

 AN11249
How to implement the ROM I2C
Rev. 1 — 16 August 2012 Application note

Document information
Info Content
Keywords LPC11A02UK; LPC11A04UK; LPC11A11FHN33; LPC11A12FHN33;

LPC11A12FBD48; LPC11A13FHI33; LPC11A14FHN33;
LPC11A14FBD48; LPC11Axx

Abstract This application note details how to use the I2C ROM driver in master
and slave mode.

NXP Semiconductors AN11249
 ROM I2C Usage

AN11249 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2012. All rights reserved.

Application note Rev. 1 — 16 August 2012 2 of 13

Contact information
For more information, please visit: http://www.nxp.com
For sales office addresses, please send an email to: salesaddresses@nxp.com

Revision history
Rev Date Description
1 20120816 Initial version.

http://www.nxp.com/�
mailto:salesaddresses@nxp.com�

NXP Semiconductors AN11249
 ROM I2C Usage

AN11249 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2012. All rights reserved.

Application note Rev. 1 — 16 August 2012 3 of 13

1. Introduction
The LPC11Axx devices have built in I2C driver routines stored in the ROM that facilitate
sending and receiving data on the I2C-bus. The I2C routines support polling and interrupt
driven communication in master and slave mode.

The I2C ROM driver supports 7-bit and 10-bit address in master mode and 7-bit address
in slave mode.

The inclusions of the I2C drivers allow programmers to quickly and easily create projects
to communicate over the I2C-bus.

2. I2C hardware setup
The LPC11Axx devices have one I2C block that can be outputted to different IO pins
depending on the pin-mux configuration. The primary I2C port pins, PIO0_2 and PIO0_3,
are true open-drain connections. For other I2C ports, the pin functionality has to be
changed to open-drain mode.

The PIO0_2 and PIO0_3 do not have optional internal pull-ups, unlike the other I2C pins.
If the PIO0_2 and PIO0_3 are utilized, an external pull-up resistor must be used. If the
other I2C pins are used and the internal pull-ups are enabled, external pull-ups are not
required. If the internal pull-ups are used, the I2C can achieve a bit rate of 100kb/s with a
20pF load. If a higher speed is desired, then external pull-ups are required.

NOTE - On the WLCSP package, the boot loader configures the open-drain pins
(PIO0_2 and PIO0_3) for the Serial Wire Debug (SWD) function.

The steps to initialize I2C are:
1. Enable the peripheral clock to the I2C, IOCON, and GPIO block
2. Setup I2C pins to open-drain operation

a. Enable internal pull-ups if desired
3. Setup I2C clock frequency

3. I2C ROM driver setup
The I2C-bus requires a minimum of one master and one slave to operate properly. In
either master or slave mode, the mode of communication can either be polling or
interrupt based. The I2C ROM driver has a provision to be either a master or slave, as
well as being polling driven or interrupt driven.

To use the I2C ROM driver, the application code must initialize parameters required to
access the routines in the ROM.

The I2C ROM driver table entry must be defined. This is the point of entry for the I2C
ROM drivers. The I2C ROM driver is located at 0x1FFF1FF8.
1 #define ROM_DRIVERS_PTR ((ROM *)(*((unsigned int *)0x1FFF1FF8)))

The I2C ROM driver utilizes handle pointers for return parameters. It is necessary to
define a new type as the I2C handler.
2 typedef void* I2C_HANDLE_T;

NXP Semiconductors AN11249
 ROM I2C Usage

AN11249 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2012. All rights reserved.

Application note Rev. 1 — 16 August 2012 4 of 13

For interrupt driven code, callback functions are utilized. It is only necessary to define this
type if interrupts are used.
3 typedef void (*I2C_CALLBK_T) (uint32_t err_code, uint32_t n) ;

