


Battery Management System

Last Updated: Dec 30, 2021

NXP's scalable battery management system (BMS) can be used in industrial or automotive applications. The BMS offers high measurement accuracy after soldering and aging and ISO 26262 support up to ASIL D functional safety capability.

The solution is a robust and safe, BOM-optimized option that combines BMS, junction box monitoring solutions with high-performance processors and integrated analog front end solutions.

Battery management system Block Diagram

Battery Sensor	MM912_637: Battery Sensor with LIN for 12 V Lead-acid Batteries MM9Z1_638: Battery Sensor with CAN and LIN			
Isolated Communication	MC33664: Isolated Network High-Speed Transceiver			
Battery Cell Controllers	MC33771C: 14-Channel Li-ion Battery Cell Controller IC MC33771B: 14-Channel Li-ion Battery Cell Controller IC MC33772C: 6-Channel Li-ion Battery Cell Controller IC MC33772B: 6-Channel Li-ion Battery Cell Controller IC			
Battery Cell Controllers	MC33771C: 14-Channel Li-ion Battery Cell Controller IC MC33771B: 14-Channel Li-ion Battery Cell Controller IC MC33772C: 6-Channel Li-ion Battery Cell Controller IC MC33772B: 6-Channel Li-ion Battery Cell Controller IC			
Microcontrollers (MCUs)	S32K3 Microcontrollers for General Purpose NXP GreenBox Vehicle Electrification Development Platform S32K1 Microcontrollers for General Purpose MPC5775B and MPC5775E Microcontrollers for Battery Management Systems (BMS) and Inverter Applications MPC5777C: Ultra-Reliable MPC5777C MCU for Automotive and Industrial Engine Management MPC574xP: Ultra-Reliable MPC574xP MCU for Automotive & Industrial Safety Applications MPC560xB: Ultra-Reliable MPC56xB MCU for Automotive and Industrial General Purpose			
Motor Drivers	MC33937: 3-Phase Field Effect Transistor Pre-driver GD3000: 3-Phase Brushless Motor Pre-Driver GD3100: Advanced Single-Channel Gate Driver for Insulated Gate Bipolar Transistors and Silicon Carbide MOSFETs GD3160: Advanced Single-Channel High-Voltage Isolated Automotive Gate Driver for SiC MOSFETs/IGBTs HB2000: SPI Programmable 10 A H-Bridge Brushed DC Motor Driver HB2001: SPI Programmable 10 A H-Bridge Brushed DC Motor Driver			
In-Vehicle Networking & Gateway	Gateway: Gateway CAN Transceivers: CAN Transceivers			
HEV/EV Application	Hybrid Electric Vehicle (HEV) Applications: Hybrid Electric Vehicle (HEV) Applications			
Safety SBC	 FS6500: Grade 1 and Grade 0 Safety Power System Basis Chip with CAN Flexible Data Transceiver FS4500: Grade 1 and Grade 0 Safety Power System Basis Chip with CAN Flexible Data Transceiver FS26: Safety System Basis Chip (SBC) with Low Power Fit for ASIL D 			
Battery Monitor Sensor	 FXPS7xx0D4: Digital Absolute Pressure Sensor (20 to 550 KPa) Analog Absolute Pressure Sensors, FXPS7 Family, 20 to 550 kPa NBP8-9x: Highly Integrated Battery Pressure Monitor Sensor 			
NFC	NCx3320: Automotive-Grade NFC Frontend IC NCx3310: NFC Forum-Compliant Tag IC with I ² C for Automotive			

View our complete solution for Battery Management System.

Note: The information on this document is subject to change without notice.

NXP and the NXP logo are trader protected by any or all of patents	marks of NXP B.V. All other prod, copyrights, designs and trade	duct or service names are the secrets. All rights reserved. ©	property of their respective own 2021 NXP B.V.	ners. The related technology may be