Order this document by AN1041/D

AN1041

MOUNTING PROCEDURES FOR **VERY HIGH POWER RF TRANSISTORS**

Prepared by: Helge O. Granberg **RF Engineering** Advanced Products Group

SEMICONDUCTOR

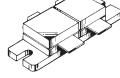
APPLICATION NOTE

)TOROLA

RF power semiconductors such as MRF153. MRF154. MRF155, MRF156 and MRF430 are housed in Case 368-01, whereas MRF141G, MRF151G, MRF175G and MRF176G use Case 375-01 (both shown below). All of these are high power devices (200 – 600 W), which results in an abnormally large amount of heat dissipated within a small physical area. For such high power transistors, special attention must be paid to the heat sink material as well as the finish and flatness of the mounting surface. The material should have at least a thermal conductivity equal to or better than copper and for the mounting surface flatness ± 0.0005" can be considered sufficient. The heat sink can be made of material with lower thermal conductivity such as aluminum, but in that case a copper heat spreader should be used. The heat spreader should have a minimum thickness of 0.25" for case 375-01 and 0.375" for 368-01 and should extend at least 0.5" to 1.0" beyond the flange edges, depending on the device type and the amount of dissipation involved. For die temperature calculations of devices in case 368-01, the Δ temperature between the mounting screw areas and the bottom center of the flange is approximately 5°C and 10°C under normal operating conditions and dissipations of 150 W and 300 W respectively.

Although the data sheets contain information on the subject above as well as the mounting procedures of these devices, very few designers actually follow them. The maximum recommended torgue on the #4 size mounting screws is 4 - 5 in.-lbs. along with split lock- and flat-washers, of which the latter should be in immediate contact with the flange's top surface. Experiments have shown that merely compressing the split lock washer to its full flatness produces enough torgue for sufficient pressure against the heat sink. The split lock washers are available with various spring tensions. Bell type compression washers would be an even better choice if found with 5 in.-lbs. or lower torque specifications.

Calculations indicate that the length of the case 368-01 copper flange increases in excess of two thousands of an inch with a temperature change of 75°C. In such case, if the mounting screws are torqued too tight, the flange cannot expand in length but will bend upwards in the mid section, cracking the Beryllium Oxide insulators as well as the dice.


It must also be noted that the thickness of the flance increases with temperature. For the excursion mentioned above, the amount is around 0.25 mils, which results in further tightening of the mounting screws, thus increasing the effective torque from the initial value. However the amount of increase is difficult to measure and depends on the exact type of mounting hardware used. The copper-tungsten flange of case 375-01 has a much lower expansion coefficient than copper, but if mounted on a copper or aluminum heat sink, it can be similarly bent during a cooling cycle as the heat sink material contracts.

Deformation can also occur during the initial mounting of the device if an excessive amount of thermal compound is applied along with sufficient screw torque. The thermal compound will squeeze out of the mounting hole areas, but will remain under the center of the flange, deforming it in a similar manner. Depending on the amount of thermal compound and its type, deflections of 2 – 3 mils have been measured between the flange center and corners created by such conditions. The same can happen with all flange mounted RF devices, but with thicker Beryllium Oxide insulators and lower dissipation levels the problem is less severe.

The maximum operating junction temperature and the total dissipation are usually given in the data sheets. It should be able for the device to be operated within these limits if the case temperature can be kept at 25°C or the derating factor is taken into account. The 150°C storage temperature indicated implies that the device can be operated at that case temperature, which is true but at a much derated dissipation rating. However good engineering practices would limit the case temperature to $70 - 80^{\circ}$ C and the die temperature to not higher than twice that.

CASE 368-01

CASE 375-01

For More Information On This Produc Go to: www.freescale.com

Freescale Semiconductor, Inc.

Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters can and do vary in different applications. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. Motorola does not convey any license under its patent rights nor the rights of others. Motorola products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Motorola product could create a situation where personal injury or death may occur. Should Buyer purchase or use Motorola products for any such unintended or unauthorized application, Buyer shall indemnify and hold Motorola and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Motorola was negligent regarding the design or manufacture of the part. Motorola and (A) are registered trademarks of Motorola, Inc. is an Equal Opportunity/Affirmative Action Employer.

Literature Distribution Centers:

USA: Motorola Literature Distribution; P.O. Box 20912; Phoenix, Arizona 85036.

EUROPE: Motorola Ltd.; European Literature Centre; 88 Tanners Drive, Blakelands, Milton Keynes, MK14 5BP, England.

JAPAN: Nippon Motorola Ltd.; 4-32-1, Nishi-Gotanda, Shinagawa-ku, Tokyo 141, Japan.

ASIA PACIFIC: Motorola Semiconductors H.K. Ltd.; Silicon Harbour Center, No. 2 Dai King Street, Tai Po Industrial Estate, Tai Po, N.T., Hong Kong.

MOTOROLA For More Information On This Product, Go to: www.freescale.com PRODUCT TRANSFERRED TO M/A-CO