The I2C ROM driver function calls return an error code. A new Type must be defined to
address the different error codes.
4 typedef enum {
5 /**\b 0x00000000*/ LPC_OK=0, /**< enum value returned on Success */
6 ERROR, /**< enum value returned on general failure */
7 ERR_I2C_BASE = 0x00060000,
8 /*0x00060001*/ ERR_I2C_NAK=ERR_I2C_BASE+1,
9 /*0x00060002*/ ERR_I2C_BUFFER_OVERFLOW,
10 /*0x00060003*/ ERR_I2C_BYTE_COUNT_ERR,
11 /*0x00060004*/ ERR_I2C_LOSS_OF_ARBRITRATION,
12 /*0x00060005*/ ERR_I2C_SLAVE_NOT_ADDRESSED,
13 /*0x00060006*/ ERR_I2C_LOSS_OF_ARBRITRATION_NAK_BIT,
14 /*0x00060007*/ ERR_I2C_GENERAL_FAILURE,
15 /*0x00060008*/ ERR_I2C_REGS_SET_TO_DEFAULT
16 } ErrorCode_t;

The input parameters to the I2C ROM drive have a strict structure that needs to be
adhered to. Both the master and slave mode routines utilize these parameters during I2C
communication.
17 typedef struct i2c_A { //parms passed to ROM function
18 uint32_t num_bytes_send ;
19 uint32_t num_bytes_rec ;
20 uint8_t *buffer_ptr_send ;
21 uint8_t *buffer_ptr_rec ;
22 I2C_CALLBK_T func_pt; // callback function
23 uint8_t stop_flag;
24 uint8_t dummy[3] ; // to make word boundry
25 } I2C_PARAM ;

The i2c_get_status() function returns the current status of the I2C-bus. A typedef enum
can be used to indicate the different modes of the I2C.
26 typedef enum I2C_mode {
27 IDLE,
28 MASTER_SEND,
29 MASTER_RECEIVE,
30 SLAVE_SEND,
31 SLAVE_RECEIVE } I2C_MODE_T;

The results of an I2C communication are stored in a structure. The structure contains the
sent and received bytes.
32 typedef struct i2c_R { // RESULTs struct--results are here when returned
33 uint32_t n_bytes_sent ;
34 uint32_t n_bytes_recd ;
35 } I2C_RESULT ;

NXP Semiconductors AN11249
 ROM I2C Usage

AN11249 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2012. All rights reserved.

Application note Rev. 1 — 16 August 2012 5 of 13

The I2C ROM driver API is set up as a structure.
36 typedef struct I2CD_API { // index of all the i2c driver functions
37 void (*i2c_isr_handler) (I2C_HANDLE_T* h_i2c) ; // ISR interrupt service

request
38 // MASTER functions ***
39 ErrorCode_t (*i2c_master_transmit_poll)(I2C_HANDLE_T* h_i2c, I2C_PARAM* ptp,
40 I2C_RESULT* ptr) ;
41 ErrorCode_t (*i2c_master_receive_poll)(I2C_HANDLE_T* h_i2c, I2C_PARAM* ptp,
42 I2C_RESULT* ptr) ;
43 ErrorCode_t (*i2c_master_tx_rx_poll)(I2C_HANDLE_T* h_i2c, I2C_PARAM* ptp,
44 I2C_RESULT* ptr) ;
45 ErrorCode_t (*i2c_master_transmit_intr)(I2C_HANDLE_T* h_i2c, I2C_PARAM* ptp,

I2C_RESULT* ptr) ;
46 ErrorCode_t (*i2c_master_receive_intr)(I2C_HANDLE_T* h_i2c, I2C_PARAM* ptp,

I2C_RESULT* ptr) ;
47 ErrorCode_t (*i2c_master_tx_rx_intr)(I2C_HANDLE_T* h_i2c, I2C_PARAM* ptp,

I2C_RESULT* ptr) ;
48 // SLAVE functions ***
49 ErrorCode_t (*i2c_slave_receive_poll)(I2C_HANDLE_T* h_i2c, I2C_PARAM* ptp,

I2C_RESULT* ptr) ;
50 ErrorCode_t (*i2c_slave_transmit_poll)(I2C_HANDLE_T* h_i2c, I2C_PARAM* ptp,

I2C_RESULT* ptr) ;
51 ErrorCode_t (*i2c_slave_receive_intr)(I2C_HANDLE_T* h_i2c, I2C_PARAM* ptp,

I2C_RESULT* ptr) ;
52 ErrorCode_t (*i2c_slave_transmit_intr)(I2C_HANDLE_T* h_i2c, I2C_PARAM* ptp,

