LLDPUG

Layerscape Linux Distribution POC User Guide
Rev. L6.1.1_1.0.0_23.08 — 4 August 2023

User guide

Document Information

Information Content

Keywords LLDPUG, Layerscape, LDP, LS1012ARDB, FRWY-LS1012A, TWR-LS1021A, LS1028ARDB,

LS1043ARDB, LS1046ARDB, FRWY-LS1046A, LS1088ARDB, LS2088ARDB, LX2160ARDB
Rev. 2, LX2162AQDS

Abstract Layerscape Linux Distribution POC (LDP) is an industry-standard Linux enablement software for

NXP's ARM core based Layerscape processors.

NXP Semiconductors LLDPUG

Layerscape Linux Distribution POC User Guide

1 Layerscape LDP overview

Layerscape Linux Distribution POC (LDP) is a Linux enablement software for NXP's ARM core based
Layerscape processors. It provides the necessary drivers, tools, and libraries for enabling the features of the
Layerscape processors. The Layerscape LDP build uses a Yocto-based meta layer to generate a Proof of
Concept (POC) image.

Layerscape LDP provides fully operational bootloader, a Linux kernel, and board-specific modules that are
ready for usage together in a flexible configuration, for specific hardware reference platforms. The Layerscape
LDP has been tested and qualified at NXP. The Layerscape LDP is a complete Linux system with the following
major components:

* NXP firmware components including:

— Trusted Firmware-A (TF-A), a reference implementation of secure world software for Armv7-A and Armv8-A
— NXP peripheral firmware components for DPAA1, DPAA2, and PPFE

NXP bootloaders. Two are offered:

— U-Boot, based on denx.de plus patches

NXP Linux kernel, based on kernel.org upstream plus patches

NXP added user space components

* Linux distro standard user space file set (userland), including compilers and cross compiler

The benefit of using NXP Layerscape LDP userland is the easy availability of thousands of standard Linux
user space packages. The experience of using the Layerscape LDP is similar to using Ubuntu, but the kernel,
firmware, and some special NXP packages are managed separately.

Note: To brief how to help modify/update individual Layerscape LDP components, such as U-Boot, Linux
kernel, DPL, DPC, on a reference design board when booting the board from a specific boot source, such as
QSPI or SD, see Section 4.7 at NXP community.

Accessing Layerscape LDP

Layerscape LDP is distributed through Git. To build the yocto component, you must clone the manifest and
install Layerscape LDP onto a mass storage device as an integration which is ready for usage on an NXP
reference or evaluation board. You can build the NXP components either from the source using a script called
bitbake or install from binaries of NXP components using flex-installer.

For more details, see the links given below:

* Building NXP components: Section 4.
* Yocto project: Yocto projects.
* NXP Linux Yocto project: NXP Linux Yocto Project BSP for Desktop PoC.

Build host package
Yocto build requires installation of essential host packages on your host build.

To buid the host, use the following command:

$ sudo apt install gawk wget git diffstat unzip texinfo gcc build-essential chrpath socat cpio python3 python3-pip
python3-pexpect xz-utils debianutils iputils-ping python3-git python3-jinja2 libegll-mesa libsdll.2-dev pylint3
xterm python3-subunit mesa-common-dev zstd liblz4-tool

For more information about how to build Layerscape LDP, see Section 4.5.
Layerscape LDP Git tags

Layerscape LDP Git repositories use the Git tags to indicate component revisions that are release tested
together. Use the git tag command to examine them and chose a tag to checkout.

LLDPUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. L6.1.1_1.0.0_23.08 — 4 August 2023

2/1053

https://docs.yoctoproject.org/brief-yoctoprojectqs/index.html
https://github.com/nxp-imx/meta-nxp-desktop#readme

NXP Semiconductors

LLDPUG

Layerscape Linux Distribution POC User Guide

2 Acronyms and abbreviations

Table 1 below lists and explains the acronyms and abbreviations used in this document.

Table 1. Acronyms and abbreviations

Term Definition

ACL Access Control List

AH Authentication Header (RFC 4302) — a network protocol designed to provide
authentication services in IPv4 and IPv6.

AMP Asynchronous multiprocessing, running multiple operating system images on
different processors of the same machine without virtualization.

API Application Programming Interface

ARP Address Resolution Protocol

CAAM Cryptographic Acceleration and Assurance Module

BE Big Endian

CCSR Configuration and Control Status Register

CoT Chain of Trust

CPU Central Processing Unit, also known more generally as "Processor"

DCD Device Configuration Data

DCE Data Compression/Decompression Engine

DCU Display Control Unit

DMA Direct Memory Access

DPAA Data Path Acceleration Architecture

DPDK Data Plane Development Kit

DSK Device Secret Key

DTB Device Tree Blob—the binary representation of device trees

DTS Device Tree Syntax—the textual representation of device trees

DUT Device Under Test

EDAC Error Detection and Correction

eSDHC Enhaced Secured Digital Host Controller

ESP Encapsulating Security Payload (RFC 4303) — a network protocol designed to
provide a mix of security services in IPv4 and IPv6.

EVB Edge Virtual Bridge

FDB Forwarding Data Base

FUID Freescale Unique ID

GPIO General Purpose Input/Output

GPP General Purpose Processor

GPU Graphics Processing Unit

GUEST_CONSOLE_TELNET_PORT | Telnet port for accessing guest console of VM.

LLDPUG

All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide

Rev. L6.1.1_1.0.0_23.08 — 4 August 2023
3/1053

NXP Semiconductors LLDPUG

Layerscape Linux Distribution POC User Guide

Table 1. Acronyms and abbreviations...continued

Term Definition

Guest/VM The term ‘Guest’ is used for Linux running inside the virtual machine(s) that are
in turn running over Host Linux operating system. VM and Guest have been used
interchangeably in this guide.

HAL Hardware Abstraction Library

HIF Host Interface

HSM Hardware security modules

IBR Internal Boot ROM

IFC Integrated Flash Chip

inbound (traffic) Encrypted traffic which is coming from an unprotected interface. This traffic is
terminated on the CPU.

IP_ADDR_BRD This term is used for LS1088ARDB and LS2088ARDB IP address.

IP_ADDR_IMAGE_SERVER This term is used for IP address of the machine on which all the software images
are kept.

IPC Inter-Process Communication, can be interpreted as being communication

between distinct application execution flows or between distinct hardware
processing units.

IPFwd IPv4 Forward

IPSec IP Security, it is a communication standard defined and refined by several public
RFCs (such as RFC-2401 and RFC-4301) where hosts exchange encrypted IP
data packets.

IPSec Tunnel A communication convention between two network gateways to IPSec process
certain network traffic in a particular way. An IPSec tunnel has two endpoints
(which are the gateways), a clearly delimited set of encryption and authentication
methods, keys, encapsulation headers and security policies, which define the
traffic that is sent through the tunnel.

ISBC Internal Secure Boot Code

ISR Interrupt Status Register

ITF Intent to Fail

ITS Intent to Secure

KASLR Kernel Address Space Layout Randomization

KVM Kernel-based Virtual Machine - A Linux kernel module that allows a user space
program access to the hardware virtualization features of NXP processors.

LDP Linux Distribution POC

LE Little Endian

LIODN Logical I/0 Device Number

LPUART Low Power Universal Asynchronous Receiver Transmitter

LSTA LS Series Trust Architecture

LXC LLinux Containers

MC Management Complex

NAT Network Address Translation

OEM Original Equipment Manufacturer

LLOPUG Al information provided in this document is subject to legal disclaimers. ©2023 NXP B.V. Al rights reserved.

User guide Rev. L6.1.1_1.0.0_23.08 — 4 August 2023

4/1053

NXP Semiconductors

LLDPUG

Layerscape Linux Distribution POC User Guide

Table 1. Acronyms and abbreviations...continued

Term Definition

OP-TEE Open Portable Trust Execution Environment

(O] Operating System

OuID OEM Unique ID

outbound (traffic) Clear traffic which is coming from a software application which generates traffic
that must be encrypted and forwarded via an unprotected interface.

PAMU Peripheral Access Management Unit

PBL Pre-Boot Loader

PCD Parse, Classify, Distribute — a software architecture concept in NXP DPAA drivers
which allows the user to configure the DPAA hardware (FMan) to do frame
parsing, classification or distribution on a series of frame queues.

PCle Peripheral Component Interconnect Express

PDCP Packet Data Convergence Protocol — It is one of the layers of the Radio Traffic
Stack in UMTS/LTE and performs IP header compression and decompression,
transfer of user data and maintenance of sequence numbers for Radio Bearers
which are configured for lossless serving radio network subsystem (SRNS)
relocation.

PFE Packet Acceleration Engine

PKCS Public-Key Cryptography Standards

PME Pattern Matcher Engine

POC Proof of Concept

QDS Qonverge Development System

QEMU Quick EMUIlator - A hosted hypervisor that performs hardware virtualization.

QSPI Quad Serial Peripheral Interface

RC Route Cache

RCW Reset Configuration Word

RDB Reference Design Board

RFC Request for Comments — a public document which describes a software
standard.

SA Security Association — a data record, defined by RFC 4301, which stores the
information related to the IPSec processing needed for a specific network traffic
type (such as encryption/decryption keys and algorithms, traffic endpoints
description, authentication algorithms, and so on).

SAD Security Association Database — the database holding all the valid SAs in a
system.

SAl Serial Audio Interface

SATA Serial Advanced Technology Attachment

SDK Software Development Kit

SEC Security Engine Coprocessor — a DPAA hardware block performing cryptographic
acceleration and offloading hardware.

SFP Secure Fuse Processor

SIP DIP Source Internet Protocol and Destination Internal Protocol

LLDPUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. L6.1.1_1.0.0_23.08 — 4 August 2023

5/1053

NXP Semiconductors

LLDPUG

Layerscape Linux Distribution POC User Guide

Table 1. Acronyms and abbreviations...continued

Term Definition

SMMU System Memory Management Unit

SMP Symmetric Multi-Processing, running an operating system image on multiple
CPUs simultaneously.

SNVS Secure Non-Volatile Storage

SoC System on a Chip, a chip integrating one or more processors and on-chip
peripherals.

SP Security Policy — a set of rules that network traffic must comply with in order to be
eligible for IPSec processing.

SPD Security Policy Database — the database storing all the SPs in a system.

SRE Stateful Rule Engine

SRK Super Root Key

SRKH Super Root Key Hash

STP Spanning Tree Protocol

Sul String Under Inspection

TA Trust Architecture

TF-A Trusted Firmware-A

TFTP_BASE_DIR Base directory of TFTP server where all the images are kept.

TLB Translation Lookaside Buffer

TSN Time-Sensitive Networking

TTL Time To Live

UDP User Datagram Protocol

uiD Unique Device ID

uio User space 1/0

usSB Universal Serial Bus

VEB Virtual Ethernet Bridge

VEPA Virtual Ethernet Port Aggregator

VFIO Virtual Function Input/Output

VID Voltage IDentifier

LLOPUG Al information provided in this document is subject to legal disclaimers. ©2023 NXP B.V. Al rights reserved.

User guide Rev. L6.1.1_1.0.0_23.08 — 4 August 2023

6/1053

NXP Semiconductors LLDPUG

Layerscape Linux Distribution POC User Guide

3 Release notes

3.1 What is new in this release

The following new features are added in the Layerscape LDP release L6.1.1_1.0.0:

* NXP Layerscape LDP userland:
— NXP Layerscape LDP, including Linux distro main packages and NXP packages
— Toolchain: gcc-11.2, glibc-2.36,binutils-2.38, gdb-12.1
* Linux kernel core and virtualization:
— LTS kernel 6.1.1 update
» Data Plane Development Kit (DPDK):
— Virtualization - OVS-DPDK
U-Boot bootloader:
— U-Boot v2022.04 update
— AQR113C on TWR-LS1021A, LS1088ARDB, and LX2162AQDS
Other tools and utilities:
— AQR113C firmware
— Yocto bitbake

3.2 Feature support matrix

The following tables show the features that are supported in this release. Refer to the legend below to decipher
the entries.

Legend:

* Y - Feature is supported by software
* | - Feature is not supported by software
* na - Hardware feature is not available

Table 2. Key features

Feature LS1012A |LS1021A |LS1028A |LS1043A |LS1046A |LS1088A |LS2088A |LX2160A |LX2162A
64-bit User space, BE / na / / / / / / /
32-bit User space, LE / Y / / / / / / /
64-bit User space, LE Y na Y Y Y Y Y Y Y
36b phys mem na Y na na na na na na na
40b phys mem Y na Y Y Y Y Y Y Y
Data Plane Development Kit Y / Y Y Y Y Y Y Y
(DPDK)

- VPP excluded

Hugetlbfs Y Y Y Y Y Y Y Y Y
Management Complex na na na na na Y Y Y Y
Open Portable Trust Y / Y Y Y Y Y Y Y
Execution Environment (OP-

TEE)

Secure boot Y Y Y Y Y Y Y Y Y
LLDPUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.
User guide Rev. L6.1.1_1.0.0_23.08 — 4 August 2023

7/1053

NXP Semiconductors

LLDPUG

Table 2. Key features...continued

Layerscape Linux Distribution POC User Guide

(NXP CoT)

Secure boot (Arm CoT) na na na na na na na Y Y
Time Sensitive Network (TSN) na na Y na na na na na na
USDPAA Applications na na na / / na na na na
Trusted Firmware-A (TF-A) Y na Y Y Y Y Y Y Y
Verified boot na na na na na na na na Y
Warm reset na na na na na na na na Y
Table 3. Virtualization, Containers and Isolation

Feature LS1012A|LS1021A|LS1028A |LS1043A |LS1046A LS1088A LS2088A |LX2160A |LX2162A
KVM/QEMU Y na Y Y Y Y Y Y Y
On-chip networking interfaces / na Y na na Y Y Y Y
Direct Assignment

PCI Devices Direct / na Y / / Y Y Y Y
Assignment

LXC Y Y Y Y Y Y Y Y Y
Libvirt Y Y Y Y Y Y Y Y Y
SMMU - default config na / Y / / Y Y Y Y
VFIO for Network Resources / na Y na na Y Y Y Y
Docker Y / Y Y Y Y Y Y Y
Table 4. Linux kernel drivers

Feature LS1012A|LS1021A|LS1028A |LS1043A |LS1046A LS1088A |LS2088A |LX2160A |LX2162A
Audio - 12S, SAIl Y Y Y na na na na na na
CAAM DMA Y / / / / / / / /
DCE na na na na na na Y Y Y
DCU na Y na na na na na na na
Display - eDP/DP, LCD na na Y na na na na na na
DMA Y Y Y Y Y Y Y Y Y
DPAA1 - Ethernet, FMan, na na na Y Y na na na na
QMan, BMan

DPAA2 - Ethernet, L2 na na na na na Y Y Y Y
Switching, QBMan

eSDHC Y Y Y Y Y Y Y Y Y
ENETC na na Y na na na na na na
FlexCAN na / Y na na na na Y Y
FlexSPI na na Y na na na na Y Y
GPU na na Y na na na na na na
12C Y Y Y Y Y Y Y Y Y
IEEE1588, linuxptp na Y Y Y Y Y Y Y Y

LLDPUG

All information provided in this document is subject to legal disclaimers.

© 2023 NXP B.V. All rights reserved.

User guide

Rev. L6.1.1_1.0.0_23.08 — 4 August 2023

8/1053

NXP Semiconductors LLDPUG

Layerscape Linux Distribution POC User Guide

Table 4. Linux kernel drivers...continued

Feature LS1012A|LS1021A|LS1028A |LS1043A |LS1046A LS1088A |LS2088A |LX2160A |LX2162A
IFC na Y na Y Y Y Y na na
IMA-EVM Y / / Y Y Y Y / /
TSN Ethernet Switch na na Y na na na na na na
LPUART na Y / Y Y / / na na
QSPI Y Y na Y Y Y Y na na
PCle RC Y Y Y Y Y Y Y Y Y
PCle EP / / / Y Y Y Y Y Y
PFE Y na na na na na na na na
Power Management Y Y Y Y Y Y Y Y Y
Preempt Real-Time / / Y Y Y Y Y Y Y
SATA Y Y Y Y Y Y Y Y Y
SEC Y Y Y Y Y Y Y Y Y
dSPI / Y / Y Y / Y na Y
TDM (QE) na na na Y na na na na na
TSN na na Y na na na na na na
usB Y Y Y Y Y Y Y Y Y
VeTSEC na Y na na na na na na na
VFIO for network resources / na Y na na Y Y Y Y
Watchdog Y Y Y Y Y Y Y Y Y
GPIO na na na na Y Y na na Y
EDAC Y Y Y Y Y Y Y Y Y

3.3 Fixed, open, and closed issues

Table 5 lists the issues fixed in the Layerscape LDP release L6.1.1_1.0.0. Each of these issues has been fixed
by implementing a software fix.

Table 5. Issues fixed in the Layerscape LDP release 6.1.1_1.0.0

ID Description Opened in

DPDK-3719 Incorrect mbuf offload flags for L3/L4 checksum. 5.15.32_2.0.0

Table 6 lists the issues open in the Layerscape LDP release L6.1.1_1.0.0.

None of these issues currently has a resolution. Wherever possible, workaround suggestions have been
provided.

Table 6. Open issues in the Layerscape LDP release 6.1.1_1.0.0

ID Description Opened in Workarounds
LF-3360 Functionalities that require PCI reset, such as VFIO, will 5.15.52-2.1.0

work only with PCI endpoints that support Function Level

Reset (FLR).
LLDPUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.
User guide Rev. L6.1.1_1.0.0_23.08 — 4 August 2023

9/1053

NXP Semiconductors

LLDPUG

Layerscape Linux Distribution POC User Guide

Table 6. Open issues in the Layerscape LDP release 6.1.1_1.0.0...continued

ID Description Opened in Workarounds
LF-3981 On LX2160ARDB, there is kernel panic when unbinding dpni 5.10.35_2.0.0
during Linux qos testing.
LF-4151 On LS1028ARDB and DPAA2 platforms, the system may LSDK 21.08
randomly reset after sleep.
LF-6686 Openssl job ring interrupt does not increase after openssl 5.15.32_2.0.0
testing.
LF-8753 On LS043ARDB and LS1046ARDB, kexec_kdump: fail to 6.1.1_1.0.0_LDP
switch to the new kernel with default image or custom build
image.
LF-8837 On LS1012ARDB, Display: desktop can't display normally on 6.1.1_1.0.0_LDP
specific monitor after login system.
LLDPUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.
User guide Rev. L6.1.1_1.0.0_23.08 — 4 August 2023

10/1053

NXP Semiconductors LLDPUG

Layerscape Linux Distribution POC User Guide

4 Getting started with Layerscape LDP

4.1 Host system requirements

Set up the host system as given below:

1. Install Ubuntu 20.04 LTS on the host machine:
a. Obtain sudo permission by running the command:
sudoedit /etc/sudoers

b. Add a line:
<account-name> ALL= (ALL:ALL) NOPASSWD: ALL

2. To build the target NXP Layerscape LDP userland for arm64/armhf arch, the user network environment
must have access to the remote Ubuntu official server.

4.1.1 How to set HTTP proxy in Ubuntu

If your Linux host machine is in a subnet that needs HTTP(s) proxy to access external Internet, set the
environment variable http proxy and https proxy as below:

1. Set proxy in ~/ .bashrc (for current user) orin /etc/profile.d/proxy.sh (for global users), then run
source ~/ .bashrc or source /etc/profile.d/proxy.sh to validate the settings.

export http proxy="http://<account>:<password>@<domain>:<port>"
export https proxy="https://<account>:<password>@<domain>:<port>"

2. Setproxyin /etc/apt/apt.conf

Acquire: :http::Proxy "http://<account>:<password>@<domain>:<port>";
Acquire: :https::Proxy "https://<account>:<password>@<domain>:<port>";

4.2 Download and deploy Layerscape LDP images in Linux environment using flex-
installer

You can build Layerscape LDP easily from source by using Yocto bitbake. It is a generic task execution engine
that allows to run the shell and Python tasks efficiently, while working within complex inter-task dependency
constraints.

To build Layerscape LDP from source, see Section 4.5.

Table 7 lists and explains the command options used in the flex-installer commands.

Table 7. flex-installer command options

Command option Description Supported values
-m <machine> Refers to board name. Is1012afrwy, Is1021atwr, Is1028ardb,
Is1043ardb, Is1046ardb, Is1046afrwy,
Is1088ardb, 1s2088ardb, I1x2160ardb_rev2,
Ix2162aqds
-f <firmware> Refers to firmware image. firmware_<machine>_<boottype>.img
-b <boot Refers to bootpartition image. There is a set of boot_LS_arm64_lts_<version>.tgz
partition> bootpartition images for each of the Linux kernel
versions and platform (64-bit) supported by
Layerscape LDP.
-B, --bootpart |Specify boot partition number to override default For example,
(default boot partition is the 2nd one) -B1or
LLDPUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.
User guide Rev. L6.1.1_1.0.0_23.08 — 4 August 2023

11/1053

NXP Semiconductors LLDPUG

Layerscape Linux Distribution POC User Guide

Table 7. flex-installer command options...continued

Command option Description Supported values
--bootpart=1
-r <rootfs> Refers to NXP Layerscape LDP userland. There Is-image-main-<machine>.tar.gz
are different rootfs images for default userland and For example, <machine> = Is1028ardb:
Edgescale userland. Is-image-desktop-Is1028ardb.tar.gz
-R, --rootpart |Specify root partition number to override the default For example, specify the third partition as
(default root partition is the 4th partition) root partition:
-R3or
--rootpart=3
-d <device> Refers to storage device (SD, USB, or SATA) /dev/<device_name>
Note:

* Use the command cat /proc/partitions to see
a list of devices and their sizes to make sure that the
correct device names have been chosen.

* The SD/USB/SATA storage drive in the Linux PC
is detected as /dev/sdX, where X is a letter such
as a, b, c. Make sure to choose the correct device
name, because data on this device will be replaced.

* If the Linux host machine supports read/write SD
card directly without an extra SD card reader device,
the device name of SD card is typically mmcb1k0.

-e <dtb> ‘-e dtb' option is used for UEFI in DTB way. This dtb, no need this option in case of U-Boot
parameter installs grub.cfg, efi.fd as bootloader

There is no need to add '-e' option in case of U-Boot as
bootloader by default

-u <url> Specifies URL of distro web server to override the URL of distro web server
default one for automatically downloading distro.

Note:

* The U-Boot based composite firmware must be programmed in flash device (not in SD card) on
LS2088ARDB/LS1012ARDB/LS1012AFRWY, no limitation on the other Layerscape boards.

» Users can install distro rootfs and bootpatrtition tarball into SD card (or USB/SATA disk) on all Layerscape
boards.

* To run flex-installer command on the target storage drive connected to a reference board, you must boot the
board with TinyLinux and bring up network interface.
For details, refer to To deploy Layerscape LDP images on a reference board running TinyLinux.

» To deploy locally custom Layerscape LDP images to the target storage drive connected to a Linux
host machine or a reference board.
Usage:

$ flex-installer -b <boot partition> -r <rootfs> -f <firmware> -d <device>

For list of supported values for <boot partition>, <rootfs>, <firmware>, and <device>, see Table 7.
Example: For Is1043ardb:

$ flex-installer -b boot 1s1043ardb lts 6.1.tgz -r ls-image-
mainlslO43ardb.tar.gz -f firmware 1sl1043ardb sdboot.img -d /dev/sdX

* To deploy custom Layerscape LDP images on a reference board running TinyLinux
1. After the reference board boots automatically, check whether the reference board boots TinyLinux or
whether it boots Layerscape LDP userland based distribution. TinyLinux is a non-customizable ramdisk

LLDPUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. L6.1.1_1.0.0_23.08 — 4 August 2023

12/1053

NXP Semiconductors LLDPUG

Layerscape Linux Distribution POC User Guide

rootfs deployed in flash media on the reference board. This rooffs fits into the firmware image on flash and
is therefore called tiny.
— If the reference board boots TinyLinux, proceed to step #3.

— If the reference board boots Layerscape LDP - based distribution, it means that an older Yocto based
distribution may already be present on the storage device that is plugged into the reference board. In
this case, go to step #2 first, to force the board to boot TinyLinux.

2. Force the reference board to boot TinyLinux.
— Reboot the board and stop autoboot to enter U-Boot prompt.
— Set Ethernet Interface

=>pri bootcmd

bootcmd=env exists mcinitcmd && mmcinfo; mmc read 0x80001000 0x6800 0x800;
env exists mcinitcmd && env exists secureboot && mmc read 0x806C0000
0x3600 0x20 && esbc validate 0x806C0000;env exists mcinitcmd && fsl mc
lazyapply dpl 0x80001000;run distro bootcmd;run sd bootcmd;env exists
secureboot && esbc halt;

2, run bootcmd (from the info above)

=>mmc read 0x80001000 0x6800 0x800

=> fsl mc lazyapply dpl 0x80001000

— Enter following command at the U-Boot prompt to boot the board to the TinyLinux environment for
executing flex-installer:

=> run sd bootcmd (for SD/eMMC boot)
=> run nor bootcmd (for IFC-NOR boot)
=> run gspi bootcmd (for QSPI-NOR boot)
=> run xspl bootcmd (for FlexSPI-NOR boot)

3. Log in to TinyLinux as root and bring up a network interface.
Dynamic IP address assignment:

#: ifconfig -a
#: udhcpc -1 eth0 (or ethl ,etc.) c

Static IP address assignment:

$ ifconfig <port name in TinyLinux> <IP address> netmask <netmask address>
up

The port name in Linux TinyLinux corresponding to each of the ports on the reference board chassis is
given in section "<board> reference information" in the board-specific Quick start guide section.

4. Use flex-installer to create and format the partitions for storage device (USB/SATA/SD).

$ flex-installer -i pf -d <device> # use default partition list

Or

$ flex-installer -i pf -d <device> -p <partition list> # specify custom
partition list

For list of supported values for <device>, see Table 7.
5. Change current path to the Partition 4 of target storage device.

$ cd /mnt/mmcblkOp4 (or /mnt/sdx4)

6. Download bootpartition <arch> <version>.tgz and rootfs <version> <distrotype>
<distroscale> <arch>.tgz using the wget or scp command.
7. Deploy bootpartition and Layerscape LDP userland to the target device using the command given below:

flex-installer -f <firmware> -b <boottgz> -r <rootfs> -d <device>

For the list of supported values for <firmware>, <rootfs>, and <device>, see Table 7.

LLDPUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. L6.1.1_1.0.0_23.08 — 4 August 2023

13/1053

NXP Semiconductors LLDPUG

Layerscape Linux Distribution POC User Guide

Example:

$ flex-installer -b boot 1s1043ardb lts 6.l1.tgz -r ls-image-
mainlslO43ardb.tar.gz -f firmware 1s1043ardb sdboot.img -d /dev/sdX

* To only install composite firmware to the target storage drive on a Linux host machine or a reference
board.
Usage:

S flex-installer -f <firmware> -d <device>

For the list of supported values for <firmware>, <device>, see Table 7.
Example:

$ flex-installer -f firmware 1s1046ardb sdboot.img -d /dev/sdx

» To partition and format target storage device with specified number and size of partitions instead of
using the default partitions.
Usage:

flex-installer -i pf -p <partitions-1list> -d <device>

For the list of supported values for <device>, see Table 7.
Example:

$ flex-installer -f firmware 1s1043ardb sdboot.img -b
boot 1s1043ardb 1lts 6.l1.tgz -r ls-image-
main-1s1043ardb.tar.gz -d /dev/sdX

4.3 Download and deploy Layerscape LDP composite firmware in Windows
environment

To download and deploy the Layerscape LDP composite firmware in Windows environment, perform the
following steps:

Note: The following steps are verified on Windows 10.

1. Download the DD for Windows tool and install it.
http://download.si-linux.co.jp/dd_for windows/DDWin_Ver0998.zip

2. Create a folder (for example, C:/Layerscape_LDP) and copy the composite firmware you built in Windows
Subsystem Linux (WSL).

3. Run the Windows cmd command and change the current work directory to the created folder.

C:\Windows\System32> cd C:/LDP
C:\LDP> dir

4. Run Windows command copy /b sd pt 4k.img + <composite image>
<new_ composite image> to combine the partition table image with the composite firmware.

C:\LDP> copy /b sd pt 4k.img + firmware 1s1028ardb sdboot.img
firmware 1s1028ardb sdboot 4k.img

The new image firmware 1s1028ardb sdboot 4k.img is generated.
5. Run the tool DD for Windows as administrator.

6. Click Choose disk Choose file , and then Restore to program the newly generated composite firmware into
the target SD card.

7. Unplug the SD card from Windows host machine and plug it on the target board.
Set the DIP switch for SD boot or run run sd_bootcmd at the U-Boot prompt.
9. Log in to TinyDistro as root and install Layerscape LDP distro using flex-installer.

®

LLDPUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. L6.1.1_1.0.0_23.08 — 4 August 2023

14 /1053

http://download.si-linux.co.jp/dd_for_windows/DDWin_Ver0998.zip

NXP Semiconductors LLDPUG

Layerscape Linux Distribution POC User Guide

For more instructions, see Section 4.6.

4.4 Deploying Layerscape LDP images to a board using flex-installer

Perform the following steps to deploy the Layerscape LDP images to a board using a removable storage device,
which can be connected to a local Linux host machine:

1. Connect the removable storage device to the Linux host machine.
2. Install flex-installer to deploy Layerscape LDP images (this is a one-time activity):

$ git clone https://github.com/nxp-imx/meta-nxp-desktop.git -b
1f-6.1.1-1.0.0-1langdale

$ cp meta-nxp-desktop/scripts/flex-installer 1.14.2110.1f /usr/bin/flex-

installer

$ sudo chmod a+x /usr/bin/flex-installer

$ which flex-installer

3. Execute the following flex-installer command to install Layerscape LDP:

$ flex-installer -i pf -d <device>;
$ flex-installer -f <firmware xxx.img> -b <boot xxx.tgz> -r <ls-image-
mainxxx.tar.gz> -d <device>

Note:
e Use the command cat /proc/partitions to view the list of devices and their sizes to ensure that the
correct device names are chosen.
* The SD/USB/SATA storage drive in the Linux PC is detected as /dev/sdX, where X is a letter such as a, b,
c. Ensure to choose the correct device name, as the data on this device is replaceable.
* Ifthe Linux host machine supports read/write SD card directly without an extra SD card reader device, the
device name of SD card is typically mmcb1kO0.
4. Unplug removable storage device from the Linux host and plug into the reference board.
Ensure that the DIP switch settings on the board are correct to boot from the desired boot medium.
5. Power on the board. The system automatically boots up to the Layerscape distro system.
Use the following default credentials to log on to the Layerscape distro system:

- user/user

4.5 Build Layerscape LDP with Yocto bitbake

This section introduces detailed steps to build Layerscape LDP with Yocto bitbake. The Layerscape LDP

build uses a Yocto-based meta layer to generate a Proof of Concept (POC) image and it works together with
Layerscape release layer (meta-qoriq). It reuses the Linux BSP release framework to manage and generate the
U-Boot bootloader, Linux kernel image, and Layerscape root file system in the image build.

Note: The release version is managed by the Layerscape Yocto SDK Manifest.

The Layerscape LDP build include main and desktop builds. The main build is applicable for all the Layerscape
SoCs and the desktop build is applicable for LS1028ARDB only.

4.5.1 Host packages

A Yocto Project build requires some packages that must be installed for the Yocto Project build.

To set up the Yocto Project build, navigate to the Yocto Project Quick Start and check for the packages that
must be installed for your build machine.

LLDPUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. L6.1.1_1.0.0_23.08 — 4 August 2023

15/1053

NXP Semiconductors LLDPUG

Layerscape Linux Distribution POC User Guide

The essential Yocto project host packages are given below:

$ sudo apt-get install gawk wget git-core diffstat unzip texinfo gcc-multilib \

build-essential chrpath socat cpio python python3 python3-pip python3-pexpect \

xz-utils debianutils iputils-ping python3-git python3-jinja2 libegll-mesa
libsdll.2-dev \

pylint3 xterm rsync curl

4.5.2 Download Yocto bitbake

The Yocto project uses OpenEmbedded (OE) to build hosts, and the project uses bitbake to build a complete
Linux image. The bitbake and OE components are combined to form the reference build host, formerly known
as poky. Repo is a tool built on top of Git. To avail poky, and bitbake tools, download the poky repository and
bitbake tools using the repo tool.

S repo init -u https://github.com/nxp-qorig/yocto-sdk -b langdale -m 1s-6.1.1-1.0.0_ distro.xml
$ repo sync

./-setup-env -m <boards>

Supported boards

1s1012ardb
1s1012afrwy
1sl02latwr
1s1043ardb
1sl046ardb
1sl046afrwy
1s1088ardb-pb
1s1028ardb
1s2088ardb
1x2160ardb-rev2
1x2162aqgds

4.5.3 Build Layerscape LDP image using bitbake

To build custom images with different configurations instead of the default settings, you can directly deploy the
prebuilt Layerscape LDP composite firmware and distro userland to storage device on target board by Yocto
bitbake.

To build the Layerscape LDP image, run the following command:

$ bitbkake ls-image-lite
$ bitbake ls-image-main # (if machine=1s1028ardb, should bitbake ls-image-desktop)

4.5.4 bitbake commands
The following table lists commands to build Layerscape LDP using bitbake.

Table 8. bitbake commands

S. |[Build Command Description
No. |object
AUtomatej $ DISTRO=fsl-qorig-distro MACHINE=<machine> source distro-setup-env AUtomatlca”y bu"ds KerneL and app
build for b BilEietn CHobze Fpe> components for the specific board.
specific | For example: <machine> can be Is1012ardb,
board Is1012afrwy, Is1021atwr, Is1028ardb,
1 z giigii;fii:?‘zgég:ﬁéfiro MACHINE=1s1028ardb source distro-setup-env |S1043al’db, |S1046ardb, |S1088ardb_
pb, I1s2088ardb, Ix2160ardb_rev2,
Ix2162aqds

<distro_ type> can be

bitbake ls-image-main
bitbake ls-image-desktop

LLDPUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. L6.1.1_1.0.0_23.08 — 4 August 2023

16 /1053

NXP Semiconductors LLDPUG

Layerscape Linux Distribution POC User Guide

Table 8. bitbake commands...continued

S. |[Build Command Description
No. |object

bitbake ls-image-lite
bitbake ls-image-tiny

Builds bitbake gorig-atf Automatically builds ATF image with
2 |ATF and dependent RCW and bootloader (U-
U-Boot Boot or UEFI).
Builds bitbake <component> To build single or multiple components,
specific | For example: run the command:
componen* i
bitbake dpdk bitbake <component>
bitbake vpp
3 bitbake perf

bitbake ovs-dpdk
bitbake fmc
bitbake openssl
bitbake opencv

Builds bitbake <subsystem> User can modify or add custom
multiple | For example: component in the corresponding files,
app bitbake packagegroup-fsl-tools-core for example, meta-goriq/recipes-
4 |components fsl/packagegroups/packag
for egroup-fsl-tools-core.bb
specific
subsystem
Builds bitbake <distro_ type> Generates distro rootfs as per the
various specified distro type and scale.
distro I . .
bitbake ls-image-lite Build lite image with the optimized
userland)
config.
5 bitbake ls-image-main Build main image for networking
feature.
bitbake ls-image-desktop Build desktop image for a specific
board only.
bitbake fsl-image-mfgtool Build yocto tiny image with limited
tools.
Cleans |bitbake -c clean <recipe name/target name> Removes all the output files for a
various target.
images . . :
bitbake -c cleanall <recipe name/target name> Removes all the output files, shared
6 state cache, and downloaded sources

files for a target.

bitbake -c cleansstate <recipe name/target name> Removes all the output files and
shared state cache for a target.

4.5.5 Generate Layerscape LDP composite firmware

Layerscape LDP composite firmware consists of RCW/PBL, ATF, Bootloader (U-Boot or UEFI), secure headers,
Ethernet MAC/PHY firmware, dtb, kernel and tiny initrd RFS. The composite firmware can be programmed at
offset 0x0 in flash device or at offset block# 8 in SD/eMMC card.

Note: Arm CoT is supported only for LX2160ARDB Rev2 and LX2162AQDS platforms.

LLDPUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. L6.1.1_1.0.0_23.08 — 4 August 2023

17 /1053

NXP Semiconductors LLDPUG

Layerscape Linux Distribution POC User Guide

Usage:

$ bitbake gorig-composite-firmware

4.5.6 Generate tarball

In this tar ball, the boot image puts dtb, image, secure-boot header, and the kernel module. boottgz
writes in boot part2.

Use this command below to generate this tar ball in Yocto bitbake.

Usage:

$ bitbake generate-boottgz

4.5.7 Build TF-A with RCW and U-Boot/UEFI

Layerscape platforms support TF-A (Trusted Firmware-A) which provides a reference implementation of secure
world software for Armv7-A and Armv8-A.

bitbake can automatically build the dependent RCW, U-Boot/UEFI, OPTEE, and CST to generate TF-A
binaries, b12.pbl and fip.bin images for Layerscape platforms.

Use the commands below to build ATF with RCW and U-Boot/UEFI in Yocto bitbake.
Note: Arm CoT is supported only for LX2160ARDB Rev2 and LX2162AQDS platforms.
Usage:

Usage:
bitbake gorig-atf

Note: If you want to use different RCW instead of the default one, you can reconfigure rcw_<boottype>
variable in sources/meta-qoriq/recipes-bsp/secure-boot/secure-boot-qoriq//manifest, then
run bitbake linux-firmware -c cleanall,; bitbake qorig-atf to generate new ATF image with
the specified RCW, if you modified U-Boot, RCW or ATF source code, bitbake can automatically recompile them
with the modified source.

4.5.8 Build Linux kernel with bitbake

Besides building Layerscape LDP kernel in standalone way (see Section 7.4), it is easy to automatically build
Layerscape LDP kernel with the bitbake command.

To build kernel, use the following command:

bitbake linux-gorig

4.5.9 Build application components in Yocto bitbake

The following commands are some examples of building application components.

Usage:

$ bitbake <component>

Example:

LLDPUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. L6.1.1_1.0.0_23.08 — 4 August 2023

18/1053

NXP Semiconductors LLDPUG

Layerscape Linux Distribution POC User Guide

Usage:

bitbake dpdk
bitbake pktgen-dpdkbitbake vppbitbake fmcbitbake restoolbitbake tsntool
bitbake opencv

System reboots and automatically boot to Layerscape Linux system with the newly custom kernel.

4.5.10 Deploy new images after modifying the source code of NXP components locally

1. Clean the old apps images using the command:

$ bitbake <component name> -c cleanall

2. Modify component bitbake files in directory components/apps/<subsystem>/<component-name>
according to demand. This step is optional.

3. Build the component and generate the compressed app component tarball. You can find the compiled
images in build-desktop/tmp/deploy/images directory:

$ bitbake <component name> -c compile -f

4.5.11 Build various userlands with custom packages

Layerscape LDP supports different types of distro userlands in various scales to adapt a variety of use cases,
you can select the appropriate distro userland as per your need.

* Layerscape LDP Main Userland.
* Layerscape LDP Lite Userland.
» Layerscape LDP Desktop Userland.

Layerscape LDP Main Userland

The Layerscape LDP default main userland consists of Linux distro-based main packages and NXP's packages,
which can be generated by the following command:

S bitbake ls-image-main

Layerscape LDP Lite Userland

The Layerscape LDP lite userland consists of Linux distro packages and a few NXP's packages, which can be
generated by the following command:

S bitbake ls-image-lite

Layerscape LDP Desktop Userland

The Layerscape LDP desktop userland consists of Linux distro GNOME desktop packages and some NXP's
packages for platforms with GPU (for example, LS1028A and i.MX platform).

The GOME desktop is launched automatically by default, it needs to manually launch weston in case weston is
needed. Users can generate and deploy Linux distro desktop userland by the following command:

S bitbake ls-image-desktop

LLDPUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. L6.1.1_1.0.0_23.08 — 4 August 2023

19/1053

NXP Semiconductors LLDPUG

Layerscape Linux Distribution POC User Guide

4.5.12 Add a custom machine in Yocto bitbake based on Layerscape LDP release

To add a custom machine, perform the steps given below:
For example, LS1043AXX based on the LS1043A SoC.

1. Run repo init and repo sync to fetch all Git repositories of Layerscape LDP components for the first
time.

2. Add configs in yocto bitbake for new machine:
Add Is1043axx node in conf/machine/1s1043axx.conf.

4.5.13 Upgrade the existing Layerscape LDP distro with Yocto bitbake on host

To only update boot partition (with customized kernel and modules) on SD card connected to host machine or
target Arm board:

$ flex-installer -b boot <machine> 1lts 6.1.tgz -d /dev/mmcblk0 (or /dev/sdx)

To only update rootfs tarball on SD card connected to host machine or target Arm board:

$ flex-installer -r ls-image-main-<machine>.tar.gz -d /dev/mmcblk0 (or /dev/sdx)

To update both bootpartition and rootfs on SD card connected to host machine or target Arm board:

$ flex-installer -b <boot partition> -r <rootfs> -d /dev/mmcblkO (or /dev/sdx)

4.6 Downloading a TinyDistro image to a Layerscape board using flex-installer

Perform the following steps to download the TinyDistro image to a Layerscape board using flex-installer:

1. Connect the removable storage device to the Linux host machine.
2. Install flex-installer to deploy TinyDistro images (this is a one-time activity):

$ git clone https://github.com/nxp-imx/meta-nxp-desktop.git -b
1f-6.1.1-1.0.0-1langdale

$ cp meta-nxp-desktop/scripts/flex-installer 1.14.2110.1f /usr/bin/flex-

installer

$ sudo chmod a+x /usr/bin/flex-installer

$ which flex-installer

3. Execute the following flex-installer command to install TinyDistro image:

$ flex-installer -i pf -d <device>;
$ flex-installer -f <firmware xxx.img> -d <device>

4. Unplug removable storage device from the Linux host and plug into the reference board.
Make sure that the DIP switch settings on the board are correct to boot from the desired boot medium.
6. Power on the board and enter into U-Boot to allocate the Ethernet interface:

o

=> pri bootcmd

bootcmd=env exists mcinitcmd && mmcinfo; mmc read 0x80001000 0x6800 0x800;
env exists mcinitcmd && env exists secureboot && mmc read

0x806C0000 0x3600 0x20 && esbc validate 0x806C0000;env exists mcinitcmd &&
fsl mc lazyapply dpl 0x80001000;run distro bootcmd;run sd bootcmd;env

exists secureboot && esbc halt;

=> mmc read 0x80001000 0x6800 0x800

LLDPUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. L6.1.1_1.0.0_23.08 — 4 August 2023

20/1053

NXP Semiconductors LLDPUG

Layerscape Linux Distribution POC User Guide

=> fsl mc lazyapply dpl 0x80001000

7. Run one of the following commands as applicable:

=> run sd bootcmd (for SD/eMMC boot)

=> run nor bootcmd (for IFC-NOR boot)

=> run gspi bootcmd (for QSPI-NOR boot)

=> run xspi bootcmd (for FlexSPI-NOR boot)

8. Log in to TinyDistro as “root/root” and bring up a network interface:

ifgonfig -a

Dynamic IP address assignment:

udhcpc -i <port name in TinyDistro>

Static IP address assignment:

ifconfig <port name in TinyDistro> <IP address> netmask <netmask address>
up

Uy H= 0 FH= 0

9. Download the board image:

$ wget <httpserver>/flex-installer.sh && chmod a+x flex-installer.sh && sudo
mv flex-installer.sh /usr/bin/flex-installer

$ wget <httpserver>/<firmware xxx.img>

$ wget <httpserver>/<ls-image-main-xxx.tar.gz>

10. Execute the following flex-installer command to install the Layerscape image:

S fdisk -1

S flex-installer -i pf -d <device>;

$ flex-installer -f <firmware xxx.img> -b <boot xxx.tgz> -r <ls-image-
mainxxx.tar.gz> -d <device>

11. Reboot in the TinyDistro system.

$ reboot

4.7 Quick start guides for Layerscape boards

This section describes:

* Quick start guide for FRWY-LS1012A
* Quick start guide for LS1012ARDB

* Quick start guide for TWR-LS1021A

* Quick start guide for LS1028ARDB

* Quick start guide for LS1043ARDB

* Quick start guide for FRWY-LS1046A
* Quick start guide for LS1046ARDB

* Quick start guide for LS1088ARDB

* Quick start guide for LS2088ARDB

* Quick start guide for LX2160ARDB Rev2
 Quick start guide for LX2162AQDS

LLDPUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. L6.1.1_1.0.0_23.08 — 4 August 2023

21/1053

NXP Semiconductors

LLDPUG

Layerscape Linux Distribution POC User Guide

4.7.1 Quick start guide for FRWY-LS1012A

This section explains:

¢ Introduction
e FRWY-LS1012A reference information
e Program Layerscape LDP composite firmware image

4.7.1.1 Introduction

The following sections describe the procedure to program the Layerscape LDP composite firmware for
FRWY-LS1012A. Also, this section explains the most common use case procedure to download and deploy
Layerscape LDP default images to FRWY-LS1012A using flex-installer. For more information, see Section 4.2.

For more information on the different components of the board, and on how to configure and boot the board,
see Layerscape LS1012A Freeway Board Getting Started Guide.

4.71.2 FRWY-LS1012A reference information

This section provides general information about FRWY-LS1012A which may come in handy as a reference
while completing steps for deploying Layerscape LDP that follow.

4.7.1.2.1 Ethernet port map

The table below shows the mapping between the labels on the FRWY-LS1012A, port in U-Boot and port in
Linux.

Table 9. Ethernet port mapping

Label on board Port in U-Boot Port in Linux
ETH1 pfe_eth0 ethO
ETH2 pfe_eth1 eth1

4.7.1.2.2 System memory map

In 64-bit U-Boot, there is a 1:1 mapping of physical address and effective address. After system startup, the
bootloader maps physical address and effective address as shown in the following table:

Start Physical Address End Physical Address Memory Type Size
0x00_0000_0000 0x00 000F FFFF Secure boot ROM 1MB
0x00_0100_0000 0x00 OFFF FFFF CCSR 240 MB
0x00 1000 _0000 0x00 1000 FFFF OCRAM1 64 KB
0x00 1001 0000 0x00_ 1001 FFFF OCRAM2 64 KB
0x00_ 4000 0000 0x00 47FF FFFF QSPI 128 MB
0x00_8000_0000 0x00 FFFF_FFFF DRAM 2 GB
0x40_0000_0000 0x47 FFFF_FFFF PCI Express1 32G

4.7.1.2.3 Supported boot options

FRWY-LS1012A supports the following boot options:

* QSPI NOR Flash

LLDPUG

All information provided in this document is subject to legal disclaimers.

© 2023 NXP B.V. All rights reserved.

User guide

Rev. L6.1.1_1.0.0_23.08 — 4 August 2023

22/1053

https://www.nxp.com/support/developer-resources/software-development-tools/qoriq-developer-resources/layerscape-frwy-ls1012a-board:FRWY-LS1012A?fpsp=1&tab=Documentation_Tab

NXP Semiconductors LLDPUG

Layerscape Linux Distribution POC User Guide

Note: QSPI NOR flash is the only boot option available on the FRWY-LS1012A.

The FRWY-LS1012A supports onboard Winbond W25M161AWEIT single/dual/quad-SPI serial flash memory
with 16 Mbit NOR and 1 Gbit NAND space in a single chip.

U-Boot 2020.04-21450-gbdela7f (Sep 18 2020 - 21:55:22 +0800)
SoC: LS1012AE Rev2.0 (0x87040020)
Clock Configuration:
CPUO (A53) : 1000 MHz
Bus: 250 MHz DDR: 1000 MT/s
Reset Configuration Word (RCW) :
00000000: 0800000a 00000000 00000000 00000000
00000010: 33050000 c000000c 40000000 00001800
00000020: 00000000 00000000 00000000 000c47f2
00000030: 00000000 1082a120 00000096 00000000
DRAM: 958 MiB
Using SERDES1 Protocol: 13061 (0x3305)
MMC: FSL SDHC: 0, FSL SDHC: 1

Loading Environment from SPI Flash... SF: Detected w25qlédw with page size 256
Bytes, erase size 4 KiB, total 2 MiB
OK

In: serial

Out: serial

Err: serial

Model: FRWY-LS1012A Board

Board: FRWY-LS1012A Version: RevC Net: SF: Detected w25glédw with page size 256
Bytes, erase size 4 KiB, total 2 MiB
PFE class pe firmware for Linux

PFE tmu pe firmware for Linux

PFE class pe firmware for u-boot

PFE tmu pe firmware for u-boot

ethO: pfe eth0O, ethl: pfe ethl

4.7.1.3 Program Layerscape LDP composite firmware image

To program Layerscape LDP composite firmware image in QSPI NOR flash on FRWY-LS1012A:

1. Copy firmware on host machine to TFTP server.

cp <build>/tmp/deploy/image/1lsl02lafrwy/firmware 1sl0l2afrwy gspiboot.img ~/
tftp/

2. Under U-Boot, download the firmware to the reference board using one of the following options:
* Load firmware from the TFTP server

=> tftp $load addr firmware 1sl0l2afrwy gspiboot.img

* Load firmware image from partition on mass storage device (SD, USB, or SATA)

=> load mmc <device:part> $load addr firmware 1sl0l2afrwy gspiboot.img

For example:

=> load mmc 0:2 $load addr firmware 1sl0l2afrwy gspiboot.img
Or

=> load usb <device:part> $load addr firmware 1sl0l2afrwy gspiboot.img

Or

=> load scsi <device:part> $load addr firmware 1sl0l2afrwy gspiboot.img

LLDPUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. L6.1.1_1.0.0_23.08 — 4 August 2023

23/1053

NXP Semiconductors LLDPUG

Layerscape Linux Distribution POC User Guide

Note:
Use the following command if the SD card is formatted/created using Layerscape LDP flex-installer
command:

=> load <interface> [<dev[:part]> [<addr> [<filename> [bytes [pos]]]]]

For example:

=> Joad mmc 0:2 $load addr firmware 1slOl2afrwy gspiboot.img

Use the following command if the SD card is formatted/created on a Windows PC:

=> fatload <interface> [<dev/[:part]> [<addr> [<filename> [bytes [pos]]]]]

For example:

=> fatload mmc 0:2 $load addr firmware lslOl2afrwy gspiboot.img

Use the following command if the SD card is formatted/created on a Linux PC:

=> ext2load <interface> [<dev|[:part]> [<addr> [<filename> [bytes [pos]]]]]

For example:

=> ext2load mmc 0:2 $load addr firmware lsl0lZafrwy gspiboot.img

The Layerscape LDP flex-installer command puts the images on the second partition, so that 0: 2 is used in
the 1oad command. If the SD card is formatted on Windows PC or Linux PC for single partition only, then 0
should be used instead of 0:2 in the fatload/ext21oad command.

3. Program the firmware to QSPI NOR flash.

=> sf probe 0:0
=> sf erase 0 +S$filesize && sf write $load addr 0 $filesize

4. Reset and boot the board from QSPI NOR flash. The system will automatically boot up TinyDistro (log
in using root/root) or Layerscape LDP distro (log in using user/user) available on the removable storage
device.

=> reset

4.7.1.4 Downloading a TinyDistro image to a Layerscape board using flex-installer

Perform the following steps to download the TinyDistro image to a Layerscape board using flex-installer:

1. Connect the removable storage device to the Linux host machine.
2. Install flex-installer to deploy TinyDistro images (this is a one-time activity):

$ git clone https://github.com/nxp-imx/meta-nxp-desktop.git -b
1f-6.1.1-1.0.0-1langdale

$ cp meta-nxp-desktop/scripts/flex-installer 1.14.2110.1f /usr/bin/flex-

installer

$ sudo chmod a+x /usr/bin/flex-installer

S which flex-installer

3. Execute the following flex-installer command to install TinyDistro image:

$ flex-installer -i pf -d <device>;
S flex-installer -f <firmware xxx.img> -d <device>

4. Unplug removable storage device from the Linux host and plug into the reference board.
5. Make sure that the DIP switch settings on the board are correct to boot from the desired boot medium.

LLDPUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. L6.1.1_1.0.0_23.08 — 4 August 2023

2471053

NXP Semiconductors

LLDPUG

Layerscape Linux Distribution POC User Guide

6. Power on the board and enter into U-Boot to allocate the Ethernet interface:

=> pri bootcmd

bootcmd=env exists mcinitcmd && mmcinfo; mmc read 0x80001000 0x6800 0x800;

env exists mcinitcmd && env exists secureboot && mmc read

0x806C0000 0x3600 0x20 && esbc validate 0x806C0000;env exists mcinitcmd &&
fsl mc lazyapply dpl 0x80001000;run distro bootcmd;run sd bootcmd;env

exists secureboot && esbc halt;
=> mmc read 0x80001000 0x6800 0x800
=> fsl mc lazyapply dpl 0x80001000

7. Run one of the following commands as applicable:

=> run sd bootcmd (for SD/eMMC boot)

=> run nor bootcmd (for IFC-NOR boot)

=> run gspi bootcmd (for QSPI-NOR boot)

=> run xspi bootcmd (for FlexSPI-NOR boot)

8. Log in to TinyDistro as “root/root” and bring up a network interface:

ifgonfig -a

Dynamic IP address assignment:
udhcpc -i <port name in TinyDistro>
Static IP address assignment:

r H= 0 FH= 0

up

ifconfig <port name in TinyDistro> <IP address> netmask <netmask address>

9. Download the board image:

S wget <httpserver>/flex-installer.sh && chmod a+x flex-installer.sh && sudo

mv flex-installer.sh /usr/bin/flex-installer
S wget <httpserver>/<firmware xxx.img>
$ wget <httpserver>/<ls-image-main-xxx.tar.gz>

10. Execute the following flex-installer command to install the Layerscape image:

$ fdisk -1
$ flex-installer -i pf -d <device>;

$ flex-installer -f <firmware xxx.img> -b <boot xxx.tgz> -r <ls-image-

mainxxx.tar.gz> -d <device>

11. Reboot in the TinyDistro system.

$ reboot

4.7.2 Quick start guide for LS1012ARDB

This section explains:

* Introduction
e L S1012ARDB reference information
e Program Layerscape LDP composite firmware image

LLDPUG All information provided in this document is subject to legal disclaimers.

© 2023 NXP B.V. All rights reserved.

User guide Rev. L6.1.1_1.0.0_23.08 — 4 August 2023

25/1053

NXP Semiconductors

LLDPUG

Layerscape Linux Distribution POC User Guide

4.7.2.1 Introduction

The following sections describe the procedure to program Layerscape LDP composite firmware for
LS1012ARDB. Also, this section explains the most common use case procedure to download and deploy
Layerscape LDP default images to LS1012ARDB using flex-installer. For more information, see Section 4.2.

For more information on the different components of the board, and on how to configure and boot the board,
see LS1012A Reference Design Board Getting Started Guide.

4.7.2.2 LS1012ARDB reference information

This section provides general information about LS1012ARDB which may come in handy as a reference while
completing steps for deploying Layerscape LDP that follow.

4.7.2.2.1 Ethernet port map

The table below shows how the Ethernet ports can be mapped to Linux, U-Boot, and labels on the 1U box.

Label on 1U box Port name in U-Boot Port name in Linux based |Comments
userland

ETH_1 pfe_eth0 eth0 1G SGMII

ETH 2 pfe_eth1 eth1 1G RGMII

The following figures show the LS1012ARDB chassis front and rear views:

LLDPUG All information provided in this document is subject to legal disclaimers.

User guide Rev. L6.1.1_1.0.0_23.08 — 4 August 2023

© 2023 NXP B.V. All rights reserved.

26 /1053

https://www.nxp.com/products/processors-and-microcontrollers/arm-based-processors-and-mcus/qoriq-layerscape-arm-processors/qoriq-ls1012a-reference-design-board:LS1012A-RDB?tab=Documentation_Tab

NXP Semiconductors

LLDPUG

Layerscape Linux Distribution POC User Guide

12V LED (D4)

Reset switch
Li Baftery

USE 2.0 AB (Debug)

connactor

connector Type AB port connector

LS1012ARDB

SDHC WiFi card

Front panel

Antenna SMA

conm?;nw?(rw v) Em‘gr?'é_'rﬁzr;“em' Eme"i‘g't_trﬁf’“‘gm’
Back panel

4.7.2.2.2 System memory map
Start physical address End physical address Memory type Size
0x00_0000_0000 0x00 000F FFFF Secure Boot ROM 1MB
0x00_ 0100 0000 0x00 OFFF FFFF CCSR 240 MB
0x00 1000 _0000 0x00 1000 FFFF OCRAM1 64 KB
0x00 1001 0000 0x00 1001 FFFF OCRAM2 64 KB
0x00_ 4000 0000 0x00 S5FFF FFFF QSPI 512 MB
0x00_8000_0000 0x00 FFFF_FFFF DRAM 2GB
0x08 8000 0000 O0x0F FFFF_FFFF DRAM2 30G
0x40 0000 _0000 O0x47 FFFF _FFFF PCI Express1 32G

LLDPUG

All information provided in this document is subject to legal disclaimers.

© 2023 NXP B.V. All rights reserved.

User guide

Rev. L6.1.1_1.0.0_23.08 — 4 August 2023

2711053

NXP Semiconductors

LLDPUG

Layerscape Linux Distribution POC User Guide

4.7.2.2.3 Supported boot options

LS1012ARDB supports the following boot options:
* QSPI NOR flash

4.7.2.2.4 Onboard switch options

The RDB has user selectable switches for evaluating different boot options for the LS1012A device as given in
the table below (‘0" is OFF, '1" is ON).

Table 10. Booting from QSPI NOR flash bank1

1 2 3 4 5 6 7 8
SWi1 1 0 1 0 0 1 1 0
Sw2 0 0 0 0 0 0 0 0

Table 11. Booting from QSPI NOR flash bank2

1 2 3 4 5 6 7 8
Swi1 1 0 1 0 0 1 1 0
Sw2 0 0 0 0 0 0 1 0

4.7.2.2.5 Flash bank usage

The LS1012ARDB supports onboard Spansion S25FS512SAGMFI011 quad-SPI serial flash memory with 64
MB space. There are two virtual banks on the RDB that can be selected through DIP switch settings (see Table
1 and Table 2 above).

To protect the default U-Boot in QSPI NOR flash bank1, it is a convention employed by NXP to deploy work
images into QSPI NOR flash bank2, and then switch to QSPI NOR flash bank2 for testing. Switching to flash2
can be done in software using I12C commands and effectively swaps QSPI NOR flash bank1 with QSPI NOR
flash bank2. This protects QSPI NOR flash bank1 and keeps the board bootable under all circumstances.

