.1 FFR_GetUUID
	2.3.2 FFR_GetCustomerInfieldData
	2.3.3 FFR_InfieldPageWrite

	2.4 Output

	3 References
	4 Acronyms
	5 Note about the source code in the document
	6 Revision history
	Legal information
	Contents