I2C_RESULT* ptr) ;
53 ErrorCode_t (*i2c_set_slave_addr)(I2C_HANDLE_T* h_i2c,
54 uint32_t slave_addr_0_3, uint32_t slave_mask_0_3);
55 // OTHER functions
56 uint32_t (*i2c_get_mem_size)(void) ; //"ramsize_in_bytes" memory needed by I2C

drivers
57 I2C_HANDLE_T* (*i2c_setup)(uint32_t i2c_base_addr, uint32_t *start_of_ram) ;
58 ErrorCode_t (*i2c_set_bitrate)(I2C_HANDLE_T* h_i2c, uint32_t P_clk_in_hz,
59 uint32_t bitrate_in_bps) ;
60 uint32_t (*i2c_get_firmware_version)() ;
61 I2C_MODE_T (*i2c_get_status)(I2C_HANDLE_T* h_i2c) ;
62 } I2CD_API_T ;

3.1 I2C ROM driver initialization
The I2C ROM drivers require specific parameters passed to it to operate properly.
Variables, buffers, functions, etc. must be initialized by the user code before accessing
the I2C ROM drivers.

The parameters used by the I2C ROM are first defined.
63 const I2CD_API_T* pI2cApi ; //define pointer to type API function addr table
64 I2C_PARAM* ptop; // define pointer to param of type 1 structure
65 I2C_PARAM s1; // s1 is a structure of type I2C_PARAM
66 I2C_RESULT* ptor; // define pointer to return values of structure
67 I2C_RESULT s2; // s2 is a structure of type I2C_result
68 I2C_HANDLE_T *i2c_handle;
69 ErrorCode_t error_code;

NXP Semiconductors AN11249
 ROM I2C Usage

AN11249 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2012. All rights reserved.

Application note Rev. 1 — 16 August 2012 6 of 13

70 #define RAMBLOCK_H 50 // number of words of memory to reserve for I2C
71 uint32_t I2C_Handle[RAMBLOCK_H]
72 uint8_t I2C_TxBuffer[MAX_BUFF_SIZE]; // ransmit buffer
73 uint8_t I2C_RxBuffer[MAX_BUFF_SIZE]; // receive buffer

The entry point into the I2C ROM driver is set up.
74 pI2cApi = ROM_DRIVERS_PTR->pI2CD;

The amount of SRAM bytes needed by the I2C driver is determined.
75 size_in_bytes = pI2cApi->i2c_get_mem_size();

The SRAM can now be initialized to hold the I2C handle.
76 Uint32_t I2C_Handle[size_in_bytes];

Optionally, the I2C_Handle array can be initialized first with a known value and then
check to ensure enough SRAM space is allocated.
77 if (RAMBLOCK_H < (size_in_bytes /4)) {
78 while (1) ; // here forever if not enough ram for handle
79 }

A handle is initialized to the allocated SRAM area for the I2C driver.
80 i2c_handle = pI2cApi->i2c_setup(LPC_I2C_BASE, (uint32_t *)&I2C_Handle[0]);

The I2C clock frequency is setup. The function call expects the peripheral clock in Hz
and requested clock frequency in Hz. For the purpose of this application note, the
peripheral clock is set to 48 MHz and the requested clock frequency is 100 kHz.
81 error_code = pI2cApi->i2c_set_bitrate((I2C_HANDLE_T*)i2c_handle, 48000000,

100000);

The I2C peripheral is initialized. This includes enabling the clock to the I2C, IOCON, and
GPIO domain. The I2C functionality on the GPIO pins are enable, open drain mode is
selected, and pull-ups can be enabled if desired.
82 LPC_SYSCON->PRESETCTRL |= (0x1<<1);
83 LPC_SYSCON->SYSAHBCLKCTRL |= ((1 << 16) | (1 << 6) | (1<<5));
84 LPC_IOCON->PIO0_2 &= ~0x3F; /* I2C I/O config */
85 LPC_IOCON->PIO0_2 |= 0x01; /* I2C SCL */
86 LPC_IOCON->PIO0_3 &= ~0x3F;
87 LPC_IOCON->PIO0_3 |= 0x01; /* I2C SDA */

The PARM and RESULTS structure are assigned addresses.
88 ptop = &s1; // addr of PARAM struct, s1 is assigned to pointer ptop
89 ptor = &s2; // addr of RESULT struct, s2 is assigned to pointer ptor

NXP Semiconductors AN11249
 ROM I2C Usage

AN11249 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2012. All rights reserved.