U-Boot 2020.04-21450-gbdela7f (Sep 18 2020 - 21:58:27 +0800)
SoC: LS1012AE Rev2.0 (0x87040020)
Clock Configuration:

CPUO (A53) : 1000 MHz

Bus: 250 MHz DDR: 1000 MT/s
Reset Configuration Word (RCW) :
00000000: 0800000a 00000000 00000000 00000000
00000010: 35080000 cO000000c 40000000 00001800
00000020: 00000000 00000000 00000000 00014571
00000030: 00000000 18c2al20 00000096 00000000
DRAM: 958 MiB
Using SERDES1 Protocol: 13576 (0x3508)
MMC : FSL SDHC: 0, FSL SDHC: 1
Loading Environment from SPI Flash... SF: Detected s25fs512s with page size 256

Bytes, erase size 256 KiB, total 64 MiB
OK
In: serial
Out: serial
Err: serial
Model: LS1012A RDB Board
Board: LS1012ARDB Version: RevE, boot from QSPI: bank2
Net: SF: Detected s25fs512s with page size 256 Bytes, erase size 256 KiB,
total 64 MiB
LLDPUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.
User guide Rev. L6.1.1_1.0.0_23.08 — 4 August 2023

NXP Semiconductors LLDPUG

Layerscape Linux Distribution POC User Guide

PFE class pe firmware for Linux
PFE tmu pe firmware for Linux
PFE class pe firmware for u-boot
PFE tmu pe firmware for u-boot
eth0: pfe eth0, ethl: pfe ethl
=>

How to boot from QSPI NOR flash bank2
Note:

The 12C I0-expander can be used to override the onboard DIP switch settings.

1.

B ow

To check which bank booted, refer to the U-Boot log. You will see either "QSPI: bank 1" or "QSPI: bank2"
printed in the log.
For example: Board: LS1012ARDB Version: unknown, boot from QSPI: bank1

. i2C command to switch from QSPI NOR flash bank1 to QSPI NOR flash bank2 “ i2c mw 0x24 0x7 0xfc;

i2c mw 0x24 0x3 0xf5 “
Program QSPI flash as per flash layout
To boot from QSPI NOR flash bank2 give “reset” command.

. To move back to QSPI NOR flash bank1 from QSPI NOR flash bank2, power on/off the board or use “i2¢c

mw 0x24 0x3 0xf4 “ and then enter “reset” command.

4.7.2.3 Program Layerscape LDP composite firmware image

To program Layerscape LDP composite firmware image in QSPI NOR flash on LS1012ARDB:

1.

Copy firmware on host machine to TFTP server.

cp <build>/tmp/deploy/image/1lsl012ardb/firmware 1s1012ardb gspiboot.img ~/
tftp/

. Reset the board to boot from QSPI NOR flash 1. Check U-Boot log for message.

Board: LS1012ARDB Version: unknown, boot from QSPI: bankl

. Switch from QSPI NOR flash 1 to flash 2:

=> i2c mw 0x24 0x7 Oxfc
=> i12c mw 0x24 0x3 0xf5

. Under U-Boot, download the firmware to the reference board using one of the following options:

¢ Load firmware from the TFTP server

=> tftp $load addr firmware 1sl0l2ardb gspiboot.img

¢ Load firmware image from partition on mass storage device (SD, USB, or SATA)

=> load mmc <device:part> $load addr firmware 1sl0l2ardb gspiboot.img

For example:

=> load mmc 0:2 $load addr firmware 1s10l12ardb gspiboot.img
Or

=> load usb <device:partition> $load addr firmware 1sl0l2ardb gspiboot.img

Or

=> load scsi <device:partition> $load addr firmware 1s10l12ardb gspiboot.img

Note:

LLDPUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. L6.1.1_1.0.0_23.08 — 4 August 2023

29 /1053

NXP Semiconductors LLDPUG

Layerscape Linux Distribution POC User Guide

Use the following command if the SD card is formatted/created using Layerscape LDP flex-installer
command:

=> Joad <interface> [<dev[:part]> [<addr> [<filename> [bytes [pos]]]]]

For example:

=> Joad mmc 0:2 $load addr firmware 1sl10l12ardb_gspiboot.img

Use the following command if the SD card is formatted/created on a Windows PC:

=> fatload <interface> [<dev/[:part]> [<addr> [<filename> [bytes [pos]]]]]

For example:

=> fatload mmc 0:2 $load addr firmware 1lsl0Ol2ardb gspiboot.img

Use the following command if the SD card is formatted/created on a Linux PC:

=> ext2load <interface> [<dev/[:part]> [<addr> [<filename> [bytes [pos]]]]]

For example:

=> ext2load mmc 0:2 $load addr firmware 1lsl0l2ardb gspiboot.img

Also note that Layerscape LDP flex-installer command puts the images on the second patrtition, so 0:2
is used in the 1oad command. If the SD card is formatted on Windows PC or Linux PC for single partition
only, then 0 should be used instead of 0:2 in the fatload/ext2load command.

5. Program the firmware to QSPI NOR flash 2.

=> sf probe 0:0
=> sf erase 0 +$filesize && sf write $load addr 0 $filesize

6. Reset and boot the board from QSPI NOR flash 2. The system will automatically boot up TinyDistro (log
in using root/root) or Layerscape LDP distro (log in using user/user) available on the removable storage
device.

=> reset

4.7.3 Quick start guide for TWR-LS1021A

This section explains:

e Introduction
e TWR-LS1021A reference information
¢ Program Layerscape LDP composite firmware image

4.7.3.1 Introduction

The following sections describe the procedure to program Layerscape LDP composite firmware for TWR-
LS1021A. Also, this section explains the most common use case procedure to download and deploy
Layerscape LDP default images to to TWR-LS1021A using flex-installer. For more information, see Section 4.2.

For more information on the different components of the board, and on how to configure and boot the board,
see TWR-LS1021A Reference Design Board Getting Started Guide.

4.7.3.2 TWR-LS1021A reference information
This section provides general information about TWR-LS1021A which may come in handy as a reference while

completing steps for deploying Layerscape LDP that follow.

LLDPUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. L6.1.1_1.0.0_23.08 — 4 August 2023

30/1053

https://www.nxp.com/products/processors-and-microcontrollers/arm-based-processors-and-mcus/qoriq-layerscape-arm-processors/qoriq-ls1021a-tower-system-module:TWR-LS1021A?tab=Documentation_Tab

NXP Semiconductors

LLDPUG

4.7.3.2.1 Port map

Layerscape Linux Distribution POC User Guide

The table below shows the mapping between U-Boot port name and Linux TinyDistro port name.

Port name in U-Boot

Port name in TinyDistro

eTSEC1 eth0

eTSEC2 eth1

eTSEC3 eth2

4.7.3.2.2 System memory map

Start Physical Address End Physical Address Memory Type Size
0x0100 0000 0xOFFF FFFF CCSR 240MB
0x1000_0000 0x1000_ FFFF OCRAMO 64 KB
0x1001 0000 0x1001 FFFF OCRAM1 64 KB
0x2000_0000 0x20FF_ FFFF DCSR 16 MB
0x4000 0000 Ox5FFF FFFF QsPI %12 MB
0x6000_0000 0x67FF_FFFF NOR Flash 128 MB
0x7FBO_0000 0x7FBO_OFFF Board CPLD 4KB

DDR 2GB

0x8000_0000

OxFFFF _FFFF

4.7.3.2.3 Supported boot options

TWR-LS1021A supports the following boot options:

* NOR
* SD

4.7.3.2.4 Onboard switch options

The RDB has user selectable switches for evaluating different boot options for the TWR-LS1021A device as
given in the table below ('0' is OFF, '1"is ON).

Boot source SW2[1:8] SW3[1:8]

NOR bank 0 (default) 10001111 01100101

NOR bank 1 10001111 01101101

SD card 00101111 01100101

LLOPUG Al information provided in this document is subject to legal disclaimers. ©2023 NXP B.V. Al rights reserved.
User guide Rev. L6.1.1_1.0.0_23.08 — 4 August 2023

31/1053

NXP Semiconductors LLDPUG

Layerscape Linux Distribution POC User Guide

Note that changing the boot device configuration from the default setting may require additional changes in
the RCW or in other code images. For information on RCW naming convention for TWR-LS1021A, see https://
github.com/nxp-gorig/rcw/blob/master/Is1021atwr/README.

4.7.3.2.5 Flash Bank usage

TWR-LS1021A provides a special feature that allows a single NOR flash to be divided into multiple parts

called “banks”. This is done by board-level logic that modifies address signals. As there is only one NOR flash
physically, the banks are sometimes called "virtual" banks. The benefit of this feature is that it allows more than
one set of images to be independently deployed to one NOR flash. This is very helpful during development
because the U-Boot image in one bank can be used to program an image set into a different bank. If the new
images are flawed, the old images are still functional. The NOR flash on TWR-LS1021A is divided into two
banks. The banks are called bank 0 and bank 1. To determine the current bank, refer to the example U-Boot log
given below:

U-Boot 2020.04-gbdela7£952 (Sep 27 2020 - 17:36:54 +0800)
CPU: Freescale LayerScape LS1021E, Version: 2.0, (0x87081120)
Clock Configuration:
CPUO (ARMV7) :1200 MHz,
Bus:300 MHz, DDR:800 MHz (1600 MT/s data rate),
Reset Configuration Word (RCW) :
00000000: 0608000c 00000000 00000000 00000000
00000010: 30000000 00007900 e0025a00 21046000
00000020: 00000000 00000000 00000000 18000000
00000030: 00080000 481b7340 00000000 00000000
Model: LS1021A TWR Board
Board: LS1021ATWR

CPLD: V3.2
PCBA: V2.0
VBank: 1

DRAM: 1 GiB

Using SERDES1 Protocol: 48 (0x30)

Firmware 'Microcode version 0.0.1 for LS1021a r1.0' for 1021 V1.0
QE: uploading microcode 'Microcode for LS102la rl.0' version 0.0.1
Flash: 128 MiB

MMC: FSL_SDHC: 0

Loading Environment from Flash... OK

EEPROM: NXID v16777216

In: serial

Out: serial

Err: serial

SECO: RNG instantiated

Net: ethO: ethernet@2dl10000, ethl: ethernet@2d50000, eth2: ethernet@2d90000
=>

4.7.3.2.6 Boot option switching

Boot option switching can be performed in U-Boot using the following commands:
» Switch to NOR bank 0 (default):
=>boot bank 0

e Switch to NOR bank 1:
=>boot bank 1

LLDPUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. L6.1.1_1.0.0_23.08 — 4 August 2023

32/1053

https://github.com/nxp-qoriq/rcw/blob/master/ls1021atwr/README
https://github.com/nxp-qoriq/rcw/blob/master/ls1021atwr/README

NXP Semiconductors LLDPUG

Layerscape Linux Distribution POC User Guide

4.7.3.3 Program Layerscape LDP composite firmware image

This topic explains steps to program NOR firmware image to IFC NOR flash on TWR-LS1021A and SD
firmware image to SD card on TWR-LS1021A.

To program Layerscape LDP composite NOR firmware image to IFC NOR flash on TWR-LS1021A, perform the
following steps:

1. Copy firmware on host machine to TFTP server.

$ cp <build>/tmp/deploy/image/lsl02latwr/firmware 1sl02latwr norboot.img ~/
tftp/

2. Reboot the board from NOR bank 0 and stop autoboot to enter U-Boot prompt.
3. Under U-Boot, download the firmware to the reference board using one of the following options:
¢ Load firmware from the TFTP server

=> tftp $load addr firmware 1sl02latwr norboot.img

* Load firmware image from partition on mass storage device (SD, USB, or SATA)

=> load mmc <device:part> $load addr firmware 1sl02latwr norboot.img

For example:

=> load mmc 0:2 $load addr firmware 1sl02latwr norboot.img

or

=> load usb <device:part> $load addr firmware 1sl02latwr norboot.img

or

=> load scsi <device:part> Sload addr firmware 1sl02latwr norboot.img

Note:
Use the following command if the SD card is formatted/created using Layerscape LDP flex-installer
command:

=> Joad <interface> [<dev[:part]> [<addr> [<filename> [bytes [pos]]]]]

For example:

=> Joad mmc 0:2 $load addr firmware 1lsl02latwr norboot.img

Use the following command if the SD card is formatted/created on a Windows PC:

=> fatload <interface> [<dev/[:part]> [<addr> [<filename> [bytes [pos]]]]]

For example:

=> fatload mmc 0:2 $load addr firmware lsl02latwr norboot.img

Use the following command if the SD card is formatted/created on a Linux PC:

=> ext2load <interface> [<dev/[:part]> [<addr> [<filename> [bytes [pos]]]]]

For example:

=> ext2load mmc 0:2 $load addr firmware lsl02latwr norboot.img

LLDPUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. L6.1.1_1.0.0_23.08 — 4 August 2023

33/1053

NXP Semiconductors LLDPUG

Layerscape Linux Distribution POC User Guide

The Layerscape LDP flex-installer command puts the images on the second partition, so 0: 2 is used in
the 1oad command. If the SD card is formatted on Windows PC or Linux PC for single partition only, then
0 should be used instead of 0:2 in the fatload/ext21oad command.

4. To program the composite firmware into IFC NOR flash, perform the following steps:
* To program alternate bank:

=> protect off 64000000 +$filesize && erase 64000000 +$filesize && cp.b
$load addr 64000000 Sfilesize

* To program current bank:

=> protect off 60000000 +$filesize && erase 60000000 +$filesize && cp.b
$load addr 60000000 $filesize

5. Reset and boot the board from IFC NOR flash. The system will automatically boot up TinyDistro (log in
using root/root) or Layerscape LDP distro (log in using user/user) available on the removable storage
device.

* To boot from NOR flash bank 1.

=> boot bank 1

¢ To boot from NOR flash bank 0.
=> boot bank 0

To program Layerscape LDP composite SD firmware image to SD card on TWR-LS1021A, perform the
following steps:

1. Copy firmware on host machine to TFTP server.

cp <build>/tmp/deploy/image/lsl02latwr/firmware 1sl02latwr sdboot.img ~/tftp/

2. Reboot the board from NOR bank 0 and stop autoboot to enter U-Boot prompt.
3. Under U-Boot, download the firmware to the reference board using one of the following options:
* Load firmware from the TFTP server

=> tftp $load addr firmware 1sl02latwr sdboot.img

¢ Load firmware image from partition on mass storage device (SD, USB, or SATA)

=> load mmc <device:part> $load addr firmware 1sl02latwr sdboot.img

For example:

=> load mmc 0:2 $load addr firmware 1sl02latwr sdboot.img

or

=> load usb <device:partition> $load addr firmware 1sl02latwr sdboot.img

or

=> load scsi <device:part> $load addr firmware 1sl02latwr sdboot.img

Note:
Use the following command if the SD card is formatted/created using Layerscape LDP flex-installer
command:

=> Jload <interface> [<dev/[:part]> [<addr> [<filename> [bytes [pos]]]]]

For example:

=> load mmc 0:2 $load addr firmware lsl02latwr sdboot.img

LLDPUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. L6.1.1_1.0.0_23.08 — 4 August 2023

34/1053

NXP Semiconductors LLDPUG

Layerscape Linux Distribution POC User Guide

Use the following command if the SD card is formatted/created on a Windows PC:

=> fatload <interface> [<dev/[:part]> [<addr> [<filename> [bytes [pos]]]]]

For example:

=> fatload mmc 0:2 $load addr firmware 1sl02latwr sdboot.img

Use the following command if the SD card is formatted/created on a Linux PC:

=> ext2load <interface> [<dev/[:part]> [<addr> [<filename> [bytes [pos]]]]]

For example:

=> ext2load mmc 0:2 $load addr firmware 1lsl02latwr sdboot.img

Also note that Layerscape LDP flex-installer command puts the images on the second partition, so 0:2
is used in the 1oad command. If the SD card is formatted on Windows PC or Linux PC for single partition
only, then 0 should be used instead of 0:2 in the fatload/ext2load command.

4. Write the firmware to SD card.

=> mmc dev 0; mmc write $load addr 8 1£000

5. Make sure the DIP switch settings on the board are for SD card.

6. Reset and boot the board from SD card. The system will automatically boot up TinyDistro (log in using root/
root) or Layerscape LDP distro (log in using user/user) available on the removable storage device.

4.7.4 Quick start guide for LS1028ARDB

This section explains:

* |ntroduction
¢ LS1028ARDB reference information
e Program Layerscape LDP composite firmware image

4.7.4.1 Introduction

The following sections describe the procedure to program Layerscape LDP composite firmware for
LS1028ARDB. Also, this section explains the most common use case procedure to download and deploy
Layerscape LDP default images to LS1028ARDB using flex-installer. For more information, see Section 4.2.

For more information on the different components of the board, and on how to configure and boot the board,
see LS1028A Reference Design Board Getting Started Guide.

4.7.4.2 LS1028ARDB reference information

This section provides general information about LS1028ARDB which may come in handy as a reference while
completing steps for deploying Layerscape LDP images that are mentioned in sections that follow.

4.7.4.2.1 Ethernet port map

Port name in chassis |Port name in U-Boot |Port name in Yocto Port name in Linux Description
based TinyDistro based userland

1G MAC1 enetc-0 eno0 eno0 ENETC PF O

connected over SGMII

on SoC lane A
1G SWPO swp0 swp0 swp0 Ethernet switch port 0
LLDPUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.
User guide Rev. L6.1.1_1.0.0_23.08 — 4 August 2023

35/1053

https://www.nxp.com/support/developer-resources/software-development-tools/qoriq-developer-resources/ls1028a-reference-design-board:LS1028ARDB?tab=Documentation_Tab

NXP Semiconductors

LLDPUG

Layerscape Linux Distribution POC User Guide

Switch front panel
ports are all connected
over QSGMII on SoC
lane B

1G SWP1 swp1 swp1 swp1 Ethernet switch port 1
1G SWP2 swp2 swp2 swp2 Ethernet switch port 2
1G SWP3 swp3 swp3 swp3 Ethernet switch port 3
4.7.4.2.2 System memory map
Table 12. System memory map
Start address End address Size Allocation Comment
0x0000_0000_0000 0x0000_000F_FFFF 1MB CCSR - Boot ROM 64 KB
0x0000_0010_0000 0x0000_O0OFF_FFFF |15 MB Reserved
0x0000_0100_0000 0x0000_OFFF_FFFF |240 MB CCSR
0x0000_1000_0000 0x0000_10FF_FFFF |16 MB Reserved
0x0000_1100_0000 0x0000_11FF_FFFF 16 MB Reserved
0x0000_1200_0000 0x0000_13FF_FFFF |32 MB Reserved
0x0000_1400_0000 0x0000_17FF_FFFF |64 MB Reserved
0x0000_1800_0000 0x0000_181F_FFFF |2 MB OCRAM 128 KB
0x0000_1820_0000 0x0000_182F_FFFF 1MB Reserved
0x0000_1830_0000 0x0000_18FF_FFFF |13 MB Reserved
0x0000_1900_0000 0x0000_19FF_FFFF |16 MB CoreSight STM 16 MB
0x0000_1A00_0000 0x0000_1BFF_FFFF |32 MB Reserved
0x0000_1C00_0000 0x0000_1CFF_FFFF |16 MB Reserved
0x0000_1D00_0000 0x0000_1FFF_FFFF |48 MB Reserved
0x0000_2000_0000 0x0000_2FFF_FFFF 256 MB FlexSPI Region #1 More FlexSPI space
below
0x0000_3000_0000 0x0000_3FFF_FFFF |256 MB Reserved
0x0000_4000_0000 0x0000_5FFF_FFFF |512 MB Reserved
0x0000_6000_0000 0x0000_7FFF_FFFF |512 MB Reserved
0x0000_8000_0000 0x0000_9FFF_FFFF |512 MB GPP DRAM Region
#1(0-2 GB)
0x0000_A000_0000 0x0000_BFFF_FFFF |512 MB
0x0000_C000_0000 0x0000_DFFF_FFFF |512 MB
0x0000_E000_0000 0x0000_FFFF_FFFF |512 MB
0x0001_0000_0000 0x0001_EFFF_FFFF |3.75 GB Reserved
0x0001_FO000_0000 0x0001_FO7F_FFFF |8 MB ECAM config space Embedded RC
+EPECAM (256 MB)
0x0001_F080_0000 0x0001_FO9F FFFF 2 MB Register block space
0x0001_FOAO_0000 0x0001_F7FF_FFFF |118 MB Reserved

LLDPUG

All information provided in this document is subject to legal disclaimers.

© 2023 NXP B.V. All rights reserved.

User guide

Rev. L6.1.1_1.0.0_23.08 — 4 August 2023

36/1053

NXP Semiconductors

LLDPUG

Table 12. System memory map...continued

Layerscape Linux Distribution POC User Guide

Start address End address Size Allocation Comment

0x0001_F800_0000 0x0001_F83F_FFFF |4 MB Reserved

0x0001_F840_0000 0x0001_FBFF_FFFF |60 MB Reserved

0x0001_FC00_0000 0x0001_FC3F_FFFF |4 MB Reserved

0x0001_FC40_0000 0x0001_FFFF_FFFF |60 MB Reserved

0x0002_0000_0000 0x0003_FFFF_FFFF |8 GB Reserved

0x0004_0000_0000 0x0004_OFFF_FFFF |256 MB SPI Hole

0x0004_1000_0000 0x0004_FFFF_FFFF |3.75GB FlexSPI Region #2 3.75GB

(256 MB - 4 GB)

0x0005_0000_0000 0x0005_FFFF_FFFF |4 GB Reserved

0x0006_0000_0000 0x0006_FFFF_FFFF |4 GB Reserved

0x0007_0000_0000 0x0007_3FFF_FFFF |1 GB DCSR

0x0007_4000_0000 0x0007_FFFF_FFFF |3 GB Reserved

0x0008_0000_0000 0x0008_1FFF_FFFF |512 MB Reserved

0x0008_2000_0000 0x000B_FFFF_FFFF [15.5GB Reserved

0x000C_0000_0000 0x000F_FFFF_FFFF |16 GB Reserved

0x0010_0000_0000 0x001F_FFFF_FFFF |64 GB Reserved

0x0020_0000_0000 0x0020_7FFF_FFFF |2 GB Reserved

0x0020_8000_0000 0x003F_FFFF_FFFF |126 GB GPP DRAM Region #2

0x0040_0000_0000 0x005F_FFFF_FFFF |128 GB Reserved

0x0060_0000_0000 0x007F_FFFF_FFFF |128 GB GPP DRAM Region #3

0x0080_0000_0000 0x0087_FFFF_FFFF |32 GB PCI Express 1 High-speed I/O
(0x0080_0000_0000 -
O0x00FF_FFFF_FFFF)

0x0088_0000_0000 0x008F_FFFF_FFFF |32 GB PCI Express 2

4.7.4.2.3 Supported boot options

LS1028ARDB supports the following boot options:
* FlexSPI NOR flash (referred to as "FSPI" or "FSPI flash" in the following sections). CS refers to Chip Select.

* eMMC
e SD card (SDHC1)

4.7.4.2.4 Onboard switch options

The LS1028ARDB board supports user selectable switches for evaluating different boot options for the
LS1028A device as given in the table below ('0' is OFF, '1" is ON).

Boot source SW2[1:8] SW3[1:8] SW5[1:8]

FSPI NOR (default) 1111_1000 1111_0000 0011_1001
SD Card (SDHC1) 1000_1000 1111_0000 0011_1001
eMMC 1001_1000 1111_0000 0011_1001

LLDPUG

All information provided in this document is subject to legal disclaimers.

© 2023 NXP B.V. All rights reserved.

User guide

Rev. L6.1.1_1.0.0_23.08 — 4 August 2023

37/1053

NXP Semiconductors LLDPUG

Layerscape Linux Distribution POC User Guide

In addition to the above switch settings, make sure the following jumper settings are correct.

Table 13. LS1028ARDB jumper settings
Jumper Type Name/function Description

J6 1x2-pin connector TA_BB_EN enable Open: TA_BB_TMP_DETECT_B pin is High
(default value)

Shorted: TA_ BB_TMP_DETECT_B pin is Low

J7 1x2-pin connector VBAT_EN Open: Disable battery backup for TA_BB_VDD
(default value)

Shorted: Enable battery backup for TA_BB_
VDD

J27 1x2-pin connector PROG_MTR voltage control (for |Open: PROG_MTR pin is powered off (default
NXP use only) value)

Shorted: PROG_MTR pin is powered by
OvVvDD (1.8 V)

J28 1x2-pin connector TA_PROG_SFP voltage control |Open: TA_PROG_SFP pin is powered off
(for NXP use only) (default value)

Shorted: TA_PROG_SFP pin is powered by
OvDD (1.8 V)

4.7.4.2.5 FlexSPI NOR Flash Chip-select

FlexSPI NOR flash is a simple and convenient destination for deploying images so it is frequently used.

The benefit of this feature is that it allows more than one set of images to be independently deployed to the
one NOR flash. This is very helpful during development because you can use the U-Boot image in one chip-
select to program an image set into a different chip-select. If the new images are flawed, the old images are still
functional to let you deploy corrected images.

The logic on the board usually allows the NOR flash to be accessed from different CS (chip select) option.
Each CS is connected to dedicated flash devices. U-Boot prints which CS is loaded from. The output looks like
following.

=> NOTICE: Fixed DDR on board

NOTICE: 4 GB DDR4, 32-bit, CL=11, ECC on

NOTICE: BL2: vl.5(release) :LSDK-20.12-Internal

NOTICE: BL2: Built : 07:04:31, Nov 14 2020

NOTICE: BL2: Booting BL31

NOTICE: BL31l: vl.5(release) :LSDK-20.12-Internal

NOTICE: BL31: Built : 07:04:34, Nov 14 2020

NOTICE: Welcome to LS1028 BL31 Phase

U-Boot 2020.04-gc7ec91blfd4d (Nov 14 2020 - 07:04:19 +0800)

SoC: LS1028AE Revl.0 (0x870b0010)

Clock Configuration:
CPUO (A72) :1500 MHz CPUl(A72) :1500 MHz
Bus: 400 MHz DDR: 1600 MT/s

Reset Configuration Word (RCW) :
00000000: 3c004010 00000030 00000000 00000000
00000010: 00000000 018f0000 0030cO000 00000000
00000020: 020031a0 00002580 00000000 00003296
00000030: 00000000 00000010 00000000 000O0O0O0OO
00000040: 00000000 0O0OOOOO0OO 00000000 00OOO0O0OOO
00000050: 00000000 0OOOOOOOO 00000000 00000000
00000060: 00000000 00000000 200e705a 00000000
00000070: bb580000 00000000

Model: NXP Layerscape 1028a RDB Board

LLDPUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. L6.1.1_1.0.0_23.08 — 4 August 2023

38/1053

NXP Semiconductors LLDPUG

Layerscape Linux Distribution POC User Guide

Board: LS1028AE Revl.0-RDB, Version: C, boot from NOR
FPGA: v5 (RDB)

SERDES1 Reference : Clockl = 100.00MHz Clock2 = 100.00MHz
DRAM: 3.9 GiB

DDR 3.9 GiB (DDR4, 32-bit, CL=11, ECC on)

Using SERDES1 Protocol: 47960 (0xbb58)

PCIel: pcie@3400000 Root Complex: no link

PCIe2: pcie@3500000 Root Complex: no link

WDT : Started with servicing (60s timeout)

MMC : FSL_SDHC: 0, FSL SDHC: 1

Loading Environment from SPI Flash... SF: Detected mt35xu02g with page size 256
Bytes, erase size 128 KiB, total 256 MiB

OK

EEPROM: NXID vl

In: serial

Out: serial

Err: serial

Net: ethO: enetc-0, eth2: enetc-2, eth4: swp0O, eth5: swpl, eth6: swp2, eth7:
swp3

=>

Boot option switching can be performed in U-Boot using the following statements.

» Switch to FlexSPI NOR flash (default):

=>gixis reset

¢ Switch to SD:

=>gixis reset sd

¢ Switch to eMMC:

=>gixis reset emmc

4.7.4.3 Program Layerscape LDP composite firmware image

This topic explains steps to program FlexSPI NOR firmware image to FlexSPI NOR flash on LS1028ARDB and
SD/eMMC firmware image to SD/eMMC card on LS1028ARDB.

To program Layerscape LDP composite firmware image to FlexSPI NOR flash on LS1028ARDB:

1. Copy firmware on host machine to TFTP server.

S cp <build>/tmp/deploy/image/1s1028ardb/firmware 1s1028ardb xspiboot.img ~/
tftp/

2. Reboot the board from FlexSPI NOR flash and stop autoboot to enter U-Boot prompt.
3. Under U-Boot, download the firmware to the reference board using one of the following options:
* Load firmware from the TFTP server

=> tftp $load addr firmware 1s1028ardb xspiboot.img

¢ Load firmware image from partition on mass storage device (SD, USB, or SATA)

=> load mmc <device:part> $load addr firmware 1s1028ardb xspiboot.img

For example:

=> load mmc 0:2 $load addr firmware 1s1028ardb xspiboot.img

LLDPUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. L6.1.1_1.0.0_23.08 — 4 August 2023

39/1053

NXP Semiconductors LLDPUG

Layerscape Linux Distribution POC User Guide

Or

=> load usb <device:part> $load addr firmware 1s1028ardb xspiboot.img

Or

=> load scsi <device:part> $load addr firmware 1s1028ardb xspiboot.img

Note:
Use the following command if the SD card is formatted/created using Layerscape LDP flex-installer
command:

=> Jload <interface> [<dev/[:part]> [<addr> [<filename> [bytes [pos]]]]]

For example:

=> Joad mmc 0:2 $load addr firmware 1s1028ardb xspiboot.img

Use the following command if the SD card is formatted/created on a Windows PC:

=> fatload <interface> [<dev/[:part]> [<addr> [<filename> [bytes [pos]]]]]

For example:

=> fatload mmc 0:2 $load addr firmware 1s1028ardb xspiboot.img

Use the following command if the SD card is formatted/created on a Linux PC:

=> extZload <interface> [<dev/[:part]> [<addr> [<filename> [bytes [pos]]]]]

For example:

=> ext2load mmc 0:2 $load addr firmware 1sl1028ardb xspiboot.img

Also note that Layerscape LDP flex-installer command puts the images on the second partition, so 0:2
is used in the 1oad command. If the SD card is formatted on Windows PC or Linux PC for single partition
only, then 0 should be used instead of 0:2 in the fatload/ext2load command.

4. Program the firmware to FlexSPI NOR flash.

=> sf probe 0:0
=> sf erase 0 +Sfilesize && sf write $load addr 0 S$filesize

5. Reset and boot the board from FlexSPI NOR flash. The system will automatically boot up TinyDistro (log
in using root/root) or Layerscape LDP distro (log in using user/user) available on the removable storage
device.

=> gixis reset

To program Layerscape LDP composite firmware image to SD/eMMC on LS1028ARDB:

1. Copy firmware on host machine to TFTP server.
e For SD boot:

$ cp <build>/tmp/deploy/image/1s1028ardb/firmware 1s1028ardb sdboot.img ~/
tftp/

¢ For eMMC boot:

cp <build>/tmp/deploy/image/1lsl028ardb/firmware 1s1028ardb emmcboot.img ~/
tftp/

2. Reboot the board from FlexSPI NOR flash and stop autoboot to enter U-Boot prompt.
3. Under U-Boot, download the firmware to the reference board using one of the following options:
* Load firmware from the TFTP server

LLDPUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. L6.1.1_1.0.0_23.08 — 4 August 2023

40/1053

NXP Semiconductors LLDPUG

Layerscape Linux Distribution POC User Guide

For SD boot:
=> tftp $load addr firmware 1s1028ardb sdboot.img
For eMMC boot:

=> tftp $load addr firmware 1s1028ardb emmcboot.img

¢ Load firmware image from partition on mass storage device (SD, USB, or SATA)
For SD boot:

=> load mmc <device:part> $load addr firmware 1s1028ardb sdboot.img

For example:

=> load mmc 0:2 $load addr firmware 1sl028ardb sdboot.img

or

=> load usb <device:part> $load addr firmware 1s1028ardb sdboot.img

or

=> load scsi <device:partition> $load addr firmware 1sl1028ardb sdboot.img

For eMMC boot:

=> load mmc <device:part> $load addr firmware 1s1028ardb emmcboot.img

For example:

=> load mmc 0:2 $load addr firmware 1s1028ardb emmcboot.img

or

=> load usb <device:part> $load addr firmware 1s1028ardb emmcboot.img

or

=> load scsi <device:part> Sload addr firmware 1s1028ardb emmcboot.img

Note:
Use the following command if the SD card is formatted/created using Layerscape LDP flex-installer
command:

=> Jload <interface> [<dev[:part]> [<addr> [<filename> [bytes [pos]]]]]

For example:

=> Joad mmc 0:2 $load addr firmware 1s1028ardb_emmcboot.img

Use the following command if the SD card is formatted/created on a Windows PC:

=> fatload <interface> [<dev/[:part]> [<addr> [<filename> [bytes [pos]]]]]

For example:

=> fatload mmc 0:2 $load addr firmware 1sl028ardb emmcboot.img

Use the following command if the SD card is formatted/created on a Linux PC:

=> ext2load <interface> [<dev/[:part]> [<addr> [<filename> [bytes [pos]]]]]

For example:

=> ext2load mmc 0:2 $load addr firmware lsl028ardb_emmcboot.img

LLDPUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. L6.1.1_1.0.0_23.08 — 4 August 2023

41/1053

NXP Semiconductors LLDPUG

Layerscape Linux Distribution POC User Guide

Also note that Layerscape LDP flex-installer command puts the images on the second patrtition, so 0:2
is used in the 1oad command. If the SD card is formatted on Windows PC or Linux PC for single partition
only, then 0 should be used instead of 0:2 in the fatload/ext2load command.

4. Program the firmware to SD card.

=> mmc dev O;mmc write $load addr 8 1fff8

5. Program the firmware to eMMC card.

=> mmc dev 1;mmc write Sload addr 8 1fff8

6. Reset and boot the board from SD/eMMC card. The system will automatically boot up TinyDistro (log in
using root/root) or Layerscape LDP distro (log in using user/user) available on the removable storage
device.

e For SD boot:

=> gixis reset sd

¢ For eMMC boot:

=> gixis reset emmc

4.7.5 Quick start guide for LS1043ARDB

This section explains:

* Introduction

LS1043ARDB reference information

LS1043ARDB recovery information

* Program Layerscape LDP composite firmware image
« Frame Manager Configuration (FMC) tool

4.7.5.1 Introduction

The following sections describe the procedure to program Layerscape LDP composite firmware for
LS1043ARDB. Also, this section explains the most common use case procedure to download and deploy
Layerscape LDP default images to LS1043ARDB using flex-installer. For more information, see Section 4.2.

For more information on the different components of the board, and on how to configure and boot the board,
see LS1043A Reference Design Board Getting Started Guide.

For a list of brief how-tos to help you modify/update individual Layerscape LDP components such as, TF-A
binaries, Linux kernel, DPAA1 FMan microcode on LS1043ARDB when booting the board from a specific boot
source, such as NOR, NAND, or SD, see NXP community.

4.7.5.2 LS1043ARDB reference information

This section provides general information about LS1043ARDB which may come in handy as a reference while
completing steps for deploying Layerscape LDP that follow.

4.7.5.2.1 Port map

The port name in Linux TinyDistro corresponding to each of the six ports on the reference board chassis is
given in the table below.

LLDPUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. L6.1.1_1.0.0_23.08 — 4 August 2023

42/1053

https://www.nxp.com/support/developer-resources/software-development-tools/qoriq-developer-resources/qoriq-ls1043a-reference-design-board:LS1043A-RDB?tab=Documentation_Tab
https://community.nxp.com/docs/DOC-341706

NXP Semiconductors

LLDPUG

Layerscape Linux Distribution POC User Guide

Port name on chassis Port name in U-Boot Port name in Tinydistro Port name in Linux
QSGMII.PO FM1@DTSEC1 eth0 fm1-mac1
QSGMII.P1 FM1@DTSEC2 eth1 fm1-mac2
QSGMII.P2 FM1@DTSEC3 eth2 fm1-macb
QSGMIIL.P3 FM1@DTSEC4 eth3 fm1-mac6
RGMII1 FM1@DTSEC5 eth4 fm1-mac3
RGMII2 FM1@DTSEC6 eth5 fm1-mac4
10G Copper FM1@TGECA1 eth6 fm1-mac9
b ¥
4% Q5GMILP1 QSGMIILP3 RGMIIZ
LS1043ARDB =
uUsSE2 _,|
ON *+12VDC
11 l
OFF TowRr usBe1 QSGMILPO QSGMILP2 _RGM:

4.7.5.2.2 System memory map

Start Physical Address End Physical Address Memory Type Size
0x00_0000_0000 0x00_000F_FFFF Secure Boot ROM 1MB
0x00_0100_0000 0x00_OFFF_FFFF CCSRBAR 240 MB
0x00_1000_0000 0x00_1000_FFFF OCRAMO 64 KB
0x00_1001_0000 0x00_1001_FFFF OCRAM1 64 KB
0x00_2000_0000 0x00_20FF_FFFF DCSR 16 MB
0x00_6000_0000 0x00_67FF_FFFF IFC - NOR Flash 128 MB
0x00_7E80_0000 0x00_7E80_FFFF IFC - NAND Flash 64 KB
0x00_7FB0_0000 0x00_7FBO_OFFF IFC - FPGA 4 KB
0x00_8000_0000 0x00_FFFF_FFFF DRAM1 2GB

4.7.5.2.3 Supported boot options

LS1043ARDB supports the following boot options:

* NOR
* NAND
* SD

4.7.5.2.4 Onboard switch options

The RDB has user selectable switches for evaluating different boot options for the LS1043A device as given in
the table below (‘0" is OFF, '1" is ON).

LLDPUG

All information provided in this document is subject to legal disclaimers.

© 2023 NXP B.V. All rights reserved.

User guide

Rev. L6.1.1_1.0.0_23.08 — 4 August 2023

43 /1053

NXP Semiconductors LLDPUG

Layerscape Linux Distribution POC User Guide

Boot source SW3[1:8] SW4[1:8] SW5[1:8]
NOR bank 0 (default) 10110011 00010010 10100010
NOR bank 4 10110011 00010010 10100110
SD card 10110011 00100000 00100010
NAND 10110011 10000010 10100110

4.7.5.2.5 NOR Flash (Virtual) Banks

LS1043ARDB provides a special feature that allows a single NOR flash to be divided into multiple parts

called “banks”. This is done by board-level logic that modifies address signals. As there is only one NOR flash
physically, the banks are sometimes called "virtual" banks. The benefit of this feature is that it allows more than
one set of images to be independently deployed to one NOR flash. This is very helpful during development
because the U-Boot image in one bank can be used to program an image set into a different bank. If the new
images are flawed, the old images are still functional. The logic on the board usually allows the NOR flash to be
divided into up to 8 banks, but the NOR flash on LS1043ARDB is divided into two halves. The halves are called
bank 0 and bank 4. Bank switching can be done in in software using cpld commands. To determine the current
bank, refer to the example U-Boot log given below:

U-Boot 2020.04-gc7ec91blf4d (Nov 12 2020 - 06:46:07 +0800)
SoC: LS1043AE Revl.l (0x87920011)
Clock Configuration:

CPUO (A53) :1600 MHz

CPU1 (A53) : 1600 MHz
CPUZ2 (A53) :1600 MHz
CPU3 (A53) : 1600 MHz

Bus: 400 MHz DDR: 1600 MT/s FMAN: 500 MHz

Reset Configuration Word (RCW) :
00000000: 08100010 0a000000 00000000 00000000
00000010: 14550002 80004012 e0025000 c1002000
00000020: 00000000 00000000 00000000 00038800
00000030: 00000000 00001101 00000096 00000001

Model: LS1043A RDB Board

Board: LS1043ARDB, boot from vBank 4

CPLD: V2.0

PCBA: V6.0

SERDES Reference Clocks:

SDl_CLKl = 156.25MHZ, SDl_CLKZ = 100.00MHZ

DRAM: 1.9 GiB (DDR4, 32-bit, CL=11, ECC off)

Using SERDES1 Protocol: 5205 (0x1455)

SECO: RNG instantiated

Firmware 'Microcode version 0.0.1 for LS102l1a rl.0' for 1021 V1.0

QE: uploading microcode 'Microcode for LS102la rl.0' version 0.0.1

Flash: 128 MiB

NAND: 512 MiB

MMC: FSL_SDHC: 0

Loading Environment from Flash... OK

EEPROM: NXID vl

In: serial

Out: serial

Err: serial

Net: Fmanl: Uploading microcode version 106.4.18

PCIel: pcie@3400000 disabled

PCIe2: pcie@3500000 Root Complex: no link

PCIe3: pcie@3600000 Root Complex: x1 genl

el000: 00:15:17:5c:63:d5

LLDPUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. L6.1.1_1.0.0_23.08 — 4 August 2023

4471053

NXP Semiconductors LLDPUG

Layerscape Linux Distribution POC User Guide

FM1@DTSEC1, FM1@DTSEC2, FM1@DTSEC3, FM1@DTSEC4, FM1@DTSECS5, FM1@DTSECG6,
FM1Q@TGEC1, el000#0
[PRIME]
Warning: e1000#0 MAC addresses don't match:
Address in SROM is 00:15:17:5c:63:d5
Address in environment is 00:e0:0c:00:22:07
Warning: e€1000#0 failed to set MAC address
=>
=>

4.7.5.2.6 Boot option switching

Boot switching can be performed in U-Boot using the following commands:
» Switch to NOR bank 0 (default):

=>cpld reset

¢ Switch to NOR bank 4:

=>cpld reset altbank

» Switch to NAND:

=>cpld reset nand

¢ Switch to SD:

=>cpld reset sd

4.7.5.3 LS1043ARDB recovery information

If LS1043ARDB board fails to boot from NOR bank 0, you can recover NOR bank 0 from NOR bank 4 by
following these steps:

1. Run the command:

S cp <build>/tmp/deploy/image/lsl043ardb/firmware 1s1043ardb norboot.img ~/
tftp

2. Boot LS1043ARDB from NOR bank 4 with the following switch settings:
SW3 = 10110011, Sw4 = 00010010, sw5 = 10100110

3. Program NOR bank 0 from NOR bank 4:

=> tftp $load addr firmware 1s1043ardb norboot.img => protect off 64000000 +
Sfilesize && erase 64000000 +Sfilesize && cp.b $load addr 64000000 S$filesize

4. Reset and boot the board from NOR bank 0:

=> cpld reset

Note: If LS1043ARDB fails to boot from both the NOR banks, you need to recover the board using
CodeWarrior for LS Series, Arm v8 ISA. For steps to recover the board using the CodeWarrior tool, see
section "8.6 Board Recovery" in ARM V8 ISA, Targeting Manual

4.7.5.4 Program Layerscape LDP composite firmware image

This topic explains steps to program NOR firmware image to IFC NOR flash on LS1043ARDB and SD firmware
image to SD card on LS1043ARDB.

LLDPUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. L6.1.1_1.0.0_23.08 — 4 August 2023

45/1053

https://www.nxp.com/docs/en/user-guide/CWARMv8TM.pdf

NXP Semiconductors LLDPUG

Layerscape Linux Distribution POC User Guide

To program Layerscape LDP composite NOR firmware image to IFC NOR flash on LS1043ARDB:

1. Copy firmware on host machine to TFTP server.

S cp <build>/tmp/deploy/image/lsl043ardb/firmware 1s1043ardb norboot.img ~/
tftp

2. Reboot the board from NOR flash bank 0 and stop autoboot to enter U-Boot prompt.
3. Under U-Boot, download the firmware to the reference board using one of the following options:
* Load firmware from the TFTP server

=> tftp $load addr firmware 1s1043ardb norboot.img

¢ Load firmware image from partition on mass storage device (SD, USB, or SATA)

=> load mmc <device:part> $load addr firmware 1s1043ardb norboot.img

For example:

=> load mmc 0:2 $load addr firmware 1s1043ardb norboot.img

or

=> load usb <device:part> $load addr firmware 1s1043ardb norboot.img

or

=> load scsi <device:partition> $load addr firmware 1s1043ardb norboot.img

Note:
Use the following command if the SD card is formatted/created using Layerscape LDP flex-installer
command:

=> Jload <interface> [<dev/[:part]> [<addr> [<filename> [bytes [pos]]]]]

For example:

=> load mmc 0:2 $load addr firmware 1sl1043ardb norboot.img

Use the following command if the SD card is formatted/created on a Windows PC:

=> fatload <interface> [<dev/[:part]> [<addr> [<filename> [bytes [pos]]]]]

For example:

=> fatload mmc 0:2 $load addr firmware 1sl043ardb norboot.img

Use the following command if the SD card is formatted/created on a Linux PC:

=> ext2load <interface> [<dev[:part]> [<addr> [<filename> [bytes [pos]]]]]

For example:

=> ext2load mmc 0:2 $load addr firmware 1sl1043ardb norboot.img

LLDPUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. L6.1.1_1.0.0_23.08 — 4 August 2023

46 /1053

NXP Semiconductors LLDPUG

Layerscape Linux Distribution POC User Guide

Also note that Layerscape LDP flex-installer command puts the images on the second patrtition, so 0:2
is used in the 1oad command. If the SD card is formatted on Windows PC or Linux PC for single partition
only, then 0 should be used instead of 0:2 in the fatload/ext2load command.

4. Program the composite firmware into IFC NOR flash.
* To program alternate bank:

=> protect off 64000000 +$filesize && erase 64000000 +$filesize && cp.b
$load addr 64000000 Sfilesize

* To program current bank:

=> protect off 60000000 +$filesize && erase 60000000 +$filesize && cp.b
$load addr 60000000 $filesize

5. Reset and boot the board from IFC NOR flash. The system will automatically boot up TinyDistro (log in
using root/root) or Layerscape LDP distro (log in using user/user) available on the removable storage
device.

* To boot from NOR flash bank 0.

=> cpld reset

¢ To boot from NOR flash bank 4.

=> cpld reset altbank

To program Layerscape LDP composite SD firmware image to SD card on LS1043ARDB:

1. Copy firmware on host machine to TFTP server.

$ cp <build>/tmp/deploy/image/lsl043ardb/firmware 1sl043ardb sdboot.img ~/
tftp/

2. Reboot the board from NOR flash bank 0 and stop autoboot to enter U-Boot prompt.
3. Under U-Boot, download the firmware to the reference board using one of the following options:
* Load firmware from the TFTP server

=> tftp $load addr firmware 1s1043ardb sdboot.img

* Load firmware image from partition on mass storage device (SD, USB, or SATA)

=> load mmc <device:part> $load addr firmware 1s1043ardb sdboot.img

For example:

=> load mmc 0:2 $load addr firmware 1s1043ardb sdboot.img

or

=> load usb <device:partition> $load addr firmware 1s1043ardb sdboot.img

or

=> load scsi <device:part> $load addr firmware 1sl043ardb sdboot.img

Note:
Use the following command if the SD card is formatted/created using Layerscape LDP flex-installer
command:

=> Joad <interface> [<dev/[:part]> [<addr> [<filename> [bytes [pos]]]]]

For example:

=> load mmc 0:2 $load addr firmware 1sl043ardb sdboot.img

LLDPUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. L6.1.1_1.0.0_23.08 — 4 August 2023

47/1053

NXP Semiconductors LLDPUG

Layerscape Linux Distribution POC User Guide

Use the following command if the SD card is formatted/created on a Windows PC:

=> fatload <interface> [<dev/[:part]> [<addr> [<filename> [bytes [pos]]]]]

For example:

=> fatload mmc 0:2 $load addr firmware 1sl1043ardb sdboot.img

Use the following command if the SD card is formatted/created on a Linux PC:

=> ext2load <interface> [<dev/[:part]> [<addr> [<filename> [bytes [pos]]]]]

For example:

=> ext2load mmc 0:2 $load addr firmware 1s1043ardb sdboot.img

Also note that Layerscape LDP flex-installer command puts the images on the second partition, so 0:2
is used in the 1oad command. If the SD card is formatted on Windows PC or Linux PC for single partition
only, then 0 should be used instead of 0:2 in the fatload/ext2load command.

4. Write the firmware to SD card.

=> mmc dev 0; mmc write $load addr 8 1£000

5. Reset and boot the board from SD card. The system will automatically boot up TinyDistro (log in using root/
root) or Layerscape LDP distro (log in using user/user) available on the removable storage device.

=> cpld reset sd

4.7.5.5 Frame Manager Configuration (FMC) tool

By default, FMan has been configured for Parse-Classify-Distribute (PCD). This means that without any further
action from the user, FMan enqueues received frames from a particular flow to the same receive queue. This
prevents Rx packet reorder issues and improves performance.

This default FMan configuration uses configuration and policy files that are provided in NXP Layerscape LDP to
perform PCD. These files are in xml format and are created with the objective of preserving packet ordering per
flow. For LS1043ARDB, these files are available at the following path:

/etc/fmc/config/private/1s1043ardb/RR_FOPP 1455

However, if a user wants to apply a configuration other than the one which is applied by default, the user needs
to run following command after the board boots to Linux.

1. Change directory to the parent directory of the user’s custom configuration and policy files
2. Run the FMC tool command:

S fmc -c <config.xml> -p <policy.xml> -a

4.7.6 Quick start guide for FRWY-LS1046A

This section explains:

e Introduction
e FRWY-LS1046A reference information
e Program Layerscape LDP composite firmware image

LLDPUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. L6.1.1_1.0.0_23.08 — 4 August 2023

48 /1053

https://source.codeaurora.org/external/qoriq/qoriq-components/eth-config/tree/private/ls1043ardb/RR_FQPP_1455?h=github.qoriq-os/integration

NXP Semiconductors LLDPUG

Layerscape Linux Distribution POC User Guide

4.7.6.1 Introduction

The following sections describe the procedure to program Layerscape LDP composite firmware for FRWY-
LS1046A. Also, this section explains the most common use case procedure to download and deploy
Layerscape LDP default images to FRWY-LS1046A using flex-installer. For more information, see Section 4.2.

For more information on the different components of the board, and on how to configure and boot the board,
see Layerscape FRWY-LS1046A Board Getting Started Guide.

4.7.6.2 FRWY-LS1046A reference information

This section provides general information about FRWY-LS1046A. The information may come in handy as a
reference while performing steps for deploying Layerscape LDP images that are mentioned in sections that
follow.

4.7.6.2.1 Ethernet port map

Port name |Port name in U-Boot Port name in Port name in Linux Description

in chassis Tinydistro

1G PORT1 |FM1@DTSECH1 fm1-mac1 eth1 QSGMII copper
interface

1G PORT2 |FM1@DTSEC5 fm1-mac5 eth2 QSGMII copper
interface

1G PORT3 |FM1@DTSEC6 fm1-mac6 eth3 QSGMII copper
interface

1G PORT4 |FM1@DTSEC10 fm1-mac10 eth4 QSGMII copper
interface

4.7.6.2.2 System memory map

Table 14. System memory map

Start address Module name Size Accessible with x-bit addressing
(Hex) 32 36 40
00_0000_0000 Secure Boot ROM |1 MB Y Y Y
00_0010_0000 Extended Boot 15 MB Y Y Y
ROM
00_0100_0000 CCSR Register 240 MB Y Y Y
Space
00_1000_0000 OCRAM1 64 KB Y Y Y
00_1001_0000 OCRAM2 64 KB Y Y Y
00_1004_0000 Reserved 65408 KB Y Y Y
00_1100_0000 Reserved 16 MB Y Y Y
00_1200_0000 STM 16 MB Y Y Y
00_1300_0000 Reserved 208 MB Y Y Y
00_2000_0000 DCSR 64 MB Y Y Y
00_2400_0000 Reserved 448 MB Y Y Y
00_4000_0000 QuadSPI 512 MB Y Y Y
LLOPUG Al information provided in this document is subject to legal disclaimers. ©2023 NXP B.V. Al rights reserved.
User guide Rev. L6.1.1_1.0.0_23.08 — 4 August 2023

49 /1053

https://www.nxp.com/design/qoriq-developer-resources/ls1046a-freeway-board:FRWY-LS1046A#documentsandsoftware

NXP Semiconductors

LLDPUG

Table 14. System memory map...continued

Layerscape Linux Distribution POC User Guide

Start address Module name Size Accessible with x-bit addressing

(Hex) 32 36 40
00_6000_0000 IFC region 1(0 - 512 MB Y Y Y

512 MB)
00_8000_0000 DRAM1 (0 -2 GB) |2 GB Y Y Y
01_0000_0000 Reserved 0.0625 GB N Y Y
01_0400_0000 Reserved 3.9375 GB N Y Y
02_0000_0000 Reserved 1GB N Y Y
02_4000_0000 Reserved 7 GB N Y Y
04_0000_0000 Reserved 0.25 GB N Y Y
04_1000_0000 Reserved 0.25 GB N Y Y
04_2000_0000 Reserved 0.25 GB N Y Y
04_3000_0000 Reserved 1.25 GB N Y Y
04_8000_0000 Reserved 2GB N Y Y
05_0000_0000 QMan S/W Portal |128 MB N Y Y
05_0800_0000 BMan S/W Portal |128 MB N Y Y
05_1000_0000 Reserved 4 GB - 256 MB N Y Y
06_0000_0000 Reserved 0.5GB N Y Y
06_2000_0000 IFC region 2 (512 |3.5GB N Y Y
MB - 4 GB)
07_0000_0000 Reserved 4 GB N Y Y
08_0000_0000 Reserved 2GB N Y Y
08_8000_0000 DRAM2 30 GB N Y Y
10_0000_0000 Reserved 64 GB N Y Y
20_0000_0000 Reserved 128 GB N N Y
40_0000_0000 PCI Express 1 32 GB N N Y
48 _0000_0000 PCI Express 2 32 GB N N Y
50_0000_0000 PCI Express 3 32 GB N N Y
58_0000_0000 Reserved 160 GB N N Y
80_0000_0000 Reserved 32 GB N N Y
88_0000_0000 CD;R;-\M3 (32-512 |480 GB N N Y
B

4.7.6.2.3 Supported boot options

The FRWY-LS1046A board supports the following boot options:

* QSPI NOR flash (referred to as "QSPI" or "QSPI flash" in the following sections). CS refers to chip select.
* Micro-SD card (SDHC1)

LLDPUG All information provided in this document is subject to legal disclaimers.

User guide Rev. L6.1.1_1.0.0_23.08 — 4 August 2023

© 2023 NXP B.V. All rights reserved.

50/1053

NXP Semiconductors

LLDPUG

Layerscape Linux Distribution POC User Guide

4.7.6.2.4 Onboard switch options

The FRWY-LS1046A board has user selectable switches for evaluating different boot options for the LS1046A

device as given in the table below ('0' is OFF, '1' is ON).

Boot source SW1[1:10]
QSPI NOR (default) 0_0100_0100_0
Micro-SD card (SDHC1) 0_0100_0000_0
Note:

User can only switch between QSPI NOR to Micro-SD and vice versa using switch settings, there is no

command to switch between them.

In addition to the above switch settings, ensure that the following jumper settings are correct.

Table 15. FRWY-LS1046A jumper settings

Part Jumper type Description
identifier

Jumper settings

J72 1x2 connector UART selection header

Open: UART1 port is accessed remotely
through a 1x4 header (J73)

Shorted: A USB 2.0 micro AB connector
(J58) is connected to UART1 port through a
USB-to-UART bridge (default setting)

J8 1x2 connector VDD voltage selection header

Open: VDD =09V
Shorted: VDD = 1V (default setting)

J14 1x2 connector Reset mode selection header

Open: RESET_REQ_B pin of the processor
is disconnected

Shorted: RESET_REQ_B pin triggers
system reset when asserted (default setting)

J11 1x2 connector PROG_MTR voltage control
header (NXP use only)

Open: PROG_MTR pin of the processor is
powered off (default setting)

Shorted: PROG_MTR pin is powered by
OvDD (1.8 V)

J9 1x2 connector TA_BB_VDD voltage control
header

Open: TA_BB_VDD pin of the processor is
powered off

Shorted: TA_BB_VDD pin is powered by
VDD (1/0.9 V) (default setting)

4.7.6.2.5 QSPI NOR flash

QSPI NOR flash is a simple and convenient destination for deploying images; therefore, it is most common
medium for deploying images. When the board boots from QSPI, the U-Boot log looks as follows:

U-Boot 2020.04-gc7ec91blf4d (Nov 17 2020 - 15:26:56 +0800)

SoC: LS1046AE Revl1l.0 (0x87070010)
Clock Configuration:
CPUO (A72) : 1600 MHz CPULl (A72):1600 MHz
CPU3 (A72) : 1600 MHz
Bus: 600 MHz DDR: 2100 MT/s
Reset Configuration Word (RCW) :

CPU2 (A72) :1600 MHz

FMAN : 700 MHz

00000000: 0c150010 0e000000 00000000 00000000
00000010: 30400506 00800012 40025000 c1000000

LLDPUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. L6.1.1_1.0.0_23.08 — 4 August 2023

51/1053

NXP Semiconductors LLDPUG

Layerscape Linux Distribution POC User Guide

00000020: 00000000 00000000 00000000 00038800
00000030: 20044100 24003101 00000096 00000001

Model: LS1046A FRWY Board

Board: LS1046AFRWY, Rev: A, boot from QSPI

SD1 CLKl = 100.00MHZ, SD1 CLK2 = 100.00MHZ

DRAM: 3.9 GiB (DDR4, 64-bit, CL=15, ECC on)

SEC0O: RNG instantiated

Using SERDES1 Protocol: 12352 (0x3040)

Using SERDES2 Protocol: 1286 (0x506)

NAND : 512 MiB

MMC: FSL _SDHC: 0

Loading Environment from SPI Flash... SF: Detected mt25qu5l2a with page size 256
Bytes, erase size 64 KiB, total 64 MiB

OK

EEPROM: NXID v1

In: serial

Out: serial

Err: serial

Net: SF: Detected mt25qu5l12a with page size 256 Bytes, erase size 64 KiB,

total 64 MiB

Fmanl: Uploading microcode version 106.4.18
PCIel: pcie@3400000 disabled

PCIe2: pcie@3500000 Root Complex: no link
PCIe3: pcie@3600000 Root Complex: no link
FM1@DTSEC1l, FM1@DTSEC5, FM1@DTSEC6, FM1@DTSEC10
=>

4.7.6.3 Program Layerscape LDP composite firmware image

This topic explains steps to program QSPI NOR firmware image to QSPI NOR flash on FRWY-LS1046A and
SD firmware image to SD card on FRWY-LS1046A.

To program Layerscape LDP composite firmware image to QSPI NOR flash on FRWY-LS1046A:

1. Copy firmware on host machine to tftp server.

$ cp <build>/tmp/deploy/image/1sl046frwy/firmware 1sll046afrwy gspiboot.img
~/tftp/

2. Reboot the board from QSPI NOR flash and stop autoboot to enter U-Boot prompt.
3. Under U-Boot, download the firmware to the reference board using one of the following options:
¢ Load firmware from the TFTP server

=> tftp $load addr firmware 1sl046afrwy gspiboot.img

* Load firmware image from partition on mass storage device (SD or USB)

=> load mmc <device:part> $load addr firmware 1sl046afrwy gspiboot.img

For example:

=> load mmc 0:2 $load addr firmware 1slO046afrwy gspiboot.img

Or
=> load usb <device:part> $load addr firmware 1sl046afrwy gspiboot.img
Note:
LLDPUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.
User guide Rev. L6.1.1_1.0.0_23.08 — 4 August 2023

52 /1053

NXP Semiconductors LLDPUG

Layerscape Linux Distribution POC User Guide

Use the following command if the SD card is formatted/created using Layerscape LDP flex-installer
command:

=> Joad <interface> [<dev[:part]> [<addr> [<filename> [bytes [pos]]]]]

For example:

=> Joad mmc 0:2 $load addr firmware lslO46afrwy gspiboot.img

Use the following command if the SD card is formatted/created on a Windows PC:

=> fatload <interface> [<dev/[:part]> [<addr> [<filename> [bytes [pos]]]]]

For example:

=> fatload mmc 0:2 $load addr firmware lslO46afrwy gspiboot.img

Use the following command if the SD card is formatted/created on a Linux PC:

=> ext2load <interface> [<dev/[:part]> [<addr> [<filename> [bytes [pos]]]]]

For example:

=> ext2load mmc 0:2 $load addr firmware lslO46afrwy gspiboot.img

Also note that Layerscape LDP flex-installer command puts the images on the second patrtition, so 0:2
is used in the 1oad command. If the SD card is formatted on Windows PC or Linux PC for single partition
only, then 0 should be used instead of 0:2 in the fatload/ext2load command.