Application note Rev. 1 — 16 August 2012 7 of 13

4. I2C ROM driver setup for master mode

4.1 Master mode send only using polling
The polling method is usually used during the design/debug phase of a project. This
allows quick debugging of the I2C communication.

The transmit buffer is first loaded. For this example, the master is the LPC11Axx and the
slave is a SE95 temperature sensor with an address of 0x48. The buffer is set up to send
the configure command.
90 I2C_TxBuffer[0] = 0x90; //slave addr in first byte of TX buffer
91 I2C_TxBuffer[1] = 0x01; //Config command
92 I2C_TxBuffer[2] = 0x00; //Config data

The first byte of the transmit buffer is always the slave address with the R/W bit set to
zero. For a 10-bit slave address, the first byte would contain the slave addresses’ most
significant two bit and the R/W bit. The second byte of the transmit buffer would contain
the remaining 8-bit slave address.

The number of bytes to transmit and receive are specified. In this case, a total of three
bytes are to be transmitted. The number of received bytes is zero. Alternatively, the
num_bytes_rec can be omitted.
93 ptop->num_bytes_send =3;
94 ptop->num_bytes_rec = 0;

The transmit and receive buffer need to be referenced for the I2C ROM driver function
call. Since this is a transmit only, the receive buffer is not referenced. Alternatively, the
receive buffer pointer can be omitted.
95 ptop->buffer_ptr_send = (uint8_t *)&I2C_TxBuffer[0];
96 ptop->buffer_ptr_rec = NULL;

The STOP condition is to be sent at the end.
97 ptop->stop_flag = 1;

The communication is initiated by making a call to the i2c_master_transmit_poll(). When
done, the I2C ROM driver will return an error code. A “0” indicates no error was detected.
98 error_code = pI2cApi->i2c_master_transmit_poll((I2C_HANDLE_T*)i2c_handle,
99 (I2C_PARAM*)ptop, (I2C_RESULT*)ptor);

4.2 Master mode send and receive using polling
If a receive is expected after a transmit, then the i2c_master_tx_rx_poll() can be used.
Alternatively, an i2c_master_transmit_poll() can be initiated followed by an
i2c_master_receive_poll().

The transmit buffer is first loaded. The buffer is set to send a request for the SE95 ID
code. The SE95 has an address of 0x48.
100 I2C_TxBuffer[0] = 0x90; //slave addr in first byte of TX buffer
101 I2C_TxBuffer[1] = 0x05; //Request SE95 ID

NXP Semiconductors AN11249
 ROM I2C Usage

AN11249 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2012. All rights reserved.

Application note Rev. 1 — 16 August 2012 8 of 13

The R/W bit is set and loaded into the first byte of the receive buffer.
102 I2C_RxBuffer[0] = 0x91; //SET RW bit

The number of bytes to be sent and received are loaded.
103 ptop->num_bytes_send =2;
104 ptop->num_bytes_rec = 1;

The transmit and receive buffers need to be referenced for the I2C ROM driver function
call.
105 ptop->buffer_ptr_send = (uint8_t *)&I2C_TxBuffer[0];
106 ptop->buffer_ptr_rec = (uint8_t *)&I2C_RxBuffer[0];

The STOP condition is to be sent at the end
107 ptop->stop_flag = 1;

Initiate the read/write command.
108 error_code = pI2cApi->i2c_master_tx_rx_poll((I2C_HANDLE_T*)i2c_handle,
109 (I2C_PARAM*)ptop, (I2C_RESULT*)ptor);

4.3 Master mode using interrupt
The setup for the interrupt usage for the I2C ROM driver is similar to the polling function.
The difference is the inclusion of a callback function. The callback will be executed once
an I2C transaction is done.

To set up the I2C ROM driver for interrupt usage, setup the parameter as in the polling
function. Two additional parameters have to be defined; one is the interrupt handler and
the other is the callback function.