4. Program the firmware to QSPI NOR flash.

=> sf probe 0:0
=> sf erase 0 +$filesize && sf write $load addr 0 $filesize

5. Ensure that switch settings on the board are for QSPI NOR flash and power cycle the board. The system
will automatically boot up TinyDistro (log in using root/root) or Layerscape LDP distro (log in using user/
user) available on the removable storage device.

To program Layerscape LDP composite firmware image to SD card on FRWY-LS1046A:

1. Copy firmware on host machine to tftp server.

S cp <build>/tmp/deploy/image/lsl046afrwy/firmware 1sl046afrwy sdboot.img ~/
tftp/

2. Reboot the board from QSPI NOR flash and stop autoboot to enter U-Boot prompt.
3. Under U-Boot, download the firmware to the reference board using one of the following options:
* Load firmware from the TFTP server

=> tftp $load addr firmware 1sl046afrwy sdboot.img

¢ Load firmware image from partition on mass storage device (SD or USB)

=> load mmc <device:part> $load addr firmware 1lslO046afrwy sdboot.img

For example:

=> load mmc 0:2 $load addr firmware 1slO046afrwy sdboot.img

or

=> load usb <device:part> $load addr firmware 1lsl046afrwy sdboot.img

Note:

LLDPUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. L6.1.1_1.0.0_23.08 — 4 August 2023

53/1053

NXP Semiconductors LLDPUG

Layerscape Linux Distribution POC User Guide

Use the following command if the SD card is formatted/created using Layerscape LDP flex-installer
command:

=> Joad <interface> [<dev[:part]> [<addr> [<filename> [bytes [pos]]]]]

For example:

=> Joad mmc 0:2 $load addr firmware 1lsl046afrwy sdboot.img

Use the following command if the SD card is formatted/created on a Windows PC:

=> fatload <interface> [<dev/[:part]> [<addr> [<filename> [bytes [pos]]]]]

For example:

=> fatload mmc 0:2 $load addr firmware lslO46afrwy sdboot.img

Use the following command if the SD card is formatted/created on a Linux PC:

=> ext2load <interface> [<dev/[:part]> [<addr> [<filename> [bytes [pos]]]]]

For example:

=> ext2load mmc 0:2 $load addr firmware lsl046afrwy sdboot.img

Also note that Layerscape LDP flex-installer command puts the images on the second patrtition, so 0:2
is used in the 1oad command. If the SD card is formatted on Windows PC or Linux PC for single partition
only, then 0 should be used instead of 0:2 in the fatload/ext2load command.

4. Program the firmware to SD card.

=> mmc dev 0; mmc write $load addr 8 1£000

5. Ensure that switch settings on the board are for SD boot and power cycle the board. The system will
automatically boot up TinyDistro (log in using root/root) or Layerscape LDP distro (log in using user/user)
available on the removable storage device.

4.7.6.4 Frame Manager Configuration (FMC) tool

By default, FMan has been configured for Parse-Classify-Distribute (PCD). This means that without any further
action from the user, FMan enqueues received frames from a particular flow to the same receive queue. This
prevents Rx packet reorder issues and improves performance.

This default FMan configuration uses configuration and policy files that are provided in NXP Layerscape LDP to
perform PCD. These files are in xml format and are created with the objective of preserving packet ordering per
flow. For FRWY-LS1046A, these files are available at the following path:

/etc/fmc/config/private/1sl1046afrwy/NN NNONNPNP 3040 0506

However, if a user wants to apply a configuration other than the one which is applied by default, the user needs
to run following command after the board boots to Linux.

1. Change directory to the parent directory of the user’s custom configuration and policy files.
2. Run the FMC tool command:

S fmc -c <config.xml> -p <policy.xml> -a

4.7.7 Quick start guide for LS1046ARDB
This section explains:

e Introduction

LLDPUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. L6.1.1_1.0.0_23.08 — 4 August 2023

54 /1053

https://source.codeaurora.org/external/qoriq/qoriq-components/eth-config/tree/private/ls1046afrwy/NN_NNQNNPNP_3040_0506?h=integration&id=6164664070e45810c793f112781ebcedc979e132

NXP Semiconductors LLD P U G

Layerscape Linux Distribution POC User Guide

LS1046ARDB reference information

LS1046ARDB recovery information

e Program Layerscape LDP composite firmware image
» Frame Manager Configuration (FMC) tool

4.7.7.1 Introduction

The following sections describe the procedure to program Layerscape LDP composite firmware for LS1046A.
Also, this section explains the most common use case procedure to download and deploy Layerscape LDP
default images to LS1046A using flex-installer. For more information, see Section 4.2.

For more information on the different components of the board, and on how to configure and boot the board,
see LS1046A Reference Design Board Getting Started Guide.

For a list of brief how-tos to help you modify/update individual Layerscape LDP components such as, U-Boot,
Linux kernel, DPAA1 FMan microcode on LS1046ARDB when booting the board from a specific boot source,
such as QSPI or SD, see NXP community.

4.7.7.2 LS1046ARDB reference information

This section provides general information about LS1046ARDB which may come in handy as a reference while
completing steps for deploying Layerscape LDP that follow.

4.7.7.2.1 Ethernet port map

The port name in Linux TinyDistro corresponding to each of the six ports on the reference board chassis is
given in the table below.

Port name on chassis Port name in U-Boot Port name in Linux (Tiny Port name in Linux (NXP
Distro) Layerscape LDP userland)

RGMII1 FM1@DTSEC3 ethO fm1-mac3

RGMII2 FM1@DTSEC4 eth1 fm1-mac4

SGMIN FM1@DTSEC5 eth2 fm1-mac5

SGMII2 FM1@DTSEC6 eth3 fm1-mac6

10G Copper FM1@TGECA1 eth4 fm1-mac9

10G SEP+ FM1@TGEC2 eth5 fm1-mac10

— —
S —
WP R

PWR USB2 USB1 RGMIl 10G
Copper SFP+

Ethernet ports

LLDPUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. L6.1.1_1.0.0_23.08 — 4 August 2023

55/1053

https://www.nxp.com/design/qoriq-developer-resources/qoriq-ls1046a-development-board:LS1046A-RDB?fpsp=1&tab=Documentation_Tabcommand#documentsandsoftware
https://community.nxp.com/docs/DOC-341706

NXP Semiconductors

LLDPUG

4.7.7.2.2 System memory map

Layerscape Linux Distribution POC User Guide

Start Physical Address |End Physical Address Memory Type Size
0x00_0000_0000 0x00_000F_FFFF Secure Boot ROM 1 MB
0x00_0100_0000 0x00_OFFF_FFFF CCSRBAR 240 MB
0x00_1000_0000 0x00_1000_FFFF OCRAMO 64 KB
0x00_1001_0000 0x00_1001_FFFF OCRAM1 64 KB
0x00_2000_0000 0x00_20FF_FFFF DCSR 16 MB
0x00_7E80_0000 0x00_7E80_FFFF IFC - NAND Flash 64 KB
0x00_7FB0_0000 0x00_7FBO_OFFF IFC - CPLD 4 KB
0x00_8000_0000 0x00_FFFF_FFFF DRAM1 2 GB
0x05_0000_0000 0x05_07FF_FFFF QMan S/W Portal 128 M
0x05_0800_0000 0x05_O0FFF_FFFF BMan S/W Portal 128 M
0x08_8000_0000 0x09_FFFF_FFFF DRAM2 6 GB
0x40_0000_0000 0x47_FFFF_FFFF PCI Express1 32G
0x48_0000_0000 Ox4F_FFFF_FFFF PCI Express2 32G
0x50_0000_0000 0x57_FFFF_FFFF PCI Express3 32G

4.7.7.2.3 Supported boot options

LS1046ARDB supports the following boot options:

* SD
* QSPI NOR flash

4.7.7.2.4 Onboard switch options

The RDB has user selectable switches for evaluating different boot options for the LS1046A device as given in
the table below (‘0" is OFF, '1" is ON).

Boot source SW3[1:8] SW4[1:8] SW5[1:8]
QSPI NOR flashO (default) 01000110 00111011 00100010
QSPI NOR flash1 01001110 00111011 00100010
SD card 01000110 00111011 00100000

Note: Changing the boot device configuration from the default setting may require additional changes in the
RCW or in other code images.

For information on RCW naming convention for LS1046ARDB, see https://github.com/nxp-qorig/rcw/blob/
master/Is1046ardb/README.

4.7.7.2.5 QSPI NOR flash banks

LS1046ARDB has two QSPI NOR flash connected over QSPI controller. Only one QSPI NOR flash is available
at a time depending upon the board switch settings as given in preceding topic. These switch settings can also
be overridden by CPLD commands. To protect the default U-Boot in flashQ, it is a convention employed by NXP
to deploy work images into the flash1, and then switch to the flash1 for testing. Switching to the flash1 can be
done in software using CPLD command that effectively swaps the flashO with the flash1. This protects flash0

LLDPUG All information provided in this document is subject to legal disclaimers.

User guide Rev. L6.1.1_1.0.0_23.08 — 4 August 2023

© 2023 NXP B.V. All rights reserved.

56 /1053

https://github.com/nxp-qoriq/rcw/blob/master/ls1046ardb/README
https://github.com/nxp-qoriq/rcw/blob/master/ls1046ardb/README

NXP Semiconductors LLDPUG

Layerscape Linux Distribution POC User Guide

and keeps the board bootable under all circumstances. To determine the current bank, refer to the example U-
Boot log given below (flashO0 is displayed as vBank 0 and flash1 is displayed as vBank 4).

U-Boot 2020.04-21450-gbdela7f (Sep 18 2020 - 22:10:28 +0800)
SoC: LS1046AE Revl.O0 (0x87070010)
Clock Configuration:

CPUO (A72) :1800 MHz

CPU1 (A72) :1800 MHz
CPU2 (A72) :1800 MHz
CPU3 (A72) :1800 MHz

Bus: 700 MHz DDR: 2100 MT/s FMAN: 800 MHz
Reset Configuration Word (RCW) :
00000000: 0el150012 10000000 00000000 00000000
00000010: 11335559 40005012 40025000 c¢1000000
00000020: 00000000 00000000 00000000 00238800
00000030: 20124000 00003101 00000096 00000001
Model: LS1046A RDB Board
Board: LS1046ARDB, boot from QSPI vBank 4
CPLD: V2.2
PCBA: V2.0
SERDES Reference Clocks:
SD1 CLKl = 156.25MHZ, SD1 CLK2 = 100.00MHZ
DRAM: 15.9 GiB (DDR4, 64-bit, CL=15, ECC on)
DDR Chip-Select Interleaving Mode: CSO0+CS1
SECO: RNG instantiated
Using SERDES]1 Protocol: 4403 (0x1133)
Using SERDES2 Protocol: 21849 (0x5559)
NAND: 512 MiB
MMC: FSL_SDHC: 0

Loading Environment from SPI Flash... SF: Detected s25fs512s with page size 256
Bytes, erase size 256 KiB, total 64 MiB
OK

EEPROM: NXID vl

In: serial

Out: serial

Err: serial

Net: SF: Detected s25fs512s with page size 256 Bytes, erase size 256 KiB, total
64 MiB

Fmanl: Uploading microcode version 106.4.18

PCIel: pcie@3400000 Root Complex: no link

PCIe2: pcie@3500000 Root Complex: no link

PCIe3: pcie@3600000 Root Complex: x1 genl

e€l1000: 00:15:17:8a:c6:5b

FM1@DTSEC3, FM1@DTSEC4, FM1@DTSEC5, FM1@DTSEC6, FMI1Q@TGEC1l, FM1@TGECZ2,

e1000#0 [PRIME]

Warning: e1000#0 MAC addresses don't match:

Address in SROM is 00:15:17:8a:c6:5b

Address in environment is 00:e0:0c:00:8e:06

Warning: e€1000#0 failed to set MAC address

=>

=

4.7.7.2.6 Boot option switching

Boot switching can be performed in U-Boot using the following commands:
» Switch to QSPI NOR flashO (default):

=>cpld reset

LLDPUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. L6.1.1_1.0.0_23.08 — 4 August 2023
57 /1053

NXP Semiconductors LLDPUG

Layerscape Linux Distribution POC User Guide

¢ Switch to QSPI NOR flash1:

=>cpld reset altbank

¢ Switch to SD:

=>cpld reset sd

4.7.7.3 LS1046ARDB recovery information

If LS1046ARDB board fails to boot from QSPI NOR flash 0, you can recover QSPI NOR flash 0 from QSPI NOR
flash 1 by following these steps:

1. Download the prebuilt composite firmware image:

$ cp <build>/tmp/deploy/images/lsl043ardb/firmware 1sl046ardb gspiboot.img ~/
tftp

2. Boot LS1046ARDB from QSPI NOR flash1 with the following switch settings:
SW3 = 01001110,Sw4 = 00111011, Ssw5 = 00100010
3. Program QSPI NOR flashO from QSPI NOR flash1:
=> tftp $load addr firmware 1sl046ardb gspiboot.img

=> sf probe 0:1
=> sf erase 0 +S$filesize && sf write $load addr 0 $filesize

4. Reset and boot the board from QSPI NOR flashO:

=> cpld reset

Note: If LS1046ARDB fails to boot from both the QSPI NOR flash banks, you need to recover the board using
CodeWarrior for LS Series, Arm v8 ISA. For steps to recover the board using the CodeWarrior tool, see
section "8.6 Board Recovery" in ARM V8 ISA, Targeting Manual

4.7.7.4 Program Layerscape LDP composite firmware image

This topic explains steps to program QSPI NOR firmware image to QSPI NOR flash on LS1046ARDB and SD
firmware image to SD card on LS1046ARDB.

To program Layerscape LDP composite firmware image to QSPI NOR flash on LS1046ARDB:

1. Copy firmware on host machine to tftp server.

S cp <build>/tmp/deploy/image/lsl046ardb/firmware 1sl046ardb gspiboot.img ~/
tftp/

2. Reboot the board from QSPI NOR flash 0 and stop autoboot to enter U-Boot prompt.
3. Under U-Boot, download the firmware to the reference board using one of the following options:
* Load firmware from the TFTP server

=> tftp $load addr firmware 1sl046ardb gspiboot.img

¢ Load firmware image from partition on mass storage device (SD, USB, or SATA)

=> load mmc <device:part> $load addr firmware 1sl046ardb gspiboot.img

For example:

=> load mmc 0:2 $load addr firmware 1sl046ardb gspiboot.img

LLDPUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. L6.1.1_1.0.0_23.08 — 4 August 2023

58 /1053

https://www.nxp.com/docs/en/user-guide/CWARMv8TM.pdf

NXP Semiconductors LLDPUG

Layerscape Linux Distribution POC User Guide

Or

=> load usb <device:part> $load addr firmware 1sl046ardb gspiboot.img
Or
=> load scsi <device:part> $load addr firmware 1sl046ardb gspiboot.img

Note:
Use the following command if the SD card is formatted/created using Layerscape LDP flex-installer
command:

=> Jload <interface> [<dev/[:part]> [<addr> [<filename> [bytes [pos]]]]]

For example:

=> Joad mmc 0:2 $load addr firmware 1lsl046ardb gspiboot.img

Use the following command if the SD card is formatted/created on a Windows PC:

=> fatload <interface> [<dev/[:part]> [<addr> [<filename> [bytes [pos]]]]]

For example:

=> fatload mmc 0:2 $load addr firmware 1sl046ardb gspiboot.img

Use the following command if the SD card is formatted/created on a Linux PC:

=> extZload <interface> [<dev/[:part]> [<addr> [<filename> [bytes [pos]]]]]

For example:

=> ext2load mmc 0:2 $load addr firmware 1lsl046ardb gspiboot.img

Also note that Layerscape LDP flex-installer command puts the images on the second partition, so 0:2
is used in the 1oad command. If the SD card is formatted on Windows PC or Linux PC for single partition
only, then 0 should be used instead of 0:2 in the fatload/ext2load command.

4. Program the firmware to QSPI NOR flash 1.

=> sf probe 0:1
=> sf erase 0 +Sfilesize && sf write $load addr 0 S$filesize

5. Reset and boot the board from QSPI NOR flash 1. The system will automatically boot up TinyDistro (log
in using root/root) or Layerscape LDP distro (log in using user/user) available on the removable storage
device.

=> cpld reset altbank

To program Layerscape LDP composite firmware image to SD card on LS1046ARDB:

1. Copy firmware on host machine to tftp server.

S cp <build>/tmp/deploy/image/lsl046ardb/firmware 1sl046ardb sdboot.img ~/
tftp/

2. Reboot the board from QSPI NOR flash 0 and stop autoboot to enter U-Boot prompt.
3. Under U-Boot, download the firmware to the reference board using one of the following options:
* Load firmware from the TFTP server

=> tftp $load addr firmware 1sl046ardb sdboot.img

* Load firmware image from partition on mass storage device (SD, USB, or SATA)

=> load mmc <device:part> $load addr firmware 1sl046ardb sdboot.img

LLDPUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. L6.1.1_1.0.0_23.08 — 4 August 2023

59 /1053

NXP Semiconductors LLDPUG

Layerscape Linux Distribution POC User Guide

For example:

=> load mmc 0:2 $load addr firmware 1sl046ardb sdboot.img
Or

=> load usb <device:part> $load addr firmware 1sl046ardb sdboot.img

Or

=> load scsi <device:part> $load addr firmware 1lsl046ardb sdboot.img

Note:
Use the following command if the SD card is formatted/created using Layerscape LDP flex-installer
command:

=> Jload <interface> [<dev/[:part]> [<addr> [<filename> [bytes [pos]]]]]

For example:

=> load mmc 0:2 $load addr firmware 1sl046ardb sdboot.img

Use the following command if the SD card is formatted/created on a Windows PC:

=> fatload <interface> [<dev/[:part]> [<addr> [<filename> [bytes [pos]]]]]

For example:

=> fatload mmc 0:2 $load addr firmware 1lslO46ardb sdboot.img

Use the following command if the SD card is formatted/created on a Linux PC:

=> ext2load <interface> [<dev[:part]> [<addr> [<filename> [bytes [pos]]]]]

For example:

=> ext2load mmc 0:2 $load addr firmware 1sl046ardb sdboot.img

Also note that Layerscape LDP flex-installer command puts the images on the second partition, so 0:2
is used in the 1oad command. If the SD card is formatted on Windows PC or Linux PC for single partition
only, then 0 should be used instead of 0:2 in the fatload/ext2load command.

4. Program the firmware to SD card.

=> mmc dev 0; mmc write S$load addr 8 1£000

5. Reset and boot the board from SD card. The system will automatically boot up Tinydistro (log in using root/
root) or Layerscape LDP distro (log in using user/user) available on the removable storage device.

=> cpld reset sd

4.7.7.5 Frame Manager Configuration (FMC) tool

By default, FMan has been configured for Parse-Classify-Distribute (PCD). This means that without any further
action from the user, FMan enqueues received frames from a particular flow to the same receive queue. This
prevents Rx packet reorder issues and improves performance.

This default FMan configuration uses configuration and policy files that are provided in NXP Layerscape LDP
for this release to perform PCD. These files are in xml format and are created with the objective of preserving
packet ordering per flow. For LS1046ARDB, these files are available at the following path:

/etc/fmc/config/private/1s1046ardb/RR_FFSSPPPH 1133 5559

However, if a user wants to apply a configuration other than the one which is applied by default, the user needs
to run following command after the board boots to Linux.

LLDPUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. L6.1.1_1.0.0_23.08 — 4 August 2023

60 /1053

https://source.codeaurora.org/external/qoriq/qoriq-components/eth-config/tree/private/ls1046ardb/RR_FFSSPPPH_1133_5559?h=github.qoriq-os/integration

NXP Semiconductors LLDPUG

Layerscape Linux Distribution POC User Guide

1. Change directory to the parent directory of the user’s custom configuration and policy files.
2. Run the FMC tool command:

$ fmc -c <config.xml> -p <policy.xml> -a

4.7.8 Quick start guide for LS1088ARDB

This section explains:

* Introduction

LS1088ARDB and LS1088ARDB-PB reference information
LS1088ARDB and LS1088ARDB-PB recovery information
* Program Layerscape LDP composite firmware image
 Bringing up DPAA2 network interfaces

4.7.8.1 Introduction

The following sections describe the procedure to program Layerscape LDP composite firmware for
LS1088ARDB and LS1088ARDB-PB. Also, this section explains the most common use case procedure to
download and deploy Layerscape LDP default images to LS1088ARDB and LS1088ARDB-PB using flex-
installer. For more information, see Download and deploy Layerscape LDP images with flex-installer in Linux
environment.

For more information on the different components of the board, and on how to configure and boot the board,
see LS1088A Reference Design Board (LS1088ARDB-PB) Getting Started Guide.

For a list of brief how-tos to help you modify/update individual Layerscape LDP components such as, U-Boot,
Linux kernel, DPL, DPC, on LS1088ARDB/LS1088ARDB-PB when booting the board from a specific boot
source, such as QSPI or SD, see NXP_community.

4.7.8.2 LS1088ARDB and LS1088ARDB-PB reference information

This section provides general information about LS1088ARDB and LS1088ARDB-PB which may come in handy
as a reference while completing steps for deploying Layerscape LDP that follow.

Note:

LS1088ARDB-PB is a variant of LS1088ARDB, therefore most of the information should be the same as
LS1088ARDB. Following sections specify the differences if any.

4.7.8.2.1 Ethernet port map

The table below shows the mapping of Ethernet port names appearing on chassis front panel with the port
names in U-Boot and Linux.

Table 16. Ethernet port names mapping

Port name on chassis Port name in Linux (Tiny Port name in U-Boot Description

Distro and Linux distro

userland)
ETHO ethx DPMAC2@xgmii XFI copper interface
ETH1 ethx DPMAC1@xgmii XFI optical interface
ETH2 ethx DPMAC7@qgsgmii QSGMII copper interface
ETH3 ethx DPMAC8@qgsgmii QSGMII copper interface
LLDPUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.
User guide Rev. L6.1.1_1.0.0_23.08 — 4 August 2023

61/1053

https://www.nxp.com/design/qoriq-developer-resources/qoriq-ls1088a-development-board:LS1088A-RDB?fpsp=1&tab=Documentation_Tab#documentsandsoftware
https://community.nxp.com/docs/DOC-341706

NXP Semiconductors

LLDPUG

Table 16. Ethernet port names mapping...continued

Layerscape Linux Distribution POC User Guide

Port name on chassis

Port name in Linux (Tiny
Distro and Linux distro
userland)

Port name in U-Boot

Description

ETH4 ethx DPMAC9@qsgmii QSGMII copper interface
ETH5 ethx DPMAC10@qsgmii QSGMII copper interface
ETH6 ethx DPMAC3@qgsgmii QSGMII copper interface
ETH7 ethx DPMAC4@qsgmii QSGMII copper interface
ETH8 If there is a PCle card DPMAC5@qsgmii QSGMII copper interface

plugged in, it is detected as

eth1.

If there is no PCle, it is

detected as eth0.
ETH9 ethx DPMAC6@qsgmii QSGMII copper interface

Note: For other ports, interfaces are created dynamically in Linux. So, the port name is determined by the creation order.

4.7.8.2.2 System memory map

Start address End address Size Allocation Comment

0x0000_0000_0000 0x0000_000F_FFFF 1 MB CCSR - Boot ROM 64 KB

0x0000_0010_0000 0x0000_O0OFF_FFFF |15 MB Reserved

0x0000_0100_0000 0x0000_OFFF_FFFF |240 MB CCSR

0x0000_1000_0000 0x0000_10FF_FFFF 16 MB Reserved SP alias this space to
DCSR. Do not allocate.

0x0000_1100_0000 0x0000_11FF_FFFF 16 MB Reserved SP alias this space to
DCSR. Do not allocate.

0x0000_1200_0000 0x0000_13FF_FFFF 32 MB Reserved SP alias this space to
DCSR. Do not allocate.

0x0000_1400_0000 0x0000_17FF_FFFF |64 MB Reserved

0x0000_1800_0000 0x0000_181F_FFFF |2 MB OCRAM 128 KB

0x0000_1820_0000 0x0000_18FF_FFFF |14 MB Reserved

0x0000_1900_0000 0x0000_19FF_FFFF |16 MB CoreSight STM 16 MB

0x0000_1A00_0000 0x0000_1BFF_FFFF |32 MB Reserved

0x0000_1C00_0000 0x0000_1CFF_FFFF |16 MB Reserved

0x0000_1D00_0000 0x0000_1FFF_FFFF |48 MB Reserved

0x0000_2000_0000 0x0000_2FFF_FFFF |256 MB Quad SPI Region #1 |More QSPI space

(0-256 MB) below 256 MB
0x0000_3000_0000 0x0000_3FFF_FFFF |256 MB IFC Region #1 (0-256 |More IFC space below
MB) 256 MB

0x0000_4000_0000 0x0000_5FFF_FFFF |512 MB Reserved

0x0000_6000_0000 0x0000_7FFF_FFFF |512 MB Reserved

0x0000_8000_0000 0x0000_9FFF_FFFF |512 MB GPP DRAM Region #1

0c0000_A000_0000 0x0000_BFFF_FFFF |512 MB (0-2GB)

LLDPUG

All information provided in this document is subject to legal disclaimers.

© 2023 NXP B.V. All rights reserved.

User guide

Rev. L6.1.1_1.0.0_23.08 — 4 August 2023

62 /1053

NXP Semiconductors

LLDPUG

Layerscape Linux Distribution POC User Guide

0x0000_C000_0000 0x0000_DFFF_FFFF |512 MB
0x0000_E000_0000 0x0000_FFFF_FFFF |512 MB
0x0001_0000_0000 0x0001_FFFF_FFFF |4 GB Reserved
0x0002_0000_0000 0x0003_FFFF_FFFF |8 GB
0x0004_0000_0000 0x0004_OFFF_FFFF |256 MB Hole QSPI space #1 maps
on top of this space

0x0004_1000_0000 0x0004_FFFF_FFFF |3.75GB Quad SPI Region #2 [3.75 GB

(256 MB-4 GB)
0x0005_0000_0000 0x0005_OFFF_FFFF 256 MB Hole IFC space #1 maps on

top of this space

0x0005_1000_0000 0x0005_FFFF_FFFF |3.75 GB IFC Region #2 (256 3.75GB

MB-4 GB)
0x0006_0000_0000 0x0006_FFFF_FFFF |4 GB Reserved
0x0007_0000_0000 0x0007_3FFF_FFFF |1 GB DCSR
0x0007_4000_0000 0x0007_FFFF_FFFF |3 GB Reserved
DPAA2 Portal Map
0x0008_0000_0000 0x0008_03FF_FFFF |64 MB Reserved
0x0008_0400_0000 0x0008_07FF_FFFF |64 MB Reserved
0x0008_0800_0000 0x0008_OBFF_FFFF |64 MB Reserved
0x0008_0C00_0000 0x0008_OFFF_FFFF |64 MB MC - 1024 portals 32 MB (512 portal)
0x0008_1000_0000 0x0008_17FF_FFFF |128 MB Reserved
0x0008_1800_0000 0x0008_1FFF_FFFF |128 MB QBMAN portals 128 MB
0x0008_0000_0000 0x000B_FFFF_FFFF |15.5GB Reserved
0x000C_0000_0000 0x000F_FFFF_FFFF |16 GB Reserved
High-speed 1/0 (PCle)
0x0010_0000_0000 0x0011_FFFF_FFFF |8 GB Reserved
0x0012_0000_0000 0x0013_FFFF_FFFF |8 GB Reserved
0x0014_0000_0000 0x0015_FFFF_FFFF |8 GB Reserved
0x0016_0000_0000 0x0017_FFFF_FFFF |8 GB Reserved
0x0018_0000_0000 0x0019_FFFF_FFFF |8 GB Reserved
0x001A_0000_0000 0x001B_FFFF_FFFF |8 GB Reserved
0x001C_0000_0000 0x001D_FFFF_FFFF |8 GB Reserved
0x001E_0000_0000 0x001F_FFFF_FFFF |8 GB Reserved
0x0020_0000_0000 0x0027_FFFF_FFFF |32 GB PCle1
0x0028_0000_0000 0x002F_FFFF_FFFF |32 GB PCle2
0x0030_0000_0000 0x0037_FFFF_FFFF |32 GB PCle3
0x0038_0000_0000 0x003F_FFFF_FFFF |32 GB Reserved
DPAAZ2 External address map
0x0040_0000_0000 0x0040_FFFF_FFFF |4 GB Reserved

LLDPUG

All information provided in this document is subject to legal disclaimers.

© 2023 NXP B.V. All rights reserved.

User guide

Rev. L6.1.1_1.0.0_23.08 — 4 August 2023

63 /1053

NXP Semiconductors

LLDPUG

Layerscape Linux Distribution POC User Guide

0x0041_0000_0000 0x0041_FFFF_FFFF |4 GB Reserved
0x0042_0000_0000 0x0042_FFFF_FFFF |4 GB Reserved
0x0043_0000_0000 0x0043_FFFF_FFFF |4 GB WRIOP access
window
0x0044_0000_0000 0x0047_FFFF_FFFF |16 GB Reserved
0x0048_0000_0000 0x0048_FFFF_FFFF |4 GB Reserved
0x0049_0000_0000 0x0049_FFFF_FFFF |4 GB Reserved
0x004A_0000_0000 0x004A_FFFF_FFFF |4 GB Reserved
0x004B_0000_0000 0x004B_FFFF_FFFF |4 GB Reserved
0x004C_0000_0000 0x004F_FFFF_FFFF |16 GB Packet Express Buffer |1 MB
0x0050_0000_0000 0x005F_FFFF_FFFF |64 GB Reserved
0x0060_0000_0000 0x007F_FFFF_FFFF |128 GB Reserved
0x0080_0000_0000 0x0080_7FFF_FFF 2GB Hole
0x0080_8000_0000 Ox00FF_FFFF_FFFF |510 GB GPP DRAM Region #2

(2-512GB)

4.7.8.2.3 Supported boot options

LS1088ARDB and LS1088ARDB-PB support the following boot options:

* SD

* QSPI NOR Flash
Note:
— When booting from SD, the RCW, U-Boot, and other firmware components are located on the SD card
starting at block 8.
— When booting from QSPI NOR flash, the RCW, U-Boot, and other firmware components are located in flash
starting at offset 0x0. See Layerscape LDP Memory Layout for additional information.

4.7.8.2.4 Onboard switch options

The RDBs have user selectable switches for evaluating different boot options for the LS1088A device as given
in the table below ('0' is OFF, '1'is ON).

Note: Even though the onboard switch settings given in the table below are same for LS1088ARDB and
LS1088ARDB-PB, the significance of some of these settings may differ. See “Switch settings” in LS1088ARDB
Getting Started Guide and “Switch configuration” in LS1088ARDB-PB Getting Started Guide for detailed
description of each switch setting.

Boot source SW1[1:8] SW2[1:8] SW3[1:8] SW4[1:8] SW5[1:8]
QSPI NOR flash0 |0011 0001 X100 0000 1110 0010 1001 0011 0111 0000
(default)

QSPI NOR flash1 |0011 0001 X100 0001 1110 0010 1001 0011 0111 0000
SD card 0010 0000 0100 0000 1110 0010 1001 0011 0111 0000

Note that changing the boot device configuration from the default setting may require additional changes in
the RCW or in other code images. For information on RCW naming convention for LS1088ARDB, see https://
github.com/nxp-gorig/rcw/blob/master/Is1088ardb/README.

LLDPUG

All information provided in this document is subject to legal disclaimers.

© 2023 NXP B.V. All rights reserved.

User guide

Rev. L6.1.1_1.0.0_23.08 — 4 August 2023

64 /1053

https://github.com/nxp-qoriq/rcw/blob/master/ls1088ardb/README
https://github.com/nxp-qoriq/rcw/blob/master/ls1088ardb/README

NXP Semiconductors LLDPUG

Layerscape Linux Distribution POC User Guide

4.7.8.2.5 QSPI NOR flash banks

LS1088ARDB and LS1088ARDB-PB have 2 QSPI NOR flash connected over QSPI controller. Only one QSPI
NOR flash is available at a time depending upon the board switch settings as given in preceding topic. These
switch settings can also be overridden using gixis_reset commands in U-Boot.

To protect the default U-Boot in flashO, it is a convention employed by NXP to deploy work images into

flash1, and then switch to flash1 for testing. Switching to flash1 can be done in software using qixis_reset
command that effectively swaps flashO with flash1. This protects flashO and keeps the board bootable under all
circumstances.

To determine the current bank, refer to the example U-Boot log given below:

U-Boot 2022.04+fs1+gl81859317b (Nov 15 2022 - 06:28:05 +0000)
SoC: LS1088AE Revl1l.0 (0x87030010)
Clock Configuration:
CPUO (A53) :1600 MHz CPU1l (A53) :1600 MHz CPU2 (A53) :1600 MHz
CPU3 (A53) :1600 MHz CPU4 (A53) : 1600 MHz CPUS5 (A53):1600 MHz
CPUG6 (A53) :1600 MHz CPU7 (A53) :1600 MHz
Bus: 700 MHz DDR: 2100 MT/s
Reset Configuration Word (RCW) :
00000000: 4000541c 00000040 00000000 00000000
00000010: 00000000 000a0000 00300000 00000000
00000020: 016011a0 00002580 00000000 00000040
00000030: 0000005b 00000000 00002403 00000000
00000040: 00000000 00000000 00000000 00000000
00000050: 00000000 00000000 00000000 00000000
00000060: 00000000 00000000 00000011 000009e7
00000070: 44110000 00509555
VID: Core voltage after adjustment is at 1026 mV
DRAM: 15.9 GiB
DDR 15.9 GiB (DDR4, 64-bit, CL=15, ECC on)
DDR Chip-Select Interleaving Mode: CS0+CS1 Using SERDES1
Protocol: 29 (0x1d)

Boot option switching can be performed in U-Boot using the following statements.
» Switch to QSPI NOR flash 0 (default):

=> gixis_ reset
* Switch to QSPI NOR flash 1:

=> gixis reset altbank

¢ Switch to SD:

=> gixis reset sd

LLDPUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. L6.1.1_1.0.0_23.08 — 4 August 2023

65/1053

NXP Semiconductors LLDPUG

Layerscape Linux Distribution POC User Guide

4.7.8.2.6 U-Boot environment variables

» DPAA2-specific Environment Variables

— mcboottimeout: Defines Management Complex boot timeout in milliseconds. If this variable is not defined,
the compile-time value CONFIG_SYS LS MC_BOOT_TIMEOUT_MS will be the default. Normally, users
do not need to set this variable because the default is acceptable.

— mcmemsize: Defines amount of system DDR to be used by the Management Complex. If this variable is
not defined, the compile-time value 0x70000000 or 1.75 GB will be the default. Normally, users do not need
to set this variable because the default is acceptable.

— mcinitemd: Contains commands to load and start the Management Complex automatically before the U-
Boot countdown to boot starts. If this variable is defined, its contents are run. The default value assumes
that the Management Complex (MC) firmware and Data Path Control file are stored in QSPI NOR/SD flash
at fixed addresses.

* Environment variables that are not specific to DPAA2

— bootcmd: Contains commands that are automatically executed when the U-Boot boot command is run. This

happens automatically when the user does not interrupt U-Boot initial count down.

For more information on U-Boot distro boot command, see Section 5.3.2.

4.7.8.3 LS1088ARDB and LS1088ARDB-PB recovery information

If LST1088ARDB/LS1088ARDB-PB board fails to boot from QSPI NOR flash 0, you can recover QSPI NOR flash
0 from QSPI NOR flash 1 by following these steps:

1. Download the prebuilt composite firmware image:
$ cp <build>/tmp/deploy/image/1sl043ardb/firmware 1s1088ardb pb gspiboot.img ~/tftp
Note: Note that LS1088ARDB is not supported Layerscape LDP 18.12 release onwards.
2. Boot LS1088ARDB/LS1088ARDB-PB from QSPI NOR flash 1 with the following switch settings:
e SW1[1:8] = 0011 0001
e SW2[1:8] = X100 0001
e SW3[1:8] = 1110 0010
e SWA4[1:8] = 1001 0011
e SW5[1:8] = 0111 0000
3. Program QSPI NOR flash 0 from QSPI NOR flash 1:
=> sf probe 0:1

=> tftp $load addr firmware 1s1088ardb pb gspiboot.img
=> sf erase 0x0 +$filesize && sf write $load addr 0x0 Sfilesize

4. Reset and boot the board from QSPI NOR flash 0:

=> gixis reset

Note: If LS1088ARDB/L.S1088ARDB-PB fails to boot from both the QSPI NOR flash banks, you need to
recover the board using CodeWarrior for LS Series, Arm v8 ISA. For steps to recover the board using the
CodeWarrior tool, see section "8.6 Board Recovery"” in ARM V8 ISA, Targeting Manual

4.7.8.4 Program Layerscape LDP composite firmware image

This topic explains steps to program QSPI NOR firmware image to QSPI NOR flash on LS1088ARDB/
LS1088ARDB-PB and SD firmware image to SD card on LS1088ARDB/LS1088ARDB-PB.

To program Layerscape LDP composite firmware image to QSPI NOR flash on LS1088ARDB/LS1088ARDB-
PB:

LLDPUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. L6.1.1_1.0.0_23.08 — 4 August 2023

66 /1053

https://www.nxp.com/docs/en/user-guide/CWARMv8TM.pdf

NXP Semiconductors LLDPUG

Layerscape Linux Distribution POC User Guide

1. Copy firmware on host machine to TFTP server.

S cp <build>/tmp/deploy/image/1s1088ardb/firmware 1s1088ardb gspiboot.img ~/
tftp/

2. Under U-Boot, download the firmware to the reference board using one of the following options:
¢ Load firmware from the TFTP server

=> tftp $load addr firmware 1s1088ardb pb gspiboot.img

* Load firmware image from partition on mass storage device (SD, USB, or SATA)

=> load mmc <dev:part> $load addr firmware 1s1088ardb pb gspiboot.img

For example:

=> load mmc 0:2 $load addr firmware 1s1088ardb pb gspiboot.img

or

=> load usb <dev:part> S$load addr firmware 1s1088ardb pb gspiboot.img

or

=> load scsi <dev:part> $load addr firmware 1s1088ardb pb gspiboot.img

Note:
Use the following command if the SD card is formatted/created using Layerscape LDP flex-installer
command:

=> load <interface> [<dev/[:part]> [<addr> [<filename> [bytes [pos]]]]]

For example:

=> Joad mmc 0:2 $load addr firmware 1s1088ardb pb gspiboot.img

Use the following command if the SD card is formatted/created on a Windows PC:

=> fatload <interface> [<dev/[:part]> [<addr> [<filename> [bytes [pos]]]]]

For example:

=> fatload mmc 0:2 $load addr firmware 1s1088ardb pb gspiboot.img

Use the following command if the SD card is formatted/created on a Linux PC:

=> extZload <interface> [<dev/[:part]> [<addr> [<filename> [bytes [pos]]]]]

For example:

=> ext2load mmc 0:2 $load addr firmware 1s1088ardb pb gspiboot.img

Also note that Layerscape LDP flex-installer command puts the images on the second partition, so 0:2
is used in the 1oad command. If the SD card is formatted on Windows PC or Linux PC for single partition
only, then 0 should be used instead of 0:2 in the fatload/ext2load command.

3. re (from NXP website) to the Linux host machine.

$ Copy firmware on host machine to tftp server

Note: Note that prebuilt LS1088ARDB images are not available with Layerscape LDP 18.12 release
onwards.

4. Reboot the board from QSPI NOR flash 0 and stop autoboot to enter U-Boot prompt.
5. Program the firmware to QSPI NOR flash 1.

=> sf probe 0:1
=> sf erase 0 +S$filesize && sf write $load addr 0 $filesize

LLDPUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. L6.1.1_1.0.0_23.08 — 4 August 2023

67 /1053

NXP Semiconductors LLDPUG

Layerscape Linux Distribution POC User Guide

6. Reset and boot the board from QSPI NOR flash 1. The system will automatically boot up TinyDistro (log
in using root/root) or Layerscape LDP distro (log in using user/user) available on the removable storage
device.

=> gixis_ reset altbank

To program Layerscape LDP composite firmware image to SD card on LS1088ARDB/LS1088ARDB-PB:

1. Copy firmware on host machine to tftp server.

$ cp <build>/tmp/deploy/image/1s1l088ardb/firmware 1s1088ardb sdboot.img ~/
tftp/
Note: Note that LS1088ARDB is not supported Layerscape LDP 18.12 release onwards.
2. Reboot the board from QSPI NOR flash 0 and stop autoboot to enter U-Boot prompt.
3. Under U-Boot, download the firmware to the reference board using one of the following options:
¢ Load firmware from the TFTP server

=> tftp $load addr firmware 1s1088ardb pb sdboot.img

* Load firmware image from partition on mass storage device (SD, USB, or SATA)

=> load mmc <device:partition> $load addr firmware 1s1088ardb pb sdboot.img

For example:

=> load mmc 0:2 $load addr firmware 1s1088ardb pb sdboot.img
Or

=> load usb <device:part> $load addr firmware 1s1088ardb pb sdboot.img
Or

=> load scsi <dev:part> $load addr firmware 1sl1088ardb pb sdboot.img

Note:
Use the following command if the SD card is formatted/created using Layerscape LDP flex-installer
command:

=> Jload <interface> [<dev[:part]> [<addr> [<filename> [bytes [pos]]]]]

For example:

=> Joad mmc 0:2 $load addr firmware 1sl088ardb pb sdboot.img

Use the following command if the SD card is formatted/created on a Windows PC:

=> fatload <interface> [<dev/[:part]> [<addr> [<filename> [bytes [pos]]]]]

For example:

=> fatload mmc 0:2 $load addr firmware 1s1088ardb pb sdboot.img

Use the following command if the SD card is formatted/created on a Linux PC:

=> ext2load <interface> [<dev/[:part]> [<addr> [<filename> [bytes [pos]]]]]

For example:

=> ext2load mmc 0:2 $load addr firmware 1s1088ardb pb sdboot.img

Also note that Layerscape LDP flex-installer command puts the images on the second partition, so 0:2
is used in the 1oad command. If the SD card is formatted on Windows PC or Linux PC for single partition
only, then 0 should be used instead of 0:2 in the fatload/ext2load command.

LLDPUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. L6.1.1_1.0.0_23.08 — 4 August 2023

68 /1053

NXP Semiconductors LLDPUG

Layerscape Linux Distribution POC User Guide

4. Program the firmware to SD card.

=> mmc dev 0; mmc write $load addr 8 1£000

5. Reset and boot the board from SD card. The system will automatically boot up TinyDistro (log in using root/
root) or Layerscape LDP distro (log in using user/user) available on the removable storage device.

=> gixis reset sd

4.7.8.5 Bringing up DPAA2 network interfaces

This section describes the procedure to bring up DPAA2 network interfaces.

4.7.8.5.1 Using Linux commands to list network interfaces

The Linux distribution boots with a default DPL file which enables only one network interface on DPAA2 by
default, as a standard kernel Ethernet interface.

Run the following standard Linux command to get a list of enabled interfaces.
$ ip link show

The default interface is named ethO (or eth1 if a PCI Express network interface card is discovered first).

4.7.8.5.2 Using restool wrapper scripts to list DPAA2 objects

The user-friendly wrapper scripts are provided in the release root fs to assist with dynamic creation of DPNIs
and the associated dependencies. The wrapper scripts call the restool commands.

To list the available wrapper scripts, enter the following command:

Sls-main

The Ethernet interfaces have the corresponding DPPA2 objects associated with them.

To list the enabled data path network interface (DPNI) associated with ethO (or eth1), run the following restool
wrapper script:

$ ls-listni
dprc.1/dpni.0 (interface: ethl, end point: dpmac.5)

This indicates that the data path network interface named dpni.0 which belongs to the DPAA2 resource
container dprc.1 is present. This DPNI object corresponds to the interface named eth1 which is connected to
dpmac.5.

The following command can be used to list all DPMAC objects present in the system and what they are
connected to (if anything).

$ ls-listmac
dprc.1/dpmac.
dprc.1/dpmac.
dprc.1/dpmac.
dprc.l/dpmac.
dprc.l/dpmac.
dprc.l/dpmac.
dprc.1/dpmac.
dprc.1l/dpmac.
dprc.1/dpmac.

(@)

(end point: dpni.O0)

N W O1oy JdJ 0 W

LLDPUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. L6.1.1_1.0.0_23.08 — 4 August 2023

69 /1053

NXP Semiconductors LLDPUG

Layerscape Linux Distribution POC User Guide

dprc.l/dpmac.1

For more information on DPAA2 objects and restool, see DPAA2-specific Software in Layerscape LDP
documentation.

4.7.8.5.3 Add and destroy network interfaces

As mentioned in previous sections, interface ethO (or eth1) corresponds to the data path network interface
dpni.0 which is the only one enabled by default DPL file. However, users may need more than one network
interface enabled. Also, DPNI.0 is configured with a minimal set of resources — for example, it can only receive
traffic on one core via one queue. Additional and fully featured DPNI objects can be created using restool. Once
these objects are created, the configuration can be saved to a custom DPL file.

Running the command below is the simplest way of adding a DPNI object and connecting it to a DPMAC. In this
case DPNI object is being connected to dpmac.4 using default options and arguments.

$ ls-addni dpmac.4
Created interface: eth0 (object:dpni.l, endpoint: dpmac.4)

Run the following command to display information about the newly created dpni.1 interface. The number of
queues is shown to be 8, one queue per core for 8 cores which can receive traffic.

restool dpni info dpni.l

If you want to connect DPMACS5 (which is connected to dpni.0 by default) to a fully-featured data path network
interface, then you must first unbind and destroy the existing interface by using the commands below.

Unbind dpni.0 from the driver:

$ echo dpni.0 > /sys/bus/fsl-mc/drivers/fsl dpaa2 eth/unbind

Destroy data path network interface dpni.0

$ restool dpni destroy dpni.O
dpni.0 is destroyed

Now add back dpmac.5 using the command below. Even though dpmac.5 is again connected to dpni.0, dpni.0
now uses 8 traffic queues for distribution.

$ ls-addni dpmac.5
Created interface: eth0 (object:dpni.0, endpoint: dpmac.5)

Note: Note that on the LS1088A SoC using the Is-addni script default resource allocation is not possible to
create and connect DPNIs to all the 10 DPMACs available. This is because, by default, the Is-addni script
creates an interface with 64 flow steering entries and 16 MAC entries. Since the LS1088A SoC has a total of 2K
CTLU entries (resources used by the fs_entries and mac_entries parameters), resources are easily occupied
and the 10th DPNI is not created. This limitation is not encountered on any of the other DPAA2 based SoCs
(LS2088A or LX2160A) since the CTLU resources are not scarce.

A sequence for creating all 10 interfaces without any error would be the one below.

for i in 'seqg 1 9°; do ls-addni "dpmac.$i"; done

for the 10th interface use a lower number of pre-allocated resources (steering
entries and mac entries)

ls-addni dpmac.10 -f=16 -m=8

LLDPUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. L6.1.1_1.0.0_23.08 — 4 August 2023

70/1053

NXP Semiconductors LLDPUG

Layerscape Linux Distribution POC User Guide

A detailed example of how one can compute the CTLU resource allocation can be found below.

A classification key, depending on its size can stretch on multiple CTLU entries. For example a 56 byte key
(this is the key size for exact match flow steering entries) occupies three entries. By default, when an interface
is created with Is-addni, 64 fs_entries are preallocated. It means that a total of 64 * 3 = 192 entries are used
for one DPNI. For 10 DPNIs there are 10 times more, that is, 1920 entries. Another default parameter that
consumes CTLU resources is mac_entries. A mac_entry key consumes 1 CTLU entry. The default 16 MAC
entries consume 16 CTLU entries. For 10 DPNIs, 160 CTLU entries are consumed. If we sum up the above
numbers, we obtain a total of 2080 entries for 10 DPNIs, more than the maximum 2K.

4.7.8.5.4 Save configuration to a custom DPL file (Optional)

After the additional DPNI objects are created, you can create a custom DPL file using the following command:
$ restool dprc generate-dpl dprc.l > <file name>.dts

Note: This DPL file is in *.dts format and is created on the reference board.

You must compile the resulting *.dts file using the dtc tool to generate a *.dtb file.

To copy the DPL (*.dts) file to a Linux host machine or server using SCP and convert it to a *.dtb file, run the
following command:

$ dtc -I dts -0 dtb <file name>.dts -o <file name>.dtb

Note: The newly created DPL file can be flashed on to the board and used to boot to Linux.

4.7.8.5.5 Assign IP addresses to network interfaces

Static IP addresses can be assigned to network interfaces using the standard ifconfig or ip commands.

ifconfig <interface name in Linux> <ip address>
OR
ip address add <ip address> dev <interface name in linux>

Alternatively, Static IP addresses can also be assigned using netplan. Create a file called “config.yaml” in /etc/
netplan. Using a text editor, add the following lines to this config file and save it.

network:
version: 2
renderer: networkd
ethernets:
<interface name in Linux>:
addresses:
- <ip address>/24

After saving this file, run the following command to apply this netplan configuration and then reboot the board.

sudo netplan apply

Once the board reboots, bring up the desired interface by using “ifconfig <interface name in Linux>
up”or“ ip link set <interface name in Linux> up”’ command. The interface is assigned the

IP address that was entered in the “ config.yaml” file.Netplan can also be used for dynamic IP address
assignment using DHCP. For dynamic IP assignment, replace the contents of the config.yaml file with the
following.

network:
version: 2

LLDPUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. L6.1.1_1.0.0_23.08 — 4 August 2023

71/1053

NXP Semiconductors LLDPUG

Layerscape Linux Distribution POC User Guide

renderer: networkd
ethernets:
<interface name in Linux>:
dhcp4d: true

Follow the same procedure as for the static IP assignment using Netplan after saving the “config.yaml” file.

4.7.9 Quick start guide for LS2088ARDB

This section explains:

* Introduction

LS2088ARDB reference information

LS2088ARDB recovery information

e Program Layerscape LDP composite firmware image
* Bringing up DPAA2 network interfaces

4.7.9.1 Introduction

The following sections describe the procedure to program Layerscape LDP composite firmware for
LS2088ARDB. Also, this section explains the most common use case procedure to download and deploy
Layerscape LDP default images to LS2088ARDB using flex-installer. For more information, see Section 4.2.

For more information on the different components of the board, and on how to configure and boot the board,
see LS2088ARDB board documentation.

4.7.9.2 LS2088ARDB reference information

This section provides general information about LS2088ARDB which may come in handy as a reference while
completing steps for deploying Layerscape LDP that follow.

4.7.9.2.1 Ethernet port map

Port name in Chassis Port name in U-Boot Port name in Linux (Tiny Description
Distro and Linux distro
userland)
ETHO DPMAC5@xgmii ethO by default (or eth1 if PCI | XFI copper interface

Express network interface
card is discovered first)

ETH1 DPMAC6@xgmii not enabled by default XFI copper interface

ETH2 DPMAC7@xgmii not enabled by default XFI copper interface

ETH3 DPMAC8@xgmii not enabled by default XFI copper interface

ETH4 DPMAC1@xgmii not enabled by default XFI copper interface

ETH5 DPMAC2@xgmii not enabled by default XFI copper interface

ETH6 DPMAC3@xgmii not enabled by default XFI copper interface

ETH7 DPMAC4@xgmii not enabled by default XFI copper interface

LLOPUG Allinformation provided in this document s subject to legal disclaimers. ©2023 NXP B.V. All rights reserved.
User guide Rev. L6.1.1_1.0.0_23.08 — 4 August 2023

72/1053

https://www.nxp.com/design/qoriq-developer-resources/layerscape-ls2088a-reference-design-board:LS2088A-RDB#documentation

NXP Semiconductors

LLDPUG

4.7.9.2.2 System memory map

Layerscape Linux Distribution POC User Guide

Start address End address Size Allocation Comment
0x0000_0000_0000 0x0000_000F_FFFF 1MB CCSR - Boot ROM 64 KB
0x0000_0010_0000 0x0000_O0FF_FFFF 15 MB Reserved
0x0000_0100_0000 0x0000_OFFF_FFFF 240 MB CCSR
0x0000_1000_0000 0x0000_10FF_FFFF 16 MB Reserved
0x0000_1100_0000 0x0000_11FF_FFFF 16 MB Reserved
0x0000_1200_0000 0x0000_13FF_FFFF 32 MB Reserved
0x0000_1400_0000 0x0000_17FF_FFFF 64 MB Reserved
0x0000_1800_0000 0x0000_181F_FFFF 2 MB OCRAM 128 KB
0x0000_1820_0000 0x0000_18FF_FFFF 14 MB Reserved
0x0000_1900_0000 0x0000_19FF_FFFF 16 MB CoreSight STM 16 MB
0x0000_1A00_0000 0x0000_1BFF_FFFF 32 MB Reserved
0x0000_1C00_0000 0x0000_1CFF_FFFF 16 MB Reserved
0x0000_1D00_0000 0x0000_1FFF_FFFF 48 MB Reserved
0x0000_2000_0000 0x0000_2FFF_FFFF 256 MB Quad SPI Region #1 |More QSPI space
(0-256 MB) below 256 MB
0x0000_3000_0000 0x0000_3FFF_FFFF 256 MB IFC Region #1 (0-256 |More IFC space
MB) below 256 MB
0x0000_4000_0000 0x0000_5FFF_FFFF 512 MB Reserved
0x0000_6000_0000 0x0000_7FFF_FFFF 512 MB Reserved
0x0000_8000_0000 0x0000_9FFF_FFFF 512 MB GPP DRAM Region
#1 (0-2 GB)
0c0000_A000_0000 0x0000_BFFF_FFFF 512 MB
0x0000_C000_0000 0x0000_DFFF_FFFF 512 MB
0x0000_E000_0000 0x0000_FFFF_FFFF 512 MB
0x0001_0000_0000 0x0001_FFFF_FFFF 4GB Reserved
0x0002_0000_0000 0x0003_FFFF_FFFF 8 GB
0x0004_0000_0000 0x0004_OFFF_FFFF 256 MB Hole QSPI space #1 maps
on top of this space
0x0004_1000_0000 0x0004_FFFF_FFFF 3.75GB Quad SPI Region #2 |3.75 GB 0x0005_00
(256 MB-4 GB) 00_0000 0x0005_0
FFF_FFFF 256
MB Hole IFC space #1 maps
on top of this space
0x0005_1000_0000 0x0005_FFFF_FFFF 3.75GB IFC Region #2 (256 |3.75 GB
MB-4 GB)
0x0006_0000_0000 0x0006_FFFF_FFFF 4GB Reserved
0x0007_0000_0000 0x0007_3FFF_FFFF 1GB DCSR
0x0007_4000_0000 0x0007_FFFF_FFFF 3GB Reserved

LLDPUG

All information provided in this document is subject to legal disclaimers.

© 2023 NXP B.V. All rights reserved.

User guide

Rev. L6.1.1_1.0.0_23.08 — 4 August 2023

73/1053

NXP Semiconductors

LLDPUG

Layerscape Linux Distribution POC User Guide

Start address End address Size Allocation Comment
DPAAZ2 Portal Map
0x0008_0000_0000 0x0008_03FF_FFFF 64 MB Reserved
0x0008_0400_0000 0x0008_07FF_FFFF 64 MB Reserved
0x0008_0800_0000 0x0008_OBFF_FFFF 64 MB Reserved
0x0008_0C00_0000 0x0008_OFFF_FFFF 64 MB MC - 1024 portals 32 MB (512 portal)
0x0008_1000_0000 0x0008_17FF_FFFF 128 MB Reserved
0x0008_1800_0000 0x0008_1FFF_FFFF 128 MB QBMAN portals 128 MB
0x0008_0000_0000 0x000B_FFFF_FFFF 15.5 GB Reserved
0x000C_0000_0000 0x000F_FFFF_FFFF 16 GB Reserved
High-speed 1/0 See details of specific
(PCle) IPs below
0x0010_0000_0000 0x0011_FFFF_FFFF 8 GB Reserved
0x0012_0000_0000 0x0013_FFFF_FFFF 8 GB Reserved
0x0014_0000_0000 0x0015_FFFF_FFFF 8 GB Reserved
0x0016_0000_0000 0x0017_FFFF_FFFF 8 GB Reserved
0x0018_0000_0000 0x0019_FFFF_FFFF 8 GB Reserved
0x001A_0000_0000 0x001B_FFFF_FFFF 8 GB Reserved
0x001C_0000_0000 0x001D_FFFF_FFFF 8 GB Reserved
0x001E_0000_0000 0x001F_FFFF_FFFF 8 GB Reserved
0x0020_0000_0000 0x0027_FFFF_FFFF 32GB PCle1
0x0028_0000_0000 0x002F_FFFF_FFFF 32GB PCle2
0x0030_0000_0000 0x0037_FFFF_FFFF 32GB PCle3
0x0038_0000_0000 0x003F_FFFF_FFFF 32GB PCle4
DPAA2 Ext address
map
0x0040_0000_0000 0x0040_FFFF_FFFF 4 GB Reserved
0x0041_0000_0000 0x0041_FFFF_FFFF 4 GB Reserved
0x0042_0000_0000 0x0042_FFFF_FFFF 4 GB Reserved
0x0043_0000_0000 0x0043_FFFF_FFFF 4 GB WRIOP access
window
0x0044_0000_0000 0x0047_FFFF_FFFF 16 GB Reserved
0x0048_0000_0000 0x0048_FFFF_FFFF 4 GB Reserved
0x0049_0000_0000 0x0049_FFFF_FFFF 4 GB Reserved
0x004A_0000_0000 0x004A_FFFF_FFFF 4 GB Reserved
0x004B_0000_0000 0x004B_FFFF_FFFF 4 GB Reserved
0x004C_0000_0000 0x004F_FFFF_FFFF 16 GB Packet express buffer |4 MB
0x0050_0000_0000 0x005F_FFFF_FFFF 64 GB Reserved
0x0060_0000_0000 0x007F_FFFF_FFFF 128 GB DPAA2 DRAM

LLDPUG

All information provided in this document is subject to legal disclaimers.

© 2023 NXP B.V. All rights reserved.