The I2C interrupt handler is declared. Inside the I2C interrupt, the I2C ROM driver ISR is
called.
110 void I2C_IRQHandler(void){ // Application Program enables interrupts and

calls ISR
111 pI2cApi->i2c_isr_handler((I2C_HANDLE_T*) i2c_handle);
112 }

The callback function is used by the I2C ROM driver to determine what to do when data
is sent or received.
113 void callback_func(void)

Declare the call back function. The callback function is called once the I2C ROM driver is
finished with an I2C transaction.
114 ptop->func_pt = (I2C_CALLBK_T)callback_func;

Initiate the write operation. This can be either the i2c_master_transmit_intr(),
i2c_master_receive_intr(), or i2c_master_tx_rx_intr();

NXP Semiconductors AN11249
 ROM I2C Usage

AN11249 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2012. All rights reserved.

Application note Rev. 1 — 16 August 2012 9 of 13

5. I2C setup in slave mode
The I2C ROM driver supports the I2C slave in either polling or interrupt driven. Unlike the
master mode, the I2C ROM driver supports 7-bit addressing only. The i2c_set_slave()
function allows four slave addresses to be defined. The four slave addresses are stored
in a 32-bit variable. The slave address 0 is the least significant byte and the slave
address byte 3 is the most significant byte. The slave address mask is ordered in the
same way.

31 25 24 23 17 16 15 9 8 7 1 0
Slave

Address 3
GC Slave

Address 2
GC Slave

Address 1
GC Slave

Address 0
GC

To set up an I2C slave address, call the i2c_set_slave() function. For this example, the
slave address is set to 0x48 and is loaded for slave address 0. The mask is not set.
115 pI2cApi->i2c_set_slave_addr((I2C_HANDLE_T*)i2c_handle, 0x00000090, 0x00000000) ;

Setting the mask allows the slave mode to respond to a series of slave address. For
instance, if the slave address 0 is set to 0xB0 and the mask is set to 0xE, then the I2C
ROM driver will respond to commands for address 0xB0, 0xB2, 0xB4, 0xB6, 0xB8, 0xBA,
0xBC, and 0xBE.

General call is supported in the I2C ROM driver. To enable this, set the least significant
bit of the slave address. When general call is enabled, the device will monitor the
address of 0x00.

5.1 I2C receive polling
The polling technique is useful during the development and debugging phase, but is
inefficient for practical use. The polling routines should be used during the early stage of
development to ensure the I2C-bus is operating correctly.

Set up the receive buffer. The receive buffer should be equal to or more than the total of
bytes expected to received.
116 ptop->num_bytes_rec = MAX_BUF_SIZE; /* max buffer size */

Setup the receive buffer pointer.
117 ptop->buffer_ptr_rec = (uint8_t *)&I2C_RxBuffer[0];

Initiate a read.
118 error_code = pI2cApi->i2c_slave_receive_poll((I2C_HANDLE_T*)i2c_handle,
119 (I2C_PARAM*)ptop, (I2C_RESULT*)ptor);

5.2 I2C write polling
The slave write is usually called after a slave read. A slave read would determine if the
R/W bit is set. If the bit is set, then a write would be initiated.

For this example, the LPC11Axx is emulating an SE95 temperature sensor. Assuming a
command to return the SE95 ID code is received, the transmit buffer will be loaded with
the SE95 ID, 0xA1.
120 I2C_TxBuffer[0] = 0xA1;

NXP Semiconductors AN11249
 ROM I2C Usage

AN11249 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2012. All rights reserved.

Application note Rev. 1 — 16 August 2012 10 of 13

Declare number of bytes to be transmitted.
121 ptop->num_bytes_send =1;

Declare the transmit buffer pointer.
122 ptop->buffer_ptr_send = (uint8_t *)&I2C_TxBuffer[0];

Initiate a write.
123 error_code = pI2cApi->i2c_slave_transmit_poll((I2C_HANDLE_T*)i2c_handle,
124 (I2C_PARAM*)ptop, (I2C_RESULT*)ptor);

5.3 I2C receive interrupt initialization
To enable an interrupt for the I2C ROM driver, the I2C interrupt must first be declared.
Inside the I2C interrupt, the I2C ROM driver ISR handler must be declared. Callback
functions are used in the I2C ROM driver ISR and should be defined.