User guide

Rev. L6.1.1_1.0.0_23.08 — 4 August 2023

74 /1053

NXP Semiconductors LLDPUG

Layerscape Linux Distribution POC User Guide

Start address End address Size Allocation Comment
0x0080_0000_0000 0x0080_7FFF_FFF 2GB Hole
0x0080_8000_0000 O0x00FF_FFFF_FFFF 510 GB GPP DRAM Region

#2 (2-512 GB)

4.7.9.2.3 Supported boot options

LS2088ARDB supports the following boot options:

» Parallel NOR flash (referred to as "NOR" or "NOR flash" in the following sections)
* QSPI NOR flash (only available on RDB Rev E and later)

4.7.9.2.4 Onboard switch options

The RDBs have user selectable switches for evaluating different boot options for the LS2088A device as given
in the table below ('0' is OFF, '1"is ON).

Boot source |SW5[1:8] SW3[1:8] SW4[1:8] SW6[1:8] SW7[1:8] SW9[1:8] |SWB8[1:8]

NOR flash 1111 1111 0001 0010 1111 111 1111 1111 0100 0010 0100 0000 {0111 1111
bankO0
(default)

NOR flash 1111 1111 0001 0010 1111 1111 1111 1111 0100 0010 0110 0000 |0111 1111
bank4

QSPI NOR 1111 1111 0011 0001 0111 1111 1111 1111 0100 1010 0100 0000 [0111 1111
flash

Note that changing the boot device configuration from the default setting may require additional changes in
the RCW or in other code images. For information on RCW naming convention for LS2088ARDB see https://
github.com/nxp-gorig/rcw/blob/master/Is2088ardb/README.

In addition to the above switch settings, ensure that the following jumper settings are correct based on the
preferred type of boot (for RDB Rev E and later).

Jumper Settings

J8 For QSPI-boot, via onboard gspi flash: 1-2
For QSPI-boot, via gspi emulator: 2-3

J14 For NOR-boot: 1-2
For QSPI-boot: 2-3

4.7.9.2.5 NOR Flash Banks

LS2088ARDB provides a special feature that allows a single NOR flash to be divided into multiple parts

called “banks”. This is done by board-level logic that modifies address signals. As there is only one NOR flash
physically, the banks are sometimes called "virtual" banks. The benefit of this feature is that it allows more than
one set of images to be independently deployed to one NOR flash. This is very helpful during development
because the U-Boot image in one bank can be used to program an image set into a different bank. If the new
images are flawed, the old images are still functional. The logic on the board usually allows the NOR flash to be
divided into up to 8 banks, but the NOR flash on LS2088ARDB is divided into two halves. The halves are called
bank 0 and bank 4. Bank switching can be done in in software using qixis_reset commands.

LLDPUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. L6.1.1_1.0.0_23.08 — 4 August 2023

75/1053

https://github.com/nxp-qoriq/rcw/blob/master/ls2088ardb/README
https://github.com/nxp-qoriq/rcw/blob/master/ls2088ardb/README

NXP Semiconductors LLDPUG

Layerscape Linux Distribution POC User Guide

To determine the current bank, refer to the example U-Boot log given below:

U-Boot 2022.04+fsl1+gl181859317b (Nov 15 2022 - 06:28:05 +0000)
SoC: LS2088AE Revl.l (0x87090011)
Clock Configuration:
CPUO (A72) :1800 MHz CPUL (A72):1800 MHz CPU2 (A72):1800 MHz
CPU3 (A72) :1800 MHz CPU4 (A72) :1800 MHz CPU5 (A72) :1800 MHz
CPUG6 (A72) :1800 MHz CPU7 (A72) :1800 MHz
Bus: 700 MHz DDR: 1866.667 MT/s DP-DDR: 1600 MT/s
Reset Configuration Word (RCW) :
00000000: 483038b8 48480048 00000000 00000000
00000010: 00000000 00000000 00200000 00000000
00000020: 01e01180 00002581 00000000 00000000
00000030: 00400cO0b 00000000 00000000 00000000
00000040: 00000000 00000000 00000000 00000000
00000050: 00000000 00000000 00000000 00000000
00000060: 00000000 00000000 00027000 00000000
00000070: 412a0000 00040000
Model: Freescale Layerscape 2080a RDB Board
Board: LS2088AE Revl.1-RDB, Board Arch: V1,

Board version: F, boot from vBank: 4
FPGA: v1.22

Bank switching in NOR flash can be performed in U-Boot using the following statements:

» Boot from default bank (according to switch settings):

=>gixis reset

¢ Switch to alternate bank:

=>gixis reset altbank

Note: Boot option switching between parallel NOR boot and QSPI NOR boot cannot be performed using
commands. Boot option switching can be done by adjusting DIP switch settings and jumper settings on the
Reference Design Board as given above.

4.7.9.2.6 U-Boot Environment Variables

Given below are the U-Boot environment variables:

e Environment variables that are DPAA2-specific:
mcmemsize: Defines amount of system DDR to be used by the Management Complex. If this variable is not
defined, the compile-time CONFIG_SYS LS MC_DRAM_BLOCK_MIN_SIZE will be the default. Normally,
users do not need to set this variable because the default is acceptable.

» Environment variables that are not specific to DPAA2:
bootecmd: Contains commands that are automatically executed when you run the U-Boot boot command.
Commands that are automatically when you does not interrupt U-Boot initial count down. In normal usage,
bootcmd should contain the command to apply the Management Complex Data Path Layout (DPL) file
because this must be done before booting Linux.
When booting from NOR, the default bootcmd is:
bootcmd=env exists mcinitcmd && env exists secureboot && esbc validate
0x580780000; env exists mcinitcmd && fsl mc lazyapply dpl 0x580d00000; run
distro bootcmd;run nor bootcmd; env exists secureboot && esbc _halt;

For more information on U-Boot distro boot command, see Section 5.3.2.

LLDPUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. L6.1.1_1.0.0_23.08 — 4 August 2023

76 /1053

NXP Semiconductors LLDPUG

Layerscape Linux Distribution POC User Guide

4.7.9.3 LS2088ARDB recovery information

If LS2088ARDB board fails to boot from NOR bank 0, you can recover NOR bank 0 from NOR bank 4 by
following these steps:

1. Download the prebuilt composite firmware image:

$ cp <build>/tmp/deploy/image/lsl043ardb/firmware 1s2088ardb norboot.img ~/
tftp

2. Boot LS2088ARDB from NOR bank 4 with the following switch settings:
* SW5[1:8] = 1111 1111
SW3[1:8] = 0001 0010
SW4[1:8] = 1111 1111
SW6[1:8] = 1111 1111
SW7[1:8] = 0100 0010
SW9[1:8] = 0110 0000
e SW8[1:8] = 0111 1111
3. Program NOR bank 0 from NOR bank 4:
=> tftp $load addr firmware 1s2088ardb norboot.img

=> protect off 584000000 +S$filesize && erase 584000000 +S$filesize && cp.b
$load addr 584000000 S$filesize

4. Reset and boot the board from NOR bank 0:

=> gixis reset

Note: If LS2088ARDB fails to boot from both the NOR banks, you need to recover the board using
CodeWarrior for LS Series, Arm v8 ISA.

For steps to recover the board using the CodeWarrior tool, see section 8.6 Board Recovery in ARM V8 ISA
Targeting Manual.

4.7.9.4 Program Layerscape LDP composite firmware image

This topic explains steps to program NOR firmware image to IFC NOR flash on LS2088ARDB and QSPI
firmware image to QSPI NOR flash on LS2088ARDB.

To program Layerscape LDP composite NOR firmware image to IFC NOR flash on LS2088ARDB:

1. Copy firmware on host machine to tftp server.

$ cp <build>/tmp/deploy/image/1s2088ardb/firmware 1s2088ardb norboot.img ~/
tftp/

2. Make sure the DIP switch and jumper settings on the board are for IFC NOR flash. For more information on
switch and jumper settings, refer to Section 4.7.9.2.

Reboot the board from NOR flash bank 0 and stop autoboot to enter U-Boot prompt.
4. Under U-Boot, download the firmware to the reference board using one of the following options:
* Load firmware from the TFTP server

W

=> tftp $load addr firmware 1s2088ardb norboot.img

* Load firmware image from partition on mass storage device (SD, USB, or SATA)

=> load mmc <device:par> $load addr firmware 1s2088ardb norboot.img

LLDPUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. L6.1.1_1.0.0_23.08 — 4 August 2023

77 /11053

https://www.nxp.com/docs/en/user-guide/CWARMv8TM.pdf
https://www.nxp.com/docs/en/user-guide/CWARMv8TM.pdf

NXP Semiconductors LLDPUG

Layerscape Linux Distribution POC User Guide

For example:

=> load mmc 0:2 $load addr firmware 1s2088ardb norboot.img

or

=> load usb <device:part> $load addr firmware 1s2088ardb norboot.img

or

=> load scsi <device:part> $load addr firmware 1s2088ardb norboot.img

Note:
Use the following command if the SD card is formatted/created using Layerscape LDP flex-installer
command:

=> Jload <interface> [<dev/[:part]> [<addr> [<filename> [bytes [pos]]]]]

For example:

=> load mmc 0:2 $load addr firmware 1s2088ardb norboot.img

Use the following command if the SD card is formatted/created on a Windows PC:

=> fatload <interface> [<dev/[:part]> [<addr> [<filename> [bytes [pos]]]]]

For example:

=> fatload mmc 0:2 $load addr firmware 1s2088ardb norboot.img

Use the following command if the SD card is formatted/created on a Linux PC:

=> ext2load <interface> [<dev[:part]> [<addr> [<filename> [bytes [pos]]]]]

For example:

=> ext2load mmc 0:2 $load addr firmware 1s2088ardb norboot.img

Also note that Layerscape LDP flex-installer command puts the images on the second partition, so 0:2
is used in the 1oad command. If the SD card is formatted on Windows PC or Linux PC for single partition
only, then 0 should be used instead of 0:2 in the fatload/ext2load command.

5. Program the composite firmware into IFC NOR flash.
* To program alternate bank:

=> protect off 584000000 +Sfilesize && erase 584000000 +$filesize && cp.Db
a0000000 584000000 Sfilesize

* To program current bank:

=> protect off 580000000 +S$filesize && erase 580000000 +S$filesize && cp.b
a0000000 580000000 Sfilesize

6. Reset and boot the board from IFC NOR flash. The system will automatically boot up TinyDistro (log in
using root/root) or Layerscape LDP distro (log in using user/user) available on the removable storage
device.

* To boot from NOR flash bank 0.

=> gixis reset

¢ To boot from NOR flash bank 4.

=> gixis reset altbank

To program Layerscape LDP composite firmware image in QSPI NOR flash on LS2088ARDB:

LLDPUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. L6.1.1_1.0.0_23.08 — 4 August 2023

78 /1053

NXP Semiconductors LLDPUG

Layerscape Linux Distribution POC User Guide

1. Copy firmware on host machine to tftp server.

S cp <build>/tmp/deploy/image/1s2088ardb/firmware 1s2088ardb-
rev2 gspiboot.img ~/tftp/

2. Make sure the DIP switch and jumper settings on the board are for QSPI NOR flash. (Refer to ©
Section 4.7.9.2” for switch and jumper settings.)

3. Under U-Boot, download the firmware to the reference board using one of the following options:
* Load firmware from the TFTP server

=> tftp $load addr firmware 1s2088ardb gspiboot.img

¢ Load firmware image from partition on mass storage device (SD, USB, or SATA)

=> load mmc <device:part> $load addr firmware 1s2088ardb gspiboot.img

For example:

=> load mmc 0:2 $load addr firmware 1s2088ardb gspiboot.img

or

=> load usb <device:part> $load addr firmware 1s2088ardb gspiboot.img

or

=> load scsi <device:part> $load addr firmware 1s2088ardb gspiboot.img

Note:
Use the following command if the SD card is formatted/created using Layerscape LDP flex-installer
command:

=> Jload <interface> [<dev/[:part]> [<addr> [<filename> [bytes [pos]]]]]

For example:

=> load mmc 0:2 $load addr firmware 1s2088ardb gspiboot.img

Use the following command if the SD card is formatted/created on a Windows PC:

=> fatload <interface> [<dev/[:part]> [<addr> [<filename> [bytes [pos]]]]]

For example:

=> fatload mmc 0:2 $load addr firmware 1s2088ardb gspiboot.img

Use the following command if the SD card is formatted/created on a Linux PC:

=> ext2load <interface> [<dev[:part]> [<addr> [<filename> [bytes [pos]]]]]

For example:

=> ext2load mmc 0:2 $load addr firmware 1s2088ardb gspiboot.img

Also note that Layerscape LDP flex-installer command puts the images on the second partition, so 0:2
is used in the 1oad command. If the SD card is formatted on Windows PC or Linux PC for single partition
only, then 0 should be used instead of 0:2 in the fatload/ext2load command.

4. Program the firmware to QSPI NOR flash.

=> sf probe 0:0
=> sf erase 0 +Sfilesize && sf write $load addr 0 S$filesize

5. Reset the board. The system will automatically boot up TinyDistro (log in using root/root) or Layerscape LDP
distro (log in using user/user) available on the removable storage device.

=> reset

LLDPUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. L6.1.1_1.0.0_23.08 — 4 August 2023

79/1053

NXP Semiconductors LLDPUG

Layerscape Linux Distribution POC User Guide

4.7.9.5 Bringing up DPAA2 network interfaces

This section describes the procedure to bring up DPAA2 network interfaces.

4.7.9.5.1 Use Linux commands to list network interfaces

The Linux distribution boots with a default DPL file which enables only one network interface on DPAA2 by
default as a standard kernel Ethernet interface. Run the following standard Linux command to get a list of
enabled interfaces.

$ ip link show

The default interface is named eth0 (or eth1 if a PCI Express network interface card is discovered first).

4.7.9.5.2 Use restool wrapper scripts to list DPAA2 objects

User-friendly wrapper scripts are provided in the release rootfs to assist with dynamic creation of DPNIs and
associated dependencies. The wrapper scripts call restool commands.

Enter the following command for a list of the available wrapper scripts:

S$ls-main

The Ethernet interfaces have corresponding DPPA2 objects associated with them. Run the following restool
wrapper script to list the enabled data path network interface (DPNI) associated with ethO (or eth1).

$ ls-listni
dprc.1l/dpni.0 (interface: ethl, end point: dpmac.5)

This indicates that the data path network interface named dpni.0 which belongs to the DPAA2 resource
container dprc.1 is present. This DPNI object corresponds to the interface named eth1 which is connected to
dpmac.5.

The following command can be used to list all DPMAC objects present in the system and what they are
connected to (if anything).

$ ls-listmac
dprc.l/dpmac.
dprc.l/dpmac.
dprc.1/dpmac.
dprc.1/dpmac.
dprc.1l/dpmac.
dprc.1/dpmac.
dprc.l/dpmac.
dprc.l/dpmac.

(end point: dpni.O0)

RN WS 0oy J o

For more information on DPAA2 objects and restool, see Section 8.3.

4.7.9.5.3 Add and destroy network interfaces

As mentioned in previous sections, interface ethO (or eth1) corresponds to the data path network interface
dpni.0 which is the only one enabled by default DPL file. However, users may need more than one network
interface enabled. Also, DPNI.0 is configured with a minimal set of resources — for example, it can only receive
traffic on one core via one queue. Additional and fully featured DPNI objects can be created using restool. Once
these objects are created, the configuration can be saved to a custom DPL file.

LLDPUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. L6.1.1_1.0.0_23.08 — 4 August 2023

80/1053

NXP Semiconductors LLDPUG

Layerscape Linux Distribution POC User Guide

Running the command below is the simplest way of adding a DPNI object and connecting it to a DPMAC. In this
example DPNI object is being connected to dpmac.4 using default options and arguments.

$ ls-addni dpmac.4
Created interface: eth0 (object:dpni.l, endpoint: dpmac.4)

Run the following command to display information about the newly created dpni.1 interface. The number of
queues is shown to be 8, one queue per core for 8 cores which can receive traffic.

restool dpni info dpni.l

If you want to connect DPMACS5 (which is connected to dpni.0O by default) to a fully-featured data path network
interface, then you must first unbind and destroy the existing interface by using the commands below.

Unbind dpni.0 from the driver

$ echo dpni.0 > /sys/bus/fsl-mc/drivers/fsl dpaa2 eth/unbind

Destroy data path network interface dpni.0

$ restool dpni destroy dpni.O
dpni.0 is destroyed

Now add back dpmac.5 using the command below. Even though dpmac.5 is again connected to dpni.0, dpni.0
now uses 8 queues for traffic distribution.

$ 1ls-addni dpmac.5
Created interface: eth0 (object:dpni.0, endpoint: dpmac.5)

4.7.9.5.4 Save configuration to a custom DPL file (Optional)

After the additional DPNI objects are created, a custom DPL file can be generated using the following
command. This DPL file has a *.dts format and is created on the reference board.

$ restool dprc generate-dpl dprc.l > <file name>.dts

The resulting *.dts file must be compiled using the dtc tool to generate a *.dtb file. Copy this file to a Linux host
machine or server using SCP and run the following command to convert it to a *.dtb file.

$ dtc -I dts -0 dtb <file name>.dts -o <file name>.dtb

The newly created DPL file can be flashed on to the board and used to boot to Linux.

4.7.9.5.5 Assign IP addresses to network interfaces

Static IP addresses can be assigned to network interfaces using the standard ifconfig or ip commands.

ifconfig <interface name in Linux> <ip address>
OR
ip address add <ip address> dev <interface name in linux>

LLDPUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. L6.1.1_1.0.0_23.08 — 4 August 2023

81/1053

NXP Semiconductors LLDPUG

Layerscape Linux Distribution POC User Guide

Alternatively, Static IP addresses can also be assigned using netplan. Create a file called “config.yaml”in /
etc/netplan. Using a text editor, add the following lines to this config file and save it.

network:
version: 2
renderer: networkd
ethernets:
<interface name in Linux>:
addresses:
- <ip address>/24

After saving this file, run the following command to apply this netplan configuration and then reboot the board.

sudo netplan apply

Once the board reboots, bring up the desired interface by using “ifconfig <interface name in Linux>
up”or“ ip link set <interface name_ in Linux> up” command. The interface is assigned the IP
address that was entered in the “ config.yaml” file.

Netplan can also be used for dynamic IP address assignment using DHCP. For dynamic IP assignment, replace
the contents of the config.yaml file with the following.

network:
version: 2
renderer: networkd
ethernets:
<interface name in Linux>:
dhcp4: true

Follow the same procedure as for the static IP assignment using Netplan after saving the “config.yaml” file.

4.7.10 Quick start guide for LX2160ARDB Rev2

This section explains:

* Introduction

LX2160ARDB reference information

LX2160ARDB recovery information

e Program Layerscape LDP composite firmware image
* Bringing up DPPA2 network interfaces

4.7.10.1 Introduction

The following sections describe the procedure to program Layerscape LDP composite firmware for
LX2160ARDB Rev2. Also, this section explains the most common use case procedure to download and
deploy Layerscape LDP default images to LX2160ARDB Rev2 using flex-installer. For more information, see
Section 4.2.

For more information on the different components of the board, and on how to configure and boot the board,
see LX2160A Reference Design Board Getting Started Guide.

4.7.10.2 LX2160ARDB reference information

This section provides general information about LX2160ARDB Rev2 which may come in handy as a reference
while completing steps for deploying Layerscape LDP that follow.

LLDPUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. L6.1.1_1.0.0_23.08 — 4 August 2023

82/1053

https://www.nxp.com/support/developer-resources/software-development-tools/qoriq-developer-resources/qoriq-lx2160a-reference-design-board:LX2160A-RDB?tab=Documentation_Tab

NXP Semiconductors

LLDPUG

4.7.10.2.1 Ethernet port map

Layerscape Linux Distribution POC User Guide

Port name on chassis

Port name in U-Boot

Port name in TinyDistro

Port name in Linux

Interface name will be ethn.

For example, eth0, eth1, and
so on.

EthO : If PCle is connected,

else it will be any connected
DPAAZ2 interface.

40G MAC2 DPMAC2@xlaui4
10G MAC3 DPMAC3@xgmii
10G MAC4 DPMAC4@xgmii
25G MAC5 DPMAC5@25g-aui
25G MAC6 DPMACB@25g-aui
1G MAC17 DPMAC17@rgmii-id
1G MAC18 DPMAC18@rgmii-id

PCle : enp1s0
DPAA: ethx

Note: Interface name is not fixed in LX2160ARDB Rev2 , depending upon which interface is active, name will
be assigned. Interface names can be checked using 1s-1istni command.

root@TinyDistro:~# ls-1listni

dprc.1l/dpni.1 (interface: eth0O, end point: dpmac.Z2)
dprc.1/dpni.0 (interface: ethl, end point: dpmac.17)

4.7.10.2.2 System memory map

Start address End address Size Allocation Comment

0x0000_0000_0000 |0x0000_0OOF_FFFF 1 MB CCSR - Boot ROM 64 KB

0x0000_0010_0000 |0x0000_OOFF_FFFF 15MB |Reserved

0x0000_0100_0000 |0x0000_OFFF_FFFF 240 MB |CCSR

0x0000_1000_0000 |0x0000_10FF_FFFF 16 MB | Reserved SP alias this space to DCSR. Do
not allocate.

0x0000_1100_0000 |0x0000_11FF_FFFF 16 MB | Reserved SP alias this space to DCSR. Do
not allocate.

0x0000_1200_0000 |0x0000_13FF_FFFF 32 MB |Reserved SP alias this space to DCSR. Do
not allocate.

0x0000_1400_0000 |0x0000_17FF_FFFF 64 MB |Reserved

0x0000_1800_0000 |0x0000_181F_FFFF 2 MB OCRAM 256 KB

0x0000_1820_0000 |0x0000_18FF_FFFF 14 MB |Reserved

0x0000_1900_0000 |0x0000_19FF_FFFF 16 MB | CoreSight STM

0x0000_1A00_0000 |0x0000_1BFF_FFFF 32 MB | Reserved

0x0000_1C00_0000 |0x0000_1CFF_FFFF 16 MB |Reserved

0x0000_1D00_0000 |0x0000_1FFF_FFFF 48 MB | Reserved

0x0000_2000_0000 |0x0000_2FFF_FFFF 256 MB |FlexSPI Region #1

0x0000_3000_0000 |0x0000_3FFF_FFFF 256 MB |Reserved

0x0000_4000_0000 |0x0000_5FFF_FFFF 512 MB |Reserved

0x0000_6000_0000 |0x0000_7FFF_FFFF 512 MB |Reserved

0x0000_8000_0000 |0x0000_9FFF_FFFF 512 MB (GPPgR)AM Region #1

0-2 GB

LLDPUG

All information provided in this document is subject to legal disclaimers.

© 2023 NXP B.V. All rights reserved.

User guide

Rev. L6.1.1_1.0.0_23.08 — 4 August 2023

83/1053

NXP Semiconductors

LLDPUG

Layerscape Linux Distribution POC User Guide

LLDPUG

All information provided in this document is subject to legal disclaimers.

0x0000_A000_0000 |0x0000_BFFF_FFFF 512 MB
0x0000_C000_0000 |0x0000_DFFF_FFFF 512 MB
0x0000_E000_0000 |0x0000_FFFF_FFFF 512 MB
0x0001_0000_0000 |0x0001_FFFF_FFFF 4GB Reserved
0x0002_0000_0000 |0x0003_FFFF_FFFF 8 GB
0x0004_0000_0000 |0x0004 OFFF_FFFF 256 MB |FlexSPI Hole Collapsed away by remapping
logic to merge FlexSPI Region #1
0x0004_1000_0000 |0x0004_FFFF_FFFF 3.75 GB |FlexSPI Region #2 (256 | 3.75 GB
MB-4 GB)
0x0005_0000_0000 |0x0005_FFFF_FFFF 4GB Reserved
0x0006_0000_0000 |0x0006_FFFF_FFFF 4GB Reserved
0x0007_0000_0000 |0x0007_3FFF_FFFF 1GB DCSR
0x0007_4000_0000 |0x0007_FFFF_FFFF 3GB Reserved
DPAA2 Portal Map
0x0008_0000_0000 |0x0008_03FF_FFFF 64 MB |Reserved 512 MB (0x0008_0000_0000-
0x0008_0400_0000 |0x0008_07FF_FFFF 64 MB |Reserved ?);?:?:()_SI;FFF)
0x0008_0800_0000 |0x0008_OBFF_FFFF 64 MB |Reserved
0x0008_0C00_0000 |0x0008 OFFF_FFFF 64 MB |MC - 1024 portals
0x0008_1000_0000 |0x0008_17FF_FFFF 128 MB |Reserved
0x0008_1800_0000 |0x0008_1FFF_FFFF 128 MB | QBMAN portals
0x0008_2000_0000 |0x000B_FFFF_FFFF 15.5 GB |Reserved
0x000C_0000_0000 |0x000F_FFFF_FFFF 16 GB |Reserved
DPAAZ2 External address map
0x0010_0000_0000 |0x0010_FFFF_FFFF 4GB Reserved (0x0010_0000_0000-0x001F _
0x0011_0000_0000 |0x0011_FFFF_FFFF |4GB | Reserved FFFF_FFFF)
0x0012_0000_0000 |0x0012_FFFF_FFFF 4GB Reserved
0x0013_0000_0000 |0x0013_FFFF_FFFF 4GB WRIOP access window
0x0014_0000_0000 |0x001B_FFFF_FFFF 32GB |Reserved
0x001C_0000_0000 |0x001C_001F_FFFF 2 MB Packet express buffer
0x001C_4000_0000 |0x001F_FFFF_FFFF 79 GB |Reserved
0x0020_0000_0000 |0x0020_7FFF_FFFF 2GB DRAM Hole
0x0020_8000_0000 |0x003F_FFFF_FFFF 126 GB | GPP DRAM Region #2
0x0040_0000_0000 |0x005F_FFFF_FFFF 128 GB |Reserved DRAM Hole Collapsed by remap logic after
Other "Normal" Memory MemNoC to merge DRAM
Regions #1 and #2
0x0060_0000_0000 |0x007F_FFFF_FFFF 128 GB |GPP DRAM Region #3
High-speed 1/O (PCI Express)
0x0080_0000_0000 |0x0087_FFFF_FFFF 32GB |PCI Express 1 (0x0080_0000_0000-0x00FF_
0x0088_0000_0000 |Ox008F FFFF_FFFF |32 GB |PCl Express 2 FFFF_FFFF)

© 2023 NXP B.V. All rights reserved.

User guide

Rev. L6.1.1_1.0.0_23.08 — 4 August 2023

84 /1053

NXP Semiconductors

LLDPUG

Layerscape Linux Distribution POC User Guide

0x0090_0000_0000

0x0097_FFFF_FFFF

32GB

PCI Express 3

0x0098_0000_0000

0x009F_FFFF_FFFF

32GB

PCI Express 4

0x00A0_0000_0000

0x00A7_FFFF_FFFF

32GB

PCI Express 5

0x00A8_0000_0000

O0X00AF_FFFF_FFFF

32GB

PCI Express 6

4.7.10.2.3 Supported boot options

LX2160ARDB Rev2 supports the following boot options:

* FlexSPI NOR flash (referred to as "FSPI" or "FSPI flash" in the following sections). CS refers to Chip Select.
* eMMC
* SD card (SDHC1)

4.7.10.2.4 Onboard switch options

The RDBs have user selectable switches for evaluating different boot options for the LX2160A device as given
in the table below ('0' is OFF, '1'is ON).

Boot source SW1[1:8] SW2[1:8] SW3[1:8] SW4[1:8]
FSPI NOR CS0 1111 1000 0000 0110 1111 1100 1011 1000
(default)

FSPI NOR CS1 1111 1001 0000 0110 1111 1100 1011 1000
SD Card (SDHC1) 1000 1000 0000 0110 1111 1100 1011 1000
eMMC 1001 1000 0000 0110 1111 1100 1011 1000

Note: SWA4[2] switch should be turned on [1], if user wants to power on the board as soon as power supply is
turned on. This is useful in scenarios when the board is to be used remotely.

Changing the boot device configuration from the default setting may require additional changes in the RCW
or in other code images. For information on RCW naming convention for LX2160ARDB Rev2, see https://
github.com/nxp-qorig/rcw/blob/master/Ix2160ardb/README.

In addition to the above switch settings, make sure that the following jumper settings are correct.

Table 17. LX2160ARDB Rev2 jumpers

Jumper Type Name/function Description
J6 1x2-pin connector TA_BB_TMP_DETECT_B enable |Open: TA_BB_TMP_DETECT_B pin is
grounded
Shorted: TA_BB_TMP_DETECT_B pin is
powered (default setting)
J7 1x2-pin connector VBAT power for TA_BB_VDD Not supported. Do not install J7. See LX2160A
enable Reference Design Board Errata for more
details.
J8 1x2-pin connector PROG_MTR voltage control (for |Open: PROG_MTR pin is powered off (default
NXP use only) setting)
Shorted: PROG_MTR pin is powered by
OvDD (1.8 V)
J9 1x2-pin connector TA_PROG_SFP voltage control |Open: TA_PROG_SFP pin is powered off
(for NXP use only) (default setting)
LLDPUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.
User guide Rev. L6.1.1_1.0.0_23.08 — 4 August 2023

85/1053

https://github.com/nxp-qoriq/rcw/blob/master/lx2160ardb/README
https://github.com/nxp-qoriq/rcw/blob/master/lx2160ardb/README

NXP Semiconductors LLDPUG

Layerscape Linux Distribution POC User Guide

Table 17. LX2160ARDB Rev2 jumpers...continued
Jumper Type Name/function Description

Shorted: TA_PROG_SFP pin is powered by
OVvDD (1.8 V)

J31 1x2-pin connector USB1 mode setting Open: USB1 works in Device mode
Shorted: USB1 works in Host mode (default
setting)

J33 1x2-pin connector USB2 mode setting Open: USB2 works in On-The-Go (OTG)
mode (default setting)

Shorted: USB2 works in Host mode

J56 2x3-pin connector Inphi CS4223 GUI access Normal: 1-2 short, 5-6 short (default setting)
GUI mode: 1-2 open, 5-6 open

J57 1x2-pin connector Inphi CS4223 GUI enable Normal: Open (default setting)
GUI mode: Short

J58 1x2-pin connector Fan speed Open: 100% speed
Short: 50% speed (default setting)

4.7.10.2.5 FlexSPI NOR Flash Chip-select

FlexSPI NOR flash is a simple and convenient destination for deploying images so it is frequently used.

The benefit of this feature is that it allows more than one set of images to be independently deployed to the
one NOR flash. It is helpful during development because you can use the U-Boot image in one chip-select
to program an image set into a different chip-select. If the new images are flawed, the old images are still
functional to let you deploy corrected images.

The logic on the board usually allows the NOR flash to be accessed from different CS (chip select) option. Each
CS is connected to dedicated NOR flash devices, those CSs are called, DEV#0 and DEV#1. U-Boot prints
which CS is loaded from.

The following is the sample output:

U-Boot 2022.04+fsl1+gl181859317b (Nov 15 2022 - 06:28:05 +0000)
SoC: LX2160ACE Rev2.0 (0x87360020)
Clock Configuration:
CPUO (A72) :2200 MHz CPU1l (A72):2200 MHz CPU2 (A72):2200 MHz
CPU3 (A72) :2200 MHz CPU4 (A72):2200 MHz CPU5(A72) :2200 MHz
CPUG6 (A72) :2200 MHz CPU7 (A72):2200 MHz CPU8 (A72) :2200 MHz
CPU9 (A72) :2200 MHz CPU10(A72):2200 MHz CPUL1l1l(A72):2200 MHz
CPU12 (A72) :2200 MHz CPU13(A72):2200 MHz CPU14(A72):2200 MHz
CPUL5 (A72) :2200 MHz
Bus: 750 MHz DDR: 3200 MT/s
Reset Configuration Word (RCW) :
00000000: 5883833c 24580058 00000000 0000000
00000010: 00000000 0c010000 00000000 00000000
00000020: 390001a0 00002580 00000000 00000096
00000030: 00000000 00000000 00000000 00000000
00000040: 00000000 00000000 00000000 00000000
00000050: 00000000 00000000 00000000 00000000
00000060: 00000000 00000000 00027000 00000000
00000070: 08b30010 00150020
Model: NXP Layerscape LX2160ARDB Board
Board: LX2160ACE Rev2.0-RDB, Board version: C, boot from SD

FPGA: v9.0
LLDPUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.
User guide Rev. L6.1.1_1.0.0_23.08 — 4 August 2023

86 /1053

NXP Semiconductors LLDPUG

Layerscape Linux Distribution POC User Guide

Boot option switching can be performed in U-Boot using the following statements.
» Switch to FlexSPI NOR flash 0 (default):

=>gixis reset

» Switch to FlexSPI NOR flash 1:

=>gixis reset altbank

¢ Switch to SD:

=>gixis reset sd

¢ Switch to eMMC:

=>gixis reset emmc

4.7.10.2.6 U-Boot Environment Variables

The environment variables specific and unspecific to DPAA2 are given below:

» DPAA2-specific Environment Variables

— mcboottimeout: Defines Management Complex boot timeout in milliseconds. If this variable is not defined
the compile-time value, CONFIG SYS LS MC BOOT TIMEOUT MS is the default. Normally, users do not
need to set this variable because the default is acceptable.

— mcmemsize: Defines amount of system DDR to be use by the Management Complex. If this variable is not
defined, the compile-time value CONFIG _SYS LS MC DRAM BLOCK MIN SIZE is the default. Normally,
users do not need to set this variable because the default is acceptable.

— mcinitemd: Contains commands to load and start the Management Complex automatically before the U-
Boot count down to boot starts. If this variable is defined, its contents are run. The default value assumes
that the Management Complex (MC) firmware and Data Path Control file are stored in FlexSPI flash/

SD at fixed addresses. The default value for FlexSPI boot is mcinitcmd= sf probe 0:0 && sf
read 0x80640000 0x640000 0x80000 && env exists secureboot && esbc validate
0x80640000 && esbc validate 0x80680000; sf read 0x80a00000 0xa00000 0x300000 &&
sf read 0x80e00000 0xe00000 0x100000; fsl mc start mc 0x80a00000 0x80e00000.
The default value for SD boot is mcinitcmd=mmc read 0x80a00000 0x5000 0x1200;mmc
read 0x80e00000 0x7000 0x800;env exists secureboot && mmc read 0x80640000
0x3200 0x20 && mmc read 0x80680000 0x3400 0x20 && esbc validate 0x80640000 &&
esbc validate 0x80680000 ;fsl mc start mc 0x80a00000 0x80e00000. Users may change
this variable as needed to load the MC files from sources, other than FlexSPI into DDR, and then start the
MC using the fsl_mc command. For example, the files may be on a disk drive.

* Environment variables that are not specific to DPAA2

— bootcmd: Contains commands that are automatically executed when the U-Boot boot command is run.
This happens automatically when the user does not interrupt U-Boot initial count down. In normal usage,
bootcmd should contain the command to apply the Management Complex Data Path Layout (DPL) file
because this must be done before booting Linux. When booting from FlexSPI NOR, the default bootcmd
is sf probe 0:0; sf read 0x806c0000 0x6c0000 0x40000; env exists mcinitcmd
&& env exists secureboot && esbc validate 0x806c0000; sf read 0x80d00000
0xd00000 0x100000; env exists mcinitcmd && fsl mc lazyapply dpl 0x80d00000; run
distro bootcmd; run xspi bootcmd; env exists secureboot && esbc_halt;

When booting from SD, the default bootcmd is bootcmd=env exists mcinitcmd && mmcinfo; mmc
read 0x80d00000 0x6800 0x800; env exists mcinitcmd && env exists secureboot

&& mmc read 0x806C0000 0x3600 0x20 && esbc validate 0x806C0000; env exists
mcinitcmd && fsl mc lazyapply dpl 0x80d00000; run distro bootcmd; run

sd _bootcmd; env exists secureboot && esbc halt;

LLDPUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. L6.1.1_1.0.0_23.08 — 4 August 2023

87/1053

NXP Semiconductors LLDPUG

Layerscape Linux Distribution POC User Guide

For more information on U-Boot distro boot command, see Section 5.3.2.

4.7.10.3 LX2160ARDB recovery information

If LX2160ARDB Rev2 board fails to boot from FSPI NOR bank #0 , you can recover FSPI NOR bank #0 from
FSPI NOR bank #1 by following these steps:

1. Download the prebuilt composite firmware image:

cp <build>/tmp/deploy/image/lsl043ardb/firmware 1x2160ardb rev2 xspiboot.img
~/tftp

2. Boot LX2160ARDB Rev2 from FSPI NOR bank #1 with the following switch setting:
* SW1[1:8] = 1111 1001
3. Program FSPI NOR bank #0 from FSPI NOR bank #1:
=> sf probe 0:1

=> tftp $load addr firmware 1x2160ardb rev2 xspiboot.img
=> sf erase 0x0 +$filesize && sf write $load addr 0x0 Sfilesize

4. Change switch setting back to default:
e SW1[1:8] = 1111 1000
5. Reset the board, board should boot from FSPI NOR bank #0:

=> reset

Note: If LX2160ARDB Rev?2 fails to boot from both the FlexSPI NOR flash banks, you need to recover the
board using CodeWarrior for LS Series, Arm v8 ISA. For steps to recover the board using the CodeWarrior
tool, see section "8.6 Board Recovery" in ARM V8 ISA, Targeting Manual.

4.7.10.4 Program Layerscape LDP composite firmware image

This topic explains steps to program FlexSPI NOR firmware image to FlexSPI NOR flash on LX2160ARDB
Rev2 and SD/eMMC firmware image to SD/eMMC card on LX2160ARDB Rev2.

To program Layerscape LDP composite firmware image to FlexSPI NOR flash on LX2160ARDB Rev2:

1. Copy firmware on host machine to tftp server.

$ cp <build>/tmp/deploy/image/1x2160ardb/firmware 1x2160ardb-
rev2 xspiboot.img ~/tftp/

2. Reboot the board from FlexSPI NOR flash 0 and stop autoboot to enter U-Boot prompt.

3. Under U-Boot, download the firmware to the reference board using one of the following options:
Load firmware from the TFTP server

For LX2160A Rev2:
=> tftp $load addr firmware 1x2160ardb rev2 xspiboot.img

Load firmware image from partition on mass storage device (SD, USB, or SATA)

For LX2160A RevZ:
=> load mmc <device:partition> S$load addr
firmware 1x2160ardb rev2 xspiboot.img

For example:

For LX2160A Rev2:
=> load mmc 0:2 $load addr firmware 1x2160ardb rev2 xspiboot.img

LLDPUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. L6.1.1_1.0.0_23.08 — 4 August 2023

88/1053

https://www.nxp.com/docs/en/user-guide/CWARMv8TM.pdf

NXP Semiconductors LLDPUG

Layerscape Linux Distribution POC User Guide

or

For LX2160A Rev2:
=> load usb <device:part> $load addr firmware 1x2160ardb rev2 xspiboot.img

or

For LX2160A RevZ:
=> load scsi <device:part> $load addr firmware 1x2160ardb rev2 xspiboot.img

Note:
Use the following command if the SD card is formatted/created using Layerscape LDP flex-installer
command:

=> Joad <interface> [<dev/[:part]> [<addr> [<filename> [bytes [pos]]]]]

For example:

For LX2160A RevZ:
=> Joad mmc 0:2 $load addr firmware 1x2160ardb rev2 xspiboot.img

Use the following command if the SD card is formatted/created on a Windows PC:

=> fatload <interface> [<dev[:part]> [<addr> [<filename> [bytes [pos]]]]]

For example:

For LX2160A Rev2:
=> fatload mmc 0:2 $load addr firmware 1x2160ardb rev2 xspiboot.img

Use the following command if the SD card is formatted/created on a Linux PC:

=> ext2load <interface> [<dev/[:part]> [<addr> [<filename> [bytes [pos]]]]]

For example:

For LX2160A RevZ:
=> ext2load mmc 0:2 $load addr firmware Ix2160ardb revZ xspiboot.img

Also note that Layerscape LDP flex-installer command puts the images on the second partition, so 0:2 is
used in the 1oad command. If the SD card is formatted on Windows PC or Linux PC for single partition only,
then 0 should be used instead of 0:2 in the fatload/ext2load command.

4. Program the firmware to FlexSPI NOR flash 1.

=> sf probe 0:1 => sf erase 0 +Sfilesize && sf write $load addr 0 $filesize

5. Reset and boot the board from FlexSPI NOR flash 1. The system will automatically boot up TinyDistro (log
in using root/root) or Layerscape LDP distro (log in using user/user) available on the removable storage
device.

=> gixis reset altbank

To program Layerscape LDP composite firmware image to SD/eMMC on LX2160ARDB Rev2:

1. Copy firmware on host machine to tftp server.
For SD boot:

For LX2160A Rev2:
$ cp <build>/tmp/deploy/image/1x2160ardb/firmware 1x2160ardb-rev2 sdboot.img
~/tftp/

For eMMC boot:

S cp <build>/tmp/deploy/image/1x2160ardb/firmware 1x2160ardb-
rev2 emmcboot.img ~/tftp/

LLDPUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. L6.1.1_1.0.0_23.08 — 4 August 2023

89/1053

NXP Semiconductors LLDPUG

Layerscape Linux Distribution POC User Guide

2. Reboot the board from FlexSPI NOR flash 0 and stop autoboot to enter U-Boot prompt.
3. Under U-Boot, download the firmware to the reference board using one of the following options:
¢ Load firmware from the TFTP server
For SD boot:

=> tftp $load addr firmware 1x2160ardb rev2 sdboot.img
For eMMC boot:

=> tftp $load addr firmware 1x2160ardb rev2 emmcboot.img

Load firmware image from partition on mass storage device (SD, USB, or SATA)
For SD boot:

=> load mmc <dev:part> Sload addr firmware 1x2160ardb rev2 sdboot.img

For example:

=> load mmc 0:2 $load addr firmware 1x2160ardb rev2 sdboot.img

or

=> load usb <dev:part> S$load addr firmware 1x2160ardb rev2 sdboot.img

or

=> load scsi <dev:part> $load addr firmware 1x2160ardb rev2 sdboot.img

For eMMC boot:

=> load mmc <dev:part> S$load addr firmware 1x2160ardb rev2 emmcboot.img

For example:

=> load mmc 0:2 S$load addr firmware 1x2160ardb rev2 emmcboot.img

or

=> load usb <dev:part> Sload addr firmware 1x2160ardb rev2 emmcboot.img

or

=> load scsi <dev:part> $load addr firmware 1x2160ardb rev2 emmcboot.img

Note:
Use the following command if the SD/eMMC card is formatted/created using Layerscape LDP flex-installer
command:

=> Joad <interface> [<dev/[:part]> [<addr> [<filename> [bytes [pos]]]]]

For example:

=> Joad mmc 0:2 $load addr firmware 1x2160ardb rev2 sdboot.img

Use the following command if the SD card is formatted/created on a Windows PC:

=> fatload <interface> [<dev/[:part]> [<addr> [<filename> [bytes [pos]]]]]

For example:

=> fatload mmc 0:2 $load addr firmware 1x2160ardb rev2 sdboot.img

Use the following command if the SD card is formatted/created on a Linux PC:

=> extZload <interface> [<dev/[:part]> [<addr> [<filename> [bytes [pos]]]]]

LLDPUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. L6.1.1_1.0.0_23.08 — 4 August 2023

90 /1053

NXP Semiconductors LLDPUG

Layerscape Linux Distribution POC User Guide

For example:

=> ext2load mmc 0:2 $load addr firmware 1x2160ardb rev2 sdboot.img

Also note that Layerscape LDP flex-installer command puts the images on the second partition, so 0:2 is
used in the 1oad command. If the SD card is formatted on Windows PC or Linux PC for single partition only,
then 0 should be used instead of 0:2 in the fatload/ext2load command.

4. Program the firmware to SD card.

=> mmc dev 0; mmc write $load addr 8 1£fff8

5. Program the firmware to eMMC card.

=> mmc dev 1; mmc write $load addr 8 1fff8

6. Reset and boot the board from SD card. The system will automatically boot up TinyDistro (log in using root/
root) or Layerscape LDP distro (log in using user/user) available on the removable storage device.
For SD boot:

=> gixis reset sd

For eMMC boot:

=> gixis reset emmc

4.7.10.5 Bringing up DPPA2 network interfaces

This section describes the procedure to bring up DPAA2 network interfaces.

4.7.10.5.1 Use Linux commands to list network interfaces

The Linux distribution boots with a default DPL file which enables only one network interface on DPAA2 by
default as a standard kernel Ethernet interface. Run the following standard Linux command to get a list of
enabled interfaces.

$ ip link show

The default interface is named ethO (or eth1 if a PCI Express network interface card is discovered first).

4.7.10.5.2 Use restool wrapper scripts to list DPAA2 objects

User-friendly wrapper scripts are provided in the release rootfs to assist with dynamic creation of DPNIs and
associated dependencies. The wrapper scripts call restool commands.

Enter the following command for a list of the available wrapper scripts:

S$ls-main

The Ethernet interfaces have corresponding DPPA2 objects associated with them. Run the following restool
wrapper script to list the enabled data path network interface (DPNI) associated with niO (or ni1).

$ 1s-listni
dprc.1l/dpni.l (interface: eth0, end point: dpmac.2)
dprc.1/dpni.0 (interface: ethl, end point: dpmac.17)

This indicates that the data path network interface named dpni.0 which belongs to the DPAA2 resource
container dprc.1 is present. This DPNI object corresponds to the interface named niO which is connected to
dpmac.17.

LLDPUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. L6.1.1_1.0.0_23.08 — 4 August 2023

91/1053

NXP Semiconductors LLDPUG

Layerscape Linux Distribution POC User Guide

The following command can be used to list all DPMAC objects present in the system and what they are
connected to (if anything).

$ ls-listmac
dprc.1l/dpmac.18
dprc.1l/dpmac.17 (end point: dpni.O0)
dprc.1l/dpmac. 6
dprc.1l/dpmac.5
dprc.1l/dpmac.4
dprc.1l/dpmac.3
2

dprc.1l/dpmac. (end point: dpni.l)

For more information on DPAA2 objects and restool, see Section 8.3.

4.7.10.5.3 Add and destroy network interfaces

As mentioned in previous sections, interface ni0 corresponds to the data path network interface dpni.0 which is
the only ones enabled by default DPL file. However, users may need more network interface enabled. Additional
and fully featured DPNI objects can be created using restool. Once these objects are created, the configuration
can be saved to a custom DPL file.

Running the command below is the simplest way of adding a DPNI object and connecting it to a DPMAC. In this
example DPNI object is being connected to dpmac.4 using default options and arguments.

$ ls-addni dpmac.4
Created interface: ni2 (object:dpni.2, endpoint: dpmac.4)

Run the following command to display information about the newly created dpni.2 interface. The number of
queues is shown to be 16, one queue per core for 16 cores which can receive traffic.

S restool dpni info dpni.2
dpni version: 7.8

dpni id: 2

plugged state: plugged
endpoint state: 0

endpoint: dpmac.4, link is down
link status: 0 - down

mac address: ae:ff:05:£9:8e:02
dpni attr.options value is: 0
num_queues: 16

num rx tcs: 1

num tx tcs: 1

mac_entries: 16

vlan entries: 0

gos_entries: 0

fs entries: 64

gos_key size: 0

fs key size: 56

ingress_all frames: O
ingress_all bytes: 0

ingress multicast frames: 0
ingress multicast bytes: 0
ingress broadcast frames: 0
ingress broadcast bytes: 0
egress_all frames: O
egress_all bytes: 0

egress multicast frames: 0
egress multicast bytes: 0

LLDPUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. L6.1.1_1.0.0_23.08 — 4 August 2023

92 /1053

NXP Semiconductors LLDPUG

Layerscape Linux Distribution POC User Guide

egress broadcast frames: 0
egress broadcast bytes: 0
ingress filtered frames: 0
ingress_discarded frames: 0
ingress nobuffer discards: 0
egress _discarded frames: 0
egress_confirmed frames: 0

If you want to connect DPMAC17 (which is connected to dpni.0 by default) to a fully-featured data path network
interface, then you must first unbind and destroy the existing interface by using the commands below.

Unbind dpni.0 from the driver

$ echo dpni.0 > /sys/bus/fsl-mc/drivers/fsl dpaa2 eth/unbind

Destroy data path network interface dpni.0

$ restool dpni destroy dpni.0
dpni.0 is destroyed

Now add back dpmac.17 using the command below. Even though dpmac.17 is again connected to dpni.0,
dpni.0 now uses 16 queues for traffic distribution.

$ ls-addni dpmac.17
Created interface: ni0 (object:dpni.0, endpoint: dpmac.l17)

4.7.10.5.4 Save configuration to a custom DPL file (Optional)

Once the additional DPNI objects are created, a custom DPL file can be generated using the following
command. This DPL file has a * . dts format and is created on the reference board.

$ restool dprc generate-dpl dprc.l > <file name>.dts

The resulting * . dt s file must be compiled using the dtc tool to generate a .dtb file. Copy this file to a Linux host
machine or server using SCP and run the following command to convert it to a .dtb file.

$ dtc -I dts -0 dtb <file name>.dts -o <file name>.dtb

The newly created DPL file can be flashed on to the board and used to boot to Linux.

4.7.10.5.5 Assign IP addresses to network interfaces

Static IP addresses can be assigned to network interfaces using the standard ifconfig or ip commands.

$ ifconfig <interface name in Linux> <ip address>
OR
$ ip address add <ip address> dev <interface name in linux>

Alternatively, Static IP addresses can also be assigned using netplan. Create a file called “config.yaml”in /
etc/netplan. Using a text editor, add the following lines to this config file and save it.

network:
version: 2
renderer: networkd
ethernets:

LLDPUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. L6.1.1_1.0.0_23.08 — 4 August 2023

93 /1053

NXP Semiconductors LLDPUG

Layerscape Linux Distribution POC User Guide

<interface name in Linux>:
addresses:
- <ip address>/24

After saving this file, run the following command to apply this netplan configuration and then reboot the board.

$ sudo netplan apply

Once the board reboots, bring up the desired interface by using “1fconfig <interface name in Linux>
up”or“ ip link set <interface name in Linux> up’ command. The interface is assigned the IP
address that was entered in the “ config.yaml” file.

Netplan can also be used for dynamic IP address assignment using DHCP. For dynamic IP assignment, replace
the contents of the config.yaml file with the following.

network:
version: 2
renderer: networkd
ethernets:
<interface name in Linux>:
dhcp4: true

Follow the same procedure as for the static IP assignment using Netplan after saving the “config.yaml” file.

4.7.11 Quick start guide for LX2162AQDS

This section explains:

Introduction

LX2162AQDS reference information

LX2162AQDS recovery information

* Program Layerscape LDP composite firmware image

4.7.11.1 Introduction

The following sections describe the procedure to program Layerscape LDP composite firmware for
LX2162AQDS. Also, this section explains the most common use case procedure to download and deploy
Layerscape LDP default images to LX2162AQDS using flex-installer. For more information, see Section 4.2.

For more information on the different components of the board, and on how to configure and boot the board,
see LX2162A Reference Design Board Getting Started Guide.

4.7.11.2 LX2162AQDS reference information

This section provides general information about LX2162AQDS which may come in handy as a reference while
completing steps for deploying Layerscape LDP that follow.

4.7.11.2.1 Ethernet port map

Mezzanine Card |Port name dpmac Port name in U- |Port name in Tiny |Port name in
Boot Distro Linux
X-M8-100G QSFP28 Cage dpmac.3 DPMAC3@25g-aui |eth5 eth5
(25G, 100G) dpmac.4 DPMAC4@25g-aui |eth4 eth4
dpmac.5 DPMAC5@25g-aui |eth3 eth3
LLDPUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.
User guide Rev. L6.1.1_1.0.0_23.08 — 4 August 2023

94 /1053

NXP Semiconductors

LLDPUG

Layerscape Linux Distribution POC User Guide

dpmac.6 DPMAC6@25g-aui |eth2 eth2
X-M11-USXGMII |Port 0 dpmac.3 DPMAC3@xgmii |eth5 eth5
(10G) Port 1 dpmac.4 DPMAC4@xgmii | eth4 eth4
Port 2 dpmac.5 DPMAC5@xgmii |eth3 eth3
Port 3 dpmac.6 DPMAC6@xgmii |eth2 eth2
X-M12-XFI SFP+ 1 dpmac.3 NA eth5 eth5
(10G) SFP+ 2 dpmac.4 NA ethd eth4
SFP+ 3 dpmac.5 NA eth3 eth3
SFP+4 dpmac.6 NA eth2 eth2
NA RGMII1_BOTTOM |dpmac.17 DPMAC17@rgmii- |eth1 eth1
(1G) id
NA RGMII2_TOP dpmac.18 DPMAC18@rgmii- |ethO eth0
(1G) id
Note:

* Assume that there is no PCle NIC connected.

* Interface name is not fixed in LX2162AQDS, depending upon which interface is active, name will be assigned.
Interface names can be checked using 1s-11istni command.

root@TinyDistro:~# ls-listni

dprc.1l/dpni.
dprc.1l/dpni.
dprc.1/dpni.
dprc.1/dpni.
dprc.1/dpni.
dprc.1/dpni.

O N WU

(interface:
(interface:
(interface:
(interface:
(interface:
(interface:

end
end
end
end
end
end

ethl,
eth2,
eth3,
eth4,
eth5,
etho,

point: dpmac.18
point: dpmac.1l7
point: dpmac.6)
point: dpmac.5)
point: dpmac.4)
point: dpmac.3)

4.7.11.2.2 System memory map

For LX2162A system map, see LX2162A Reference Manual.

LX2162A RM is available only under a non-disclosure agreement (NDA). To request access, contact your local
NXP field applications engineer (FAE) or sales representative.

4.7.11.2.3 Supported boot options

LX2162AQDS supports the following boot options:

* FlexSPI NOR flash (referred to as "XSPI" or "XSPI flash" in the following sections). CS refers to Chip Select.

e eMMC
(SDHC2)

* SD card (SDHC1)

4.7.11.2.4 Onboard switch options

The board has user selectable switches for evaluating different boot options for the LX2162A device as given in

the table below ('0'is OFF, '1' is ON).

LLDPUG

All information provided in this document is subject to legal disclaimers.

© 2023 NXP B.V. All rights reserved.

User guide

Rev. L6.1.1_1.0.0_23.08 — 4 August 2023

95/1053

NXP Semiconductors

LLDPUG

Layerscape Linux Distribution POC User Guide

SW6[6:8]

XSPI device map

SW_XMAPI[2:0]:
¢ 000: Boot the board from XSPI

device 0 (default setting)

¢ 001: Boot the board from XSPI
device 1

¢ 010: Boot the board from QSPI
emulator

SW1[5:8]

RCW location

CFG_RCW._SRCI[3:0]

SW_RCWSRC[3:0]

* 1000: SDHC1: SD card

1001: SDHC2: eMMC

1010: 12C (extended addressing)

1100: XSPI1A: XSPI serial NAND

2 kB pages

1101: XSPI1A: XSPI serial NAND

4 KB pages

* 1111: XSPI1A: XSPI serial NOR
24-bit addressing (default setting)

* Oxxx: Hardcoded RCW

In addition to the above switch settings, make sure that the following jumper settings are correct.

Table 18. Default jumper settings

Jumper identifier |[Name Type Description
J3 FORCE ATX_ON 1x2-pin header * Open: For Normal operation (default setting)
» Short: To force ATX-PS ON at logic low
J8 VDD_LP_BAT 1x2-pin header * Open: VDD_LP_BAT disabled (default
setting)
e Short: VDD_LP_BAT enabled
J9 TA_BB_TMP_DET 1x2-pin header * Open: Disconnected (default setting)
* Short: Connected
J13 HOTRST 1x2-pin header * Open: Power-on FPGA reset (default setting)
* Short: Manual FPGA reset
J34 PROG_MTR 1x2-pin header * Open: LX2162A PROG_MTR pin powered
down (default setting)
» Short: Connect 1.8 V to LX2162A PROG_
MTR pin
J35 PROG_SFP 1x2-pin header * Open: LX2162A PROG_SFP pin powered
down (default setting)
e Short: Connect 1.8 V to LX2162A PROG_
SFP pin
J37 FA_VDD 1x2-pin header * Open: FA1_CVL = 0 V (default setting)
e Short: FA1_CVL =VDD
J38 USB1_ID 1x2-pin header ¢ Open: Device mode
» Short: Host mode (default setting)
J58 UART_LOOPBACK 2x3-pin header * Short pins 1-3, 2-4: Self loopback for UART3
and UART4
LLDPUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.
User guide Rev. L6.1.1_1.0.0_23.08 — 4 August 2023

96 /1053

NXP Semiconductors LLDPUG

Layerscape Linux Distribution POC User Guide

Table 18. Default jumper settings...continued

Jumper identifier [Name Type Description

e Short pins 1-2, 3-4: Cross connection
between UART3 and UART4

J135 6901_MODE_SEL 1x2-pin header * Open: 5P49V6901 is configured by 12C
programming (default setting)
» Short: Reserved

J136 FA_VDDH 1x2-pin header * Open: FA2_DVL = 0 V (default setting)
» Short: FA2_DVL = OVDD

4.7.11.2.5 FlexSPI NOR Flash Chip-select

FlexSPI NOR flash is a simple and convenient destination for deploying images so it is frequently used.

The benefit of this feature is that it allows more than one set of images to be independently deployed to the
one NOR flash. It is helpful during development because you can use the U-Boot image in one chip-select
to program an image set into a different chip-select. If the new images are flawed, the old images are still
functional to let you deploy corrected images.

The logic on the board usually allows the NOR flash to be accessed from different CS (chip select) option. Each
CS is connected to dedicated NOR flash devices, those CS are called, DEV#0 and DEV#1. U-Boot prints which
CS is loaded from. The output looks like following:

U-Boot 2022.04+fsl1+gl181859317b (Nov 15 2022 - 06:28:05 +0000)

SoC: LX2162ACE Rev2.0 (0x87360820)

Clock Configuration:
CPUO (A72) : 2000 MHz CPULl (A72):2000 MHz CPU2 (A72):2000 MHz
CPU3 (A72) : 2000 MHz CPU4 (A72):2000 MHz CPU5(A72):2000 MHz
CPUG6 (A72) : 2000 MHz CPU7 (A72):2000 MHz CPU8(A72):2000 MHz
CPU9 (A72) : 2000 MHz CPU10(A72):2000 MHz CPUL1l1l(A72):2000 MHz
CPU12 (A72) :2000 MHz CPU13(A72):2000 MHz CPU14(A72):2000 MHz
CPUL5 (A72) :2000 MHz
Bus: 650 MHz DDR: 2900 MT/s

Reset Configuration Word (RCW) :
00000000: 50777734 20500050 00000000 00000000
00000010: 00000000 0c0O010000 00000000 00000000
00000020: 38c001a0 00002580 00000000 00000096
00000030: 00000000 00000000 00000000 00000000
00000040: 00000000 00000000 00000000 00000000
00000050: 00000000 00000000 00000000 00000000
00000060: 00000000 00000000 00027000 00000000
00000070: 00510036 00050003

Model: NXP Layerscape LX2160AQDS Board (DTS 17.x)

Board: LX2162ACE Rev2.0-QDS, Board version: A, boot from SD

FPGA: vl (LX2162AQDS 2020 0609 0802), build 265 on Tue Jun 09 13:02:54 2020

Boot option switching can be performed in U-Boot using the following statements.
» Switch to FlexSPI NOR flash 0 (default):

=> gixis_ reset

» Switch to FlexSPI NOR flash 1:

=> gixis reset altbank

LLDPUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. L6.1.1_1.0.0_23.08 — 4 August 2023

97 /1053

NXP Semiconductors LLDPUG

Layerscape Linux Distribution POC User Guide

¢ Switch to SD:

=> gixis reset sd

¢ Switch to eMMC:

=> gixis reset emmc

4.7.11.2.6 U-Boot Environment Variables

For more information on U-Boot distro boot command, see Section 5.3.2.
DPAA2-specific Environment Variables

* mcboottimeout. Defines Management Complex boot timeout in milliseconds. If this variable is not defined
the compile-time value, CONFIG SYS LS MC BOOT TIMEOUT MS will be the default. Normally, users do not
need to set this variable because the default is acceptable.

* mcmemsize: Defines amount of system DDR to be use by the Management Complex. If this variable is not
defined, the compile-time value CONFIG SYS LS MC DRAM BLOCK MIN SIZE will be the default. Normally,
users do not need to set this variable because the default is acceptable.

* mcinitemd: Contains commands to load and start the Management Complex automatically before the U-
Boot count down to boot starts. If this variable is defined, its contents are run. The default value assumes
that the Management Complex (MC) firmware and Data Path Control file are stored in FlexSPI flash at
fixed addresses. The default value for FlexSPI boot is sf probe 0:0 && sf read 0x80640000
0x640000 0x80000 && env exists secureboot && esbc validate 0x80640000 &&
esbc _validate 0x80680000; sf read 0x80a00000 0xa00000 0x300000 && sf read
0x80e00000 0xe00000 0x100000; fsl mc start mc 0x80a00000 0x80e000001 mc start mc
0x20a00000 0x20e00000. Users may change this variable as needed to load the MC files from sources
other than FlexSPI into DDR and then start the MC using the fsl_mc command. For example, the files may be
on a disk drive.

Environment variables that are not specific to DPAA2

bootcmd: Contains commands that are automatically executed when the U-Boot "boot" command is run. This
happens automatically when the user does not interrupt U-Boot initial count down. In normal usage, bootcmd
should contain the command to apply the Management Complex Data Path Layout (DPL) file because this must
be done before booting Linux. The default value of bootcmd assumes that the DPL file is stored in FlexSPI

flash at a fixed address. The defaultis sf probe 0:0; sf read 0x806c0000 0x6c0000 0x40000;

env exists mcinitcmd && env exists secureboot && esbc validate 0x806c0000; sf

read 0x80d00000 0xd00000 0x100000; env exists mcinitcmd && fsl mc lazyapply

dpl 0x80d00000; run distro bootcmd;run xspi bootcmd; env exists secureboot &&
esbc_halt

4.7.11.2.7 SDHC adapter cards configuration

The following tables show the RCW, QIXIS FPGA register details for various SDHC/eMMC adapters used with
LX2162AQDS.

LLDPUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. L6.1.1_1.0.0_23.08 — 4 August 2023

98 /1053

NXP Semiconductors

LLDPUG

Table 19. SDHC1 CONTROLLER#1

Layerscape Linux Distribution POC User Guide

Adapter Board MUX |RCW SW9 |HW Remark
Adi . [8] Changes
gile P/N |Agile CARD_ ([BRD [BRD |[lIC2_ |lIC5_ |SDHC1_|SDHC1_|SDHC1_
Name ID CFG5 |CFG11|PMUX |PMUX |BASE_ |DIR_ DS_
(RCW [(RCW |PMUX |PMUX |PMUX
[354- ([363- |(RCW |(RCW |(RCW
352]) |361]) [[378- [381- [839-
376]) 379)) 838])
31421 EMMC-51- |0b000 |0x20 |0x0 0b000 |Obxxx |{0b100 |[0b100 |0b0OO 0 On
ADAP (8-bit) (8-bit) adapter,
put
shunt
across
pins
2 and
3on
header
J1
28074 EMMC-45- |0b001 0x20 |0x0 0b000 [Obxxx [0b000 |Obxxx Obxx 0 On
ADAP or (4-bit) / adapter,
0b011 0b100(8- put
(4-bit) / | bit) shunt
0b100 across
(8-bit) pins
2 and
3on
header
J1
28056 SD-MMC- [0b010 |0x60 [Ox0 0b110 [Obxxx [0b000 |Obxxx Obxx 1
ADAPTOR or (4-bit)
0b011
(4-bit)
28075 EMMC-44- |0b011 0x20 |0x0 0b000 [Ob010 [0b000 | Obxxx Obxx 0 Unmount |On
ADAP or (4-bit) R874 adapter,
0b011 and put
(4-bit) mount shunt
R261 across
pins
2 and
3on
header
J1
29730 EMMC-50- |0b100 |0x20 |0x0 0b000 |Obxxx |{0b100 |[0b100 |0b0OO 0 On
ADAP (8-bit) (8-bit) adapter,
put
shunt
across
pins
2 and
3on
header
J1
28073 MMC- 0b101 0x60 |0x0 0b110 [Obxxx [0b000 |Obxxx Obxx 0
ADAPTOR or (4-bit) /
LLDPUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.
User guide Rev. L6.1.1_1.0.0_23.08 — 4 August 2023

99 /1053

NXP Semiconductors

LLDPUG

Table 19. SDHC1 CONTROLLER#1...continued

Layerscape Linux Distribution POC User Guide

Adapter Board MUX |RCW SW9 |HW Remark
; . [8] Changes
Agile P/IN |Agile CARD_ ([BRD |BRD |liC2_ |lIC5_ |SDHC1_|SDHC1_|SDHC1_
Name ID CFG5 |[CFG11|PMUX|PMUX | BASE_ |DIR_ DS_
(RCW |(RCW |PMUX |PMUX |PMUX
[354- [[363- |(RCW |(RCW |(RCW
352]) |361]) |[378- [381- [839-
376)]) 379]) 838])
0b011 |0b100(8-
(4-bit) / | bit)
0b100
(8-bit)
28072 SD-2-3- 0b110 |0x60 [0x30 [0b110 |Obxxx [Ob000 |Obxxx |Obxx 1
ADAPTOR (4-bit) | (4-bit)
Table 20. SDHC1 CONTROLLER#2
Adapter Board MUX |RCW HW Remark
Agile P/ |Agile Name |CARD_ID|BRDCFG13 |IIC6_PMUX |SDHC2_ SDHC2_ Changes
N (RCW[366- BASE_PMUX |DAT74_PMUX
364]) (RCWI[389- (RCWI[386-
387]) 384])
31421 EMMC-51- |0b000 0x0 Obxxx 0b000 0b000 On adapter,
ADAP put shunt
across pins
2 and 3 on
header J1
28074 EMMC-45- |0b001 0x0 Obxxx 0b000 0b000 On adapter,
ADAP put shunt
across pins
2 and 3 on
header J1
28075 EMMC-44- |0bO11 0x0 0b010 0b000 0b000 Unmount |On adapter,
ADAP R875 put shunt
and across pins
mount 2 and 3 on
R260 header J1
29730 EMMC-50- |0b100 0x0 Obxxx 0b000 0b000 On adapter,
ADAP put shunt
across pins
2 and 3 on
header J1
28073 MMC- 0b101 0x0 Obxxx 0b000 0b000
ADAPTOR
The following table shows the SDHC adapter cards supported by default software.
SDHC adapter card Highest speed mode
eSDHC1 SD card revision 2.0/3.0 UHS-I
eSDHC2 eMMC card revision 5.1 HS400
LLDPUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.
User guide Rev. L6.1.1_1.0.0_23.08 — 4 August 2023

100 /1053

NXP Semiconductors LLDPUG

Layerscape Linux Distribution POC User Guide

eMMC card revision 4.5 HS200
eMMC card revision 4.4 High speed
eMMC card revision 5.0 HS400

MMC card and legacy (3.3V) SD card | Default speed

(Adapter limits to use only MMC and
legacy SD card)

Other SDHC adapter cards and software configuration

The other SDHC adapter cards for eSDHC1 could work at 4-bit high-speed mode with default software (except
SD/MMC card needing configuration to work). To get the best r/iw performance, refer the following table for
software configuration.

eSDHC1
SDHC adapter card RCW changes Device tree node changes |Highest speed mode
eMMC card revision 5.1 SDHC1_DIR_PMUX=4 mmc-hs200-1_8yv; HS400
mmc-hs400-1_8yv;
bus-width = <8>;
eMMC card revision 4.5 For 8-bit width mmc-hs200-1_8yv; HS200
SDHC1_DIR_PMUX=4 For 8-bit width
bus-width = <8>;
SD/MMC card For 8-bit width Remove propertiessd-uhs- |High speed
SDHC1_DIR_PMUX=4 sdr104;
sd-uhs-sdr50;
sd-uhs-sdr25;
sd-uhs-sdr12; For 8-bit
width
bus-width = <8>;
eMMC card revision 4.4 For 8-bit width For 8-bit width High speed
SDHC1_DIR_PMUX=4 bus-width = <8>;
eMMC card revision 5.0 SDHC1_DIR_PMUX=4 mmc-hs200-1_8yv; HS400
mmc-hs400-1_8yv;
bus-width = <8>;
MMC card and legacy (3.3V) |For 8-bit width For 8-bit width Default speed
SD card SDHC1_DIR_PMUX=4 bus-width = <8>; (Adapter limits to use only
MMC and legacy SD card)

4.7.11.3 LX2162AQDS recovery information

If LX2162AQDS board fails to boot from XSPI NOR bank #0, you can recover XSPI NOR bank #0 from XSPI
NOR bank #1 by following these steps:

1. Download the prebuilt composite firmware image:

$ cp <build>/tmp/deploy/image/lsl043ardb/firmware 1x2162aqgds xspiboot.img ~/
tftp

2. Boot LX2162AQDS from XSPI NOR bank #1 with the following switch setting:
* SW1[1:8] = 00001111
* SW6[6:8] = 001

LLDPUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. L6.1.1_1.0.0_23.08 — 4 August 2023

101/1053

NXP Semiconductors LLDPUG

Layerscape Linux Distribution POC User Guide

3. Program XSPI NOR bank #0 from XSPI NOR bank #1:

=> i2c mw 66 50 00; sf probe 0:0
=> tftp $load addr firmware 1x2162agds xspiboot.img
=> sf erase 0x0 +$filesize && sf write $load addr 0x0 Sfilesize

4. Change switch setting back to default:
e SW1[1:8] = 00001111
* SW6[6:8] = 000
5. Reset the board, board should boot from XSPI NOR bank #0:

=> reset

Note: If LX2162AQDS fails to boot from both the FlexSPI NOR flash banks, you need to recover the board
using CodeWarrior for LS Series, Arm v8 ISA. For steps to recover the board using the CodeWarrior tool, see
the Board Recover section in ARM V8 ISA, Targeting Manual.

4.7.11.4 Program Layerscape LDP composite firmware image

This topic explains steps to program FlexSPI NOR firmware image to FlexSPI NOR flash on LX2162AQDS and
SD/eMMC firmware image to SD/eMMC card on LX2162AQDS.

To program Layerscape LDP composite firmware image to FlexSPI NOR flash on LX2162AQDS:

1. Copy firmware on host machine to TFTP server.

S cp <build>/tmp/deploy/image/lx2162aqds/firmware 1x2162aqgds gspiboot.img ~/
tftp/

2. Reboot the board from FlexSPI NOR flash 0 and stop autoboot to enter U-Boot prompt.
3. Under U-Boot, download the firmware to the reference board using one of the following options:
¢ Load firmware from the TFTP server

=> tftp $load addr firmware 1x2162agds xspiboot.img

* Load firmware image from partition on mass storage device (SD, USB, or SATA)

=> load mmc <device:part> $load addr firmware 1x2162agds xspiboot.img

For example:

=> load mmc 0:2 $load addr firmware 1x2162aqgds xspiboot.img

or
=> load usb <device:part> $load addr firmware 1x2162agds xspiboot.img
or
=> load scsi <device:part> $load addr firmware 1x2162aqgds xspiboot.img
Note:
Use the following command if the SD card is formatted/created using Layerscape LDP flex-installer
command:
=> load <interface> [<dev/[:part]> [<addr> [<filename> [bytes [pos]]]]]
For example:
=> Joad mmc 0:2 $load addr firmware 1x2162aqds xspiboot.img
LLDPUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.
User guide Rev. L6.1.1_1.0.0_23.08 — 4 August 2023

102/1053

https://www.nxp.com/docs/en/user-guide/CWARMv8TM.pdf

NXP Semiconductors LLDPUG

Layerscape Linux Distribution POC User Guide

Use the following command if the SD card is formatted/created on a Windows PC:

=> fatload <interface> [<dev/[:part]> [<addr> [<filename> [bytes [pos]]]]]

For example:

=> fatload mmc 0:2 $load addr firmware I1x2162agds xspiboot.img

Use the following command if the SD card is formatted/created on a Linux PC:

=> ext2load <interface> [<dev/[:part]> [<addr> [<filename> [bytes [pos]]]]]

For example:

=> ext2load mmc 0:2 $load addr firmware 1x2162aqgds xspiboot.img

Also note that Layerscape LDP flex-installer command puts the images on the second partition, so 0:2
is used in the 1oad command. If the SD card is formatted on Windows PC or Linux PC for single partition
only, then 0 should be used instead of 0:2 in the fatload/ext2load command.

4. Program the firmware to FlexSPI NOR flash 1.

=> i2c mw 66 50 20; sf probe 0:0 => sf erase 0 +$filesize && sf write
$load addr 0 $filesize

5. Reset and boot the board from FlexSPI NOR flash 1. The system will automatically boot up TinyDistro (log
in using root/root) or Layerscape LDP distro (log in using user/user) available on the removable storage
device.

=> gixis reset altbank

To program Layerscape LDP composite firmware image to SD/eMMC on LX2162AQDS:

1. Copy firmware on host machine to tftp server.
For SD boot:

S cp <build>/tmp/deploy/image/1x2162aqds/firmware 11x2162aqgds sdboot.img ~/
tftp/

For eMMC boot:

$ cp <build>/tmp/deploy/image/1lx2162aqgds/firmware 11x2162agds emmcboot.img ~/
tftp/

2. Reboot the board from FlexSPI NOR flash 0 and stop autoboot to enter U-Boot prompt.
3. Under U-Boot, download the firmware to the reference board using one of the following options:

¢ Load firmware from the TFTP server
For SD boot:

=> tftp $load addr firmware 1x2162agds sdboot.img

For eMMC boot:
=> tftp $load addr firmware 1x2162agds emmcboot.img

* Load firmware image from partition on mass storage device (SD, USB, or SATA)
For SD boot:

=> load mmc <device:part> $load addr firmware 1x2162agds sdboot.img

For example:

=> load mmc 0:2 $load addr firmware 1x2162agds sdboot.img

LLDPUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. L6.1.1_1.0.0_23.08 — 4 August 2023

103 /1053

NXP Semiconductors LLDPUG

Layerscape Linux Distribution POC User Guide

or

=> load usb <device:part> $load addr firmware 1x2162agds sdboot.img

=> load scsi <device:part> $load addr firmware 1x2162aqgds sdboot.img
For eMMC boot:

=> load mmc <device:part> $load addr firmware 1x2162agds emmcboot.img

For example:

=> load mmc 0:2 $load addr firmware 1x2162aqgds emmcboot.img

or

=> load usb <device:part> $load addr firmware 1x2162agds emmcboot.img

or

=> load scsi <device:part> $load addr firmware 1x2162aqgd emmcboot.img

Note:
Use the following command if the SD/eMMC card is formatted/created using Layerscape LDP flex-installer
command:

=> Joad <interface> [<dev[:part]> [<addr> [<filename> [bytes [pos]]]]]

For example:

=> Joad mmc 0:2 $load addr firmware 1x2162aqds sdboot.img

Use the following command if the SD card is formatted/created on a Windows PC:

=> fatload <interface> [<dev/[:part]> [<addr> [<filename> [bytes [pos]]]]]

For example:

=> fatload mmc 0:2 $load addr firmware 1x2162aqds sdboot.img

Use the following command if the SD card is formatted/created on a Linux PC:

=> extZload <interface> [<dev/[:part]> [<addr> [<filename> [bytes [pos]]]]]

For example:

=> ext2load mmc 0:2 $load addr firmware 1x2162aqds sdboot.img

Also note that Layerscape LDP flex-installer command puts the images on the second partition, so 0:2
is used in the 1oad command. If the SD card is formatted on Windows PC or Linux PC for single partition
only, then 0 should be used instead of 0:2 in the fatload/ext21load command.

4. Program the firmware to SD card.

=> mmc dev 0; mmc write $load addr 8 1fff8

5. Program the firmware to eMMC card.

=> mmc dev 1; mmc write $load addr 8 1fff8

6. Reset and boot the board from SD card. The system will automatically boot up TinyDistro (log in using root/
root) or Layerscape LDP distro (log in using user/user) available on the removable storage device.
For SD boot:

=> gixis reset sd

LLDPUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. L6.1.1_1.0.0_23.08 — 4 August 2023

104 /1053

NXP Semiconductors

LLDPUG

For eMMC boot:

Layerscape Linux Distribution POC User Guide

=> gixis reset emmc

4.8 Layerscape LDP memory layout and userland

4.8.1 Flash layout

The following table shows the memory layout of various firmwares stored in NOR/NAND/QSPI/XSPI flash
device or SD card on all Layerscape Reference Design Boards.

Note: When the board boots from NOR flash, the NOR bank from which the board boots is considered as the
"current bank" and the other bank is considered as the "alternate bank". For example, if LS1043ARDB boots
from NOR bank 4, to update an image on NOR bank 0, you need to use the "alternate bank" address range,

0x64000000 - 0x64F00000.

Table 21. Unified 64 MiB memory layout of NOR/QSPI/XSPI/NAND/SD media for composite firmware on all

Layerscape platforms

Firmware Definition MaxSize |Flash Offset | Absolute Absolute Absolute Absolute SD
(QSPI/XSPI/ |address (NOR |address address address start
NAND flash) |current bank [(NOR (NOR current | (NOR block

on LS1043 alternate bank on alternate no.

ARDB, TWR- |bank on LS2088 bank on

LS1021A) LS1043 ARDB) LS2088

ARDB, TWR- ARDB)
LS1021A)

RCW + PBI + BL2 1MiB% 0x00000000 |0x60000000 0x64000000 |0x580000000 |[0x584000000 |0x00008
(bl2_<boot_mode>.
TF-A FIP image (BL31 [4MiB 0x00100000 |0x60100000 0x64100000 |0x580100000 |0x584100000 |0x00800
+ TEE (BL32) + U-
Boot/UEFI (BI33)) (fip.
bin)P!
Boot firmware 1MiB 0x00500000 |0x60500000 0x64500000 |0x580500000 |0x584500000 |0x02800
environment
Secure boot headers 128KiB |0x00600000 |0x60600000 0x64600000 |0x580600000 |0x584600000 |0x03000
DDR PHY FW or 512KiB | 0x00800000 |0x60800000 0x64800000 |0x580800000 |0x584800000 |0x04000
reserved
Fuse provisioning 512KiB | 0x00880000 |0x60880000 0x64880000 |0x580880000 |0x584880000 |0x04400
header
DPAA1 FMan 256KiB |0x00900000 |0x60900000 0x64900000 |0x580900000 |0x584900000 |0x04800
microcode
QE firmware or DP 256KiB |0x00940000 |0x60940000 0x64940000 |0x580940000 |0x584940000 |0x04A00
firmware
Ethernet PHY firmware [256KiB | 0x00980000 |0x60980000 0x64980000 |0x580980000 |[0x584980000 |0x04C00
Script for flashing 256KiB |0x009C0000 |[0x609C0000 0x649C0000 |0x5809C0000 |0x5849C0000 |0x04E00
image
DPAA2-MC or PFE 3MiB 0x00A00000 |0x60A00000 0x64A00000 |0x580A00000 |0x584A00000 |0x05000
firmware
DPAA2 DPL 1MiB 0x00D00000 |0x60D00000 0x64D00000 |0x580D00000 |0x584D00000 |0x06800
LLDPUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.
User guide Rev. L6.1.1_1.0.0_23.08 — 4 August 2023

105/1053

NXP Semiconductors

LLDPUG

Layerscape Linux Distribution POC User Guide

Table 21. Unified 64 MiB memory layout of NOR/QSPI/XSPI/NAND/SD media for composite firmware on all
Layerscape platforms...continued

Firmware Definition MaxSize |Flash Offset | Absolute Absolute Absolute Absolute SD
(QSPI/XSPI/ |address (NOR |address address address start
NAND flash) |current bank [(NOR (NOR current |(NOR block
on LS1043 alternate bank on alternate no.
ARDB, TWR- |bank on LS2088 bank on
LS1021A) LS1043 ARDB) LS2088
ARDB, TWR- ARDB)
LS1021A)
DPAA2 DPC 1MiB 0xO00EO00000 |0x60E00000 0x64E00000 |0x580E00000 |0x584E00000 |0x07000
Device tree (needed by |1MiB 0xO0F00000 |0x60F00000 0x64F00000 |0x580F00000 |0x584F00000 |0x07800
UEFI)
Kernel |kernel-fsl- 16MiB 0x01000000 |0x61000000 0x65000000 |0x581000000 |0x585000000 |0x08000
< >
Ramdisk board>.itb 32MiB 0x02000000 |0x62000000 0x66000000 |0x582000000 |0x586000000 |0x10000
rfs

[1]
[2]
[3]

For any update in the BL2 source code or RCW binary, the b12_<boot mode>.pbl binary needs to be recompiled.
For Flash device (non-SD boot), the MaxSize is 1 MB. For SD/eMMC device (SD boot), the MaxSize is 1 MB-4 KB=1020 kB
For any update in the BL31, BL32, or BL33 binaries, the fip.bin binary needs to be recompiled.

Layerscape LDP composite firmware_<machine>_<bootloader>_<boottype>.img contains RCW, ATF, U-Boot/
UEFI, secure boot headers, Ethernet PHY firmware, device tree , kernel and tiny rootfs, shown in the table
above, the kernel-fsl-<board>.itb consists of kernel image, device tree of multiple reference boards, rootfs_Isdk
yocto_tiny_arm64.cpio.gz.

Table 22. 2MB memory layout of QSPI/SD media on Layerscape platform LS1012AFRWY

Firmware definition Max size Location SD Start Block No.
RCW+PBI+BL2 (bl2_<boot_ 64 KB 0x0000_0000 - 0x0000_FFFF 0x00008
mode>.pbl)

Reserved 64 KB 0x0001_0000 - 0x0001_FFFF 0x00080

PFE firmware 256 KB 0x0002_0000 - 0x0005_FFFF 0x00100

FIP (BL31+BL32+BL33) 1MB 0x0006_0000 - 0x000D_FFFF 0x00300
Environment variables 64 KB 0x001D_0000 - 0x001D_FFFF 0x00E80

Reserved 64 KB 0x001E_0000 - 0x001E_FFFF 0x00F00
Secureboot headers 64 KB 0x001F_0000 - 0x001F_FFFF 0x00F80

Generally, do not change the default offset of the 1st image (RCW + PBI + BL2) and the second image (TF-A
FIP image) to avoid causing the target board bricked, you can change the default offset of other images to use
your own layout by modifying the offset of various firmware by editing <bitbake-dir>/configs/board/common/
memorylayout.cfg.

4.8.2 Storage layout on SD/USB/SATA for Layerscape LDP images deployment

With command 'flex-installer -i auto -m <machine> -d <device>', the Layerscape LDP distro can be installed
into an SD/USB/SATA storage disk which should have at least 16 GB of memory space by default as per the
following layout.

LLDPUG © 2023 NXP B.V. Al rights reserved.

User guide

All information provided in this document is subject to legal disclaimers.

Rev. L6.1.1_1.0.0_23.08 — 4 August 2023

106 /1053

NXP Semiconductors

LLDPUG

Layerscape Linux Distribution POC User Guide

Table 23. The default layout of SD/USB/SATA storage device for Layerscape LDP distro images

deployment
Region Region 2 (RAW, Region 3 (Partition- | Region 4 (Partition- Region 5 Region 6
1 (RAW) only SD Boot) 64 1 FAT/EXT4) 128 2 EXT4) 2 GiB Boot (Partition-3 EXT4) |(Partition-4 EXT4)
4KiB MiB MiB Partition 5 GiB Backup Primary RFS in
Partition rest of disk
MBR/GPT |« RCW « BOOTAAG64.EFI, |+ kernel Backup partition Layerscape LDP
« U-Boot or UEFI grub.cfg « dtb or Userland (Default)
* TF-A * or for other uses | distro bootscripts Second distro
firmware » secure boot headers
* QE/uQE firmware e composite firmware
* FMan or MC ¢ kernel-fsl-<board>.itb
firmware ¢ rootfs
e DPL and DPC
firmware
« DTB
e kernel-fsl-
<board>.itb

The default layout of target disk is done as per default "-p 4P=128M.:2G:5G:-1", if different layout is needed,
you can specify '-p' option in flex-installer command, for example, flex-installer -i auto -p 4P=50M:2G:100M:-1
-m Is1046ardb -d /dev/mmcblk0. Once you changed the default partitions, it needs to set U-Boot env variable
devpart_boot for boot partition (devpart_boot=2 by default) and devpart _root for rootfs partition (devpart_root=4
by default in distro bootscript <board>_boot.scr), for example, you can run 'setenv devpart root 3; saveenv;
boot' in U-Boot prompt to boot the target distro from partition 3 instead from the default partition 4.

If you want to change the default bootargs for kernel, you can do 'setenv othbootargs <your_new_settings>' in
U-Boot prompt to append extra bootargs option, then do 'saveenv; boot' to boot distro.

4.8.3 Layerscape LDP userland

Layerscape LDP supports different types of distro userland in various scales to adapt to a variety of use cases,
Linux distro-based rich OS userland and Yocto-based tiny userland are supported by default.

The following three flavors of Linux distro-based userland is supported:

* Layerscape LDP-based main userland: Integrates abundant networking packages from upstream main repo
and NXP's custom packages, applicable to all Layerscape platforms (prebuilt binary is downloadable).

* Layerscape LDP-based desktop userland: Integrates custom GNOME desktop packages and and NXP's
custom packages with GPU acceleration libraries for multimedia applications, applicable to LS1028A and i.MX
platforms. no prebuilt binary is distributed, users can locally generate it by Yocto bitbake, GNOME desktop
automatically launches by default, Weston doesn't automatically launch during booting up, users can manually
launch it if needed.

» Layerscape LDP-based lite userland: Integrates Linux distro base packages for smaller footprint (prebuilt
binary is downloadable).

To boot large distro from default storage device under U-Boot:

=> boot

To boot Layerscape LDP userland from the specified USB/SD/SATA storage device under U-Boot:

=> run bootcmd usb0
or
=> run bootcmd mmcl

LLDPUG
User guide

All information provided in this document is subject to legal disclaimers.

Rev. L6.1.1_1.0.0_23.08 — 4 August 2023

© 2023 NXP B.V. All rights reserved.

107 /1053

NXP Semiconductors LLDPUG

Layerscape Linux Distribution POC User Guide

or
=> run bootcmd scsiO

To boot TinyLinux under U-Boot:

=> run sd bootcmd

or
=> run nor bootcmd
or B

=> run gspi bootcmd
or

=> run xspi bootcmd

4.8.4 TinyDistro

The default TinyDistro kernel-fsl-<board>.itb consists of kernel, dtb, and initramfs
(rootfs tiny <arch>.cpio.gz). U-Boot loads it from flash device (or SD card) to RAM and boot it up from
RAM. As the size of kernel modules is too large to install it in the tiny rootfs, there is no kernel modules in the
TinyLinux by default. You can install boot LS <arch> 1lts <version>.tgz (in which kernel and modules
are deployed for reuse by various distros) in SD card or USB stick by flex-installer, boot the TinyLinux and then
run the command mount-modules to automatically mount the boot partition to /boot directory and symlink /
lib/modules to /boot/modules. Now the kernel modules are available, that is run "modprobe flexcan" to load the
flexcan module.

The default Layerscape LDP main userland is an Linux distro-based 22.04 hybrid userland with NXP's
packages/components and system configurations. You can choose the appropriate distro userland according to
demand.

The various userlands are shown in the following table:

4.8.5 Various distro userland details

Layerscape LDP Userland tarball Name Size |Commands for build Description

Userland

Layerscape LDP ls-image-main- ~760M | $ bitbake Is-image-main |Include Layerscape LDP main
main userland <machine>.tar.gz packages and full NXP's networking

and security packages (without
graphics packages) for Layerscape
platforms.

Layerscape LDP lite |Is-image-lite-<machine>.tar. |~160M|$ bitbake Is-image-lite Include Layerscape LDP base
userland gz packages and part of NXP's
packages (restool, tsntool, fmc, net-
tools, flex-installer, ccsr, and so on).

Layerscape LDP Is-image-desktop- ~1.1G |$ bitbake Is-image- Include Layerscape LDP GNOME
desktop userland <machine>.tar.gz desktop desktop packages and part

of NXP's graphics packages,
applicable to platforms integrating
GPU (for example, LS1028A and

i.MX).
Yocto-based tiny fsl-image-mfgtool- ~20M |$ bitbake fsl-image- Include Yocto-based basic
userland <machine>.tar.gz mfgtool packages and part of NXP's

packages (restool, tsntool, fmc, net-
tools, flex-installer, ccsr, and so on).

LLDPUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. L6.1.1_1.0.0_23.08 — 4 August 2023

108 /1053

NXP Semiconductors LLDPUG

Layerscape Linux Distribution POC User Guide

To build specific userland from source, see the sections "How to build Layerscape LDP with Yocto bitbake",
"How to build various userland with custom packages".

All the apt packages in the prebuilt Layerscape LDP main userland are from LDP main repository which are
legally reviewed as trusted origin by NXP. You can install more apt packages by sudo apt install <package-
name> command by yourself. NXP will not undertake legal liability if you publically distribute distro which
contains packages from untrusted origin, such as gstreamer1.0, python, and so on located at /usr/share.

LLDPUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. L6.1.1_1.0.0_23.08 — 4 August 2023

109 /1053

NXP Semiconductors LLDPUG

5

Layerscape Linux Distribution POC User Guide

Bootloaders

5.1 General boot flow

5.1.1 NXP SoC Booting Principles
The high-level boot flow of an ARMv8-A SoC is:

1.

SoC comes out of reset and reads RCW/PBL image from a boot source, such as a NOR flash, SD card, or
eMMC flash. The RCW/PBL image contains configuration bits that control:

* Pin muxing and the protocol selected for SerDes pins.

* Clock parameters and PLL multipliers.

* Device containing the first software (not in an internal BootROM) to run.

Code in the internal BootROM starts running and configures low-level aspects of the SoC.

. The BootROM must then load the first external software (TF-A binaries) to run from a boot device, such as

NOR flash or SD/eMMC.

a. The BootROM transfers control to BL2.

b. BL2 loads and starts bootloader from NOR flash or SD/eMMC.
Note: For more details about TF-A, see Section 5.2.

4. Usually, the bootloader must also load peripheral firmware, firmware required to make peripherals, such as
Ethernet controllers work. The details of this differ from SoC to SoC.

5. When the bootloader finishes initialization, its job is to locate a Linux kernel image and a Linux device tree
image. The device tree is a description of the board and SoC hardware that Linux uses, for example, to
know which peripherals are available for use and to associate drivers with them. Often, bootloaders do
some on-the-fly “fixups” to the device tree to pass information to Linux.

Note: For example, if you want to use PCle device such as INTEL e1000 card in U-Boot or Linux, you can
use command "pci enum"” at the U-Boot prompt.

6. In summary, the bootloader reads kernel and device tree images from memory or mass storage device.
Because bootloaders have many drivers, there are many possible choices for the location of the images.

* NOR flash (serial QSPI or parallel)

* SD card/eMMC flash

* USB mass storage devices of all types
e SATA drives of all types

* Ethernet, normally via TFTP

7. After the bootloader loads the kernel and device tree and does fixups, it puts kernel boot parameters and
the device tree into DDR where the kernel can find them and passes control to the kernel. One of the key
kernel parameters is “root=". It tells the Linux kernel what device contains the user space file set (userland).
U-Boot stores kernel parameters in environment variable bootargs.

8. Because the Linux kernel supports even more device drivers than bootloaders support, the array of choices
for the userland device is even larger.

* NOR flash (serial QSPI or parallel)
¢ SD card/eMMC flash
* USB mass storage devices of all types.
* SATA drives of all types.
¢ Ethernet, normally via NFS.
* RAM disks (which the bootloader populates)
» Third-party PCle-based mass storage devices and controllers
a. SATA controllers
b. SAS controllers
LLDPUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.
User guide Rev. L6.1.1_1.0.0_23.08 — 4 August 2023

110/1053

NXP Semiconductors LLDPUG

Layerscape Linux Distribution POC User Guide

c. Fibre Channel Host Bus Adaptors
d. NVMe cards
e. And more.

Once the kernel is up, it starts userland, starting with systemd. The startup process is part of the Ubuntu file set
and conforms to normal Ubuntu procedures.

5.1.2 Notes on General Boot Principles

» Secure boot does not change the overall sequence. The significant difference is that secure boot involves
each component (starting with the BootROM) validating the images it loads and starts. This sequence of
image validations is called the “chain of trust”.

Linux often resets peripherals and reloads their firmware. This process is specific to the SoCs.

5.2 TF-A

Trusted Firmware (TF-A) is an implementation of secure world software for Armv8-A. TF-A provides trusted
code base complying with the Arm specifications. The TF-A boot flow consists of 5 individual boot stages
running at different exception levels, as explained in the following table.

The exception levels are related with Arm TrustZone technology, a mechanism that allows for hardware
resources isolation in the Arm SoC. The Arm architectures support two TrustZone modes for the cores, Secure
and Non-Secure, and this is the relation with the different Exception Levels:

* ELO, EL1, EL2: the processor can be in Secure (for example, EL1S) or Non-Secure (for example, EL1) mode.
» EL3: the processor is only allowed to be in Secure mode.

Boot stage Exception level Description

BL1 EL3 Boot ROM firmware

Note: BL1 is embedded in hardware
(Boot ROM + PBL commands)

BL2 EL3 Platform initialization firmware

BL31 EL3 Resident runtime firmware

BL32 EL1S [Optional] Trusted operating system.
For example, OP-TEE.

BL33 EL2 Normal world bootloader. For example,
U-Boot, UEFI

TF-A boot flow

1. BootROM (BL1)

a. When the CPU is released from reset, hardware executes PBL commands that copy the BL2 binary
(b12.bin) for platform initialization to OCRAM. The PBI commands also populate the BOOTLOC ptr to
the location where b12 .bin is copied.

b. Upon successful execution of the PBI commands, Boot ROM passes control to the BL2 image at EL3.

2. BL2
a. BL2 initializes the DRAM, configures TZASC

b. BL2 validates BL31, BL32, and BL33 images to the DDR memory after validating these images. BL31,
BL32, and BL33 images form FIP image, fip.bin.

LLDPUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. L6.1.1_1.0.0_23.08 — 4 August 2023

111/1053

NXP Semiconductors LLDPUG

Layerscape Linux Distribution POC User Guide

c. Post validation of all the components of the FIP image, BL2 passes execution control to the EL3 runtime
firmware image named as “BL31”,
3. BL31
a. Sets up exception vector table at EL3
b. Configures security-related settings (TZPC)
c. Provides services to both bootloader and operating system, such as controlling core power state and
bringing additional cores out of reset
d. [Optional] Passes execution control to Trusted OS (OP-TEE) image, BL32, if BL32 image is present.
4. BL32
a. [Optional] After initialization, BL32 returns control to BL31.
5. BL31
a. Passes execution control to bootloader U-Boot/UEFI, BL33 at EL2
6. BL33
a. Loads and starts the kernel and other firmware (if any) images.

ELO Non-Secure

Kernel J OP-TEE]7 BL32

EL2 ‘3
BL33 —[U-Boot / UEFI
EL3 X
EL3 runtime firmware —— BL31
e

' ™
Platform initialization BL2
firmware
L ﬁ A
I ™
Boot ROM — BL1
L. A

Figure 1. TF-A boot flow - stages

5.2.1 TF-A features

5.2.1.1 TF-A DDR Driver

Introduction

DDR initialization is implemented in TF-A for following platforms: LS1012A, LS1028A, LS1043A, LS1046A,
LS1088A, LS2088A, LX2160A Rev2, and LX2162A

LLDPUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. L6.1.1_1.0.0_23.08 — 4 August 2023

112/1053

NXP Semiconductors LLDPUG

Layerscape Linux Distribution POC User Guide

TF-A DDR driver is part of BL2 binary and high-level boot sequence is as follows:
Boot ROM -> BL2 (DDR Init) -> BL31 -> U-boot/UEFI -> Linux Kernel

It does both DDR controller and PHY initialization.

TF-A Versions

As two different TFA versions are supported, DDR driver directory hierarchy is different for each of the TFA
versions. The following table shows the TF-A versions supported by different platforms.

Platforms TFA version
LS1012A, LS1028A, LS1043A, LS1046A, LS1088A, TFA 1.5
LS2088A
LX2160A Rev2, LX2162A TFA 2.3

DDR Board Parameters

For non-LX2 platforms, DDR board configuration can be specified with following macros in the DDR driver.

Macro File Path
DDRC_NUM_DIMM Plat/nxp/<SOC>/<Board>/platform_def.h
NUM_OF_DDRC Plat/nxp/<SOC>/include/soc.h

Steps To Add DDR Driver In TFA
init_ddr

Each platform needs to define a function _init_ddr which is in a board-specific file, for instance plat/nxp/soc-
Is1043/ 1s1043ardb/ddr_init.c.

The _init_ddr function calls dram_init which calls the NXP DDR drivers initialization routine.

This function can also be used to apply DDR errata, which needs to be applied post DDR configuration.
File: ddr_init.c

long long init ddr (void)
{
int spd addr[] = { 0x51, 0x52, 0x53, 0x54 };
struct ddr info info;
struct sysinfo sys;
long long dram size;
zeromem (&sys, sizeof (sys));
get clocks (&sys);
debug ("platform clock %$lu\n", sys.freq platform);
debug ("DDR PLL1 %lu\n", sys.freq ddr pllO0);
debug ("DDR PLL2 %lu\n", sys.freq ddr plll);
zeromem (&info, sizeof (info));
/* Set two DDRC. Unused DDRC will be removed automatically. */

info.num ctlrs = 2;

info.spd addr = spd addr;

info.ddr[0] (void *)NXP DDR_ADDR;
info.ddr[1] = (void *)NXP DDR2 ADDR;
info.phy[0] = (void *)NXP DDR PHY1 ADDR;
info.phy([l] = (void *)NXP DDR _PHY2 ADDR;
info.clk = get ddr freqg(&sys, 0);

if (!info.clk)
info.clk = get ddr freqg(é&sys, 1);

LLDPUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. L6.1.1_1.0.0_23.08 — 4 August 2023

113 /1053

NXP Semiconductors LLDPUG

Layerscape Linux Distribution POC User Guide

info.dimm on ctlr = 2;
dram size = dram init (&info);
if (dram size < 0)
ERROR("DDR init failed.\n"):;
return dram size;

}

DDR Board Level Applications

The DDR driver supports the following board level applications for DDR:

* DIMM: Driver reads SPD for configuring DDR timing parameters
* Mock DIMM: Hardcoded timing in place of reading SPD
» Discrete DDR: Driver requires a static DDR configuration to be added

DIMM

When a board design uses DIMM module for dynamic memory configuration.

_init_ddr function uses DDR board parameters to read the attached SPD and configure the DDR controller.
MOCK DIMM

When a board design uses fixed or discrete DDR, hardcoded or static timing can be used to configure DDR
timing parameters.

Define macro “CONFIG_DDR_NODIMM?” in plat/nxp/<SOC>/<Board>/platform_def.h to enable MOCK DIMM
support.

Define function “ddr_get_ddr_params” and structure dim_params in ddr_init.c file.

Example:

struct dimm params ddr raw timing = {
.n_ranks = 2,
.rank density = 4294967296u,
.capacity = 8589934592y,
.primary sdram width = 64,
.ec_sdram width = 8,
.device width = 8,
.die density = 0x4,
.rdimm = 0,
.mirrored dimm = 1,
.n_row addr = 15,
.n_col addr = 10,
.bank addr bits = 0,
.bank group bits = 2,
.edc_config = 2,
.burst lengths bitmask = 0x0c,
.tckmin x ps = 750,
.tckmax ps = 1600,
.caslat x = 0xO00FFFCOO,
.taa ps = 13750,
.trcd ps = 13750,
.trp ps = 13750,
.tras ps = 32000,
.trc ps = 457500,
.twr ps = 15000,
.trfcl ps = 260000,
.trfc2 ps = 160000,
.trfc4 ps = 110000,
.tfaw _ps = 21000,

LLDPUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. L6.1.1_1.0.0_23.08 — 4 August 2023

114 /1053

NXP Semiconductors

LLDPUG

}i

Layerscape Linux Distribution POC User Guide

.trrds ps = 3000,
.trrdl ps = 4900,
.tccdl ps = 5000,
.refresh rate ps = 7800000,

int ddr get ddr params (struct dimm params *pdimm,

{

}

struct ddr conf *conf)

static const char dimm model[] = "Fixed DDR on board";
conf->dimm in use[0] = 1; /* Modify accordingly */

memcpy (pdimm, &ddr raw timing, sizeof (struct dimm params));

memcpy (pdimm->mpart, dimm model, sizeof (dimm model) - 1);

/* valid DIMM mask, change accordingly, together with dimm on ctlr. */
return 0x5;

Discrete DDR

When a board design uses fixed or discrete DDR, static timing can be used to configure DDR timing

parameters.

Define macro “CONFIG_STATIC_DDR” in plat/nxp/<SOC>/<BOARD>/plafform_def.h to enable discrete DDR

timings.

Define board_static_ddr() function and structure ddr_cfg_regs in file ddr_init.c.

Example:

const struct ddr cfg regs static 1600 = {

.cs[0].config = 0x80040322,
.cs[0] .bnds = 0x1FF,
.cs[l].config = 0x80000322,
.cs[1l].bnds = 0x1FF,
.sdram _cfg[0] = 0xE5004000,

.sdram cfg[l] = 0x401151,
.sdram cfgl[2] = 0x0,

.timing cfg[0] = 0x91550018,
.timing cfg[l] = OxBAB48E44,
.timing cfgl2] = 0x490111,
.timing cfg[3] = 0x10C1000,
.timing cfgl4] = 0x220002,
.timing cfg[5] = 0x3401400,
.timing cfgl6] = 0x0,
.timing cfg[7] = 0x13300000,
.timing cfg[8] = 0x1224800,
.timing cfg[9] = 0x0,

.dg map[0] = 0x32C57554,

.dg map[1l] = 0xD4BBOBD4,

.dg map[2] = 0x2EC2F554,

.dg map[3] = 0xD95D4001,
.sdram mode[0] = 0x3010211,
.sdram mode[1l] = 0x0,

.sdram mode[9] = 0x400000,
.sdram mode[8] = 0x500,
.sdram mode[2] = 0x10211,
.sdram mode[3] = 0x0,

.sdram mode[10] = 0x400,
.sdram mode[11] = 0x400000,
.sdram mode[4] = 0x10211,
.sdram mode[5] = 0xO0,

.sdram mode[12] = 0x400,

LLDPUG

All information provided in this document is subject to legal disclaimers.

© 2023 NXP B.V. All rights reserved.

User guide

Rev. L6.1.1_1.0.0_23.08 — 4 August 2023

115/1053

NXP Semiconductors

LLDPUG

Layerscape Linux Distribution POC User Guide

.sdram mode[13] = 0x400000,
.sdram mode[6] = 0x10211,
.sdram mode[7] = 0x0,
.sdram mode[14] = 0x400,
.sdram mode[15] = 0x400000,
.interval = 0x18600618,
.zg_cntl = 0x8A090705,
.ddr_sr cntr = 0x0,

.clk cntl = 0x2000000,
.cdr[0] = 0x80040000,
.cdr[1l] = 0xC1,

.wrlvl cntl[0] = 0x86750607,
.wrlvl cntl[1] = 0x8090A0B,
.wrlvl cntl[2] = OxDOEOFOC,

}i

long long board static ddr (struct ddr info *priv)

{

memcpy (&priv->ddr reg,

&static 1600, sizeof(static 1600));

memcpy (&priv->dimm, &static dimm, sizeof (static dimm)) ;
priv->conf.cs on dimm[0] = 0x3;

ddr board options (priv);

compute ddr phy (priv);

return ULL (0x400000000) ;

}

For LX2 platforms additional information is required, this is used by the PHY driver to identify DDR parameters.

const struct dimm params static dimm = {

.rdimm = 0,

.primary sdram width =

.ec_sdram width
.n_ranks = 2,
.device width =

.mirrored dimm =

}i

64,
8,

14
1,

Once these parameters are correct, rebuild the ATF components and the changes will be available in the bl2.pbl
files which combine the board’s RCW/PBL and the bl2 binary.

DDR Debug Options

The compile-time debug option is used to log all kinds of information that is useful in debugging the DDR issues.

Debug Flag Description Build Command
DDR_DEBUG Print all DDR PHY input configuration make PLAT=<platform> pbl RCW=<rcw
information file> fip BL33=<u-boot.bin> DEBUG=1
DDR_DEBUG=yes
DDR_BIST Enable built-in self test for DDR make PLAT=<platform> pbl RCW=<rcw
file> fip BL33=<u-boot.bin> DEBUG=1
DDR_BIST=yes

DDR Sanity Testing

DDR sanity testing can be done using following test features:

* BIST
* mtest (in U-Boot)

Built-In Self Test

LLDPUG

All information provided in this document is subject to legal disclaimers.

© 2023 NXP B.V. All rights reserved.

User guide

Rev. L6.1.1_1.0.0_23.08 — 4 August 2023

116 /1053

NXP Semiconductors LLDPUG

Layerscape Linux Distribution POC User Guide

Use DDR debug option DDR_BIST=yes during TFA compilation.

This debug option will enable BIST in DDR and driver will run BIST after DDR controller and PHY are initialized.
Board boot up logs:

Memory tester (Mtest)

mtest is a U-Boot command used to test the DDR memory.

Configure U-Boot to compile the mtest command, add mtest #defines in platform-specific config file and compile
U-Boot.

For example:

File: include/configs/Ix2162aqds.h

#define CONFIG_CMD MEMTEST
#define CONFIG_SYS MEMTEST START CONFIG _SYS DDR_SDRAM BASE
#define CONFIG_SYS MEMTEST END (CONFIG_SYS DDR SDRAM BASE + 0x100)

U-Boot commands:

=> help mtest
mtest - simple RAM read/write test

Usage:

mtest [start [end [pattern [iterations]]]]

=> mtest 80000000 80000100 Oxaabbccdd 3
Testing 80000000 ... 80000100:
Pattern AABBCCDD Writing... Reading...Tested 3 iteration(s) with 0 errors.

LX2 — TFA Driver

LX2 platforms LX2160ARDB rev2.0 and LX2162 uses TFA version - TFA 2.3.
Below are LX2 specific documents.

Warm Reset (LP3) Feature

LX2162AQDS support warm reset feature. For details, see Warm reset section.

DDR Board Parameters

File - plat/nxp/soc-1x2160//platform.def defines following macros:

« NUM_OF_DDRC
« DDRC_NUM_DIMM
« DDRC_NUM_CS

You can make changes as per your board configuration in this file.
DDR PHY Training Firmware
How To Update DDR PHY Training Firmware

Ensure to update DDR PHY training firmware to latest version. DDR PHY training firmware filename is
fip_ddr_all.bin (DDR FIP Image)

For steps to flash fip_ddr_all.bin on different boot mediums, see How to program TF-A binaries on specific
boot mode

LLDPUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. L6.1.1_1.0.0_23.08 — 4 August 2023

117 /1053

NXP Semiconductors LLDPUG

Layerscape Linux Distribution POC User Guide

To check DDR PHY firmware version, compile TFA with DDR debug option — DDR_PHY_DEBUG-=yes. See
DDR debug options.

Refer the following PMU message to find out the DDR PHY ftraining firmware (fip_ddr_all.bin) version 2019.04.
PMU10: **** Start DDR4 Training. PMU Firmware Revision 0x1001 ****

5.2.1.1.1 How to compile DDR FIP image (only applicable for LX2160ARDB Rev2 and
LX2162AQDS)

A pre-built FIP image is already provided in the release. To regenerate the DDR fip image for LX2160ARDB
Rev2 and LX2162AQDS, perform the following steps:

1. $cd atf/tools/fiptool

2. $ Download DDR PHY binaries: git clone https://github.com/nxp-qorigq/ddr-phy-binary.
git

3. $git checkout v2019.04

$ make

5. $./fiptool create --ddr-immem-udimm-1d ddr-phy-binary/l1x2160a/ddr4 pmu_ train
imem.bin --ddr-immem-udimm-2d ddr-phy-binary/1x2160a/ddr4 2d pmu train imem.
bin --ddr-dmmem-udimm-1d ddr—phy—binary/lel60a/ddr4_pmu_€ra§n_d§em.biH --ddr-
dmmem-udimm-2d ddr-phy-binary/1x2160a/ddr4 2d pmu train dmem.bin --ddr-immem-
rdimm-1d ddr-phy-binary/1x2160a/ddr4 rdimm pmu train imem.bin --ddr-immem-
rdimm-2d ddr-phy-binary/1x2160a/ddr4 rdimm2d pmu train imem.bin --ddr-dmmem-
rdimm-1d ddr-phy-binary/1x2160a/ddr4 rdimm pmu train dmem.bin --ddr-dmmem-
rdimm-2d ddr-phy-binary/1x2160a/ddr4 rdimm2d pmu train dmem.bin fip ddr all.bin
The DDR fip image, fip_ddr all.bin, is generated at atf/tools/fiptool -
List of DDR PHY binaries for each option:
e —-ddr-immem-udimm-1d <ddr4_pmu_train_imem.bin>
e --ddr-immem-udimm-2d <ddr4_2d_pmu_train_imem.bin>
o —-ddr-dmmem-udimm-1d <ddr4_pmu_train_dmem.bin>
e —-ddr-dmmem-udimm-2d <ddr4_2d_pmu_train_dmem.bin>
e --ddr-immem-rdimm-1d <ddr4_rdimm_pmu_train_imem.bin>
e —-ddr-immem-rdimm-2d <ddr4_rdimm2d_pmu_train_imem.bin>
e —-ddr-dmmem-rdimm-1d <ddr4_rdimm_pmu_train_dmem.bin>
e —-ddr-dmmem-rdimm-2d <ddr4_rdimm2d_pmu_train_dmem.bin>

e

For steps to flash £ip ddr all.bin on different boot mediums, see Section 5.2.3.3.

For commands to generate DDR FIP for secure boot, see Section 6.1.1.5.3.

Table 24. DDR Debug options and build examples

Debug flag Description Build command

DEBUG_PHY_IO Dumps all DDR PHY register reads/ make PLAT=<platform> pbl RCW=<rcw
writes during initialization. This includes |file> fip BL33=<u-boot.bin> DEBUG_
IMEM, DMEM, and CSR. This debug PHY_lO=yes

option considerably increases the Here, <platform> can be LX2162AQDS
board boot up time as it dumps all PHY |or LX2160ARDB Rev2

register reads/writes. -

For example:

make PLAT=LX2162AQDS pbl RCW-=.
JIx2-rew/Ix2162aqds/GGGG_NNNN_
PPPP_PPPP_RR_17_2/rcw_2000_
650_2900_17_2.bin fip BL33=../Ix2-
uboot/u-boot.bin DEBUG_PHY_IO=yes

LLDPUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. L6.1.1_1.0.0_23.08 — 4 August 2023

118 /1053

NXP Semiconductors LLDPUG

Layerscape Linux Distribution POC User Guide

Table 24. DDR Debug options and build examples...continued

Debug flag Description Build command
DDR_DEBUG Prints all DDR PHY input configuration |make PLAT=<platform> pbl RCW=<rcw
information file> fip BL33=<u-boot.bin> DEBUG=1

DDR_DEBUG=yes

Here, <platform> can be LX2162AQDS
or LX2160ARDB_Rev2

make PLAT=<platform> pbl RCW=../
Ix2-rcw/Ix2162aqds/GGGG_NNNN _
PPPP_PPPP_RR_17_2/rcw_2000_
650_2900_17_2.bin fip BL33=../Ix2-
uboot/u-boot.bin DEBUG=1 DDR_

DEBUG=yes
DDR_PHY_DEBUG Prints PMU 1D and 2D training make PLAT=<platform> pbl RCW=<rcw
messages file> fip BL33=<u-boot.bin> DEBUG=1

DDR_PHY_DEBUG=yes

Here, <platform> can be LX2162AQDS
or LX2160ARDB_Rev2

make PLAT=<platform> pbl RCW=../
Ix2-rcw/Ix2162aqds/GGGG_NNNN_
PPPP_PPPP_RR_17_2/rcw_2000_
650_2900_17_2.bin fip BL33=../Ix2-
uboot/u-boot.bin DEBUG=1 DDR_
PHY_DEBUG=yes

DDR_BIST Enables built-in self test for DDR make PLAT=<platform> pbl RCW=<rcw
file> fip BL33=<u-boot.bin> DEBUG=1
DDR_BIST=yes

Here, <platform> can be LX2162AQDS
or LX2160ARDB_Rev2

make PLAT=<platform> pbl RCW=../
Ix2-rcw/Ix2162aqds/GGGG_NNNN _
PPPP_PPPP_RR_17_2/rcw_2000_
650_2900_17_2.bin fip BL33=../Ix2-
uboot/u-boot.bin DEBUG=1 DDR_

BIST=yes
DEBUG_DDR_INPUT_CONFIG Prints input configuration in JSON make PLAT=<platform> pbl RCW=<rcw
format file> fip BL33=<u-boot.bin> DEBUG_

DDR_INPUT_CONFIG=yes

Here, <platform> can be LX2162AQDS
or LX2160ARDB_Rev2

make PLAT=<platform> pbl RCW=../
Ix2-rcw/Ix2162aqds/GGGG_NNNN_
PPPP_PPPP_RR_17_2/rcw_2000_
650_2900_17_2.bin fip BL33=../Ix2-
uboot/u-boot.bin DEBUG_DDR_
INPUT_CONFIG=yes

5.2.2 TF-A key components

5.2.2.1 Warm reset boot support
Note: Warm reset is supported only for LX2162AQDS and enabled by default.

Warm reset support is required to:

LLDPUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. L6.1.1_1.0.0_23.08 — 4 August 2023

119/1053

NXP Semiconductors LLDPUG

Layerscape Linux Distribution POC User Guide

* Retain the content on the DDR memory to analyze the reason for last reset and debug information.

* Reduce the boot-up time. This is because as part of warm reset, the DDR training is not done and DDR is
brought up by the last stored training data.

Warm Reboot execution flow

Normal World Secure World
$:> reboot <cmd>

(Linux console)

UserSpace

kernel_restart

In the SMC raised by kernel4.19,
ignores the passedreboot_mode value,
send default asO (i.e., COLD_BOOQT)

(kernel/reboot.c)

Machine_restart

By kernel 5.4, SMC
—PSCI_SYSTEM_RESET2_is raised.

(aarch/armé4/process.c)

Note: Warm-reboot is not supported
for kernel <5.4

static void psci _sys_reset(en
const char *cmd) {

if ((reboot_mode == REBOOT_WARM || reboot_mode ==
REBOOT _SOFT) psci_system _reset2_supported) {

invoke _psci_fn(PSCI_FN_NATIVE (1_1, SYSTEM_RESET2), 0, 0, 0);
}else { printk(Cold Reset is triggered ...\n) ;

invoke _psci_fn(PSCI_0_2_FN_SYSTEM _RESET, 0, 0, 0);

static void psci _sys_reset(enum EL1
reboot_mode reboot_mode*,

const char *cmd) {

invoke _psci_fn(PSCI_0_2_FN_SYST
EM_RESET, 0, 0, 0); }

TF-A psci_smc_handler(]
(lib/psci/psci_main.c)

psci_smc_handler(
(lib/psci/psci_main.c)

IMC ID = PSCI_SYSTEM_RESET, MC ID = PSCI_SYSTEM_RESE

EL3

psci_system_reset2()
(lib/psci/psci_system_off.c)

psci_plat_pm_ops-
system_reset2()

(Call the platform specific hook)

plat/nxp/psci/plat_psci.c)

_soc_sys_warm_reset (new)
(plat/nxp/soc-Ix2160/aarch64/I1x2160_warm_rst.S)

Function is not intended to return ,
Write the flag—warm_reset _ status as enabled in non -volatile memory .
From memory other than DDR , do the following :

1. Putting the DDR in self -refresh.

2. Reset the entire SoC as detailed below :Putting the DDR in self -refresh.
3. Reset the entire SoC as detailed below :

_psci_system_reset2 (new)
(plat/nxp/psci/aarch64/psci_utils.S)

Set the 0" bit of the Secure Register —Reset Control Register
(RSTCNTL)*_in the CCSR memory map (base address : Ox1E8_8000),
to generate the reset request in cop_rst block.

Figure 2. Warm reboot execution flow

As per the warm reboot execution flow:

* From Linux kernel 5.x onwards, there is separate PSC| SMC called PSCI SYSTEM RESET2 for vendor-
specific handling. This same SMC ID is used to differentiate between warm boot and cold boot in Linux.
* Asapartof soc sys warm reset():
— Warm-reset flag is set and saved in the non-volatile space in order to retrieve the reboot mode in the next
reset cycle.
— DDR memory is put in the self-refresh mode.
— RSTCNTL register is used to do software requested reset.
* Two non-volatile memories are supported:
— FlexSPI NOR flash.

LLDPUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. L6.1.1_1.0.0_23.08 — 4 August 2023

120 /1053

NXP Semiconductors LLDPUG

Layerscape Linux Distribution POC User Guide

— Low-power SecMon GPR registers, if backed by coined battery.
* Warm reset status flag is handled as shown in the following state machine:

Linux
. o triggered
Every time DRAM init is
. . Warm
done, this flag is cleared
Boot

Figure 3. Warm reset status flag state machine

Warm boot up execution flow

In warm boot, the DDR memory restores the last saved training data from the non-volatile memory and

initializes the DDR. As part of the current implementation, FlexSPI NOR flash is used to store the DDR training
data.

LLDPUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. L6.1.1_1.0.0_23.08 — 4 August 2023

121/1053

NXP Semiconductors LLDPUG

Layerscape Linux Distribution POC User Guide

bl2_entrypoint()

bl2_el3_early_platform_setup()

is_warm_boot()

is
RTSRQSR1.

SW_RR
active

>
Y
7

p=
Q

Init_dram()
restore training value from
non-volatile memory

Initialize the DDR without
DDR training

Init_dram()
Do the DDR training

Initialize the DDR with the
freshly trained DDR value.

Clear the warm-reset flag

Figure 4. Warm boot up execution flow

Steps to enable Warm reset

At the time of binary compilation:

* TF-A
— Check following variables in plat/nxp/soc-1xxx/<platform name>/platform.mk
- WARM_BOOT =
— yes - warm-reset is supported
— no - warm-reset is not supported
— NXP_COINED_BB =

— yes - Low-power SecMon GPR registers are backed by coined battery to retain the content across
reset.

LLDPUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. L6.1.1_1.0.0_23.08 — 4 August 2023

122 /1053

NXP Semiconductors LLDPUG

Layerscape Linux Distribution POC User Guide

— no - FlexSPI NOR flash is used to save the status flag for warm reset.
* At the time of binary execution:
1. Set the variable reboot mode in bootargs.

=> setenv bootargs 'console=ttyS0,115200 root=/dev/mmcblkOp4 reboot=w
earlycon=uart8250,mmio, 0x21c0500 mtdparts=1550000.spi-0:1m(rcw), 15m(u-
boot),48m(kernel.itb);7e800000.flash:16m(nand_uboot),48m(nand_kernel),448m(nand_free) '

Here, reboot mode = 0; //Warm boot
2. Boot-up to the Linux prompt.
3. Run reboot from the Linux prompt to trigger the warm reset.

S reboot

5.2.3 Deploying TF-A binaries

To migrate to the TF-A boot flow from the old boot flow (with PPA), you need to compile the TF-A binaries,
bl2 <boot mode>.pbl and fip.bin, and flash these binaries on the specific boot medium on the board.

The following table lists the new flash images in the boot flow with TF-A.

TF-A binary name Components

bl2 <boot mode>.pbl BL2 binary: <platform> initialization binary

RCW binary for <boot_mode>

fip.bin BL31: Secure runtime firmware
BL32: Trusted OS, for example, OP-TEE (optional)
BL33: U-Boot/UEFI image

Note:

e <platform>=1sl1012ardb | 1lslO0l2afrdm | 1slO0l2afrwy | 1sl1043ardb | 1lsl046ardb |
1s1088ardb | 1s2088ardb | 1x2160ardb revz | 1x2162Zaqgds

* <boot mode> = nor, nand, sd, emmc, gspi, flexspl nor

Table 25. Supported boot modes for each platform

Platforms Boot modes
SD QSPI NOR NAND eMMC FlexSPI-NOR

LS1012ARDB Yes

FRDM-LS1012 Yes

A

FRWY-LS1012 Yes

A

FRWY-LS1012 Yes

A (512 MB)

LS1043ARDB |Yes Yes Yes

LS1046ARDB |Yes Yes Yes

LS1088ARDB |Yes Yes

LS2088ARDB Yes Yes

LX2160ARDB |Yes Yes Yes

Rev2
LLDPUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.
User guide Rev. L6.1.1_1.0.0_23.08 — 4 August 2023

123 /1053

NXP Semiconductors LLDPUG

Layerscape Linux Distribution POC User Guide

Follow these steps to compile and deploy TF-A binaries (b12 <boot mode>.pbl and fip.bin) on the
required boot mode.

1. Compile PBL binary from RCW source file

Compile U-Boot binary

[Optional] Compile OP-TEE binary

Compile TF-A binaries (b12 <boot mode>.pbl and fip.bin)
Program TF-A binaries on specific boot mode

aoprwbd

5.2.3.1 How to compile PBL binary from RCW source file

You need to compile the rcw <boot mode>.bin binary to build the b12 <boot mode>.pbl binary.

1. Clone the rcw repository and compile the PBL binary:

git clone https://github.com/nxp-qorig/rcw.git

cd rcw

git checkout -b <new branch name> <LSDK tag> ;For example, $ git checkout -
LSDK-19.03 LSDK-19.03

cd <platform>

0 O v

2. If required, make changes to the RCW files:

S make

This procedure builds the compiled PBL binary for all the boot modes, available for the selected platform.

For example: The compiled PBL binary for QSPI NOR flash on LS1088ARDB-PB, rcw 1600 gspi.bin,is
available at rcw/1s1088ardb/FCQQQ00000 PPP H 0xld 0x0d/.

To build the b12 <boot mode>.pbl binary, see Section 5.2.3.2.1

Note: See the rcw/<platform>/README file for an explanation of the naming convention for the directories
that contain the RCW source and binary files.

5.2.3.2 How to compile TF-A binaries

Clone the at £ repository and compile the TF-A binaries, b12 <boot mode>.pbl and fip.bin.

1. $ git clone https://github.com/nxp-qorig/atf.git

2. $ cd atf

3. $ git checkout -b <new branch name> LSDK-<LSDK version>. Forexample, $ git
checkout -b LSDK-21.08 LSDK-21.08

4. $ export ARCH=arm64

5. $ export CROSS COMPILE=aarché64-linux-gnu-

Follow the steps mentioned in Section 5.2.3.2.1 (b12 <boot mode>.pbl)and Section 5.2.3.2.2 (fip.bin)to
compile both TF-A binaries.

5.2.3.2.1 How to compile BL2 binary
To build BL2 binary with OPTEE, run this command:

$ make PLAT=<platform> bl2 SPD=opteed BOOT MODE=<boot mode> BL32=<optee binary>
pbl RCW=<path to rcw binary>/<rcw binary for specific boot mode>

LLDPUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. L6.1.1_1.0.0_23.08 — 4 August 2023

124 /1053

NXP Semiconductors LLD P U G

Layerscape Linux Distribution POC User Guide

The compiled BL2 binaries, b12.bin and bl2 <boot mode>.pbl are available at at £/
build/<platform>/release/. For any update in the BL2 source code or RCW binary, the
bl2 <boot mode>.pbl binary needs to be recompiled.

—_—

—— bl2_<boot_mode>.pbl
+

bl2.bin

Figure 5. bl2.pbl
Note:
To compile the BL2 binary without OPTEE:

make PLAT=<platform> bl2 BOOT MODE=<boot mode> pbl RCW=<path to rcw binary>/
<rcw binary for specific boot mode>

5.2.3.2.2 How to compile FIP binary
To build FIP binary with OPTEE and without trusted board boot, run this command:

$ make PLAT=<platform> fip BL33=<path to u-boot binary>/u-boot.bin SPD=opteed
BL32=<path to optee binary>/tee.bin

The compiled BL31 and FIP binaries, b131.bin, fip.bin, are available at atf/build/<platform>/
release/. For any update in the BL31, BL32, or BL33 binaries, the fip.bin binary needs to be recompiled.

—_—

BL32 (optee.bin) —— fip.bin

BL33 (U-Boot / UEFI)

Figure 6. fip.bin

LLDPUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. Al rights reserved.

User guide Rev. L6.1.1_1.0.0_23.08 — 4 August 2023

125/1053

NXP Semiconductors LLDPUG

Layerscape Linux Distribution POC User Guide

Note:
To compile the FIP binary without OPTEE and without trusted board boot:

make PLAT=<platform> fip BL33=<path to u-boot binary>/u-boot.bin

Note:

To compile the FIP binary with trusted board boot, refer the read me at <tfa repo>/plat/nxp/README.
TRUSTED BOOT.

5.2.3.3 How to program TF-A binaries on specific boot mode

* QSPI NOR Flash
1. Boot from QSPI NOR flashQ
2. Program QSPI NOR flash1: => sf probe 0:1
3. Flash bl2_qspi.pbl:

=> tftp 0xa0000000 bl2 gspi.pbl
=> sf erase 0x0 +S$filesize && sf write 0xa0000000 O0x0 S$filesize

4. Flash fip.bin:

=> tftp 0xal0000000 fip.bin
=> sf erase 0x100000 +S$Sfilesize && sf write 0xa0000000 0x100000 S$filesize

5. Flash DDR FIP binary (Supported only for LX2162AQDS or LX2160ARDB Rev2):

=> tftp 0x82000000 fip ddr all.bin
=> sf erase 0x800000 +Sfilesize; sf write 0x82000000 0x800000 Sfilesize

6. Boot from QSPI NOR flash1. The board will boot with TF-A
* SD/eMMC Card

1. Boot from QSPI NOR flashO.

2. Flash bl2_sd.pbl on SD/eMMC card:

=> tftp 82000000 bl2 sd.pbl
=> mmc write 82000000 8 <blk cnt>

Here, blk_cnt refers to number of blocks in SD card that need to be written as per the file size. For
example, when you load bl2_sd.pbl from the TFTP server, if the bytes transferred is 82809 (14379 hex),
then blk_cnt is calculated as 82809/512 = 161 (A1 hex). For this example, mmc write command will be: =>
mmc write 82000000 8 Al.

3. Flash fip.bin on SD/eMMC card:

=> tftp 82000000 fip.bin
=> mmc write 82000000 800 <blk cnt>

Here, blk_cnt refers to number of blocks in SD card that need to be written as per the file size. For
example, when you load fip.bin from the TFTP server, if the bytes transferred is 1077157 (106fa5 hex),
then blk_cnt is calculated as1077157/512 = 2103 (837 hex) . For this example, mmc write command will
be: => mmc write 82000000 800 837.

4. Flash DDR FIP binary (Supported only for LX2162AQDS or LX2160ARDB Rev2):

=> tftp 82000000 fip ddr all.bin
=> mmc write 82000000 0x04000 <blk cnt>

Here, blk_cnt refers to number of blocks in SD card that need to be written as per the file size.
5. Boot from SD card. The board will boot with TF-A.

LLDPUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. L6.1.1_1.0.0_23.08 — 4 August 2023

126 /1053

NXP Semiconductors LLDPUG

Layerscape Linux Distribution POC User Guide

* NOR Flash
1. Boot from default bank.
2. Flash bl2_nor.pbl on alternate bank:

=> tftp 82000000 S$path/bl2 nor.pbl;
=> pro off all;erase <bl2 alternate bank address> +Sfilesize;cp.b 82000000
<bl2 alternate bank address> S$filesize

For LS1043ARDB, TWR-LS1021A, <b12 alternate bank address>is 0x64000000.
For LS2088ARDB, <b12 alternate bank address>is 0x584000000.
3. Flash fip.bin on alternate bank:

=> tftp 82000000 S$path/fip.bin;
=> pro off all;erase <fip alternate bank address> +Sfilesize;cp.b 82000000
<fip alternate bank address> $filesize

For LS1043ARDB, TWR-LS1021A, <fip alternate bank address>is 0x64100000.
For LS2088ARDB, <fip alternate bank address>is 0x584100000.
Note: For NOR bank current bank addresses for different boards, see Section 4.8.
4. Boot the board from alternate bank. The board will boot with TF-A.
* NAND Flash
1. Flash bl2_nand.pbl:

=> tftp 82000000 Spath/bl2 nand.pbl
=> nand erase 0x0 $filesize;nand write 0x82000000 0x0 S$Sfilesize;

2. Flash fip.bin:

=> tftp 82000000 S$path/fip.bin
=> nand erase 0x100000 S$filesize;nand write 0x82000000 0x100000 Sfilesize;

3. Then boot from NAND flash. The board will boot with TF-A.

Note: For details about the boot modes supported by a hardware board and booting commands, see the
Section 4.7.

5.3 U-Boot

5.3.1 Changes in U-Boot

* In the TF-A boot flow, DDR initialization is not required in U-Boot. DDR initialization is a part of TF-A.
DDR init code can be added to <atf_dir>/plat/nxp/soc-<soc-name>/<soc-name>ardb/ddr
init.c
For example, for LX2160ARDB Rev2, the DDR init code can be added to <atf dir>/plat/nxp/soc-
1x2160/1x2160ardb/ddr init.c
The DDR drivers for various controllers can be found at <atf dir>/plat/nxp/drivers/ddr

* Any changes in the interconnect initialization can be added to the soc.c file at <atf dir>/plat/nxp/
soc-<soc-name>/

* A single defconfig is created for all the boot sources, <platform> tfa defconfig. For example, for
LX2160ARDB Rev2, defconfig needs to be used is 1x2160ardb tfa defconfig

» The TF-A defconfig is created with following considerations:

— PPA support is disabled

LLDPUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. L6.1.1_1.0.0_23.08 — 4 August 2023

127 /1053

NXP Semiconductors LLDPUG

Layerscape Linux Distribution POC User Guide

— Environment support is enabled for all the boot sources, such as FlexSPI, SD boot
* Other changes:

— Boot command changes done to support bitbake Linux autoboot. This is similar to changes required for
bitbake support. Following variables are defined:
— XSPI_NOR_BOOTCOMMAND
— SD_BOOTCOMMAND

— MC init command changes done to provide the MC init command as per boot source:
— XSPI_MC_INIT_CMD
— SD_MC_INIT_CMD

5.3.2 Layerscape LDP U-Boot uses distro boot feature

As in previous versions of the NXP SDK, the U-Boot variable bootcmd contains commands that represent the
default boot process. Layerscape LDP is different in that it uses a standard U-Boot feature called distro boot
to make automatic booting more flexible. In distro boot, bootcmd runs additional commands in the variable
distro_bootcmd. These commands are the heart of the distro boot process.

Distro boot sequential examines partitions on mass storage devices looking for a script file. When U-Boot finds
one, it loads and executes it to initiate the boot process.

The mass storage devices to be searched are defined in the U-Boot environment variable boot targets. Set
it to control which mass storage devices are searched and the order in which they are searched. For example,

=> printenv boot targets
boot targets=usb0 mmcO0 scsiO dhcp

The command above shows the search order USB device 0, MMC (or SD) device 0, SCSI (SATA) device 0,
followed by DHCP.

The process of searching involves a number of U-Boot variables. It ends with the variables shown below in an
example from an LS2088ARDB.

=> printenv scan dev_ for scripts

scan dev for scrlpts for script in ${boot scripts}; do if test -e ${devtype}
${devnum}:${distro _bootpart} ${prefix}${script}; then echo Found U-Boot script
S{prefix}S{script}; run boot a script; echo SCRIPT FAILED: continuing...; fi;
done => printenv boot scrlpts boot scripts=1s2088ardb boot.scr => prlntenv
boot a script boot a script=load ${devtype} ${devnum}:S${distro _bootpart}
${scr1ptaddr} ${pref1x}${scr1pt}, env exists secureboot && load ${devtype}
${devnum}:${distro bootpart} ${scripthdraddr} ${prefix}${boot script hdr} &&
esbc _validate ${scripthdraddr};source ${scriptaddr}

The process searches for a script named by the variable boot scripts. In this example, the search is for
a script named 1s2088ardb boot.scr. When this script is located, it is loaded into RAM using the 1oad
command and run using the source command. This causes Linux to boot.

Layerscape LDP puts bootscripts into a file system on the second partition of a mass storage device. U-Boot
can display files in a file system. Continuing the example, the following U-Boot commands list the files in the
second partition of USB device 0 (do a usb start first):

=> 1ls usb 0:2
174096 config-4.19.68-00020-g5256accac243
1030533 firmware 1sl0l2afrwy gspiboot.img
45346968 firmware 1sl0l2ardb gspiboot.img
45346968 firmware 1s1028ardb xspiboot.img
45346968 firmware 1sl1043ardb norboot.img

LLDPUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. L6.1.1_1.0.0_23.08 — 4 August 2023

128 /1053

NXP Semiconductors

LLDPUG

45346968
45346968
45346968
45346968
45346968
45346968
<DIR> 4096
20846
14243
15257
15267
15923
14290
20767
19986
20121
32939
34451
30627
40956
33614
29843
31519
32754
32709
34269
29945
40270
32956
18608
19175
23524
23082
21961
23428
29733
27720
32280
<DIR> 4096
2176
2176
2176
2176
2176
2176
2176
2176
2176

Layerscape Linux Distribution POC User Guide

firmware 1sl046afrwy gspiboot.img
firmware 1sl046ardb gspiboot.img
firmware 1s1088ardb pb gspiboot.img
firmware 1s2088ardb norboot.img
firmware 1s2088ardb gspiboot.img
firmware 1x2160ardb rev2 xspiboot.img
flash images

flash images.scr
fsl-1s1012a-2g5rdb.dtb
fsl-1s1012a-frdm.dtb
fsl-1s1012a-frwy.dtb
fsl-1s1012a-gds.dtb
fsl-1s1012a-rdb.dtb
fsl1l-1s1028a-gds.dtb
fsl1-1s1028a-rdb-dpdk.dtb
fsl-1s1028a-rdb.dtb
fsl1l-1s1043a-gds.dtb
fsl-1s1043a-gds-sdk.dtb
fsl-1s1043a-rdb.dtb
fsl-1s1043a-rdb-sdk.dtb
fsl-1s1043a-rdb-usdpaa.dtb
fsl-1sl1l046a-frwy.dtb
fsl-1sl1046a-frwy-sdk.dtb
fsl-1sl046a-frwy-usdpaa.dtb
fsl-1s1046a-gds.dtb
fsl-1s1046a-gds-sdk.dtb
fsl-1sl1046a-rdb.dtb
fsl-1s1046a-rdb-sdk.dtb
fsl-1s1046a-rdb-usdpaa.dtb
fs1-1s1088a-gds.dtb
fsl-1s1088a-rdb.dtb
fs1-1s2080a-gds.dtb
fs1l-1s2080a-rdb.dtb
fsl-1s208la-rdb.dtb
fs1-1s2088a-gds.dtb
fs1-1s2088a-rdb.dtb
fsl-1x2160a-gds.dtb
fsl-1x2160a-rdb.dtb

grub

hdr 1sl10l12afrwy bs.out
hdr 1s10l12ardb bs.out
hdr 1s1028ardb bs.out
hdr 1s1043ardb bs.out
hdr 1sl046afrwy bs.out
hdr 1sl046ardb bs.out
hdr 1s1088ardb bs.out
hdr 1s2088ardb bs.out
hdr 1x2160ardb bs.out

24852992 Image

10814630 Image.gz
964 1sl0l2afrwy boot.scr
962 1s10l12ardb boot.scr
1038 1s1028ardb boot.scr
965 1s1043ardb boot.scr
968 1sl046afrwy boot.scr
965 1sl046ardb boot.scr
961 1s1088ardb boot.scr
961 1s2088ardb boot.scr

28569752 1lsdk linux armé64 LS tiny.itb
980 1x2160ardb boot.scr

LLDPUG

All information provided in this document is subject to legal disclaimers.

© 2023 NXP B.V. All rights reserved.

User guide

Rev. L6.1.1_1.0.0_23.08 — 4 August 2023

129/1053

NXP Semiconductors LLDPUG

Layerscape Linux Distribution POC User Guide

17462941 rootfs yocto armé64 tiny.cpio.gz
<DIR> 4096 secboot hdrs
992 srk hash.txt
10814630 vmlinuz-4.19.68-00020-g5256accac243

It shows that this USB drive contains scripts (and necessary images) to boot any of the boards LS1043ARDB,
LS1046ARDB, LS1088ARDB, and LS2088ARDB. For example, the LS2088ARDB bootscript is
1s2088ardb_boot.scr. The script files are binary. But one can boot Linux and look at them. Layerscape LDP
mounts the boot partition containing the scripts at mount point /boot.

root@1sl028ardb:~# ls /boot

Image

firmware 1s2088ardb norboot.img
fs1l-1s1028a-gds.dtb fsl-1sl046a-frwy.dtb
fsl-1s208la-rdb.dtb hdr 1sl046afrwy bs.out
1sl046afrwy boot.scr Image.gz
firmware 1s2088ardb gspiboot.img
fsl-1s1028a-rdb-dpdk.dtb
fsl-1s1046a-gds-sdk.dtb
fs1-1s2088a-gds.dtb

hdr 1sl046ardb bs.out

1sl046ardb boot.scr config-4.19.68-00020-g5256accac243
firmware 1x2160ardb rev2 xspiboot.img
fsl-1s1028a-rdb.dtb
fsl-1s1046a-gds.dtb
fs1-1s2088a-rdb.dtb

hdr 1s1088ardb bs.out

1s1088ardb boot.scr

firmware 1sl0l2afrwy gspiboot.img
flash images
fsl1-1s1043a-gds-sdk.dtb
fsl-1s1046a-rdb-sdk.dtb
fsl1-1x2160a-gds.dtb

hdr 1s2088ardb bs.out

1s2088ardb _boot.scr

firmware 1sl10l12ardb gspiboot.img
flash images.scr
fsl-1s1043a-gds.dtb
fsl-1s1046a-rdb-usdpaa.dtb
fsl-1x2160a-rdb.dtb

hdr 1x2160ardb bs.out

Isdk linux arm64 LS tiny.itb
firmware 1s1028ardb xspiboot.img
fsl1l-1s1012a-2g5rdb.dtb
fsl-1s1043a-rdb-sdk.dtb
fsl-1s1046a-rdb.dtb

grub

lost+found

1x2160ardb boot.scr

firmware 1s1043ardb norboot.img
fsl-1s1012a-frdm.dtb
fsl-1s1043a-rdb-usdpaa.dtb
fs1-1s1088a-gds.dtb

hdr 1sl10l12afrwy bs.out
1sl0l2afrwy boot.scr

rootfs yocto arm64 tiny.cpio.gz
firmware 1sl046afrwy gspiboot.img
fsl-1s1012a-frwy.dtb
fsl-1s1043a-rdb.dtb

LLDPUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. L6.1.1_1.0.0_23.08 — 4 August 2023

130/1053

NXP Semiconductors LLDPUG

Layerscape Linux Distribution POC User Guide

fs1l-1s1088a-rdb.dtb

hdr 1s1012ardb bs.out

1s10l2ardb boot.scr

secboot hdrs

firmware 1sl046ardb gspiboot.img
fsl-1s1012a-gds.dtb
fsl-1sl046a-frwy-sdk.dtb
fs1-1s2080a-gds.dtb

hdr 1s1028ardb bs.out

1s1028ardb boot.scr srk hash.txt
firmware 1s1088ardb pb gspiboot.img
fsl-1s1012a-rdb.dtb
fsl-1sl046a-frwy-usdpaa.dtb
fs1l-1s2080a-rdb.dtb

hdr 1s1043ardb bs.out
1s1043ardb_boot.scr
vmlinuz-4.19.68-00020-g5256accac243

The bootscripts are sophisticated due to secure boot. Ignore secure boot, and the key steps in a bootscript are:

part uuid S$Sdevtype $devnum:3 partuuid3

setenv bootargs console=ttyS1,115200 earlycon=uart8250,mmio, 0x21c0600
root=PARTUUID=S$partuuid3 rw rootwait Sothbootargs default hugepagesz=2m
hugepagesz=2m hugepages=256 load Sdevtype S$devnum:2 Skernel addr r /Image; load
Sdevtype Sdevnum:2 $fdt addr r /fsl-1s2088a-rdb.dtb; booti S$kernel addr r -
$fdt addr r

The distro boot search process sets the variables devtype and devnum. In this example, they would be "usb"
and "0".

The U-Boot part command sets variable partuuid3 to the partition universal unique identifier of partition 3 of
USB device 0. This value is used in bootargs to identify the root partition to the Linux kernel. This method is
better than using a device name (like /dev/sda3) because it is not dependent on probe order.

The next steps are to load the kernel image (vmlinuz) and device tree (fs1-1s2088a-rdb.dtb) into RAM
and then boot Linux using booti.

In summary (and ignoring secure boot), the distro boot processes searches for a partition with a file system
containing a bootscript. It loads and runs the bootscript. The bootscript does the five steps above to boot Linux.

To boot your own kernel, replace the kernel and device tree images in /boot and reboot your system. But also
install any needed kernel modules first.

There are two types of userland in Layerscape LDP:

 Large standard distro (Layerscape LDP rootfs) deployed on external SD/USB/SATA media storage.

* Prebuilt tiny ramdisk rootfs(currently non-customizable) deployed in flash media onboard for arm32/arm64
target.

If U-Boot is used as bootloader, after Layerscape LDP is installed by flex-installer and reboots the target
board, U-Boot will first automatically search for bootscript <platform> boot.scr from SD/eMMC/USB/
SATA storage media, if a valid <platform> boot.scr is found, U-Boot will boot the external distro (Ubuntu
as default) deployed on SD/USB/SATA media storage, otherwise U-Boot will fall back to boot the TinyDistro
deployed on flash media onboard.

In case of booting Layerscape LDP tiny rootfs from flash media: The default U-Boot environment bootargs is
used and user can directly modify bootargs for custom kernel on demand.

In case of booting Layerscape LDP distro from external SD/USB/SATA storage disk: The default U-Boot
environment bootargs'is NOT used by external distro, bootargs is preset in <platform> boot.scr,

LLDPUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. L6.1.1_1.0.0_23.08 — 4 August 2023

131/1053

NXP Semiconductors LLDPUG

Layerscape Linux Distribution POC User Guide

users can indirectly modify othbootargs on demand, for example, setenv othbootargs
fsl fm max frm=9600 at the U-Boot prompt.

5.3.3 Layerscape LDP U-Boot flash image feature

* In case user needs to flash different image (for example, atf bl2, atf b3, fip, dtb, kernel, and so on) to current
or other bank to evaluate certain feature on Layerscape board, for example, to evaluate TDM feature with the
non-default rcw 1600 getdm.bin on LS1043ARDB:

1. Change default rcw _1600.bin to rcw 1600 getdm.bin for rcw nor variable in
1s1043ardb.manifest in bitbake.
2. Clean the obsolete ATF images.

$ bitbake gorig-atf -c cleanall

3. Regenerate ATF image with new RCW specified in step 1.

$ bitbake gorig-atf

4. Copy the new BL2 image <build dir>/image/ to flash images/1ls1043ardb directory of boot
partition on the SD card.
5. Run the following commands at the U-Boot prompt on LS1043ARDB.

=> setenv board 1s1043ardb
=> setenv bd type mmc
=> setenv bd part 0:2
=> setenv bank other
=> 1s S$bd type Sbd part flash images/lsl043ardb
to update RCW in BL2
=> setenv img bl2
=> setenv bl2 img flash images/1s1043ardb/bl2 nor.pbl
=> load $bd type $bd part $load addr flash images.scr
=> source $load addr
similarly, to update dtb
=> setenv img dtb
=> setenv dtb img fsl-1s1043a-rdb-usdpaa.dtb
=> source $load addr

* To flash all images to current or other bank, set environment variable img to all by executing commands
setenv img all and source $load addr.

* To flash single image, set environment variable img to one of following: b12, fip, mcfw, mcdpc, mcdpl,
fman, ge, pfe, phy, dtb or kernel

* If needed, you can override the default setting of variable bd part, flash type, bl2 img, fip img,
dtb img, kernel itb, ge img, fman img, phy img, mcfw_ img, mcdpl img, mcdpc img before
running source $load addr.

5.3.4 How to compile U-Boot binary

You must compile the u-boot .bin binary to build the fip.bin binary.

1. Clone the u-boot repository and compile the U-Boot binary for TF-A:

$ git clone https://github.com/nxp-qgoriqg/u-boot
$ cd u-boot
S git checkout -b <new branch name> LSDK-<LSDK version> ;

For example, $ git checkout -b LSDK-21.08 LSDK-21.08

$ export ARCH=arm64
$ export CROSS COMPILE=aarché64-linux-gnu-

LLDPUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. L6.1.1_1.0.0_23.08 — 4 August 2023

132/1053

NXP Semiconductors LLDPUG

Layerscape Linux Distribution POC User Guide

S make distclean
S make <platform> tfa defconfig

Note: A single defconfig is created for all the boot sources, <platform> tfa defconfig. Forexample,
for LS1088ARDB, defconfig needs to be used is 1s1088ardb_tfa defconfig.

2. Run the make command

S make

Note: If the make command shows the error *** Your GCC is older than 6.0 and is not
supported, ensure that you are using Ubuntu 18.04 64-bit version for building Layerscape LDP U-Boot
binary.

The compiled U-Boot image, u-boot .bin, is available at u-boot/.

5.3.5 Defining IOMMU mappings for PCle SRIOV virtual functions

Support for specifying additional IOMMU mappings for PCle controllers can be enabled through the
PCI IOMMU EXTRA MAPPINGS Kconfig option, which can be found under the following items in U-Boot
menuconfig:

-> Device Drivers
-> PCI support (PCI [=y])
-> Layerscape PCIe support (PCIE LAYERSCAPE [=y])

The pci iommu_extra U-Boot environment variable or pci-iommu-extra device tree property (to be used,
for example, in more static scenarios, such as hardwired PCle endpoints (EPs) that get initialized later in the
system setup) allows to:

» Specify the maximum number of virtual functions that can be created for an SRIOV-capable PCle EP, which is
identified by its bus-device-function (BDF)

* Specify the BDF the device will show up with on the PCle bus for hot-plug use case

For a given PCle bus identified by its controller's base register address (as defined in the reg property in the
device tree), the pci iommu extra U-Boot environment variable consists of a list of <bdf>, <action> pairs
as given below:

pci iommu extra = pci@<addrl>,<bdf>,<action>,<bdf>,<action>,
pci@<addr2>,<bdf>, <action>,<bdf>,<action>, ...

where:

* <addr> is the base register address of the PCle controller for which the subsequent <bdf>, <action> pairs
apply

* <bdf> identifies the BDF the action applies to

* <action> can be:

— vfs=<number>, which indicates the number of VFs (of the PCle EP identified earlier by the <bdf>) for
which mappings will be included. Its variant noari vfs=<number> is available to disallow counting of
alternative routing-id interpretation (ARI) VFs. a

— hp, which indicates that a hot-plugged device will be attached on the BDF; therefore, the BDF needs a
mapping

The pci-iommu-extra device tree property must be placed under the correct PCle controller node and then
only the <bdf>, <action> pairs need to be specified, as given below:

pci-iommu-extra = "<bdf>,<action>,<bdf>,<action>,...";

LLDPUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. L6.1.1_1.0.0_23.08 — 4 August 2023

133/1053

NXP Semiconductors LLDPUG

Layerscape Linux Distribution POC User Guide

Note: The environment variable has higher precedence as compared to the device tree property.

For example, for the following configuration on PCle bus 6:

=> pci 6

Scanning PCIe devices on bus 6

BusDevFun VendorId Deviceld Device Class Sub-Class
06.00.00 0x8086 0x1572 Network controller 0x00
06.00.01 0x8086 0x1572 Network controller 0x00

The following command will create IOMMU mappings in pci iommu_ extra U-Boot environment variable for
three VFs of each physical function (PF):

=> setenv pci iommu extra pci@0x3800000,6.0.0,vfs=3,6.0.1,vfs=3

This can be specified as given below for the pci-iommu-extra device tree property:

pci-iommu-extra = "6.0.0,vfs=3,6.0.1,vfs=3";

For a hot-plugged device, an IOMMU mapping can be added in pci iommu extra U-Boot environment
variable as follows:

=> setenv pci iommu extra pci@0x3800000,2.16.0,hp

This can be specified as given below for the pci-iommu-extra device tree property:

pci-iommu-extra = "2.16.0,hp";

LLDPUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. L6.1.1_1.0.0_23.08 — 4 August 2023

134 /1053

NXP Semiconductors LLDPUG

Layerscape Linux Distribution POC User Guide

6 Security

6.1 Firmware/TF-A security features

6.1.1 Secure boot

6.1.1.1 Introduction

The secure boot process ensures that only trustworthy software is executed on a device. This is done by
digitally signing each image using an RSA key pair and authenticating the image before executing it on the
device. The secure boot process thus helps in establishing a chain of trust on the device. It also prevents the
unauthorized code from executing on the device, for example if any unauthorized modification of image is
detected or signature verification fails, the image cannot be executed on the device.

This section explains how images are validated in the secure boot process. The image validation process is split
into various boot stages, such as BL1, BL2 (at EL3), BL31, BL32, BL33, where each stage performs a specific
function and validates the subsequent stage before passing control to that stage. For details about various boot
stages, see TF-A.

Secure boot image validation is done using respective headers for each of the images.
The headers can be of two types:

* CSF headers (NXP Chain of Trust), and
* X.509 certificate (Arm Chain of Trust).

CSF headers are generated using the Code signing tool.

For details about X.509 certificate, see https://developer.arm.com/docs/den0006/latest/trusted-board-boot-
requirements-client-tbbr-client-armv8-a

The TF-A based secure boot flow is as follows:

1. When SoC comes out of reset, control is transferred to BL1, which is responsible for validation of BL2 image
using its header added with the BL2 image itself. BL1 reads the BOOTLOC pointer value to locate the BL2
image header and validates the image there after.

2. If the BL2 image is validated successfully, control is passed for its execution. BL2 image further validates
the components of FIP image using their respective headers. FIP image constitutes of following images:

* X.509 certificate/CSF header BL31 + BL31 image
* X.509 certificate/CSF header BL32 + BL32 image (optional)
e X.509 certificate/CSF header BL33 + BL33 image

3. BL33 (U-Boot) is responsible to perform the validation of the next level firmware to establish the chain of
trust.

The figures included in this section refer to CSF header implementation in NXP CoT. For details about
implementation of X.509 certificate in Arm CoT, see https://developer.arm.com/docs/den0006/latest/trusted-
board-boot-requirements-client-tbbr-client-armv8-a

LLDPUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. L6.1.1_1.0.0_23.08 — 4 August 2023

135/1053

https://developer.arm.com/docs/den0006/latest/trusted-board-boot-requirements-client-tbbr-client-armv8-a
https://developer.arm.com/docs/den0006/latest/trusted-board-boot-requirements-client-tbbr-client-armv8-a
https://developer.arm.com/docs/den0006/latest/trusted-board-boot-requirements-client-tbbr-client-armv8-a
https://developer.arm.com/docs/den0006/latest/trusted-board-boot-requirements-client-tbbr-client-armv8-a

NXP Semiconductors LLDP U G

Layerscape Linux Distribution POC User Guide

PBL cmd ——— bl2_<boot_mode>.pbl

+

bl2.bin

e

Figure 7. Secure boot bl2.pbl image (NXP CoT)

——

——— fip.bin

BL32 (optee.bin)

BL33 (U-Boot / UEFI)

pE—

Figure 8. Secure boot fip.bin image (NXP CoT)

+«—— BL32

. 4

EL3 runtime firmware BL31

BL2 Validates BL31, BL32, BL33 image:
— before loading them.

BL33 u-boot / uefi Platform init firmware BL2

Validate BL2 image before execution

| BootROM J— BL1

Figure 9. TF-A boot flow (NXP CoT)

LLDPUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. Al rights reserved.

User guide Rev. L6.1.1_1.0.0_23.08 — 4 August 2023

136 /1053

NXP Semiconductors LLDP U G

Layerscape Linux Distribution POC User Guide

6.1.1.2 Secure boot process

The secure boot process uses a digital signature validation routine to authenticate an image. The routine
performs validation by decrypting the signed hash using a hardware bound RSA public key. The hash is then
compared to the freshly calculated hash for the same system image. If the comparison passes, the image is
considered as authentic.

The following figure explains the code signing and signature verification process.

Code Signing

- :
Message
Digest Hash
Private Key .
Encryption Private Key
-i

Signature Validation

Digest Hash CagER
Hash Sum

Pass/Fail

Public Key
Decryption

Verify Key/List
(A ()

Hashed Key/Lid

Figure 10. Code signing and signature verification during secure boot

As a part of the code signing process (shown at the left side of the figure), the Code Signing Tool (CST) adds
following parameters while preparing the boot image. This process is performed off-chip.

CSF header Command Sequence File header
This header provides information required to perform image validation,
such as flags, pointers to image, offsets to key/signature, and their
lengths, to ISBC and ESBC.

Note: CSF headers vary for the ISBC and ESBC phases. For details
about the specific CSF header, see Section "TA 2.x platforms - ISBC
and ESBC CSF header structure definition, SRK table, SG table ",
Section "TA 3.x platforms - ISBC CSF header structure definition,
SRK table, SG table ", Section "TA 3.x platforms - ESBC CSF header
structure definition"

SG table Scatter Gather table
Optional (N/A for some stages that support only a single image)
Allows support for multiple non-contiguous images.

LLDPUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. L6.1.1_1.0.0_23.08 — 4 August 2023

137 /1053

NXP Semiconductors LLDPUG

Layerscape Linux Distribution POC User Guide

Note: SG table is supported only in ISBC. ESBC does not provide
support for the SG table.

Public key list Super Root Key (SRK) table
One or more public keys are appended to the image. The CSF header
indicates which of the keys is to be used in signature validation.
Signature The SHA-256 hash of the CSF header + SG table + Image + Public

Key(s), encrypted with an RSA private key corresponding to one of the
public keys in the key list.

CST also supports:

Generating RSA public and private The RSA private key should be stored securely.

key pairs

Hashing the public key or public This hash is stored in the SRK hash (SRKH) register in the Security
key list Fuse Processor (SFP).

Assuming that the device is configured to perform secure boot, the digital signature validation routine performs
following steps (as shown at the right side of the figure).

1. The routine locates and parses the CSF header to determine the size and location of the image, public
keys, and digital signature.

2. It hashes the public key and compares it to the hash of the public key or key list stored in the SRKH register
in SFP. If the hash comparison fails, secure boot fails.

3. It uses the validated public key to decrypt the digital signature, recovering the hash of the header + image +
public keys.

4. The routine then calculates hash over the header + image (ESBC/Trusted Firmware) + public keys and
compares the decrypted hash to the calculated hash. If the hash comparison fails, the secure boot fails.

6.1.1.3 Chain of Trust

Chain of Trust (CoT) ensures that only authentic/valid images are executed on the platform. The image
authentication in CoT is divided into following phases.

* Pre-boot and ISBC:
The validation code embedded in BootROM of a SoC is referred as Internal Secure Boot Code (ISBC). The
Root of Trust is already established in ISBC residing in BootROM. ISBC validates next executable code. In
NXP provided reference code, next executable is BL2.

* ESBC:
BL2 has the digital signature validation routine (ESBC) embedded in it, which validates the next executable(s)
before passing control to it.
External Secure Boot Code (ESBC) is NXP provided reference code available for image validation in the
trusted firmware image and the U-Boot image. U-Boot (Secure U-Boot or Verified U-Boot) image validates the
images it loads. For example, Linux, DTB, MC firmware.
The next executable further validates the next image it needs to pass control to, thus forming a Chain of Trust.

The ESBC phase has the same reference code for all the platforms. However, the pre-boot and ISBC phases
vary for different platforms. These platforms can be categorized into two Trust Architecture (TA) types based on
the differences.

* TA 2.x or hardware pre-boot loader (PBL) based platforms
* TA 3.x or Service Processor (SP) based platforms

Note: TA refers to Layerscape product line architecture for achieving secure boot, secure storage, and strong
partitioning. To use the information in this section, see QorlQ Trust Architecture 2.x User Guide or QorlQ Trust

LLDPUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. L6.1.1_1.0.0_23.08 — 4 August 2023

138 /1053

NXP Semiconductors

LLDPUG

Layerscape Linux Distribution POC User Guide

Architecture 3.x User Guide as applicable to the SoC used. These documents are available only under a non-
disclosure agreement (NDA). To request access to these documents, contact your local NXP field applications
engineer (FAE) or sales representative.

The table below explains the high-level differences between the two categories of the platforms.

TA 2.x

TA 3.x

Platforms

LS1021A, LS1043A, LS1046A,
LS1012A

LS1088A, LS2088A, LX2160A, LS1028
A, LX2162A

Pre-boot phase

PBI command execution done by
hardware-based PBL block

No authentication of PBI commands

PBI command execution done by ROM
code running on Service Processor

Authentication of PBI commands done

ISBC phase

Executed in BootROM on Arm GPP
core.

Authenticates the next level code

Executed on Service Processor

Authenticates PBlI commands, next
level code

CSF header for ISBC phase

0x40 bytes in size

Supports 4 SRK keys

For details, see Section "TA 2.x
platforms - ISBC and ESBC CSF
header structure definition, SRK table,
SG table "

0x50 bytes in size

Supports 8 SRK keys

Supports Increment Security State
(ISS) flag

For details, see Section "TA 3.x

platforms - ISBC CSF header structure
definition, SRK table, SG table "

ESBC phase

headers

Unlike ISBC, which is in BootROM and cannot be modified, ESBC can be
modified by you. ESBC phase functionality is same with differences in CSF

CSF header for ESBC phase

Supports 4 SRK keys

For details see Section "TA 2.x
platforms - ISBC and ESBC CSF

Supports 8 SRK keys

For details, see Section "TA 3.x
platforms - ESBC CSF header structure

header structure definition, SRK table,

definition"”

SG table "

Validates Validates

BootROM

Includes
ISBC

Barker Code

Public Key List

Signature

Image Pointer

Barker Code

Public Key List

Signature

Image Pointer

Next executable (for example, BL2)

Figure 11. Chain of Trust

Includes
ESBC

Next executable

Includes
ESBC

To preserve confidentiality of the images, the images can be encrypted and stored as blobs in the flash memory
of the device. The validated ESBC U-Boot image can use Cryptographic blob mechanism to create a chain of

trust with confidentiality.

For details about Cryptographic blob mechanism and chain of trust with confidentiality, see "Cryptographic
blobs" in QorlQ Trust Architecture 3.0 User Guide.

LLDPUG

All information provided in this document is subject to legal disclaimers.

© 2023 NXP B.V. All rights reserved.

User guide

Rev. L6.1.1_1.0.0_23.08 — 4 August 2023

139/1053

NXP Semiconductors LLDPUG

Layerscape Linux Distribution POC User Guide

6.1.1.3.1 TA 2.x platforms

6.1.1.3.1.1 Pre-boot phase

In the development phase, set RCW[SB_EN] = 1 to boot the system in secure mode.

In the production phase, set the ITS bit in SFP to ensure that the system operates in secure and trusted
manner. After the SFP ITS fuse is blown, it cannot be changed.

Hardware pre-boot loader

The pre-boot initialization commands, also known as PBI, executed by PBL are mandatory for performing
secure boot. The PBI must include a command to load a pointer to the ESBC's CSF header in the
SCRATCHRWI1 register.

The ISBC later reads this register to determine the location of CSH header of next image to be validated. If
an alternate image is used, a second PBI command is required to load the pointer to the CSF header of the
alternate image, into the SCRATCHRW3 register.

In the reference code provided with Layerscape LDP, irrespective of the boot source, PBI commands are added
to RCW to copy the next executable (BL2) from the selected boot source to OCRAM. In case of secure boot,
the CSF header for authenticating BL2 is also copied to OCRAM along with BL2 using the PBI commands.

PBI commands are also added to update the location of the OCRAM where CSF header is copied in the
SCRATCHRWI1 register.

6.1.1.3.1.2 ISBC phase

Note: For details about SecMon, see "7.2 Security Monitor (SecMon)" in QorlQ Trust Architecture 2.x User
Guide. For details about SFP, see "3.1.2.2 Security fuse processor" in QorlQ Trust Architecture 2.x User Guide.

When the SoC is powered on, Master core (CPUOQ) is released from boot hold off and it starts executing
instructions from a hard-coded location in the BootROM. As per the instructions in ISBC, CPUO performs the
following actions:

1. Who am | check? - First step is to ensure that CPUQ is out of reset after Power-on Reset (POR), by reading
processor ID register. On failure, it enters into a spin loop.

2. SecMon check - CPUO confirms that SecMon is in the Check state. If not, the state of SecMon is
transitioned to Fail. And the system enters into fail state.

3. ESBC pointer read - CPUO reads the pointer to the ESBC's CSF header in the SCRATCHRW1 register
and then reads the word at the indicated address, which is the first word of the header. If the contents of
the word do not match the hard-coded preamble value, the ISBC assumes that it has not found a valid CSF
header and cannot proceed. This leads to a fail, as described in #2 above.

4. CSF header parsing and public key check - If CPUO finds a valid CSF header, it parses the CSF header
to locate the public key, to be used to validate the code. There can be a single public key or a table of
4 public keys present in the header. The SFP register does not actually store a public key, it stores an
SHA-256 hash of the public key/table of 4 keys. This is done to allow support for up to 4096b keys without
an excessively large fuse block. If the comparison between SRKH stored in the SFP register and runtime
calculated hash over the public key/table fails, the secure boot fails.

5. Signature validation - With the validated public key, CPUQ decrypts the digital signature stored at the offset
specified in the CSF header. The offset is relative to the start address of CSF header. It then uses the ESBC
lengths and pointer fields in the CSF header to calculate a hash over the code. The ISBC checks that the
CSF header is included in the address range to be hashed. Option flags in the CSF header tell the ISBC
whether the NXP Unique ID (FUID) and the OEM Unique ID (OUID) (in the Secure Fuse Processor) are
included in the hash calculation. Including these IDs allows the image to be bound to a single platform. If the
decrypted hash and generated hash do not match, secure boot fails.

LLDPUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. L6.1.1_1.0.0_23.08 — 4 August 2023

140 /1053

NXP Semiconductors LLDPUG

Layerscape Linux Distribution POC User Guide

6. ESBC Pointer check - CSF header contains entry point address. If address is in valid range, then SecMon
transitions to the Trusted state and control is passed to the Entry point address.

7. In case of failure, for TA 2.x platforms, secondary flag is checked in the CSF header. If set, ISBC reads the
alternate image CSF header pointer from the SCRATCHRWZ3 register and repeats from step 4.

If ISBC fails to validate the ESBC, error code is written in the SCRATCHRW?2 register. If you have debug
access, you can check the SCRATCHRW?2 register to obtain an error code. For a list and description of error
code, see |ISBC Validation Error Codes

TA 2.x platforms - ISBC and ESBC CSF header structure definition, SRK table, SG table

The CSF header provides ISBC and ESBC with most of the information required to validate the image.

Note: Note that the CSF header differs for LS1021A vs. the other TA 2.x based platforms (LS1043A/LS1046A/
LS1012A).

The following figure shows the differences in the CSF header fields in the ISBC and ESBC phases, for
LS1043A/LS1046A/LS1012A.

ISBC Phase ESBC Phase

0x0 Barker Code Barker Code 0x0

0x4 Public Key / SRK Table Offset Public Key / SRK Table Offset 0x4

0x8 Public Key / Length / SRK Flags Public Key / Length / SRK Flags 0x8

0xC RSA Signature Offset RSA Signature Offset 0xC
0x10 RSA Signature Length RSA Signature Length 0x10
0x14 Pointer to SG Table Reserved 0x14
0x18 # entries in SG Size of ESBC Image 0x18
0x1C ESBC Entry Point Reserved 0x1C
0x20 Manufacturing Protection Flag Reserved 0x20
0x24 UID, SEC_IMG Flags uiD 0x24
0x28 FUIDO FUIDO 0x28
0x2C OuIDO OuIDO 0x2C
0x30 Reserved Reserved 0x30
0x34 Reserved Reserved 0x34
0x38 FUID1 FUID1 0x38
0x3C OuID1 OuID1 0x3C
Header Size = 0x40 Pointer to ESBC Image (Low) 0x40
Pointer to ESBC Image (High) 0x44
ISBC key Extension flag 0x48
|IE Key Select 0x4C

Header Size = 0x50

Figure 12. CSF header for LS1043A/LS1046A/LS1012A (ISBC and ESBC phase)

CSF header format (LS1043A/LS1046A/LS1012A platforms)

Offset Data bits [0:31]

0x00 Barker code

This field should contain the value: 0x68392781. The ISBC code searches for this Barker code. If the
value in this field does not match the Barker code, the ISBC stops execution and reports error.

0x04 If srk_table_flag is not set:

* Public key offset: This field contains an address which is the offset of the public key from the start
of the CSF header. Using this offset and the public key length, the public key is read.

LLDPUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. L6.1.1_1.0.0_23.08 — 4 August 2023

141/1053

NXP Semiconductors LLDPUG

Layerscape Linux Distribution POC User Guide

Offset

Data bits [0:31]

If srk_table_flag is set:

¢ SRK table offset: This field contains an address which is the offset of the SRK table from the start
of the CSF header. Using this offset and the number of entries in the SRK table, the SRK table is
read.

0x08

0x08:

srk_table_flag

This flag indicates whether the hash burnt in SRK fuse is of a single key or of the SRK table.
» srk_table_flag = 1: Indicates SRK table is present

» srk_table_flag = 0: Indicates SRK table is not present, only single key is present

0x0b-0x09:

If srk_table_flag is not set:

» 0x0b-0x9 - Public key length, this field contains the length of the public key in bytes.
If srk_table_flag is set:

¢ 0x09 — Key number from SRK table, which is to be used for verification.

¢ 0x0b-0x0a — Number of entries in SRK table. Minimum number of entries in table = 1, Maximum
=4.

0x0c

RSA signature offset

This field contains an offset (in bytes) of the RSA signature from the start of the CSF header. Using
this offset and the signature length, the RSA signature is read. The RSA signature is calculated over
CSF header, SG table, and ESBC images.

0x10

RSA signature length in bytes.

0x14

For ISBC phase:
SG table offset

This field contains an address which is the offset of the SG table from the start of the CSF header.
Using this offset and the number of entries in the SG table, the SG table is read.

For ESBC phase:
Reserved

0x18

For ISBC phase:

Number of entries in SG table (Based on the SG table flag in the CSF header, this field shall either
be treated as number of entries in the SG table or the ESBC image size in bytes).

SG table flag indicates whether the SG table is present or not.
For ESBC phase:
Size of image to be validated.

Ox1c

For ISBC phase:

ESBC entry point.

ISBC transfers control to this field upon successful validation of ESBC image(s).
For ESBC phase: Reserved

0x20

Manufacturing Protection flag

Indicates if manufacturing protection has to be enabled or not in ISBC.
* mp_flag[16:31] - Manufacturing Protection flag

» sg_flag[0:15] - SG table flag

For ESBC phase: Reserved

0x24

For ISBC phase: UID
For ESBC phase: UID

0x25

LLDPUG

For ISBC phase:
Secondary image flag
Indicates if user has a secondary image available in case of failure in validating the primary image.

All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide

Rev. L6.1.1_1.0.0_23.08 — 4 August 2023
142 /1053

NXP Semiconductors LLDPUG

Layerscape Linux Distribution POC User Guide

Offset

Data bits [0:31]

For ESBC phase: Reserved

0x27-0x26

Unique ID usage

This field contains a flag which indicates whether to compare FUID and OUID in the CSF header field
with values in SFP registers: SFP_FUIDRn, SFP_OUIDRnN

* 0x00 - No comparison done

* 0x01 - Both FUID and OUID are compared

¢ 0x02 - Only FUID is compared

e 0x04 - Only OUID is compared

0x28

FUIDO
If the flag is set, this value is compared to corresponding FUIDO register.

0x2c

ouibo
If the flag is set, this value is compared to corresponding OUIDO register.

0x30

Reserved

0x34

Reserved

0x38

FUID1
If the flag is set, this value is compared to corresponding FUID1 register.

0x3c

OuID1
If the flag is set, this value is compared to corresponding OUID1 register.

0x40

For ISBC phase: Not Applicable
For ESBC phase: Lower 32 bits of 64 bits ESBC image address

0x44

For ISBC phase: Not Applicable
For ESBC phase: Higher 32 bits of 64 bits ESBC image address

0x48

For ISBC phase: Not Applicable

For ESBC phase:

ISBC key extension flag

If this flag is set, key to be used for validation needs to be picked up from the IE key table.

Ox4c

For ISBC phase: Not Applicable

For ESBC phase:

IE key select

Key Number to be used from the IE key table if ISBC key extension flag is set.

The following figure shows the differences in the CSF header fields in the ISBC and ESBC phases, for

LS1021A:

LLDPUG

All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide

Rev. L6.1.1_1.0.0_23.08 — 4 August 2023
1431053

NXP Semiconductors LLDPUG

Layerscape Linux Distribution POC User Guide

ISBC Phase ESBC Phase

0x0 Barker Code Barker Code 0x0

0x4 Public Key / SRK Table Offset Public Key / SRK Table Offset 0x4

0x8 Public Key / Length / SRK Flags Public Key / Length / SRK Flags 0x8

0xC RSA Signature Offset RSA Signature Offset 0xC
0x10 RSA Signature Length RSA Signature Length 0x10
0x14 Pointer to SG Table Pointer to Image 0x14
0x18 # entries in SG Size of ESBC Image 0x18
0x1C ESBC Entry Point Reserved 0x1C
0x20 Manufacturing Protection Flag Reserved 0x20
0x24 UID, SEC_IMG Flags uiD 0x24
0x28 FUIDO FUIDO 0x28
0x2C OuUIDO OuIDO 0x2C
0x30 Reserved Reserved 0x30
0x34 Reserved Reserved 0x34
0x38 FUID1 FUID1 0x38
0x3C ouID1 OuID1 0x3C
Header Size = 0x40 Reserved 0x40
Reserved 0x44
Reserved 0x48
Reserved 0x4C

Header Size = 0x50

Figure 13. CSF header for LS1021A (ISBC and ESBC phase)

Table 26. CSF header format (LS1021A platform)

Offset

Data bits [0:31]

0x00

Barker code.

This field should contain the value: 0x68392781. The ISBC code searches for this Barker code. If the
value in this field does not match the Barker code, the ISBC stops execution and reports error.

0x04

If srk_table_flag is not set:

* Public key offset: This field contains an address, which is the offset of the public key from the start
of the CSF header. Using this offset and the public key length, the public key is read.

If srk_table_flag is set:

* SRK table offset: This field contains an address, which is the offset of the SRK table from the start
of the CSF header. Using this offset and the number of entries in the SRK table, the SRK table is
read.

0x08

srk_table_flag

This flag indicates whether hash fused in the SRKH register is of a single key or of SRK table.
» srk_table_flag = 1: Indicates SRK table is present

» srk_table_flag = 0: Indicates SRK table is not present, only single key is present

0x0b-0x09

If srk_table_flag is not set:

* 0x0b-0x9 -- Public key length: This field contains the length of the public key in bytes.

If srk_table_flag is set:

* 0x09 — This field contains Key number from SRK table which is to be used for verification.

¢ 0x0b-0x0a — This field contains the Number of entries in SRK table. Minimum number of entries
in table = 1, Maximum = 4.

0x0c

RSA Signature offset.

This field contains an offset (in bytes) of the RSA signature from the start of the CSF header. Using
this offset and the Signature length, the RSA signature is read.

LLDPUG

All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide

Rev. L6.1.1_1.0.0_23.08 — 4 August 2023
14411053

NXP Semiconductors LLDPUG

Layerscape Linux Distribution POC User Guide

Table 26. CSF header format (LS1021A platform)...continued

Offset

Data bits [0:31]

0x10

RSA Signature length in bytes.

0x14

For ISBC phase:
SG Table offset

This field contains an address which is the offset of the SG table from the start of the CSF header.
Using this offset and the number of entries in the SG table, the SG table is read.

For ESBC phase:
Address of the image to be validated.

0x18

For ISBC phase:

Number of entries in SG table (Based on the SG table flag in the CSF header, this field shall either
be treated as the number of entries in the SG table or the ESBC image size in bytes).

SG table flag indicates whether the SG table is present or not.
For ESBC phase
Size of image to be validated.

Ox1c

For ISBC phase:

ESBC entry point

ISBC transfers control to this field upon successful validation of the ESBC image(s).
For ESBC phase: Reserved

0x20

Manufacturing Protection flag

Indicates if manufacturing protection has to be enabled or not in ISBC.
* mp_flag[16:31] - Manufacturing Protection flag

» sg_flag[0:15] - SG table flag

For ESBC phase: Reserved

0x24

For ISBC phase: UID
For ESBC phase: UID

0x25

For ISBC phase

Secondary Image flag

Indicates if user has a secondary image available in case of failure in validating the primary image.
For ESBC phase: Reserved

0x27-0x26

Unique ID Usage

This field contains a flag which indicates whether to compare FUID and OUID in the CSF header field
with values in SFP registers: SFP_FUIDRn, SFP_OUIDRnN

* 0x00 - No comparison done

* 0x01 - Both FUID and OUID are compared

¢ 0x02 - Only FUID is compared

¢ 0x04 - Only OUID is compared

0x28

FUIDO
If the flag is set, this value is compared to corresponding FUIDO register.

0x2c

ouIDo
If the flag is set, this value is compared to corresponding OUIDO register.

0x30

Reserved

0x34

Reserved

0x38

FUID1
If the flag is set, this value is compared to corresponding FUID1 register.

0x3c

LLDPUG

OouID1

All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide

Rev. L6.1.1_1.0.0_23.08 — 4 August 2023
1451053

NXP Semiconductors LLDPUG

Layerscape Linux Distribution POC User Guide

Table 26. CSF header format (LS1021A platform)...continued
Offset Data bits [0:31]
If the flag is set, this value is compared to corresponding OUID1 register.

0x40 For ISBC Phase: Not Applicable
For ESBC Phase: Reserved
0x44 For ISBC Phase: Not Applicable

For ESBC Phase: Reserved

0x48 For ISBC phase: Not Applicable
For ESBC phase: Reserved

Ox4c For ISBC phase: Not Applicable
For ESBC phase: Reserved

The SG table supports 8 images and each image entry is in this format {Len, target, src_addr, dst_addr}

Table 27. SG table format

Offset Data Bits [0:31]
0x00 Length. This field specifies the length in bytes of the ESBC image.
0x04 Target where the ESBC Image can be found. This field is ignored for TA 2.x platforms.
0x08 Source Address of ESBC Image
0x0c Destination Address of ESBC Image
Irl‘l::%:er;rg'et address is Oxffffffff, the image is not copied to the target. This field is ignored for TA 2.x

The SRK table for TA 2.x stores 4 keys. The size of key value fields of each key is 0x400.

Table 28. SRK table

Offset Data Bits [0:31]

0x00 Key 1 length

0x04 Key 1 value. (Remaining bytes shall be padded with zero)
0x404 Key 2 length

0x408 Key 2 value. (Remaining bytes shall be padded with zero)
0x808 Key 3 length

0x80c Key 3 value. (Remaining bytes shall be padded with zero)
0xcOc Key 4 length

0xc10 Key 4 value. (Remaining bytes shall be padded with zero)

Super Root Keys (SRKs) and signing keys
These are RSA public and private key pairs. Private keys are used to sign the boot images and public keys are
used to validate these images during ISBC and ESBC phases.

Public keys are embedded in the image and the calculated hash value of the SRK table must be fused into the
SRKH registers of SFP.

These are hardware bound keys. Once the hash is fused, the public-private key pair cannot be modified as the
content of the SFP registers is non-editable.

The secure boot process supports keys of sizes 1k, 2k, and 4k.

LLDPUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. L6.1.1_1.0.0_23.08 — 4 August 2023

146 /1053

NXP Semiconductors LLDPUG

Layerscape Linux Distribution POC User Guide

Note that it is important to control access to the RSA private signature key. If the key is exposed, attackers can
generate alternate images that will pass secure boot.

If the key is lost, you will not be able to update the images.

Key revocation

TA 2.x supports revocation of the RSA public keys used by ISBC for verification of ESBC. The RSA public keys
used for this purpose are called Super Root Keys (SRKSs).

You can use either a single key or a list of up to 4 SRKs in the TA 2.x platforms.

You need to define in CST, if the device uses a single SRK or a list of SRKs. If the device uses single SRK, a
new flag bit in the CSF header indicates key, otherwise the flag bit indicates key List.

Assuming that device is using the list of SRKSs, the user can populate a list of up to 4 SRKs for TA 2.x onwards
platforms and can calculate an SHA-256 hash over the list. This hash is written to the SRKH registers in the
SFP.

As a step in the code signing process, you need to define which key in the key list is to be used for validating
the image. This key number is included as a new field in the CSF header.

During secure boot, the ISBC determines whether a key list is in use. If the key list is valid, the ISBC checks
the key number indicated in the CSF header against the revocation fuses in the SFP’s OEM Security Policy
Register (SFP_OSPR). If the key is revoked, the image validation fails.

Note:

In order to prevent unauthorized revocation of keys, SFP provides a bit (Write Disable). If the bit is set, the Key
revocation bits cannot be written to.