Declare interrupt handler
125 void I2C_IRQHandler(void){ // Application Program enables interrupts and

calls ISR
126 pI2cApi->i2c_isr_handler((I2C_HANDLE_T*) i2c_handle);
127 }

Define callback functions
128 void slave_rx_callback (void);
129 void slave_tx_callback (void);

Enable I2C interrupt
130 NVIC_EnableIRQ(I2C_IRQn);

5.3.1.1 I2C receive/transmit using interrupt

The receive function is usually the first function call to make. The slave does not act until
there is a command from the master. When a command is received from the master, the
data is stored in the receive buffer. The I2C ROM driver then calls the callback function
to determine what to do with the data.

The setup for the interrupt is the same as the polling with the addition of the callback
function being set.
131 ptop->func_pt = (I2C_CALLBK_T)slave_rx_callback;

Initiate slave read mode
132 error_code = pI2cApi->i2c_slave_receive_intr((I2C_HANDLE_T*)i2c_handle,
133 (I2C_PARAM*)ptop, (I2C_RESULT*)ptor);

Initiate slave write mode
134 error_code = pI2cApi->i2c_slave_transmit_intr((I2C_HANDLE_T*)i2c_handle,
135 (I2C_PARAM*)ptop, (I2C_RESULT*)ptor);

NXP Semiconductors AN11249
 ROM I2C Usage

AN11249 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2012. All rights reserved.

Application note Rev. 1 — 16 August 2012 11 of 13

6. Conclusion
The I2C ROM driver allows a quick and easy way to communicate to external peripherals
using the I2C-bus. The I2C ROM driver removes the complexity associated with
initializing the I2C-bus and allows the system designer more time to work on the system.

Example code for the I2C ROM driver can be downloaded from http://www.lpcware.com.
The example code demonstrates the usage of the I2C ROM driver in the master and
slave mode. In the master mode, the LPC11A14 is used to communicate with a SE95
temperature sensor. In slave mode, the LPC11A14 emulates an SE95 temperature
sensor. All examples can be set to polling or interrupt driven.

The example code can be used in the Keil MDK, IAR, and LPCXpresso IDE.

http://www.nxp.com/redirect/lpcware.com�

property
nam

e.

Error! U
nknow

n docum
ent property nam

e.
E

rror! U
nknow

n docum
ent property

NXP Semiconductors AN11249
 ROM I2C Usage

AN11249 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2012. All rights reserved.

Application note Rev. 1 — 16 August 2012 12 of 13

7. Legal information

7.1 Definitions
Draft — The document is a draft version only. The content is still under
internal review and subject to formal approval, which may result in
modifications or additions. NXP Semiconductors does not give any
representations or warranties as to the accuracy or completeness of
information included herein and shall have no liability for the consequences
of use of such information.

7.2 Disclaimers
Limited warranty and liability — Information in this document is believed to
be accurate and reliable. However, NXP Semiconductors does not give any
representations or warranties, expressed or implied, as to the accuracy or
completeness of such information and shall have no liability for the
consequences of use of such information. NXP Semiconductors takes no
responsibility for the content in this document if provided by an information
source outside of NXP Semiconductors.

In no event shall NXP Semiconductors be liable for any indirect, incidental,
punitive, special or consequential damages (including - without limitation -
lost profits, lost savings, business interruption, costs related to the removal
or replacement of any products or rework charges) whether or not such
damages are based on tort (including negligence), warranty, breach of
contract or any other legal theory.

Notwithstanding any damages that customer might incur for any reason
whatsoever, NXP Semiconductors’ aggregate and cumulative liability
towards customer for the products described herein shall be limited in
accordance with the Terms and conditions of commercial sale of NXP
Semiconductors.

Right to make changes — NXP Semiconductors reserves the right to make
changes to information published in this document, including without
limitation specifications and product descriptions, at any time and without
notice. This document supersedes and replaces all information supplied prior
to the publication hereof.

Suitability for use — NXP Semiconductors products are not designed,
authorized or warranted to be suitable for use in life support, life-critical or
safety-critical systems or equipment, nor in applications where failure or
malfunction of an NXP Semiconductors product can reasonably be expected
to result in personal injury, death or severe property or environmental
damage. NXP Semiconductors and its suppliers accept no liability for
inclusion and/or use of NXP Semiconductors products in such equipment or
applications and therefore such inclusion and/or use is at the customer’s
own risk.