In regular operation, the ESBC (early Trusted S/W) needs to set the SFP Write Disable bit. When circumstances
call for revoking a key, the user will use an ESBC image with “Write Disable” bit not set. So, the SFP will be in a
state in which key revocation fuses can be set.

Logically after revoking the required key(s), the user would then load a new signed ESBC image with code to
set the "Write Disable" bit, with new CSF header indicating which of the remaining non-revoked key to use.

So, only the possessor of a legitimate RSA private key can enable key revocation.

One possible motivation for a user to revoke an SRK is the loss of the associated RSA private key to an
attacker. If the attacker has gained access to a legitimate RSA private key, and the attacker can turn on power
to the fuse programming circuitry, then the attacker could maliciously revoke keys. To prevent this from being
used to permanently disable the system, one SRK does not have an associated revocation fuse.

For details about key revocation, see QorlQ Trust Architecture 2.x User Guide.

Alternate image support

If ISBC fails to find a valid image at the primary image location, it can optionally check an alternate location for
an alternate image.

To execute, the alternate image must be validated using a non-revoked public key as defined by its CSF header.
A valid alternate image has same rights and privileges as a valid primary image.

The alternate image support reduces any risks due to corruption of the primary image or wearing out of the flash
memory.

To enable this feature:

* Add PBI command to load pointer to the alternate image CSF header in the SCRATCHRW3 register.

LLDPUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. L6.1.1_1.0.0_23.08 — 4 August 2023

147 /1053

NXP Semiconductors

LLDPUG

6.1.1.3.1.3 ISBC validation error codes

Errors in the system can be of following types:

1. Core exceptions
2. System State failures
3. Header Checking failures
a. General failures
b. Key/Signature/UID related errors
4. Verification failures
5. SEC/PAMU errors

Table 29. Core exceptions (LS1021A platform)

Layerscape Linux Distribution POC User Guide

Value Code Definition

0x1 ERROR_UNDEFINED_INSTRUCTION Occurs if neither the processor nor any attached coprocessor
recognizes the currently executing instruction.

0x2 ERROR_SWI Software Interrupt is a user-defined interrupt instruction.
It allows a program running in User mode, for example, to
request privileged operations that run in Supervisor mode.

0x3 ERROR_PREFETCH_ABORT Occurs when the processor attempts to execute an instruction
that has been prefetched from an illegal address.

0x4 ERROR_DATA_ABORT Occurs when a data transfer instruction attempts to load or
store data at an illegal address.

0x5 ERROR_IRQ Occurs when the processor external interrupt request pin is
asserted (LOW) and IRQ interrupts are enabled.

0x6 ERROR_FIQ Occurs when the processor external fast interrupt request pin

is asserted (LOW) and FIQ interrupts are enabled.

Table 30. Key/Signature/UID related errors (TA 2.x platforms)

Value Code Definition

0x320 ERROR_ESBC_HEADER_KEY_LEN Length of public key in header is not one of the supported
values.

0x321 ERROR_ESBC_HEADER_KEY_LEN_NOT_ |Public key is not twice the length of the RSA signature

TWICE_SIG_LEN

0x322 ERROR_ESBC_HEADER_KEY_MOD _1 Most significant bit of modulus in header is zero.

0x323 ERROR_ESBC_HEADER_KEY_MOD_2 Modulus in header is even number

0x324 ERROR_ESBC_HEADER_SIG_KEY_MOD Signature value is greater than modulus in header

0x325 ERROR_FSL_UID FSL_UID in ESBC Header did not match the FSL_UID in
SFP if FSL UID flag Is 1

0x326 ERROR_OEM_UID OEM_UID in ESBC Header did not match the OEM_UID in
SFP if OEM UID flag is 1

0x327 ERROR_INVALID_SRK_NUM_ENTRY Number of entries field in CSF header is > 4 (This is when
srk_table_flag in header is 1)

0x328 ERROR_INVALID_KEY_NUM Key number to be used from SRK table is not present in
table.(This is when srk_table_flag in header is 1)

LLDPUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. L6.1.1_1.0.0_23.08 — 4 August 2023

148 /1053

NXP Semiconductors

LLDPUG

Layerscape Linux Distribution POC User Guide

Table 30. Key/Signature/UID related errors (TA 2.x platforms)...continued

Value Code Definition

0x329 ERROR_KEY_REVOKED Key selected from SRK table has been revoked (This is
when srk_table_flag in header is 1)

0x32a ERROR_INVALID_SRK_ENTRY_KEYLEN Key length specified in one of the entries in SRK table is
not one of the supported values (This is when srk_table_
flag in header is 1)

0x32b ERROR_SRK _TBL_NOT_IN_3 5 SRK table is not in 3.5G boundary (This is when srk_table_
flag in header is 1)

0x32b ERROR_SRK_TBL_ON_OCRAM SRK table is on OCRAM

0x32c ERROR_KEY_NOT_IN_3 5G Key is not in 3.5G boundary

0x32c ERROR_KEY_ON_OCRAM Key on OCRAM

Table 31. Verification failures (TA 2.x platforms)

Value

Code

Definition

0x340

ERROR_HASH_COMPARE_KEY

Super Root Key Hash Comparison failure. Mismatch in the
hash of the public key/SRK table as present in the header
with the value in the SRKH fuse.

0x341

ERROR_HASH_COMPARE_EM

RSA signature check failure. Signature provided by you in
the header doesn’t match with the signature of the ESBC
image generated by ISBC. The ESBC image loaded by
you may be different than the image used while generating
the signature(using CST)

0x350

ERROR_PRIVATE_KEY_DERIVATION

Error in derivation of manufacturing private key when MP
flag in CSF header is set

Table 32. Device error codes (TA 2.x platforms)

Value Code Definition

ESDHC errors

0x500 ERROR_ESDHC_CARD_DETECT_FAIL Card detection failed

0x501 ERROR_ESDHC_UNUSABLE_CARD Card not responding to CMDs

0x502 ERROR_ESDHC_COMMUNICATION_ERROR |Card did not reply to CMD and timeout occurred

0x503 ERROR_ESDHC_READ_UNALIGNED Address should be block length align

eSPI errors

0x600 ERROR_ESPI_READID Invalid FLASH ID

0x601 ERROR_ESPI_BOOT_SIGN BOOT signature mismatch

0x602 ERROR_ESPI_READ_TIMEOUT Read timeout occurred

CAAM

errors

0x700 ERROR_SEC_ENQ Error when enqueuing to SEC

0x701 ERROR_SEC_DEQ Sec Block returned some error when dequeuing from it.
0x702 ERROR_SEC_DEQ_TO Timeout when trying to deq from SEC

LLOPUG Allinformation provided in this document s subject to legal disclaimers. ©2023 NXP B.V. All rights reserved.
User guide Rev. L6.1.1_1.0.0_23.08 — 4 August 2023

149 /1053

NXP Semiconductors LLDPUG

Layerscape Linux Distribution POC User Guide

Table 32. Device error codes (TA 2.x platforms)...continued
Value Code Definition

0x800 ERROR_PAMU Error while programming PAACT/SPAACT tables in
PAMU (For PowerPC platforms only)

6.1.1.3.2 TA 3.x platforms

6.1.1.3.2.1 Pre-boot and Internal Secure Boot Code (ISBC) phase

In the development phase, set RCW[SB_EN] = 1 to boot the system in secure mode.

In the production phase, set the ITS bit in SFP to ensure that the system operates in secure and trusted
manner. Once the SFP ITS fuse is blown, it cannot be changed.

The Service Processor is the first bus master that executes when the device exits reset. It is the starting point
for the secure boot chain of trust.

The Service Processor executes the PBI commands. The ISBC residing in Service Processor validates the PBI
commands before execution. The ISBC also validates BL2 and releases the SoC’s Armv8 master core (CPU 0)
to execute the validated BL2.

The main steps in the ISBC flow are defined below.

TA 3.x platforms - ISBC CSF header structure definition, SRK table, SG table

PBI & ISBC Phase
0x0 Barker Code
0x4 SRK Table Offset
0x8 Flags + Key Info
0oxC UID Flags
0x10 RSA Signature Offset
0x14 RSA Signature Length
0x18 Pointer to SG Table
ox1C # entries in SG
0x20 64 bit Entry Point Low
0x24 64 bit Entry Point High
0x28 FUIDO
0x2C FUID1
0x30 OuIDo
0x34 OuID1
0x38 OuID2
0x3C OuID3
0x40 OuID4
0x44 Reserved
0x48 Reserved
0x4C Reserved
Header Size = 0x50
Figure 14. CSF header structure (ISBC TA 3.x)
Table 33. CSF header structure (ISBC TA 3.x)
Offset Description
0x00 Barker code
LLDPUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.
User guide Rev. L6.1.1_1.0.0_23.08 — 4 August 2023

150 /1053

NXP Semiconductors LLDPUG

Layerscape Linux Distribution POC User Guide

Table 33. CSF header structure (ISBC TA 3.x)...continued

Fixed value which the ISBC uses to confirm it has located the start of a CSF header. (0x12192001

in big endian)
0x00 — 0x12
0x01 —0x19
0x02 — 0x20
0x03 — 0x01
It is numeric encoding of LSTA (LS Series Trust Architecture)
0x04 SRK table offset
This field contains an address which is the offset of the SRK table from the start of CSF header.
Using this offset and the number of entries in the SRK table, the SRK table is read.
0x08 0x08 No. of keys
This field specifies the no. of keys in the SRK table
0x09 Key No. for verification
Key number from the SRK table used by ISBC to verify the image signature.
0x0a Reserved
0x0b IE[0]: ISBC Extension (Reserved)
MP[4]: Execute Manufacturing Protection Routine
ISS[5]: Increment Security State; indicates whether the ISBC should increment the SNVS SSM
upon successful verification
B01[6]: Identifies whether this is the CSF header of a boot 0 image (PBI) or a BL2
LWI7]: Leave writable; when set; ISBC does not set the SFP Write Disable
0x0C 0x0C Reserved
0x0D Reserved
O0xOE Reserved
0x0F OID[0:1]: Reserved
OID[2:6]: when set, the corresponding OEM UID field in the SFP is included in the digital
signature verification. For each bit set, the corresponding OUID field is included in the CSF
header.
FUID[7]: when set, the 64b FUID is included in the digital signature verification and the FUID is
included in the CSF header.
0x10 RSA signature offset
This field contains an address which is the offset of the RSA signature from the start of CSF
header. Using this offset and the signature length, the RSA signature is read. The RSA signature
is calculated over CSF header, SG table, and ESBC images.
0x14 RSA signature length
This field contains the length of the RSA signature in bytes.
0x18 SG table offset
This field contains an address which is the offset of the SG table from the start of CSF header.
Using this offset and the number of entries in SG table, the SG table is read.
0x1C No. of entries
This field specifies the number of entries present in SG table.
0x20 Entry point (64 bit)
ISBC transfers control to this field upon successful validation of ESBC image(s).
0x28 FUIDO
0x2c FUID1
LLDPUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.
User guide Rev. L6.1.1_1.0.0_23.08 — 4 August 2023

151/1053

NXP Semiconductors LLDPUG

Layerscape Linux Distribution POC User Guide

Table 33. CSF header structure (ISBC TA 3.x)...continued

0x30 ouibo
0x34 OuID1
0x38 OouIb2
0x3c OuID3
0x40 OouIb4
0x44 Reserved
0x48 Reserved
0x4C Reserved

The SRK table for TA 3.x stores 8 keys. The size of key contents of each key is 0x400. The following table
shows the SRK table structure for Key 1 and Key 2.

Table 34. SRK table structure

Offset Description
0x00 Key 1 length
0x04 Key 1 content (Modulus, Exponent, Exponent+Modulus)
0x404 Key 2 length
0x408 Key 2 content (Modulus, Exponent, Exponent+Modulus)

Table 35. SG table structure

Offset Description

0x00 Length

0x04 Reserved

0x08 SRC Address Low
0x0C SRC Address High

ISBC for PBI validation

Note: For details about SecMon, see "9.2 Security Monitor (SecMon)" in QorlQ Trust Architecture 3.x User
Guide. For details about SFP, see "3.1.2.2 Security fuse processor" in QorlQ Trust Architecture 3.x User Guide.

1.

2.

SecMon check: Confirms that SecMon is in the Check state (OTPMK is fused). If SecMon is not in the
Check state, the SecMon is transitioned to the Fail state. And the system enters into fail state.

PBI command check: Verifies that the first PBI command is ‘Load Boot 1 CSF Header Ptr’. If not found, an
error is raised.

Valid header check: Checks for a valid preamble in the header. If valid preamble is not available, an error
is raised.

CSF parsing and public key check: If ISBC finds a valid CSF header, it parses the CSF header to locate
the public key, from the SRK table, to be used to validate the code. The header can include an SRK table
of maximum 8 public keys. The SFP hash register in SFP does not store a public key, it stores an SHA-256
hash calculated over the SRK table in the fuses. If the hash of the SRK table fails to match the stored hash,
secure boot fails.

Signature validation: With the validated public key, ISBC decrypts the hash or digital signature stored

in the CSF header. The ISBC then uses the PBI length field in the RCW to calculate a hash over all PBI
commands (CSF header is also a part of PBI commands) along with the SRK table. Optional flags in the
CSF header tell the ISBC whether the FSL Unique ID (FUID) and the OEM Unique ID (OUID in SFP are to

LLDPUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. L6.1.1_1.0.0_23.08 — 4 August 2023

152/1053

NXP Semiconductors

LLDPUG

Layerscape Linux Distribution POC User Guide

be checked or not. Including these IDs allows the image to be bound to a single platform. If the decrypted
hash and the calculated hash do not match, the secure boot fails.

6. SecMon Transition: If the Increment Security State (ISS) flag is set in the header, ISBC transitions the
SNVS state from Check to Trusted.

Note:

1. If ISBC fails to validate the PBI, check the SCRATCHRWS register with a JTAG debugger to obtain an
error code. If ISBC fails to validate the alternate image, the corresponding error code can be found in the
SCRATCHRW4 register. For a list of error codes, see ISBC Validation Error Codes.

PBI structure

The following table shows an overview of the recommended PBI format as generated by Layerscape LDP.

Fields Offset Size (In 32-bit words)
RCW Preamble (RCW) 0x00 1
Load RCW command 0x04 1
RCW words 0x08 — Ox87 32
RCW checksum 0x88 1
PBI commands Load security header 0x8c 1
CSF header 0x90 — Oxdf 20
Load boot 1CSF header Oxe0 1
Boot 1 pointer Oxe4 1
Other PBI commands Oxe8 N
STOP command (With/ 0xe8 + (4*N) 2
Without CRC)
SRK table SRK table 0x90 + SRK table offset in (No. of keys * Key content
CSF header length)
RSA signature Signature 0x90 + Sign offset in CSF Sign length
header
RCW Preamble The preambile is always the first element in a PBl image. It contains a
standard pattern that identifies the memory location as the beginning of a
valid PBI image. The preamble is a 4-byte pattern defined as “Oxaa, 0x55,
Oxaa, 0x55”.
Load RCW command The next word is load RCW command. This command loads the 1024-bit
Reset Configuration Word (RCW) from the interface specified by Power-
on-Reset (POR) configuration strapping pins. It has the following two
formats.
¢ Load RCW with checksum (0x10): Read Reset Configuration Word
performs simple 32-bit checksum, and update RCW registers.
¢ Load RCW without checksum (0x11): Read RCW and update RCW
registers without performing checksum. The version without the
checksum includes padding with zeroes in the place of the checksum
value.
RCW words 1024 RCW bits that are 32 words of 32 bits.
RCW checksum It is calculated as a 32-bit unsigned integer summation of the RCW
Preamble, the Load RCW with checksum command, and each of the
LLDPUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.
User guide Rev. L6.1.1_1.0.0_23.08 — 4 August 2023

153 /1053

NXP Semiconductors LLDPUG

Layerscape Linux Distribution POC User Guide

32 words (32-bit) of the RCW. A simple 32-bit checksum is used for the
validation of the command.

checksum (RCW_WORD[]) {
unsigned 32 sum = OxAA55AA55 + 0x80100000 +
Load RCW Command;
for (i=0; 1<32; i++)
sum+=RCW_WORD[1];
return (sum);

}

Note: Checksum has to be updated by the CST tool as the fields like
RCW/[SB_EN], RCW[PBI_LEN] in the RCW words are changed.

PBl commands |Load security header This command loads information required for authentication of the PBI

image. The security header includes pointers to an SRK key table and
RSA signatures as well as other flags and IDs. The CSF header is part of
the command. Refer the CSF header structure in Trust 3.x devices - ISBC
CSF header structure definition, SRK table, SG table..

Load boot 1 CSF header |This command loads a pointer to the CSF header used for authentication
of the Boot 1 Secondary Program Loader. This 32-bit value is used by the
Boot 0 ISBC and is required for secure boot.

Other PBI commands Other PBI commands input by user.

STOP command This command ends the PBI sequence and has two variants (with and
without CRC). The CRC check value covers all commands from the
first command after the RCW up to and including this CRC and Stop
command, regardless of whether any are skipped by Jump commands
during execution.

In Stop command without CRC, it ends the PBI sequence immediately.
It does not include a CRC value, but it instead has a 32-bit padding with
zeroes so that it is the same size as the Stop with CRC command.
Note: CST tool updates the PBI commands by adding Load Security
Header command and Load Boot 1 Security Header command. So, CRC
must also be updated.

SRK table Table of public keys is used in secure boot validation. It is kept at an offset

from the CSF header. The offset is specified in the CSF header.

RSA signature RSA signature is calculated over all PBI commands and SRK table. It is

kept at an offset from the CSF header. The offset is specified in the CSF
header.

ISBC for next executable (BL2) validation

1.

2.

Valid header check: Check for a valid preamble in the header. If na valid preamble is not present in the
header, an error is raised.

CSF parsing and public key check: If ISBC finds a valid CSF header, it parses the CSF header to locate
the public key, from the SRK table, to be used to validate the code. The header can include an SRK table
of maximum 8 public keys. The SFP hash register in SFP does not store a public key, it stores an SHA-256
hash calculated over the SRK table in the fuses. If the hash of the SRK table fails to match the stored hash,
secure boot fails.

. Signature validation: With the validated public key, ISBC decrypts the digital signature stored in the CSF

header. The ISBC then calculates and checks the hash over the CSF, the SRK table, the SG table and all
entries the SG table points to. If the decrypted hash and the calculated hash do not match, the secure boot
fails.

. Entry Point check: CSF header contains entry point address. If the address is in the valid range, then Entry

point is updated in the Boot Location Pointer (BOOTLOCPTRL/BOOTLOCPTRH) register.

LLDPUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. L6.1.1_1.0.0_23.08 — 4 August 2023

154 /1053

NXP Semiconductors LLDPUG

Layerscape Linux Distribution POC User Guide

5. SecMon Transition: If the Increment Security State (ISS) flag is set in the header, ISBC transitions the
SNVS state from Check to Trusted or Trusted (if transitioned in the PBI validation phase) to Secure.

Note:
1. When ISBC ends, Entry Point parsed from header is written to the BOOTLOCPTRL/BOOTLOCPTRH
register.
2. GPP wakes up.
3. Service Processor goes to sleep.
If ISBC fails to validate the BL2, check the SCRATCHRWS register with a JTAG debugger to obtain an

error code. If ISBC fails to validate the alternate image, the corresponding error code can be found in the
SCRATCHRWY4 register. For a list of error codes, see ISBC Validation Error Codes.

6.1.1.3.2.2 ISBC validation error codes

Error handling in production environment (ITS = 1)

* Error codes are logged in the DCFG SCRATCH register.
* SNVS transitions to the soft fail state.

* LED is activated. If you have implemented an LED to indicate secure boot failure, the LED is connected to a
GPIO. The information of GPIO is specified via bits in RCW.

GPIO_LED_EN Bit(s): 311
The SP BootROM code sequence turns on the LED (if RCW[GPIO_
LED_EN] = 1) by configuring one GPIO direction (GPDIR) register bit

as an output and writing the corresponding output in a GPIO block data
(GPDAT) register.

GPIO_LED_NUM Bnoit(s): 310-304

If GPIO_LED_EN is set, these bits specify the GPIO number to which
LED is connected.

— 0x1f - 0x00 : GPIO_1
— 0x3f - 0x20 : GPIO_2
— Ox5f - 0x40 : GPIO_3
— 0x7f - 0x60 : GPIO_4

» Soft reset is issued
» Cores then enters in infinite loop (If Reset is disabled)1
Error handling in development environment (ITS = 0, RCW[SB_EN] =1)

* Error codes are logged in the DCFG SCRATCH register.
* SNVS transitions to the non-secure state.
* Further actions depends on the type of failure:

Fatal Error Core in infinite Loop

Non-Fatal Error Application software is allowed to execute

Error codes

The error codes reported by SP BootROM are categorized as follows:

1 To debug the root cause of failure and view the error code, Reset has to be disabled on the SoC.

LLDPUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. L6.1.1_1.0.0_23.08 — 4 August 2023

155/1053

NXP Semiconductors

LLDPUG

» Core exceptions

¢ Device errors

RCW/PBI errors
Validation errors

Table 36. ISBC error codes

Layerscape Linux Distribution POC User Guide

When error
generated

Error code

Value

Description

Core exceptions

Random

ERROR_UNDEFINED_INSTRUCTION

0x1

Ocecurs if neither the processor
nor any attached co-processor
recognizes the currently
executing instruction.

Random

ERROR_SWI

0x2

Software Interrupt is a user-
defined interrupt instruction.
It allows a program running
in User mode, for example, to
request privileged operations
that run in Supervisor mode.

Random

ERROR_PREFETCH_ABORT

0x3

Occurs when the processor
attempts to execute an
instruction that has been
prefetched from an illegal
address.

Random

ERROR_DATA_ABORT

0x4

Occurs when a data transfer
instruction attempts to load or
store data at an illegal address.

Random

ERROR_IRQ

0x5

Occurs when the processor
external interrupt request pin
is asserted (LOW) and IRQ
interrupts are enabled.

Random

ERROR_FIQ

0x6

Occurs when the processor
external fast interrupt request
pin is asserted (LOW) and FIQ
interrupts are enabled.

Device errors — ESDHC

Random

ERROR_ESDHC_CARD_DETECT_FAIL

0x31

When SD card detection fail

Random

ERROR_ESDHC_UNUSABLE_CARD

0x32

When SD card does not
respond to initialization
commands

Random

ERROR_ESDHC_COMMUNICATION_ERROR

0x33

For all SD card read/write
errors

Random

ERROR_ESDHC_BLOCK_LENGTH

0x34

When SD card read block
length is greater than 0x400

Device errors — FlexSPI

Random

ERROR_FLEXSPI_NOR_INVALID_OFFSET

0x41

Occurs when NOR offset or
offset + read_size is greater
than OxFFFFFF

LLDPUG

All information provided in this document is subject to legal disclaimers.

© 2023 NXP B.V. All rights reserved.

User guide

Rev. L6.1.1_1.0.0_23.08 — 4 August 2023

156 /1053

NXP Semiconductors LLDPUG

Layerscape Linux Distribution POC User Guide

Table 36. ISBC error codes...continued

When error Error code Value Description

generated

Random ERROR_FLEXSPI_NAND_INVALID_OFFSET 0x42 Occurs when NAND offset or
offset + read_size is greater
than OxFFFFFF

Random ERROR_FLEXSPI_INVALID_ADDR 0x43 Occurs when NAND get status
IPCMD sfar address is not
correct

Random ERROR_FLEXSPI_TIMEOUT 0x44 Occurs when NAND get status
IPCMD timeouts

Random ERROR_FLEXSPI_NAND_BBT_FULL 0x45 Occurs when bad block table
is FULL, that is 256 bad blocks
are found

Random ERROR_FLEXSPI_NAND_PAGE_READ_TIMEOUT 0x46 Occurs when NAND page read
timeouts

Random ERROR_FLEXSPI_NAND_IPCMD_DONE_TIMEOUT 0x47 Occurs when NAND IPCMD
done bit is not set and timeouts

Random ERROR_FLEXSPI_NAND_IP_IDLE_TIMEOUT 0x48 Occurs when NAND IP BUS is
not idle

Phase = RCW

RCW Phase ERROR_PREAMBLE 0x50 Preamble not found.

RCW Phase ERROR_RCW_CMD_NOT_FOUND 0x51 RCW command not found

RCW Phase ERROR_RCW_CHECKSUM_MISMATCH 0x52 Checksum mismatch in RCW

RCW Phase ERROR_RCW_SRC_INVALID 0x58 RCW_SRC is not a valid
source

RCW Phase ERROR_RCW_REQ_NOT_SET 0x59 RCW_REQ bit never set by
Reset state machine (RSM)

RCW Phase ERROR_PBI_REQ_NOT_SET 0x60 PBI_REQ bit never set (by
RSM)

Phase = PBI

PBI Phase ERROR_SEC_CAAM_INIT 0x61 CAAM init failed (Would rarely
occeur)

PBI Phase ERROR_SEC_CAAM_NOT_FOUND 0x62 CAAM block not found in case
of secure boot

PBI Phase ERROR_PBI_SRC_NOT_SAME_AS_RCW_SRC 0x64 Mismatch between RCW_SRC
and PBI_SRC fields

PBI Phase ERROR_PBI_LENGTH 0x65 PBI length defined in
RCWI[PBI_LEN] field is invalid

PBI Phase ERROR_PBI_LAST _CMD_NOT_STOP 0x66 STOP or CRC&STOP not
found at the end of the
specified PBI Length.

PBI Phase ERROR_PBI_ COMMAND_UNKNOWN 0x67 An invalid command parsed by
PBI Parser

PBI Phase ERROR_CAAM_SELF_TEST Ox6a CAAM self-test failed

LLDPUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. L6.1.1_1.0.0_23.08 — 4 August 2023

157 /1053

NXP Semiconductors

LLDPUG

Table 36. ISBC error codes...continued

Layerscape Linux Distribution POC User Guide

When error Error code Value Description

generated

PBI Phase ERROR_PBI_ COPY_INVALID_SRC_TYPE 0x70 Copy command, src field does
not match the RCW_SRC field

PBI Phase ERROR_PBI_ COPY_INVALID_DST_ADDR 0x71 Copy command, dest field is
not 0x00

PBI Phase ERROR_PBI_ COPY_INVALID_SRC_ADDR_ SRC_ADDR |0x72 SRC address is invalid (ROM/
OCRAM reserved for SP)

PBI Phase ERROR_PBI_CCSR_BYTE_COUNT 0x74 Byte count in CCSR Write not
valid

PBI Phase ERROR_PBI_CCSR_4 BYTE_ALLIGNED 0x75 Offset is not 4 bytes aligned

PBI Phase ERROR_PBI_CCSR_OFFSET_INVALID 0x76 Offset is invalid that is less than
allowed CCSR Base 0x0100_
0000

PBI Phase ERROR_PBI_ACSR_INVALID_ADDRESS 0x78 Source address in ACSR
invalid (invalid addresses -
OCRAM or ROM address)

PBI Phase ERROR_PBI_ACSR_BYTE_COUNT 0x79 Byte count in ACSR write
command not valid

PBI Phase ERROR_PBI_ACSR_WINDOW_NOT_SET 0x7a ATU Window is not configured

PBI Phase ERROR_PBI_ACSR_OFFSET_ALLIGNED 0x7b ACSR offset is invalid and
trying to write to Reserved
space on OCRAM.

PBI Phase ERROR_PBI_ALTCFG_WNDW_INVALID 0x7c ATU Window is invalid

PBI Phase ERROR_PBI_JUMP_OUT_LENGTH 0x80 Offset specified in JUMP
command does not lie in PBI
length range

PBI Phase ERROR_PBI_JUMP_4_BYTE_ALLIGNED 0x81 Offset specified in JUMP
command is not 4 bytes
aligned

PBI Phase ERROR_PBI_JUMP_OFFSET_0 0x82 Offset specified in JUMP
command is 0

PBI Phase ERROR_PBI_LOADC_4 BYTE_ALLIGNED 0x84 Address specified in LOAD
condition command is not 4
bytes aligned

PBI Phase ERROR_PBI_JUMPC_OUT_LENGTH 0x88 Offset specified in JUMP
command does not lie in PBI
length range

PBI Phase ERROR_PBI_JUMPC_4 BYTE_ALLIGNED 0x89 Offset specified in JUMP
conditional command is not 4
bytes aligned

PBI Phase ERROR_PBI_JUMPC_CONDITION_NOT_SET 0x8a Jump conditional command
encountered before condition is
set using Load Condition

PBI Phase ERROR_PBI_CRC_MISMATCH 0x90 CRC mismatch

PBI Phase ERROR_PBI_POLL 0x91 Poll timeout

LLDPUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. L6.1.1_1.0.0_23.08 — 4 August 2023

158 /1053

NXP Semiconductors LLDPUG

Layerscape Linux Distribution POC User Guide

Table 36. ISBC error codes...continued

When error Error code Value Description

generated

PBI Phase ERROR_PBI_POLL_4 BYTE_ALLIGNED 0x92 Address being polled is not 4
bytes aligned

PBI Phase ERROR_PBI_BOOT1_CSF_INVALID_ADDR 0x94 Address of CSF header is not
valid

PBI Phase ERROR_PBI_BOOT1_CSF_ALLIGNED 0x95 Address of CSF header is not 4
bytes aligned

PBI Phase ERROR_PBI_CCSR_MASKLEN_INVALID 0xa0 When CCSR masklen = 0, valid
values are 1, 2, 3

PBI Phase ERROR_PBI_CCSR_ADDR_NOT2BYTE_ALIGN Oxa1 When CCSR address is not 2
bytes align

PBI Phase ERROR_PBI_CCSR_ADDR_NOT4BYTE_ALIGN Oxa2 When CCSR address is not 4
bytes align

PBI Phase ERROR_PBI_SP_CCSR_ADDR Oxa3 When CCSR address is less
than 0x01000000

PBI Phase ERROR_PBI_CCSR_OPS_TYPE_INVALID Oxa4 When operation type is 3, that

is reserved.Valid operations are
SET, CLEAR and REPLACE

PBI Phase ERROR_PBI_CCSR_WRITE_TYPE_INVALID 0xb0 When write register width is set
to 0x0.Valid values are 2 --- >
2 bytes register write3 --- > 3
bytes register write

PBI Phase ERROR_PBI_SCR_ADDR_NOT2BYTE_ALIGN 0xb1 When write type =2 and source
address is not 2 bytes align

PBI Phase ERROR_PBI_CCSR_ADDR_2BYTE_NOT_ALIGN 0xb2 When write type=2 and CCSR
destination address is not 2
bytes align

PBI Phase ERROR_PBI_SCR_ADDR_NOT4BYTE_ALIGN 0xb3 When write type =3 and source
address is not 4 bytes align

PBI Phase ERROR_PBI_CCSR_ADDR_4BYTE_NOT_ALIGN Oxb4 When write type= 3 and CCSR
destination address is not 4
bytes align

PBI Phase ERROR_PBI_SP_MIN_CCSR_ADDR 0xb5 When CCSR address is less
than 0x01000000

PBI Phase ERROR_PBI_CCSR_WRITE_LEN_ZERO 0xb6 When write length is zero

PBI Phase ERROR_PBI_CCSR_WRITE_FROM_INVALID_ADDR 0xb7 When source address is from

OCRAM reserved area

Phase = Verify (System State errors (Secure boot))

Before PBI ERROR_STATE_NOT_CHECK 0xf0 SecMon State Machine not in
verification CHECK state at start of ISBC
in primary flow. Some Security
violation could have occurred
or OTPMK is not fused.

Before PBI ERROR_STATE_NOT_CHECK_TRUSTED 0xf1 SecMon State Machine not in
verification CHECK/Trusted state at start of
ISBC in secondary flow.

LLDPUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. L6.1.1_1.0.0_23.08 — 4 August 2023

159 /1053

NXP Semiconductors

LLDPUG

Table 36. ISBC error codes...continued

Layerscape Linux Distribution POC User Guide

When error Error code Value Description

generated

Phase = Verify (Secure boot fatal errors)

Verify PBI ERROR_PBI_COMMANDS_NOT_FOUND 0xf4 Not having PBI commands
in RCW is error scenario for
secure boot

Verify PBI ERROR_SEC_HDR_NOT_FOUND 0xf5 Error if security header
command not found in RCW.
Expected location of Security
Header command
* After Preamble for hard

coded RCW
* After preamble and RCW for
other RCW sources

Phase = Verify (Secure boot fatal (Header parsing errors))

Verify PBI ERROR_HEADER_LOC 0xf8 Header location is invalid

Verify PBI ERROR_HEADER_BARKER 0xf9 Barker code in the header is
incorrect

Verify PBI ERROR_HEADER_INVALID Oxfa Flag BO1 in the header
identifies this as SPL header

Phase = Verify (Secure boot non-fatal (Key/UID related errors))

Verify PBI ERROR_INVALID_SRK_ENTRY_KEYLEN 0x210 Length of public key specified
in one of the entries in
SRK table is not one of the
supported values.

(1k, 2k, or 4k)

Verify PBI ERROR_KEY_LEN_NOT _TWICE_SIG_LEN 0x211 Public key is not twice the
length of the RSA signature

Verify PBI ERROR_ KEY_MOD _1 0x212 Most significant bit of modulus
in header is zero.

Verify PBI ERROR_KEY_MOD_2 0x213 Modulus in header is even
number

Verify PBI ERROR_ SIG_KEY_MOD 0x214 Signature value is greater than
modulus in header

Verify PBI ERROR_ INVALID_SRK_NUM_ENTRY 0x215 Number of entries field in CSF
header is > 8 (This is when
srk_table_flag in header is 1)

Verify PBI ERROR_INVALID_KEY_NUM 0x216 Key number to be used from
SRK table is not present in
table. (This is when srk_table_
flag in header is 1)

Verify PBI ERROR_ KEY_REVOKED 0x217 Key selected from SRK table
has been revoked (This is
when srk_table_flag in header
is 1)

Verify PBI ERROR_FSL_UID 0x220 FSL_UID in ESBC header did
not match the FSL_UID in SFP
if fsl uid flag Is 1

LLDPUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. L6.1.1_1.0.0_23.08 — 4 August 2023

160 /1053

NXP Semiconductors LLDPUG

Layerscape Linux Distribution POC User Guide

Table 36. ISBC error codes...continued

When error Error code Value Description
generated
Verify PBI ERROR_ OEM_UIDO 0x221 OEM_UIDO in ESBC header

did not match the OEM_UIDO
in SFP if OEM UIDO flag is 1.

Verify PBI ERROR_ OEM_UID1 0x222 OEM_UID1 in ESBC header
did not match the OEM_UID1
in SFP if OEM UID1 flag is 1.

Verify PBI ERROR_ OEM_UID2 0x223 OEM_UID1 in ESBC header
did not match the OEM_UID1
in SFP if OEM UID1 flag is 1.

Verify PBI ERROR_ OEM_UID3 0x224 OEM_UID1 in ESBC header
did not match the OEM_UID1
in SFP if OEM UID1 flag is 1.

Verify PBI ERROR_ OEM_UID4 0x225 OEM_UID1 in ESBC header
did not match the OEM_UID1
in SFP if OEM UID1 flag is 1.

Phase = Verify (Header Verification failure) Secure boot non-fatal

Verify PBI ERROR_HASH_COMPARE_KEY 0x240 Super Root Key Hash
Comparison failure. Mismatch
in the hash of the public key/
SRK table as present in the
header with the value in the
SRKH fuse.

Verify PBI ERROR_HASH_COMPARE_EM 0x241 RSA signature check failure.
Signature provided by you in
the header does not match
with the signature of the ESBC
image generated by ISBC.
The ESBC image loaded by
you may be different than the
image used while generating
the signature (using CST)

Phase = Verify (Secure boot fatal (Header parsing errors))

Verify Boot1 ERROR_HEADER_LOC 0x100f8 |Header location is invalid

Verify Boot1 ERROR_HEADER_BARKER 0x100f9 |Barker code in the header is
incorrect.

Verify Boot1 ERROR_HEADER_INVALID 0x100fa |Flag BO1 in the header

identifies this as SPL header.

Phase = Verify (Secure boot fatal (SG table related errors))

Verify Boot1 ERROR_INVALID_SRK_ENTRY_KEYLEN 0x10210 |Length of public key specified
in one of the entries in

SRK table is not one of the
supported values.

(1k, 2k, or 4k)

Verify Boot1 ERROR_ KEY_LEN_ NOT_TWICE_SIG_LEN 0x10211 |Public key is not twice the
length of the RSA signature

LLDPUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. L6.1.1_1.0.0_23.08 — 4 August 2023

161/1053

NXP Semiconductors LLDPUG

Layerscape Linux Distribution POC User Guide

Table 36. ISBC error codes...continued

When error Error code Value Description

generated

Verify Boot1 ERROR_KEY_MOD _1 0x10212 |Most significant bit of modulus
in header is zero

Verify Boot1 ERROR_KEY_MOD_2 0x10213 |Modulus in header is even
number

Verify Boot1 ERROR_ SIG_KEY_MOD 0x10214 |Signature value is greater than
modulus in header

Verify Boot1 ERROR_ INVALID_SRK_NUM_ENTRY 0x10215 |Number of entries field in CSF

header is > 8 (This is when
srk_table_flag in header is 1)

Verify Boot1 ERROR_ INVALID_KEY_NUM 0x10216 |Key number to be used from
SRK table is not present in
table. (This is when srk_table_
flag in header is 1)

Verify Boot1 ERROR_ KEY_REVOKED 0x10217 |Key selected from SRK table
has been revoked (This is
when srk_table_flag in header
is 1)

Verify Boot1 ERROR_ FSL_UID 0x10220 |FSL_UID in ESBC header did
not match the FSL_UID in SFP
if fsl uid flag Is 1

Verify Boot1 ERROR_ OEM_UIDO 0x10221 |OEM_UIDO in ESBC header
did not match the OEM_UIDO
in SFP if OEM UIDO flag is 1.

Verify Boot1 ERROR_ OEM_UID1 0x10222 |OEM_UID1 in ESBC Header
did not match the OEM_UID1
in SFP if OEM UID1 flag is 1.

Verify Boot1 ERROR_ OEM_UID2 0x10223 |OEM_UID1 in ESBC Header
did not match the OEM_UID1
in SFP if OEM UID1 flag is 1.

Verify Boot1 ERROR_ OEM_UID3 0x10224 |OEM_UID1 in ESBC Header
did not match the OEM_UID1
in SFP if OEM UID1 flag is 1.

Verify Boot1 ERROR_ OEM_UID4 0x10225 |OEM_UID1 in ESBC Header
did not match the OEM_UID1
in SFP if OEM UID1 flag is 1.

Phase = Verify (Header Verification failure) Secure boot non-fatal

Verify Boot1 ERROR_HASH_COMPARE_KEY 0x10240 |Super Root Key Hash
Comparison failure. Mismatch
in the hash of the public key/
SRK table as present in the
header with the value in the
SRKH fuse.

Verify Boot1 ERROR_HASH_COMPARE_EM 0x10241 |RSA signature check failure.
Signature provided by you in
the header does not match
with the signature of the ESBC
image generated by ISBC.

LLDPUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. L6.1.1_1.0.0_23.08 — 4 August 2023

162 /1053

NXP Semiconductors LLDPUG

Layerscape Linux Distribution POC User Guide

Table 36. ISBC error codes...continued

When error Error code Value Description
generated

The ESBC image loaded by
you may be different than the
image used while generating
the signature(using CST)

6.1.1.3.3 External Secure Boot Code (ESBC) phase

Unlike ISBC, which is in BootROM and cannot be modified, ESBC can be modified by you. ESBC includes:

* BL2 image which further validates BL31, BL32, and BL33 (U-Boot) images
* U-Boot image which validates the images it loads. For example, Linux, DTB, MC firmware

ESBC can be used as is, as it is provided in the NXP offered secure boot system as part of the Layerscape
LDP. Or, you can use ESBC as reference to modify your secure boot system.

NXP offers two secure boot systems:

* ESBC image validation using NXP CSF headers, also known as NXP CoT for ESBC images
» ESBC image validation using X509 certificates

— Enabled on NXP platform through TF-A

— meets Arm recommended Trusted Board Boot Requirements (TBBR)

— also known as Arm CoT for ESBC images

Note: Arm CoT is supported only for LX2160ARDB and LX2162AQDS platforms.

To establish Secure Boot Chain of Trust, ESBC includes U-Boot commands. The U-Boot commands are
explained in Section 6.2.1.2.

6.1.1.3.3.1 BL2 binary

As explained in the boot flow, BL2 binary which is loaded by BootROM loads three images from a FIP binary:

* BL31 binary
* BL32 binary (OPTEE code)
* BL33 binary (U-Boot/UEFI)

For the secure boot process, the images need to be authenticated before they are loaded.

NXP CoT for ESBC images

BL2 binary contains the ESBC code that is the digital signature validation routine and is responsible for
authenticating the three binaries using the CSF header. The CSF header for the binaries is generated using the
CST and is pre-pended with each of the binaries. The binaries are combined together in a FIP image.

BL2 binary locates the CSF header of each of the binaries to be loaded from FIP. The header is parsed and
image is authenticated. The signature validation process is similar to the one followed in the ISBC flow.

For details about code signing and signature verification process during secure boot, see Section 6.1.1.2.

LLDPUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. L6.1.1_1.0.0_23.08 — 4 August 2023

163 /1053

NXP Semiconductors LLDPUG

Layerscape Linux Distribution POC User Guide

TA 3.x platforms - ESBC CSF header structure definition

Figure 15. CSF header structure (ESBC TA 3.x)

ESBC Phase

Barker Code

SRK Table Offset

Flags + Key Info
UID Flags
RSA Signature Offset

RSA Signature Length

64 bit Image Address Low

64 bit Image Address High

Image Size

Reserved
FUIDO

FUID1
OuIDo
OouID1
OuIb2
OuID3
OuID4

Reserved

Reserved

Reserved

Header Size = 0x50

Table 37. CSF header structure (ESBC TA 3.x)

Offset Description
0x00 Barker code
Fixed value which the ISBC uses to confirm it has located the start of a CSF header. (0x12192001
in big endian)
0x00 — 0x12
0x01 - 0x19
0x02 — 0x20
0x03 — 0x01
It is numeric encoding of LSTA (LS Series Trust Architecture)
0x04 SRK table offset
This field contains an address which is the offset of the SRK table from the start of CSF header.
Using this offset and the number of entries in the SRK Table, the SRK table is read.
0x08 0x08 No. of keys
This field specifies the number of keys in the SRK table.
0x09 Key No. for verification
Key number from the SRK table used by ISBC to verify the image signature.
0Ox0a Reserved
0x0b ISBC key extension flag
0x0C 0x0C Reserved
0x0D Reserved
0Ox0E Reserved
LLDPUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.
User guide Rev. L6.1.1_1.0.0_23.08 — 4 August 2023

164 /1053

NXP Semiconductors LLDPUG

Layerscape Linux Distribution POC User Guide

Table 37. CSF header structure (ESBC TA 3.x)...continued

OxOF OIDx: when set, the corresponding OEM UID field in the SFP is included in the digital signature

verification. For each bit set, the corresponding OUID field is included in the CSF header.
FUID: when set, the 64b FUID is included in the digital signature verification and the FUID is
included in the CSF header
Other bits are reserved.

0x10 RSA signature offset
This field contains an address which is the offset of the RSA signature from the start of CSF
header. Using this offset and the signature length, the RSA signature is read. The RSA signature
is calculated over CSF header, SG table, and ESBC images.

0x14 RSA signature length
This field contains the length of the RSA signature in bytes.

0x18 Image address (64 bit)

0x20 Image size

0x24 Reserved

0x28 FUIDO

0x2c FUID 1

0x30 QuIDO

0x34 OuID1

0x38 ouID2

0x3c OuID3

0x40 oulD4

0x44 Reserved

0x48 Reserved

Ox4c Reserved

Arm CoT for ESBC images
Note: Arm CoT is supported only for LX2160ARDB and LX2162AQDS platforms.

The Trusted Board Boot Requirements (TBBR) process includes multiple stages and uses multiple firmware
images. The process ensures that the Chain of Trust is maintained between the different boot stages using
standard cryptography.

The TBBR process authenticates a series of cryptographically signed binary images. The signatures for each
image are stored in the X.509 certificates. Each image is authenticated by a public key, which is stored in a
signed certificate and can be traced back to the root key stored on the SoC in the OTP memory or BootROM.

Because the images are signed by public key cryptography, the TBBR process can authenticate the images
using the public key stored on the device. The private key used to generate the signature need never be
exposed on the SoC itself.

For details about the signature mechanism via the X.509 certificate , see https://developer.arm.com/docs/
den0006/latest/trusted-board-boot-requirements-client-tbbr-client-armv8-a

The following figure shows the certificate and key relationship as implemented on LX2160A.

LLDPUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. L6.1.1_1.0.0_23.08 — 4 August 2023

165/1053

https://developer.arm.com/docs/den0006/latest/trusted-board-boot-requirements-client-tbbr-client-armv8-a
https://developer.arm.com/docs/den0006/latest/trusted-board-boot-requirements-client-tbbr-client-armv8-a

NXP Semiconductors LLDPUG

Layerscape Linux Distribution POC User Guide

ROT_KEY
[generated and embedded in BL2 binary at compile time)

| |

Trusted Key Certificate
Trusted Firmware NV Counter

[Trusted World Public Key Mon-Trusted World Public Ke
]
L—' Sol: Firmuara Key L Trusted OS Key Certificate L—' DDR FW Key Certificate L Non Trusted World Key
Trusted Fitmusare WY Counter Trusted Firmusre Kl Sourter Trusted Fimsare i Courter N Trusted Fitmuare WY Counter
SoC Public Key Trusted OS Public Key DDR FW Public Key Licoliyst=dio JdlEupteny
Fublic Key
SoC Firmware Content Trusted OS5 Content DDR UDIMM FW Content Mon Trusted World Content
Certificate Certificate Certificate Certificate
Trusted Firmirare NV Counter Trusted Firmivare MY Counter Trusted Firmarare MY Counter Man Trusted Firmiare MY Counter
Hash of SoC Firmuare (BL31 Binary) Hash of Trusted OS (BL32 Binary) Hash of DDR UDIMM IMEM 10 IMG Hash of hon Trusted World Bootioader
Hash of DDF; UDIRR IMER 20 MG (BL32 Binary)

Hazh of DOR UDIMM DMER 10 (MG

Hazh of DOR UDIRM DMER 200 IMG

DDR RDIMM FW Content
Certificate
Trusted Firmweare My Counter

Hazh of DOR ROIMM IMER 10 IMG
Hash of DOR BOIM IMER 20 MG
Hazh of DOR ROIMM DMER 1D MG
Hash of ODR ROIMM DMEM 20 IMG

Figure 16. Certificate and key relationship

The sample implementation provided for LX2160A uses SFP OEMUID3 as Trusted Firmware Non-Volatile (NV)
counter and SFP O0EMUID4 as Non-Trusted Firmware NV counter. Both of these counters support 32 states. In
order to set the counter, the device needs to be enabled for fuse writing. If fuse writing can be enabled in the
software running on your board, board-specific code can be added to the following functions.

void board enable povdd(void);
void board disable povdd(void) ;

For details about enabling POVDD using jumpers and switches, see Section 6.1.1.5.2.1

6.1.1.4 Code Signing Tool

To assist with signing of various images and creation of CSF header, NXP offers a Code Signing Tool (CST).
The CST is a collection of command-line applications. It is expected that the CST signs images in an offline
process.

CST consists of the following tools:

» Key generation
* Header creation
» Signature generation

LLDPUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. L6.1.1_1.0.0_23.08 — 4 August 2023

166 / 1053

NXP Semiconductors LLDPUG

Layerscape Linux Distribution POC User Guide

Key Header Signature
Generation Creation Generation

|

gen_drv_drbg J uni_cfsign]

L. sign_embed
uni_sign

[gen_otpmk_drbg }

Figure 17. Tools in CST package

6.1.1.4.1 Key generation

6.1.1.4.1.1 gen_keys

This utility generates an RSA public and private key pair using the OpenSSL APlIs. The key pair is built from 3
parts; N, E, and D.

* N — Modulus
* E — Encryption exponent
* D — Decryption exponent

Public key - It is a combination of E and N components.

Private key - It is a combination of D and N components.

It is your responsibility to tightly control access to the RSA private signature key. If this key is ever exposed,
attackers will be able to generate alternate images that will pass secure boot. If this key is ever lost, you will be
unable to update the image.

Features:

* Allows you to generate keys with 3 sizes. The key sizes are 1024 bits, 2048 bits, and 4096 bits.
* Generates RSA key pairs in PEM format.
* Generates and stores keys in files. You can provide filenames through command-line option.

LLDPUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. L6.1.1_1.0.0_23.08 — 4 August 2023

167 /1053

NXP Semiconductors LLDPUG

Layerscape Linux Distribution POC User Guide

Command usage:

./genkeys <Key length in bits >

<Key length in bits > can be 1024 or 2048 or 4096.

Table 38. Command options

Option Description
-h,--help Usage of the command
-k,--pubkey File where public key will be stored in PEM format. By default, public key is stored in srk.pub.
-p,--privkey File where private key will be stored in PEM format. By default, private key is stored in srk.priv.
Examples:

$./gen keys 1024

oo m #
fommmmmm o e #

fif==m———= CST (Code Signing Tool) Version 2.0 —-—------ #
f-mmmm s e #
- #

This product includes software developed by the OpenSSL Project
for use in the OpenSSL Toolkit (http://www.openssl.org/)

This product includes cryptographic software written by

Eric Young (eay@cryptsoft.com)

Generated SRK pair stored in
PUBLIC KEY srk.pub
PRIVATE KEY srk.pri

$./gen keys 4096 -k my.pub -p my.pri

oo #
fommmmmm e e o #
#o—————- CST (Code Signing Tool) Version 2.0 —-——----- #
HoOSDOEEe CODDEEEm CODSEREE. ODDDTDE #
- #

This product includes software developed by the OpenSSL Project
for use in the OpenSSL Toolkit (http://www.openssl.org/)

This product includes cryptographic software written by

Eric Young (eay@cryptsoft.com)

Generated SRK pair stored in
PUBLIC KEY my.pub
PRIVATE KEY my.pri

6.1.1.4.1.2 gen_otpmk_drbg

This utility inserts Hamming code in a user-defined 256b hexadecimal string. Alternatively, it generates a 256b
hexadecimal random number and inserts the Hamming code in it, which can be used as an OTPMK value.

Note:

LLDPUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. L6.1.1_1.0.0_23.08 — 4 August 2023

168 /1053

NXP Semiconductors LLDPUG

Layerscape Linux Distribution POC User Guide

For random number generation, Hash_DRBG library is used. The Hash_DRBG is an implementation of the
NIST approved DRBG (Deterministic Random Bit Generator), specified in SP800-90A. The entropy source is
Linux /dev/random.

Features:

* Generates random numbers, which can be used if user-defined string is not provided, to generate OTPMK
value.
* Calculates and embeds the Hamming code in the hexadecimal string.

Command usage:

./gen_otpmk_drbg --b <bit_order> [--s <string>] [--u]

Table 39. Command options

Option Description

--b <bit_order> (1 or 2) OTPMK Bit Ordering Scheme in SFP
* 1: BSC913x, P1010, P3, P4, P5, C29x

* 2:T1,T2, T4, B4, LS1021A, LS1043A, LS1046A, LS1012A, LS1088A, LS2088A,
LX2160A, LS1028A, LX2162A

--s <string> 32 bytes optional string () - Generates OTPMK using <string> as string

--u urand option flag - Generates OTPMK using entropy from /dev/urandom
By default, OTPMK using entropy is generated from /dev/random

--h Help

Examples:

$./gen otpmk drbg --b 1 --s
1111111122222222333333334444444455555555666666667777777788888888

$./gen otpmk drbg -b 1 --u

$./gen otpmk drbg -b 1

$ gen otpmk drbg -b 1

o m o #
fommmmmm o e #

fif==m———= CST (Code Signing Tool) Version 2.0 —-—-—----- #
f-mmmm s e #
- #

Input string not provided
Generating a random string
* Hash DRBG library invoked
* Seed being taken from /dev/urandom
OTPMK[255:0] is:
d2f63a662f69%9alfaadc2406£83eedde7647fbd3c62acd442c67fad2d4cda8b3al
NAME | BITS | VALUE
| |

OTPMKR 0 | 31- 0 | cda8b3a0

OTPMKR 1 | 63- 32 | 67fad2d4

OTPMKR 2 | 95- 64 | 62ac4d42c

OTPMKR 3 | 127- 96 | 647fbd3c

OTPMKR 4 | 159-128 | 83eedde?

OTPMKR 5 | 191-160 | a4c2406f

OTPMKR 6 | 223-192 | 2f69%alfa

LLDPUG Al information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. Al rights reserved.
User guide Rev. L6.1.1_1.0.0_23.08 — 4 August 2023

169 /1053

NXP Semiconductors LLDPUG

Layerscape Linux Distribution POC User Guide

OTPMKR 7 | 255-224 | d2£f63a66

$./gen otpmk drbg -b 2 --s
1111111122222222333333334444444455555555666666667777777788888888

o e S e X D D X A S D X DD DI #
f-mmmm e e #

- CST (Code Signing Tool) Version 2.0 —------- #
fommmmmm e e e #

o m #

OTPMK[255:0] is:
1111111122222222333333334444444455555555666666667777777788888888 NAME | BITS |
VALUE

|

|

OTPMKR 0 | 255-224 | 11111111
OTPMKR 1 | 223-192 | 22222222
OTPMKR 2 | 191-160 | 33333333
OTPMKR 3 | 159-128 | 44444444
OTPMKR 4 | 127- 96 | 55555555
OTPMKR 5 | 95- 64 | 66666666
OTPMKR 6 | 63— 32 | 77777777
OTPMKR 7 | 31- 0 | 88888888

6.1.1.4.1.3 gen_drv_drbg

This utility inserts Hamming code in a user-defined 64b hexadecimal string, or generates a 64b hexadecimal
random number and inserts the Hamming code in it, which can be used as Debug Response value.

Note: For random number generation, an Hash DRBG library is used. The Hash_DRBG is an implementation
of the NIST approved DRBG (Deterministic Random Bit Generator), specified in SP800-90A. The entropy
source is Linux /dev/random.

Features:

* Generates random numbers, which can be used if user-defined string is not provided, to generate Debug
Response value.
* Calculates and embeds the Hamming code in the hexadecimal string.

Command usage:

./gen_drv_drbg <hamming_algo> [string]

Table 40. Command options

Option Description

hamming_algo Platforms:

A1: T10xx, T20xx, T4xxx, P4080rev1, B4xxx

A2: LS1021A, LS1043A, LS1046A, LS1012A, LS1088A, LS2088A, LX2160A, LS1028A,
LX2162A

B: P10xx, P20xx, P30xx, P4080rev2, P4080rev3, P50xx, BSC913x, C29x

string 8 bytes string

In case string is not specified, the utility generates an 8 bytes random number and
embeds Hamming code in it.

Examples:

$./gen drv drbg A2

LLDPUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.
User guide Rev. L6.1.1_1.0.0_23.08 — 4 August 2023

170/1053

NXP Semiconductors LLDPUG

Layerscape Linux Distribution POC User Guide

f-mm e #

- CST (Code Signing Tool) Version 2.0 —-—------ #
fommmmmm e e e #

oo m o #

Input string not provided
Generating a random string
* Hash DRBG library invoked
* Seed being taken from /dev/random
Random Key Genearted is: f4bfc65e16284dbb
DRV[63:0] after Hamming Code is:
f4dbfc65f16294daf
NAME | BITS | VALUE

| |
DRV 0 | 63 - 32 | f4bfc65f
DRV 1 | 31 - 0 | 16294daf

$./gen drv drbg A2 1652afe595631dec

DRV[63:0] after Hamming Code is:
1652afed495631cea
NAME | BITS | VALUE
| |
DRV 0 | 63 - 32 | 1652afed
DRV 1 | 31 - 0 | 95631lcea

6.1.1.4.2 Header creation

6.1.1.4.2.1 uni_pbi

Command usage:

$./uni pbi [options] <input file>

Table 41. Command options

Option Description

options e --verbose: Displays header information after Creation. This option is invalid for TA
2.x platforms

¢ --out <file>: Output file name

* —in <file>: Input RCW file

» --sben: Enables RCW[SB_EN] in the RCW

¢ --hash: Prints the SRK (Public key) hash. This option is invalid for TA 2.x platforms

¢ --img_hash: Generates header without signature
Image hash is stored in a separate file. This option is invalid for TA 2.x platforms

¢ --help: Shows the help for the tool

input_file Contains all information required by the tool
Sample input files are present in the CST tool at location: input files/uni pbi/
<platform>/
LLDPUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.
User guide Rev. L6.1.1_1.0.0_23.08 — 4 August 2023

171/1053

NXP Semiconductors LLDPUG

Layerscape Linux Distribution POC User Guide

Table 41. Command options...continued

Option Description

For example, input files/uni pbi/lsl/input pbi sd secure for TA 2.x and
input files/uni pbi/1s2088 1088/input pbi sd secure for TA 3.x

<input_file> specifies the platform, based on which there are two separate behaviors of the uni_pbi command.
If <input_file> specifies TA 2.x platform, uni_pbi is used:

* To add boot location pointer and set RCW[SB_EN] and RCW[BOOT_HO] value for secure boot

* (optional) To add PBI commands (ACS write commands to add U-Boot spl and its header to OCRAM from
Non-XIP memory).

* (optional) To append images (U-Boot, Boot script, and their headers) to the RCW file.

If <input_file> specifies TA 2.x platform, uni_pbi is used:
* To create signature and header over PBl commands.
See Section 6.1.1.3 for details about TA2.x and TA 3.x platforms.

Table 42. Description of fields in input files for both type of platforms (TA 2.x and TA 3.x)

Field Description Platform supported
PLATFORM The platform for which tool is used TA 2.x and TA 3.x
RCW_PBI_FILENAME Input image file name. The RCW file which is to be modified TA 2.x and TA 3.x
BOOT1_PTR Address of ISBC (Boot1) CSF header TA 2.x and TA 3.x

OUTPUT_RCW_PBI_FILENAME |To identify the platform for which the tool is used. This field is TA 2.x
optional. If not specified, it takes default name

BOOT_SRC Only to be specified in case of SD boot TA 2.x

SB_EN Field to enable or disable secure boot. Set RCW[SB_EN] =1 to | TA 2.x
enable secure boot

BOOT_HO Set TA 2.x

RCW[BOOT_HO] = 1, to put core in hold-off state to fuse key
hash in case of secure boot

COPY_CMD To add ACS write commands to write U-Boot spl and is header |TA 2.x and TA 3.x
to OCRAM. This is an optional field. If not mentioned, the tool
does not add the command

APPEND_IMAGES To append U-Boot, Boot script, and their headers to the newly | TA 2.x and TA 3.x
generated RCW. This is an optional field, if not specified, no
images is appended

KEY_SELECT Key to be used in signature generation from the SRK table TA 3.x
PRI_KEY Private key file name in PEM format. The maximum keys TA 3.x
supported are 8
PUB_KEY Public key file name in PEM format. The maximum keys TA 3.x
supported are 8
FSL_UID_x FSL UID(s) to be populated in the header TA 3.x
OEM_UID_x OEM UID(s) to be populated in the header TA 3.x
OUTPUT_HDR_FILENAME Output file name of the header. An output file name is TA 3.x
generated with RCW commands appended with signed PBI
commands
LLDPUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.
User guide Rev. L6.1.1_1.0.0_23.08 — 4 August 2023

172/1053

NXP Semiconductors

LLDPUG

Layerscape Linux Distribution POC User Guide

Table 42. Description of fields in input files for both type of platforms (TA 2.x and TA 3.x)...continued

Field

Description Platform supported

IMAGE_HASH_FILENAME

Used with '--img_hash' option (Name of file in which image TA 3.x
hash is stored)

RSA_SIGN_FILENAME

Name of the RSA sign file to be used for RSA signature out TA 3.x

MP_FLAG Manufacturing Protection flag TA 3.x
ISS_FLAG Increment Security State flag TA 3.x
LW_FLAG Leave Writeable flag TA 3.x
VERBOSE Specify VERBOSE as 1, if you want to display header TA 3.x

information. This can also be done with "--verbose' option

IE_TABLE_ADDR

64-bit address of |IE table (used for IE key extension feature). TA 3.x
This field is available in <input_files> at location input

files/uni pbi/1s2088 1088/ie keys

Note: In TA 3.x, RCW[SB_EN] and RCW|BOOT_HO] fields are by default set to 1 to enable secure boot.