Applications — Applications that are described herein for any of these
products are for illustrative purposes only. NXP Semiconductors makes no
representation or warranty that such applications will be suitable for the
specified use without further testing or modification.

Customers are responsible for the design and operation of their applications
and products using NXP Semiconductors products, and NXP

Semiconductors accepts no liability for any assistance with applications or
customer product design. It is customer’s sole responsibility to determine
whether the NXP Semiconductors product is suitable and fit for the
customer’s applications and products planned, as well as for the planned
application and use of customer’s third party customer(s). Customers should
provide appropriate design and operating safeguards to minimize the risks
associated with their applications and products.

NXP Semiconductors does not accept any liability related to any default,
damage, costs or problem which is based on any weakness or default in the
customer’s applications or products, or the application or use by customer’s
third party customer(s). Customer is responsible for doing all necessary
testing for the customer’s applications and products using NXP
Semiconductors products in order to avoid a default of the applications and
the products or of the application or use by customer’s third party
customer(s). NXP does not accept any liability in this respect.

Export control — This document as well as the item(s) described herein
may be subject to export control regulations. Export might require a prior
authorization from competent authorities.

Evaluation products — This product is provided on an “as is” and “with all
faults” basis for evaluation purposes only. NXP Semiconductors, its affiliates
and their suppliers expressly disclaim all warranties, whether express,
implied or statutory, including but not limited to the implied warranties of non-
infringement, merchantability and fitness for a particular purpose. The entire
risk as to the quality, or arising out of the use or performance, of this product
remains with customer.

In no event shall NXP Semiconductors, its affiliates or their suppliers be
liable to customer for any special, indirect, consequential, punitive or
incidental damages (including without limitation damages for loss of
business, business interruption, loss of use, loss of data or information, and
the like) arising out the use of or inability to use the product, whether or not
based on tort (including negligence), strict liability, breach of contract, breach
of warranty or any other theory, even if advised of the possibility of such
damages.

Notwithstanding any damages that customer might incur for any reason
whatsoever (including without limitation, all damages referenced above and
all direct or general damages), the entire liability of NXP Semiconductors, its
affiliates and their suppliers and customer’s exclusive remedy for all of the
foregoing shall be limited to actual damages incurred by customer based on
reasonable reliance up to the greater of the amount actually paid by
customer for the product or five dollars (US$5.00). The foregoing limitations,
exclusions and disclaimers shall apply to the maximum extent permitted by
applicable law, even if any remedy fails of its essential purpose.

7.3 Trademarks
Notice: All referenced brands, product names, service names and
trademarks are property of their respective owners.

NXP Semiconductors AN11249
 ROM I2C Usage

 Please be aware that important notices concerning this document and the product(s)
described herein, have been included in the section 'Legal information'.

© NXP B.V. 2012. All rights reserved.

For more information, visit: http://www.nxp.com
For sales office addresses, please send an email to: salesaddresses@nxp.com

Date of release: 16 August 2012
Document identifier: AN11249

8. Contents

1. Introduction ... 3
2. I2C hardware setup ... 3
3. I2C ROM driver setup .. 3
3.1 I2C ROM driver initialization 5
4. I2C ROM driver setup for master mode 7
4.1 Master mode send only using polling 7
4.2 Master mode send and receive using polling 7
4.3 Master mode using interrupt 8
5. I2C setup in slave mode 9
5.1 I2C receive polling .. 9
5.2 I2C write polling .. 9
5.3 I2C receive interrupt initialization 10
5.3.1.1 I2C receive/transmit using interrupt 10
6. Conclusion ... 11
7. Legal information .. 12
7.1 Definitions .. 12
7.2 Disclaimers ... 12
7.3 Trademarks .. 12
8. Contents ... 13

	1. Introduction
	2. I2C hardware setup
	3. I2C ROM driver setup
	3.1 I2C ROM driver initialization

	4. I2C ROM driver setup for master mode
	4.1 Master mode send only using polling
	4.2 Master mode send and receive using polling
	4.3 Master mode using interrupt

	5. I2C setup in slave mode
	5.1 I2C receive polling
	5.2 I2C write polling
	I2C receive interrupt initialization
	5.3.1.1 I2C receive/transmit using interrupt

	6. Conclusion
	7. Legal information
	7.1 Definitions
	7.2 Disclaimers
	7.3 Trademarks