Sample input file
For details about TA2.x and TA3.x platforms, see Section 6.1.1.3

Sample input file, /cst/input files/uni pbi/lsl/input pbi sd secure, for TA 2.x platforms.

/*
* Copyright 2017 NXP
=)

For PBI Creation
Name of RCW + PBI file [Mandatory]
RCW_PBI_FILENAME= u-boot-with-spl-pbl.bin

Specify the output file name [Optional].
Default Values chosen in Tool
OUTPUTiRcwiPBIiFILENAME=u—boot—with—spl—pbl—sec.bin

#Specify the boot src

BOOT_ SRC=SD_BOOT

Specify the platform

PLATFORM=LS1020

Specify the RCW Fields. (0 or 1) - [Optional]
SB_EN=1

BOOT_ HO=1

BOOTl_PTR:10016000

Specify the PBI commands - [Optional]

Argument: COPY CMD = (src offset, dest offset, Image name)
Split hdr uboot spl.out in PBI commads

COPY CMD={ffffffff,10016000,hdr uboot spl.out;}

Specify the Images to be appended

Arguments: APPEND IMAGES=(Image name, Offset from start)
APPEND IMAGES={u-boot-dtb.bin, 0001D000; }

APPEND IMAGES={hdr uboot.out,0011D000; }

LLDPUG All information provided in this document is subject to legal disclaimers.

© 2023 NXP B.V. All rights reserved.

User guide Rev. L6.1.1_1.0.0_23.08 — 4 August 2023

173 /1053

NXP Semiconductors LLDPUG

Layerscape Linux Distribution POC User Guide

Sample input file, /cst/input files/uni pbi/1s2088 1088/input pbi sd secure, for TA 3.x
platforms.

/* Copyright (c) 2015 Freescale Semiconductor, Inc.
* Copyright 2017 NXP
s

Specify the platform. [Mandatory]
Choose Platform -

TRUST 3.0: LS2085

TRUST 3.1: LS2088, LS1088
LATFORM=LS2088

O e e o e

Specify the Key Information.

PUB KEY [Mandatory] Comma Seperated List

Usage: <srkl.pub> <srk2.pub>

PUB_KEY=srk.pub

KEY SELECT [Mandatory]

USAGE (for TRUST 3.x): (between 1 to 8)

KEY SELECT=1

PRI_KEY [Mandatory] Single Key Used for Signing

USAGE: <srk.pri>

PRI KEY=srk.pri

For PBI Signing

Name of RCW + PBI file [Mandatory]
RCW_PBI_FILENAME:rCW.bin

Address of ISBC (Bootl) CSF Header [Mandatory]

BOOT1 PTR=1801£000

Specify OEM AND FSL ID to be populated in header. [Optional]
e.g FSL UID 0=11111111

FSL_UID 0=

FSL UID 1=

OEM UID 0=

OEM UID 1=

OEM UID 2=

OEM UID 3=

OEM UID 4=

Specify the output file names [Optional].

Default Values chosen in Tool

OUTPUT HDR FILENAME=rcw_sec.bin

IMAGE HASH FILENAME=

RSA SIGN FILENAME=

Specify The Flags. (0 or 1) - [Optional]

MP_FLAG=0

ISS_FLAG=1

LW_FLAG=0

Specify VERBOSE as 1, if you want to Display Header Information [Optional]
VERBOSE=1

#Block copy commands to write uboot-spl and its header to OCRAM
COPY CMD={00080000,1801£000, hdr uboot spl.out}

Specify the Images to be appended

Arguments: APPEND IMAGES=(Image name, Offset from start)
APPEND IMAGES={hdr uboot spl.out,0007£000; }

LLDPUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. L6.1.1_1.0.0_23.08 — 4 August 2023

174 /1053

NXP Semiconductors LLDPUG

Layerscape Linux Distribution POC User Guide

APPEND IMAGES={u-boot-spl.bin, 000££000; }
APPEND IMAGES={u-boot-dtb.bin,00115000; }
APPEND IMAGES={hdr uboot.out,00215000; }

6.1.1.4.2.2 uni_sign

uni_sign tool can be used for the following functions:

* CSF header generation along with signature for both ISBC and ESBC phases

* CSF header generation without signature if private key is not provided

* uni_sign tool (with ESBC = 0 in input file) is used for creating signature and header over Boot1 image to be
verified by ISBC

* uni_sign tool (with ESBC = 1 in input file) is used for creating signature and header over images to be verified
by ESBC

Command usage:

./uni sign [options] <input file>

Table 43. Command options

Option Description

--verbose Displays header information after creation

--hash Prints the SRK(Public key) hash

--img_hash Header is generated without signature. Image hash is stored in a separate file

--out <file> Header filename

--in <file> Input file for signature calculation. This option would override the filename in IMAGE_1 in input_file,
if present

--app <file> File to be appended to the header

--app_off <offset> Offset at which file will be appended to the header

--help Displays the help for tool usage

Usage example:

./uni sign --in <inp file> --out <op file> --app off <offset> --app <file>
<input file>

Note: There are scenarios when a build script using the tool needs to modify the input filename or the output
header filename. These command-line options provide a way to override the values as specified in the input file.

Table 44. Description of fields
Field Field description Platform supported

PLATFORM To identify the platform/SoC for which CF header All
needs to be created.

ESBC Do not set this flag when code signing is being All
performed on the image directly verified by the ISBC.
For later images in the chain of trust, set this flag.

ENTRY_POINT Entry point address or Image start address field in All

the header.
LLDPUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.
User guide Rev. L6.1.1_1.0.0_23.08 — 4 August 2023

175/1053

NXP Semiconductors LLDPUG

Layerscape Linux Distribution POC User Guide

Table 44. Description of fields...continued

Field Field description Platform supported

PRI_KEY Private key filename to be used for signing the All
image. (File has to be in PEM format) (default =
srk.pri generated by gen_keys command) FILE1
[,FILE2, FILE3, FILE4]. Multiple key support for TA
2.x platforms only.

PUB_KEY Public key filename in PEM format. (default = srk.pub [All
generated by gen_keys) FILE1 [,FILE2, FILE3,
FILE4]. Multiple key support for TA 2.x platforms
only.

KEY_SELECT Specify the key to be used in signature generation All
when more than one key has been given as input.
(Default=1, first key will be selected)

IMAGE_1 - IMAGE_8 Create Entries for SG table in the format { IMAGE_ | All
NAME, SRC_ADDR, DST_ADDR }

OEM_UID_x OEM UID to be populated in the header. All

FSL_UID_x FSL UID to be populated in the header. All

HK_AREA_POINTER House Keeping Area Starting Pointer required by TA 2.x

Sec (Required for TA 2.x platforms only when esbc
option is not provided)

HKAREA_SIZE House Keeping Area Size (Required for TA 2.x TA 2.x
platforms only when esbc option is not provided)
OUTPUT_HDR_FILENAME Name of the combined header binary to be created |All
by tool
SG_TABLE_ADDR Specify SG_TABLE Address where SG table is TA 2.x
present for 2041/3041/4080/5020/5040 when
ESBC=0.
OUTPUT_SG_BIN Specify the output filename of the SG table. TA 2.x
IMAGE_TARGET Specify the target where image will be loaded. For TA 2.x

example,NOR_8B/NOR_16B/NAND_8B_512/NAN
D_8B_2K/NAND_8B_4K/ NAND_16B_512/NAND_
16B_2K/NAND_16B_4K/SD/MMC/SPI

SIGN_SIZE Signature length TA 2.x
INPUT_SIGN_FILENAME Name of the signature file to be used for signature TA 2.x
out
HASH_FILENAME Name of the hash file to be used of hash out TA 2.x and TA 3.x
RSA_SIGN_FILENAME Name of the RSA sign file to be used for RSA TA 3.x
signature out.
SEC_IMAGE Flag for Secondary Image. Required for TA 2.x TA 2.x
platforms only
MP_FLAG Specify Manufacturing Protection flag. Available for | All, only needed in ISBC
LS1 only. phase
VERBOSE Specify Verbose option. Contents of header All
generated will be printed.
IMAGE_HASH_FILENAME used with '--img_hash' option (Name of file in which | TA 3.x

Image Hash is stored)

LLDPUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. L6.1.1_1.0.0_23.08 — 4 August 2023

176 /1053

NXP Semiconductors

LLDPUG

Table 44. Description of fields...continued

Layerscape Linux Distribution POC User Guide

Field

Field description

Platform supported

ISS_FLAG Increment Security State Flag TA 3.x, only needed in
ISBC phase
LW_FLAG Leave Writeable Flag TA 3.x, only needed in

ISBC phase

ESBC_HDRADDR

32-bit address where header generated will be
placed. Used to calculate IE Key table address

TA 3.x, only to be
used in case of |IE key
extension feature usage

IE_KEY Comma-separated list of files containing public TA 3.x, only to be
keys(IE Keys) used in case of |IE key
extension feature usage
IE_REVOC Comma-separated list of numbers that are to be TA 3.x, only to be
revoked from IE table used in case of |IE key
extension feature usage
IE_KEY_SEL No. of keys in |E table that is to be used to validate | TA 3.x, only to be

image

used in case of |IE key
extension feature usage

Sample input file, input_bootscript secure, is present in the CST tool at location: input files/

uni_sign/<platform>/

See Section 6.1.1.3 for details about TA2.x and TA 3.x platforms.

Sample input file

Input file /proj/idcapps/usr/swatig/cst/input files/uni sign/1s2088 1088/input

bootscript secure

/* Copyright (c) 2015 Frees
* Copyright 2017 NXP

Choose Platform -

TRUST 3.0: LS2085

TRUST 3.1: LS2088, LS1088
LATFORM=LS2088

O e e o e

cale Semiconductor, Inc.

Specify the platform. [Mandatory]

Specify the Key Information.

PUB KEY [Mandatory] Comma

Seperated List

Usage: <srkl.pub> <srk2.pub>

PUB KEY=srk.pub

KEY SELECT [Mandatory]

USAGE (for TRUST 3.x): (b
KEY_SELECTZl

PRI_KEY [Mandatory] Singl
USAGE: <srk.pri>

PRI KEY=srk.pri

Specify the IMAGE Informa

etween 1 to 8)

e Key Used for Signing

tion [Mandatory]

USAGE : IMAGE NO = {IMAGE NAME, SRC_ADDR, DST ADDR}

Address can be 64 bit
IMAGE 1={bootscript,8000000

LLDPUG

0, ffffffff}

All information provided in this document is subject to legal disclaimers.

© 2023 NXP B.V. All rights reserved.

User guide

Rev. L6.1.1_1.0.0_23.08 — 4 August 2023

177 /1053

NXP Semiconductors LLDPUG

Layerscape Linux Distribution POC User Guide

Specify OEM AND FSL ID to be populated in header. [Optional]
e.g FSL UID 0=11111111

FSL_UID 0=

FSL UID 1=

OEM UID 0=

OEM UID 1=

OEM UID 2=

OEM UID 3=

OEM UID 4=

Specify the output file names [Optional].

Default Values chosen in Tool
OUTPUT_HDR_FILENAME=hdr_bS.Out

IMAGE HASH FILENAME=

RSA SIGN FILENAME=

Specify The Flags. (0 or 1) - [Optional]

MP_FLAG=0

ISS_FLAG=1

LW_FLAG=0

Specify VERBOSE as 1, if you want to Display Header Information [Optional]
VERBOSE=1

6.1.1.4.3 Signature generation

The tools in this category are provided in case the user does not want to share the private key with CST. The
--img_hash option in Section 6.1.1.4.2 tools provides ability to perform code signing in a secure environment,
which does not run CST.

--img_hash option

* Generates hash file in binary format which contains SHA-256 hash of the components required for signature.

* Generates output header binary file based on the fields specified in input file.

* Output header binary file does not contain signature.

* Provides flexibility to manually append signature at the end of output header file. Users can use their own
custom tool to generate the signature. The signature offset chosen in the header is such that the signature
can be appended at the end of the header file.

» This option does not require private key to be provided. But the corresponding public key from the public/
private key pair must be provided to calculate correct SHA-256 hash.

* The SHA-256 hash generated over CF header (in case of TA1.x platforms)) is then signed using RSA
algorithm (OpenSSL APIs) with the private key. This encrypted hash is known as digital signature. This
signature is placed at an offset from the CF header, which is later read by IBR.

* The SHA-256 hash generated over the CSF header, the public Key, the SG table, and the ESBC are also
signed using RSA algorithm with the same private key. The signature generated is placed at an offset from the
CSF header, which is again later read by IBR.

LLDPUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. L6.1.1_1.0.0_23.08 — 4 August 2023

178 /1053

NXP Semiconductors LLDPUG

Layerscape Linux Distribution POC User Guide

CF Header Public Key C5F Header Public key 5G Table ESBCImagels)
S -
\C ~ -
SHAZ256
SHA 256 l v
Hash Private Key

Hash Private Key \ /

\= -/ RV
\/"
RSA l
A 4
ESBC Signature

CF Header Signature

Figure 18. Dual signature generation

Usage example:

./uni sign --img hash --verbose input files/uni sign/1s2088 1088/
input kernel secure

- #
fommmmmm e e il
- CST (Code Signing Tool) Version 2.0 —-—------ #
fommmmmm e e o #
e e e e e e e e e e e e e #

This tool includes software developed by OpenSSL Project
for use in the OpenSSL Toolkit (http://www.openssl.org/)
This product includes cryptographic software written by
Eric Young (eay@cryptsoft.com)

Input File is input files/uni sign/1s2088 1088/input kernel secure version
numberl

- SRK Information

= SRK Offset : 200

= Number of Keys : 1

= Key Select : 1

= Key List

= Keyl srk.pub(100)

- UID Information

= UID Flags = 00

= FSL UID = 00000000 00000000
= OEM UIDO = 00000000

= OEM UID1 = 00000000
- OEM UID2 = 00000000
= OEM UID3 = 00000000

= OEM UID4 = 00000000

- FLAGS Information

= MISC Flags = 00

- Image Information

- kernel.itb (Size = 00500000 SRC = 00000000 _a0000000)
- RSA Signature Information

= RSA Offset : 800

= RSA Size : 80

LLDPUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. L6.1.1_1.0.0_23.08 — 4 August 2023
1791053

NXP Semiconductors LLDPUG

Layerscape Linux Distribution POC User Guide

Image Hash:
094e71bd9072bfd%fe9166203c0239cdal0890f6b68503bba7blef82cfd4l24ef
R I e b b b b b Sb b b b b b b b (db db db b b b b b b b db b b I b b b b (db db d i b b b b (ab (db db b
* Image Hash Stored in File: hash.out
* Header File is w/o Signature appended
PR I b I I b b I b e e I I b b b b b b e I b b b b b b e b I b b b b I I I b b b b b a4
Header File Created: hdr kernel.out
SRK (Public Key) Hash:
670372e9808a60f372ee1530£f19e4b373e89749742c6££8740e89457538aebeb
SFP SRKHRO = 67b37ae9
SFP SRKHR1 = 808a60f3
SFP SRKHR2 = 72eel530
SFP SRKHR3 = f19e4b37
SFP SRKHR4 = 3e897497
SFP SRKHR5 = 42c6ff87
SFP SRKHRG6 40e89457
SFP SRKHR7 = 538aebeb

The tools are provided to create the signature file and embed the signature at the end of header file.

6.1.1.4.3.1 gen_sign

This utility is provided for the user to calculate signature for a given hash using CST. The tool requires only the
hash file and the private key file as input. It generates signature file as output.

It uses RSA_sign API of OpenSSL to calculate signature over hash provided.
Command usage
./gen_sign [option] <HASH_FILE> <PRIV_KEY_FILE>

Table 45. Command options
Option Description

[option] --sign_file SIGN_FILE: Provides filename for signature to be generated as operand.
SIGN_FILE is generated containing signature calculated over hash provided through
HASH_FILE using private key provided through PRIV_KEY_FILE. With this option,
HASH_FILE and PRIV_KEY_FILE are compulsory while SIGN_FILE is optional. The
default value of SIGN_FILE is sign.out

HASH_FILE Name of the hash file containing hash over signature needs to be calculated

PRIV_KEY_FILE Name of key file containing private key

Usage example:

After the hash file has been created as described in Section 6.1.1.4.3, the tool can be used as described below.

$./uni sign --img hash --verbose input files/uni sign/1s2088 1088/
input kernel secure

R SR R S I b b Sb b S S b S S I S S S S S b S SR R S b S b e S b I Sb b S db b S S b S i

* Image Hash Stored in File: hash.out

* Header File is w/o Signature appended
khkhkhkhkkhkhAhkhkhkhrhkhkhAhhkkhkhrhkhkhkhrhkkhkhrhkhkhkhrhkkhkhhkhkkhkrhkkhhhkhkhxkhkkx*xk

Header File Created: hdr kernel.out
$./gen_sign hash.out srk.pri

LLDPUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. L6.1.1_1.0.0_23.08 — 4 August 2023

180 /1053

NXP Semiconductors LLDPUG

Layerscape Linux Distribution POC User Guide

t--—-—------——"—"-——————— #
- == ———————— ——————= #
-—————- CST (Code Signing Tool) Version 2.0 ------- #
- === ———————— ——————e #
Fomm #

Signature Length = 80
Hash in hash.out is signed with srk.pri
Signature is stored in file : sign.out

6.1.1.4.3.2 sign_embed

This tool embeds signature in the header file generated using img_hash option. The img_hash option generates
header but does not embed signature in the header. sign_embed opens the header file and copies the signature
at the end of the file.

The header file generated with the img_hash option has padding added till signature offset, so that the signature
can be directly embedded at the end of the file.

Command usage

Jsign_embed <hdr_file> <sign_file>

Table 46. Command options

Option Description
hdr_file Name of header file in which signature needs to be embedded
sign_file Name of sign file containing signature which needs to be embedded

Usage example:

$./sign _embed hdr kernel.out sign.out

- #
- = === —————— #
o CST (Code Signing Tool) Version 2.0 —------- #
e i ntn e bbbt #
o #

hdr kernel.out is appended with file sign.out (0x80)

Note: You can generate the complete header along with signature in single step using the uni_sign/uni_pbi tool
without any option.

Juni_sign <input_file>
Or
You can perform three separate steps:

1. ./uni_sign --img_hash <input_file> (Creates header file without signature and stores the hash in a separate
file)

2. ./gen_sign2 [option] <HASH_FILE> <PRIV_KEY_FILE> (Signs the image hash using private key)

3. ./sign_embed <hdr_file> <sign_file> (Embeds the signature at the end of the header file)

6.1.1.5 Procedure to run secure boot

This section describes the steps to run secure boot on the NXP Layerscape family SOC-based boards:

2 This may be done by your own tool in case you do not want to share the private key with the CST tool.

LLDPUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. L6.1.1_1.0.0_23.08 — 4 August 2023

181/1053

NXP Semiconductors LLDPUG

Layerscape Linux Distribution POC User Guide

1. Prepare board for secure boot:
a. Enable POVDD
b. Program OTPMK
c. Program SRK
2. Build the secure boot images for NXP CoT and Arm CoT manually using TF-A.
3. Program secure boot images for NXP CoT and Arm CoT
4. Steps to run chain of trust with confidentiality

6.1.1.5.1 Secure boot execution flow

You can execute Secure boot flow on a board using either of the following methods:

* Chain of Trust
* Chain of Trust with confidentiality

For details:

¢ About TA 2.x chain of trust, see Section 6.1.1.3.1.
e About TA 3.x chain of trust, see Section 6.1.1.3.2.

6.1.1.5.1.1 Secure boot execution flow for Chain of Trust

To run secure boot via Chain of Trust:

1. Setup the board based on whether you want to run secure boot in Development phase or Production phase.

a. Production phase - Set the ITS bit in SFP to ensure that the system operates in secure and trusted
manner. Once the SFP ITS fuse is blown, it cannot be changed.

Note: For details, see "Chapter 8 Trusted Manufacturing Process" in QorlQ Trust Architecture 3.0 User
Guide or "Section 5.5 Trusted Manufacturing Process" in QorlQ Trust Architecture 2.1 User Guide.
b. Development phase - Do not blow the ITS fuse, set RCW[SB_EN] = 1 to enable secure boot.
2. Blow other required fuses (OTPMK and SRKH) in SFP. For details, see Section 6.1.1.5.2.3 and

Section 6.1.1.5.2.4. Blowing of OTPMK is essential to run secure boot for both Production and Development

phases.

Note: SRK hash in the fuse should be same as the hash of the key pair being used to sign the PBl and U-

Boot images. For testing purpose, the SRK hash can be written in the mirror registers. gen _otpmk drbg

utility in CST can be used to generate the OTPMK key.

3. Program secure boot images. For details, see Section 6.1.1.5.4

a. Production phase — Program secure boot images at the default bank addresses.

b. Development phase — For demo purpose, you can program the alternate bank addresses from the
default bank and then switch to the alternate bank.

4. Power on the board.

a. If secure boot images are flashed on default bank (for Production/Development phase) - On power-on,
ISBC code gets control and validates the ESBC image. ESBC image further validates the signed Linux,
rootfs, and dtb images. The board boots to Linux.

b. If secure boot images are flashed on alternate bank (for Development phase) - On power-on, the board
boots from default bank. When you switch to alternate bank, ISBC code gets control and validates the
ESBC image. ESBC image further validates the signed Linux, rootfs, and dtb images. The board boots
to Linux.

6.1.1.5.1.2 Secure boot execution flow for Chain of Trust with confidentiality

To run secure boot using Chain of Trust with confidentiality, perform the following steps:

LLDPUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. L6.1.1_1.0.0_23.08 — 4 August 2023

182/1053

NXP Semiconductors LLDPUG

Layerscape Linux Distribution POC User Guide

1. Setup the board based on whether you want to run secure boot in the Development phase or Production
phase.
* Production phase: To ensure that the system operates in secure and trusted manner, set the ITS bit in
SFP. After the SFP ITS fuse is blown, it cannot be changed.
Note: For details, see "Chapter 8 Trusted Manufacturing Process" in QorlQ Trust 3.0 User Guide or
"Section 5.5 Trusted Manufacturing Process" in QorlQ Trust Architecture 2.1 User Guide.
* Development phase: Do not blow the ITS fuse, set RCW[SB_EN] = 1 to enable secure boot.
2. Blow other required fuses (OTPMK and SRKH) in SFP. For details, see Section 6.1.1.5.2.3 and
Section 6.1.1.5.2.4. Blowing of OTPMK is essential to run secure boot for both Production and Development
phases.
Note: SRK hash in the fuse should be same as the hash of the key pair being used to sign the PBl and U-
Boot images. For testing purpose, the SRK hash can be written in the mirror registers. gen _otpmk drbg
utility in CST can be used to generate the OTPMK key.
3. Program secure boot images. For details, see Section 6.1.1.5.4
* Production phase: Program secure boot images at the default bank addresses.
* Development phase: For demo purpose, you can program the alternate bank addresses from the default
bank and then switch to the alternate bank.
4. Power on the board.
Note: For details about blob enc command, see Section 6.2.1.2.3. For details about blob dec command,
see Section 6.2.1.2.4. For details about encap and decap bootscripts, see Section 6.2.1.2.5.2
a. If secure boot images are flashed on default bank (for Production/Development phase) -
* On power-on, the ISBC code gets control and validates the ESBC image. The ESBC image further
validates the signed Linux, rootfs, and dtb images. The board boots to Linux.
* First boot: Encapsulation step
Note: This step is performed in the OEM(s) premise.
i. By default, the encap and decap bootscripts are installed in the boot partition.
ii. When the board boots up for the first time after all images have been generated, encap bootscript
executes.
This bootscript:
i. Authenticates and encapsulates Linux and dtb images and replaces the unencrypted Linux
and dtb images with newly encapsulated Linux and dtb.

Bloblflcatlon

e

LLDPUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. L6.1.1_1.0.0_23.08 — 4 August 2023

183 /1053

NXP Semiconductors LLDPUG

Layerscape Linux Distribution POC User Guide

ii. Replaces the encap bootscript and header with the decap bootscript and its header, already
present in the boot partition.
iii. Issues reset.

» Subsequent boot:
i. U-Boot would execute script with decap commands

i. Un-blobify Linux and dtb image in DDR.
ii. Pass control to these images.

deblobification
b. If secure boot images are flashed on alternate bank (for Development phase) - On power-on, the board
boots from default bank. When you switch to alternate bank, the secure boot flow as mentioned above

would execute.

6.1.1.5.2 Prepare board for Secure boot
To prepare a board for secure boot, you must perform the following steps:

1. Enable POVDD.
2. Blow fuses by using any of the following options:
¢ Program SFP registers:
a. Program OTPMK.
b. Program SRKH in production environment using one of the following options:
— Section "Program SRKH mirror registers in U-Boot environment"
— Section "Program SRKH mirror registers in CodeWarrior environment"

Table 47. SFP registers
OTPMKRO0..OTPMKR? SRKHRO0..SRKHR7
0x1e80234..0x1e80250 0x1e80254..0x1e80270

* Build and deploy fuse provisioning image on the board.
This method is useful if you need to blow fuses on multiple boards.

3. Disable POVDD.
You must remove the jumpers that you have set in Section 6.1.1.5.2.1.

All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. L6.1.1_1.0.0_23.08 — 4 August 2023
184 /1053

LLDPUG

NXP Semiconductors LLDPUG

Layerscape Linux Distribution POC User Guide

6.1.1.5.2.1 Enable POVDD

To enable POVDD for different Layerscape platforms, perform the following steps:

1. TWR-LS1021A:
* Put J11 to enable SNVS in check state
* POVDD (J8 and J9)
2. LS1043ARDB:
e Put J13 to enable PWR_PROG_SFP
3. LS1012ARDB:
* Through 12C transactions, write to LDO1CT register to change LDO1EN bit in vr5100
* i2c mw 0x08 Ox6c 0x10
4. FRWY-LS1012A:
e Put J37 to enable PROG_SFP
e Through 12C transactions, write to LDO1CT register to change LDO1EN bit in vr5100
* i2c mw 0x08 Ox6c 0x10
5. LS1046ARDB:
e Put J21 to enable PWR_PROG_SFP
6. LS2088ARDB:
e Put J12 to enable PWR_PROG_SFP
7. LS1088ARDB:
e Put J10 to enable PWR_PROG_SFP
8. LX2160ARDB:
e Put J9 to enable PROG_SFP
9. LX2162AQDS:
e Put J35 to enable PROG_SFP
e Set SW9[4] =1
* LED to verify - D15

6.1.1.5.2.2 Byte swap for reading and writing SRKH/OTPMK

SRKH and OTPMK should be carefully written keeping in mind the SFP Block Endianness. If SRKH and
OTPMK are written using Core, then swap SRKH and OTPMK. However, if SRKH and OTPMK are written using
DAP or SFP, swap is not required. Refer the following table for details.

Console SRKH/OTPMK SRKH/OTPMK write |SRKH/OTPMK Read |Endianness
generated order from |order order
CST
U-Boot order_1 reverse order_1 reverse order_1 Core endianness
CCS order_1 order_1 order_1 SFP endianness (DAP)
For example:

Assuming following SRKH values are generated:

SRK (Public Key) Hash:
fdc2fed4317£569e1828425ce87b5cfd34beab8fdf792a702dff85e132a29687
SFP SRKHRO = fdc2fed4

SFP SRKHR1 = 317£f569e

SFP SRKHR2 = 1828425c

SFP SRKHR3 = e87b5cfd

SFP SRKHR4 = 34beab8f
LLDPUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.
User guide Rev. L6.1.1_1.0.0_23.08 — 4 August 2023

185/1053

NXP Semiconductors

LLDPUG

SFP SRKHR5 = df792a70
SFP SRKHR6 = 2dff85el
SFP SRKHR7 = 32a29687

Layerscape Linux Distribution POC User Guide

To permanently write SRKH using DAP/SFP, execute following commands at the CCS console :

ccs::write mem 32 0x1e80254 4 0 Oxfdc2fed4
ccs::write mem 32 0x1e80258 4 0 0x317£569e
ccs::write mem 32 0x1e8025c 4 0 0x1828425c
ccs::write mem 32 0x1e80260 4 0 Oxe87bS5cfd
ccs::write mem 32 0x1e80264 4 0 Ox34beab8f
ccs::write mem 32 0x1e80268 4 0 0xdf792a70
ccs::write mem 32 0xle8026c 4 0 0x2dff85el
ccs::write mem 32 0x1e80270 4 0 0x32a29687

To permanently write SRKH using core, execute the following commands at the U-Boot console:

mw.l 0x1e80254 Oxd4fec2fd
mw.l 0x1e80258 0x9e567f31
mw.l 0x1e8025c 0x5c422818
mw.l 0x1e80260 Oxfd5c7be8
mw.l 0x1e80264 Ox8fabbe34
mw.l 0x1e80268 0x702a79df
mw.l 0Ox1e8026c 0xel85ff2d
mw.l 0x1e80270 0x8796a232
mw.l 0x1e80020 0x2

6.1.1.5.2.3 Program OTPMK

After enabling POVDD, follow these steps to program OTPMK at U-Boot:
1. Verify the SNVS register - HPSR to check whether OTPMK is fused already.

=> md $SNVS_HPSR_REG
88000900

Note: LX2162AQDS doesn’t support reading register via U-Boot (using the md command). To verify SNVS
register status for LX2162AQDS, access register 0x1e90014 via CCS command.

OTPMK_ZERO_BIT (second nibble) is 1, indicating that OTPMK is not fused.

In case itis read as 00000000, make sure that core is running in secure mode, and then read this register
using JTAG (in development mode only through CWTAP).

. Fuse OTPMK, if not fused already.
a. Generate OTPMK.

i. cd cst

ii. ./gen otpmk drbg -b 2

. Fuse OTPMK.

=> mw.l SOTPMKRO <OTMPKR 0 32Bit val> => mw.l SOTPMKR1 <OTMPKR 1 32Bit val>

=> mw.l S$OTPMKR2 <OTMPKR 2 32Bit val> => mw.l SOTPMKR3 <OTMPKR 3 32Bit val>
=> mw.l S$OTPMKR4 <OTMPKR 4 32Bit val> => mw.l SOTPMKR5 <OTMPKR 5 32Bit val>
=> mw.l SOTPMKR6 <OTMPKR 6 32Bit val> => mw.l SOTPMKR7 <OTMPKR 7 32Bit val>

4. At the U-Boot prompt, verify that the SNVS registers for OTPMK are correctly written.

a. Check if OPTMK is fused.

=> md $SNVS HPSR REG
80000900

LLDPUG

All information provided in this document is subject to legal disclaimers.

© 2023 NXP B.V. All rights reserved.

User guide

Rev. L6.1.1_1.0.0_23.08 — 4 August 2023

186 /1053

NXP Semiconductors

LLDPUG

b.

Layerscape Linux Distribution POC User Guide

OTPMK_ZERO_BIT (second nibble) is 0, indicating that OTPMK is fused.
In case it is read as 00000000, then read this register using JTAG (in development mode only through
CWTAP).
Read OTPMK.
=> md $OTPMKRO 0x10

01e80234: ffffffff ffffffff fEffffff fEFELFfFF
01e80244: ffffffff ffffffff ffffffff fEffffff

Note: OTPMK is not visible in plain.

6.1.1.5.2.4 Program SRKH mirror registers

Program SRKH mirror registers in CodeWarrior environment

To successfully execute any of the sequences described below on any TA 3.x platform, it is important to
reconfigure the target boards first so that a reset request from the SoC (HRESET_REQ) will not automatically
result in an SoC reset triggered by board logic like a CPLD. The NXP reference boards for TA 3.x platforms
have jumpers or DIP switches to disable the automatic HRESET _REQ handling and can put the board into

a Reset Sequence Pause (RSP). While some examples are given, details can be found in the board-specific
documentation on how to enable RSP behavior.

1. Platforms LS1021A, LS1012A, LS1043A, LS1046A (TA 2.x)

a.

b.

After copying images to flash, select the boot source by changing the switch settings, then boot the
board.

When the bitbake command is executed with -s option, the command uses secure RCW, with
RCW[BOOT_HOQ] = 1 and RCW[SB_EN]=1, for building images.

After booting the board, core would stop at its first instruction. This is done to allow the user to write
SRKH in the register. When using pre-built images, use the SRKH present in srk_hash.txt from GitHub.
If SRKH fuse is already blown, then set RCW[BOOT_HO] = 0 in RCW file in bitbake, else write the
SRKH value (displayed while signing images) in SFP mirror registers and then release the core out of
boot hold off by writing to Boot Release Register in DCFG using the below commands:

ccs::config server 0 10000

ccs::config chain {<platform> dap sap2}

display ccs::get config chain

Check Initial SNVS State and Value in SCRATCH Registers
ccs::display mem <dap position> 0x1e90014 4 0 4
ccs::display mem <dap position> 0x1ee0200 4 0 4

#Write the SRK Hash Value in Mirror Registers

ccs::write mem <dap position> 0x1e80254 4 0 <SRKHO>
ccs::write mem <dap position> 0x1e80258 4 0 <SRKHI1>
ccs::write mem <dap position> 0x1e8025c 4 0 <SRKH2>
ccs::write mem <dap position> 0x1e80260 4 0 <SRKH3>
ccs::write mem <dap position> 0x1e80264 4 0 <SRKH4>
ccs::write mem <dap position> 0x1e80268 4 0 <SRKH5>
ccs::write mem <dap position> 0x1e8026c 4 0 <SRKH6>
ccs::write mem <dap position> 0x1e80270 4 0 <SRKH7>
#Get the Core Out of Boot Hold-Off

ccs::write mem <dap position> Oxlee00e4 4 0 0x00000001

Note:

 <platform> in the above commands to be used is in lowercase, Is1043a for Is1043a, Is1046a, and
Is1012a.

* TWR-LS1021A board uses config command as ccs::config_chain {Is1020a dap {8 1} }
2. Platforms LS1088A, LS2088A (TA 3.x)

LLDPUG

All information provided in this document is subject to legal disclaimers.

© 2023 NXP B.V. All rights reserved.

User guide

Rev. L6.1.1_1.0.0_23.08 — 4 August 2023

187 /1053

NXP Semiconductors

LLDPUG

Layerscape Linux Distribution POC User Guide

In these platforms, key hash is written into registers by putting the core into RSP, after this, connect to the
board and blow SRKH using CCS. When using pre-built images, use the SRKH present in srk_hash.txt from
GitHub.
If running in production environment (refer the note below for more information), i.e if the SRKH fuses are
already blown, then no need to put the SoC into RSP, just change the bank/boot-source and boot, else
follow the steps below:
a. Steps to put SoC in RSP (Reset Sequence Pause)
i. LS2088A:
Rev1 RDB Board Switch (Rev B): SW3[8] — 0.
Switch (Rev C to Rev F): SW4[8] - 0.
To boot from vbank4, change SW9[3:5] to 100.
ii. LS1088A: U-Boot command to put SoC in RSP:

sd secure boot: i2c mw 66 60 20;i2c mw 66 66 7f;i2c mw 66 10 10;i2c mw
66 10 21
gspi secureboot

mw 66 10 21

i2c mw 66 50 20 ;i2c mw 66 66 7f;i2c mw 66 10 20;i2c

b. After putting the SoC into RSP, reset the board. Then, use the below commands to write SRKH in the
SFP mirror registers.

ccs::config chain {<platform> sap2}

display ccs::get config chain

puts "Entry RSP: "

ccs::write mem 2 0Ox7 0x001000D0 O0x4 0x0 0x800
set ::littleendian(2) 1

ccs::write mem <sap position> 0x1e80254 4 0 <SRKHO>
ccs::write mem <sap position> 0x1e80258 4 0 <SRKH1>
ccs::write mem <sap position> 0x1e8025c 4 0 <SRKH2>
ccs::write mem <sap position> 0x1e80260 4 0 <SRKH3>
ccs::write mem <sap position> 0x1e80264 4 0 <SRKH4>
ccs::write mem <sap position> 0x1e80268 4 0 <SRKH5>
ccs::write mem <sap position> 0xle8026c 4 0 <SRKH6>
ccs::write mem <sap position> 0x1e80270 4 0 <SRKH7>
set ::littleendian(2) O

puts "Exiting RSP:

ccs::write mem 2 0Ox7 0x001000D0 O0x4 0x0 0x400

Note: If RSP has been entered via a DIP switch that permanently pulls the corresponding configuration
signal on the IFC, the corresponding DIP switch must be reset before exiting RSP or the IFC will be
unusable!
3. Platform LX2160A (TA 3.x)
Note: Out of RSP is implemented in only specific FPGA versions (RDB version 1-4, 9 and newer). Check
the U-Boot log to confirm that the board has the correct FPGA version that supports this feature.

Below are the steps to put the LX2160A in RSP and write SRKH in SFP mirror registers:

ccs::config chain {1x2160a dap}
Jjtag::lock

#To Read the Content of TPINSVSR SEL

jtag::scan io 0 8 0x92
jtag::scan io 1 64 0x0 # this will give the content of the register as output
To write to TAP Configuration Pin Override Control Register (TCPOVCR)

jtag::scan _io 0 8 0x93

##Setting the override bit

#Bits 1-9 signifies RCW source.

##Note
set # the mentioned above bits with their corresponding value,

bit values
same.

LLDPUG

(bit 0)

(TPINSVSR)

to 1 and the RSP enable bit

register

(bit 42)

to 0.

So, change the below command accordingly.
Read the value first using command "jtag::scan io 0 8 0x92" and then

All information provided in this document is subject to legal disclaimers.

keeping other

© 2023 NXP B.V. All rights reserved.

User guide

Rev. L6.1.1_1.0.0_23.08 — 4 August 2023

188 /1053

NXP Semiconductors LLDPUG

Layerscape Linux Distribution POC User Guide

jtag::scan io 1 64 0x00000103713F001F # in case of FlexSPI NOR for LX2160ARDB

#Or
jtag::scan _io 1 64 0x0000010271000011 # in case of RCW SRC as SD (ESDHC1) for
LX2160ARDB

Jjtag::unlock

After executing the above steps, do POR , and then run the following commands
ccs::config chain {1x2160a sap2}

display ccs::get config chain

ccs::stop core 1 # Coreindex of Cortex-A5 to be used.

ccs::write mem 1 0x1E80254 4 0 <SRKH1>
ccs::write mem 1 0x1E80258 4 0 <SRKH2>
ccs::write mem 1 0x1E8025c 4 0 <SRKH3>
ccs::write mem 1 0x1E80260 4 0 <SRKH4>
ccs::write mem 1 0x1E80264 4 0 <SRKH5>
ccs::write mem 1 0x1E80268 4 0 <SRKH6>
ccs::write mem 1 0x1E8026c 4 0 <SRKH7>
ccs::write mem 1 0x1E80270 4 0 <SRKH8>

To get the board out of RSP
ccs::write mem 1 0x101000D0 0x4 0x0 0x000c0000
ccs::run_core 1

4. Platform LS1028A (TA 3.x)
Below are the steps to put the LS1028A in RSP and write SRKH in SFP mirror registers:

ccs::config chain {1s1028a dap};

display ccs::get config chain;

ccs::config chain testcore;

Jjtag::lock;

jtag::state move test logic reset;
jtag::scan out ir 4 3;

jtag::scan _out dr 6 1;

jtag::scan _io ir 8 0x93;

jtag::scan _io dr 64 0xO0;

jtag::scan io ir 8 0x92;

jtag::scan_io dr 64 0xO0;

jtag::set pin 0 0;

after 100;

puts [jtag::scan io ir 8 0x93];

puts [jtag::scan io dr 64 0x0000010071FF001F]; // For FlexSPI boot
jtag::set pin 0 1;

jtag::unlock;

ccs::config chain {1s1028a dap};

display ccs::get config chain;

ccs::write mem 2 0x7 0x001000D0 4 0 0x00080000

ccs::stop core 1 #Coreindex of Cortex-A5 to be used.
ccs::write mem 1 0x1E80254 4 0 SRKH O;
ccs::write mem 1 Ox1E80258 4 0 SRKH 1;
ccs::write mem 1 0x1E8025c 4 0 SRKH 2;
ccs::write mem 1 0x1E80260 4 0 SRKH 3;
ccs::write mem 1 0x1E80264 4 0 SRKH 4;
ccs::write mem 1 0x1E80268 4 0 SRKH 5;
ccs::write mem 1 0x1E8026c 4 0 SRKH 6;
ccs::write mem 1 O0x1E80270 4 0 SRKH 7;

ccs::run core 1;
ccs::write mem 2 0x7 0x001000D0 4 0 0x00040000;

After implementing all the steps, the board will boot and user will get the Linux prompt after successful
validation of all the images.

Note:
LLDPUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.
User guide Rev. L6.1.1_1.0.0_23.08 — 4 August 2023

189 /1053

NXP Semiconductors LLDPUG

Layerscape Linux Distribution POC User Guide

 <platform> in the above commands to be used is in lowercase: Is2085a for 1s2088 and I1s1080a for Is1088.
» To blow SRKH in production environment, follow procedure similar to blowing OTPMK fuses.

* For detail about secure boot execution flow in production and development environments, refer
Section 6.1.1.5.1.

Program SRKH mirror registers in U-Boot environment

After enabling POVDD, follow these steps to program SRKH registers at U-Boot:
1. Check if SRKH is fused.

=> md $SRKHRO 0x10 01e80254: 00000000 00000000 00000000
00000000 cccococcococooooooo 01e80264: 00000000 00000000 00000000
00000000 cccocovocovooooooo

Zero indicates that SRKH is not fused.
2. Fuse SRKH, if not fused already.

=> mw.l $SRKHRO <SRKHR 0 32Bit val>
=> mw.l $SRKHR1 <SRKHR 1 32Bit val>
=> mw.l $SRKHR2 <SRKHR 2 32Bit val>
=> mw.l $SRKHR3 <SRKHR 3 32Bit val>
=> mw.l $SRKHR4 <SRKHR 4 32Bit val>
=> mw.l $SRKHR5 <SRKHR 5 32Bit val>
=> mw.l $SRKHR6 <SRKHR 6 32Bit val>
=> mw.l $SRKHR7 <SRKHR 7 32Bit val>

Note: SRKH should be carefully written considering the SFP block endianness.
3. Check if SRKH is fused.
For example, if following SRKH is written:

SFP SRKHRO = fdc2fed4 SFP SRKHR1 = 317f569e SFP SRKHR2 = 1828425c SFP SRKHR3
= e87bbcfd SFP SRKHR4 = 34beab8f SFP SRKHR5 = df792a70 SFP SRKHR6 = 2dff85el
SFP SRKHR7 = 32a29687

Then, following could be the value on dumping SRKH.

=> md $SRKHRO 0x10 01e80254: d4fec2fd 9e567£f31 5c422818 fd5c7be81.V.. (B
\.{\. 01e80264: 8fabbe34 702a79df el85ff2d 8796a232 4....y*p-...2...

Note: SRKH is visible in plain because of the SFP block endianness.

6.1.1.5.2.5 Write SFP_INGR register

CAUTION: Do not proceed to the steps in this topic, until you are sure that OTPMK and SRKH are correctly
fused, as explained in the topics above. After the next step, fuses are burnt permanently, which cannot be
undone.

1. Write SFP_INGRJ[INST] with the PROGFB(0x2) instruction to blow the fuses.

Table 48. SFP_INGR register

Platform SFP_INGR_REG SFP_WRITE_DATA_FRM_
MIRROR_REG_TO_FUSE

LS1021A, LS1012A, LS1043A, 0x01E80020 0x02000000

LS1046A

LS1088A, LS2088A, LX2160A, 0x01E80020 0x2

LS1028A,
LLDPUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.
User guide Rev. L6.1.1_1.0.0_23.08 — 4 August 2023

190 /1053

NXP Semiconductors LLDPUG

Layerscape Linux Distribution POC User Guide

Table 48. SFP_INGR register...continued
Platform SFP_INGR_REG SFP_WRITE_DATA_FRM_
MIRROR_REG_TO_FUSE

LX2162A

=> mw $SFP _INGR REG $SFP WRITE DATA FRM MIRROR REG TO FUSE

2. Reset the board.
3. Check if OTPMK is fused.

=> md $SNVS_HPSR_REG
=> 80000900

OTPMK_ZERO_BIT (second nibble) is zero, indicating that OTPMK is fused.
In case itis read as 00000000, then read this register using JTAG (in development mode only through
CWTAP).

4. Read OTPMK.
=> md S$SOTPMKRO 0x10

01e80234: ffffffff fEffffff FEELFFFF FEFEELFE Lo it
01e80244: ffffffff fEfffffff FEEEEFFE £EFEEEEE Lo oo

Note: OTPMK is not visible in plain.
5. Read SRK hash.

=> md $SRKHRO 0x10 01e80254: d4fec2fd 9e567f31 5c422818 £fd5c7be81.V.. (B
\.{\. 01e80264: 8fabbe34 702a79df el85ff2d 8796a232 4....y*p-...2...

Note: SRKH is visible in plain because of the SFP block endianness.
6.1.1.5.3 Build secure boot TF-A images manually

6.1.1.5.3.1 Build secure boot TF-A images for NXP CoT

To build secure boot TF-A images for NXP CoT, you need to specify following options in the make command:

* Set TRUSTED BOARD_ BOOT=1 to enable trusted board boot.
NXP CoT is enabled automatically when TRUSTED BOARD BOOT=1 and MBEDTLS DIR path is not
specified.
» Specify path of the CST repository as CST DIR to generate CSF headers.
In NXP CoT, CSF header is embedded to the BL31, BL32, and BL33 images.
Default input files for CSF header generation are available in CST_DIR.
As per the default input file, you need to generate following RSA key pairs and add them to the ATF
repository:
— srk.pri
— srk.pub
The RSA key pairs can be generated using the gen keys CST tool. To change the input file, you can use the
options BL33 INPUT FILE, BL32 INPUT FILE, BL31 INPUT FILE.

The secure boot flow can be implemented in two modes:

* Development: In the development mode (RCW[SB_EN] =1, ITS = 0), if ROTPK comparison fails, the boot
flow continues. However, SNVS is transitioned to the non-secure state.

* Production: In the production mode (ITS =1), any failure results in fatal failure.

TRUSTED_BOARD_BOOT can be enabled in non-secure boot flow also. However, ROTPK is ignored in non-
secure boot flow and failures do not result in SNVS transition.

LLDPUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. L6.1.1_1.0.0_23.08 — 4 August 2023

191/1053

NXP Semiconductors LLDPUG

Layerscape Linux Distribution POC User Guide

To build secure boot TF-A binaries, BL2 and FIP, for NXP CoT, run this command:
Note: To build RCW binary, see Section 5.2.3.1

To build OP-TEE binary, see Section 6.3.1.1.3

To build secure U-Boot binary, see Section 6.2.1.2.6

make PLAT=<platform> TRUSTED BOARD BOOT=1 CST DIR=$CST DIR PATH \
RCW=SRCW_BIN \
BL32=$TEE_BIN SPD=opteed\
BL33=SUBOOT SECURE_BIN \
pbl \
fip

To build DDR FIP binary (Supported only for LX2162AQDS or LX2160ARDB):

make PLAT=<platform> TRUSTED BOARD BOOT=1 CST DIR=SCST DIR PATH fip ddr

To prepend CSF headers to BL31, BL32, and BL33 images:

make PLAT=<platform> all fip pbl SPD=opteed BL32=tee.bin BL33=u-boot.bin \
RCW = <secure bot RCW> \
TRUSTED BOARD BOOT=1 CST DIR=<cst dir path> BL33 INPUT FILE=<ip file>
BL32_INPUT_FILE=<ip_file> \
BL31 INPUT FILE = <ip file>

The secure boot binaries for NXP CoT are available in the at £ directory:

* build/<platform>/release/fip.bin
* build/<platform>/release/ddr fip sec.bin (Supported only for LX2162AQDS or LX2160ARDB)
* build/<platform>/release/bl2 flexspi nor sec.pbl

6.1.1.5.3.2 Build secure boot TF-A images for Arm CoT
Note: Arm CoT is supported only for LX2160ARDB and LX2162AQDS platforms.

To build secure boot TF-A images for Arm CoT, you need to specify following options in the make command:

* Set TRUSTED_ BOARD_BOOT=1 to enable trusted board boot.

» Specify mbedtld dir path in MBEDTLS_ DIR.

» Specify path of the CST repository as CST DIR to generate CSF headers.
CSF header is embedded to the BL2 images.

» Set GENERATE COT=1 to add the cert create tool to the build environment. The cert create tool
generates:
— X.509 certificates as (.crt) files
— X.509 Pem key file as (.pem) files

» Set SAVE_KEYS=1 to save the keys and certificates.
ROTPK for X.509 certificates is generated and embedded in bl2.bin. ROTPK is verified as part of Chain of
Trust process executed by BootROM during secure boot.
Note: SAVE KEYS=1 saves the keys and certificates if GENERATE COT=1
Note: If the filenames for keys and certificates are not provided as part of compilation or build command,
keys and certificates are saved in the default filenames at the default folder BUILD PLAT.

To build secure boot TF-A binaries, BL2 and FIP, for Arm CoT, run this command:
Note: To build RCW binary, see Section 5.2.3.1

LLDPUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. L6.1.1_1.0.0_23.08 — 4 August 2023

192/1053

NXP Semiconductors LLDPUG

Layerscape Linux Distribution POC User Guide

To build OP-TEE binary, see Section 6.3.1.1.3

To build secure U-Boot binary, see Section 6.2.1.2.6

make PLAT=<platform> TRUSTED BOARD BOOT=1 GENERATE COT=1 MBEDTLS DIR=
SMBEDTLS PATH CST DIR=$CST DIR PATH \

BOOT MODE=flexspi nor \

RCW=SRCW_BIN \

BL32=$TEE_BIN SPD=opteed\

BL33=$UBOOT SECURE_BIN \

pbl \

fip

To build DDR FIP binary (Supported only for LX2162AQDS or LX2160ARDB):

make PLAT=<platform> TRUSTED BOARD BOOT=1 GENERATE COT=1 MBEDTLS DIR=
$SMBEDTLS_PATH fip ddr

The secure boot binaries for Arm CoT are available in the at £ directory:

e build/<platform>/release/fip.bin
* build/<platform>/release/ddr fip sec.bin (Supported only for LX2162AQDS or LX2160ARDB)
* build/<platform>/release/bl2 flexspi nor sec.pbl

6.1.1.5.4 Program secure boot images

This topic explains steps to flash secure boot firmware image and secure boot TF-A images to the FlexSPI NOR
flash on LX2162AQDS.

For steps to program firmware image on different boot mediums on different boards, see the section "Program
Layerscape LDP composite firmware image" in the "Quick Start" section for the respective board.

For steps to program TF-A images, see Section 5.2.3.3

6.1.1.5.4.1 Program secure boot firmware images

1. Flash secure firmware:

=>tftp 0xa0000000 firmware 1x2162aqds_ xspiboot secure.img
=>i2c mw 66 50 20;sf probe 0:0;

=>sf erase 0x00 +S$filesize

=>sf write 0xa0000000 0x00 Sfilesize

2. Switch to alternate bank:

=> gixis reset altbank

6.1.1.5.4.2 Program secure boot TF-A images

1. Flash PBL binary:

=> tftp 0x82000000 bl2 flexspi nor sec.pbl;
=> i2c mw 66 50 20; sf probe 0:0; sf erase 0 +S$Sfilesize; sf write 0x82000000
0x0 sfilesize;

2. Flash FIP binary:
=> tftp 0x82000000 fip.bin;

LLDPUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. L6.1.1_1.0.0_23.08 — 4 August 2023

193 /1053

NXP Semiconductors LLDPUG

Layerscape Linux Distribution POC User Guide

=> i2c mw 66 50 20;sf probe 0:0; sf erase 0x100000 +S$Sfilesize; sf write
0x82000000 0x100000 $filesize;

3. Flash DDR FIP binary:

=> tftp 0x82000000 ddr fip sec.bin;
=> i2c mw 66 50 20;sf probe 0:0; sf erase 0x800000 +S$Sfilesize; sf write

0x82000000 0x800000 $filesize;

4. Switch to alternate bank:

=> gixis reset altbank

* If board boots to the Linux prompt, then "NXP CoT" is successful. If "NXP CoT" fails, and kernel will not boot
up.

* If board boots to the U-Boot prompt, then "Arm CoT" is successful. If "Arm CoT" fails, U-Boot prompt will not
come up.

6.1.1.5.5 Program verified boot images for Arm CoT
Note: Verified boot is supported only for LX2162AQDS. For details, see Section 6.2.1.1

1. Flash PBL binary:
a. => tftp 0x82000000 bl2 flexspi nor sec.pbl;
b. => 12c mw 66 50 20; sf probe 0:0; sf erase 0 +S$filesize; sf write 0x82000000
0x0 $filesize;
2. Flash FIP binary:
a. => tftp 0x82000000 fip uboot sec verified boot.bin;
b. => i2c mw 66 50 20;sf probe 0:0; sf erase 0x100000 +S$filesize; sf write
0x82000000 0x100000 sfilesize;
3. Flash DDR FIP binary:
a. => tftp 0x82000000 fip ddr sec.bin;
b. => i2c mw 66 50 20;sf probe 0:0; sf erase 0x800000 +S$filesize; sf write
0xa0000000 0x800000 sfilesize;
4. Switch to alternate bank:

=> gixis reset altbank

5. Flash ITB image:
a. =>tftp a0000000 kernel-fsl-1x2162a-gds.itb
b. =>bootm 0xa0000000#1x2162aqgds

If the board boots to Linux prompt, then "Arm CoT with Verified Boot" is successful. Else, the verification fails
and kernel will not boot up.

6.1.1.5.6 Steps to run chain of trust with confidentiality

1. Generate all images:

S bitbake ls-image-main

2. Generate auto bootscript:

$ bitbake distrobootscr

3. Generating firmware image:

$ bitbake gorig-composite-firmware

LLDPUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. L6.1.1_1.0.0_23.08 — 4 August 2023

194 /1053

NXP Semiconductors LLDPUG

Layerscape Linux Distribution POC User Guide

4. Writing image to SD card:

$ flex-installer -b tmp/deploy/image/<board>

bootp xxx.tgz -r tmp/deploy/image/<board>/ls-image-main-xxx.tar.gz -f tmp/
deploy/image/<board>/firmware sdboot secure.img -d /dev/

sdx

First boot: Encapsulation step
Note: This step is performed in the OEM(s) premise.

1. By default, the encap and decap bootscripts are installed in the boot partition.
2. When the board boots up for the first time after all images have been generated, Encap bootscript will
execute. This bootscript:
a. Authenticates and encapsulates Linux and dtb images and replaces the unencrypted Linux and dtb
images with newly encapsulated Linux and dtb.
b. Replaces the encap bootscript and header with the decap bootscript and its header, already present in
the boot partition.
c. Issues reset.

Subsequent boot

1. U-Boot would execute script with decap commands.
2. Un-blobify Linux and dtb image in DDR.
3. Pass control to these images.

Note: Chain of trust with confidentiality is not supported for LS1012A in bitbake.

6.1.2 Fuse Provisioning User Guide

6.1.2.1 Introduction

NXP SoC’s TA provides non-volatile secure storage in form of on-chip fuse memory. Following information can
be programmed into fuse memory via Security Fuse Processor (SFP):

* One Time Programmable Master Key Registers (OTPMKRSs)

» Super Root Key Hash Registers (SRKHRSs)

* Debug Challenge and Response Value Registers (DCVRs and DRVRSs)
* OEM Security Policy Registers (OSPRs)

* OEM Unique ID/Scratch Pad Registers (OUIDRs)

6.1.2.2 Fuse Programming Scenarios

Table 49. Fuse Programming Scenarios

Phase NXP Fuses OEM Fuses Software
NXP Manufacturing FUID, FSV, CSFF, WP Fuse programming
(+ On TA 3.x, DPL) done on tester, no
Can set RT&RDPL up software involved
to 4x before shipping
part

OEM Manufacturing Ship to contract manufacture

(s(t:aaneisa?ftglc;tuli?;% two Minimal Fuse SPKH, DP, CSFF, ITS, |Fuse provisioning Tool
9 Provisioning Minimal OTPMK and doesn't need to pass
secure boot to execute,

LLDPUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. L6.1.1_1.0.0_23.08 — 4 August 2023

195/1053

NXP Semiconductors

LLDPUG

Layerscape Linux Distribution POC User Guide

Table 49. Fuse Programming Scenarios...continued

Phase NXP Fuses OEM Fuses Software
Optional OEM UID, but must set up the
DRV/DCV system so that the next

boot passes secure
boot

At contract manufacturer or in the field

Final OTPMK and
DRV, WP Optional
OEM UIDs, DCV

Final Fuse Provisioning Fuse Provisioning Tool

passes secure boot

In field, later in lifecycle

Lifecycle fuse update Key Revocation,
Monotonic Counter
Era, OEM Scratchpad,

Field Return

Currently no software
utility available, can be
done by custom app.

6.1.2.2.1 Fuse Provisioning during OEM Manufacturing

This stage may be split into two stages:

Stage 1 (Non-secure boot) — Minimal Fuse Provisioning

The following few fuses (Minimal Fuse File) programmed for secure boot to run:

« SRKH
- CSFF
« Minimal OTPMK

This stage does not pass secure boot to execute, but must set up the system so that the next boot passes
secure boot. If this step happens in a trusted environment, OEM can choose to blow all the fuses in this stage
itself.

Stage 2 (Secure Boot) — Final Fuse Provisioning

Rest of the fuses can be programmed after secure boot is up and running. This step ends with OEM WP fuse
getting blown which renders most of the fuses as un-writable.

6.1.2.3 Fuse Provisioning Utility

Secure firmware provides support to do the fuse provisioning. By default, the support is enabled and requires a
built-in. Steps to do so using flex build are available in Section 6.1.2.4.2.

The information about the fuse values to be blown to be provided via a fuse file. The fuse file is a binary file with
bits to indicate what fuses to be blown and their corresponding values.

CST provides an input file where user can enter the required values. Tool generates a Fuse file which is parsed
in BL2 image to do fuse provisioning.

Secure firmware would have the required checks to determine if the provided input values are correct or not.

For example, OTPMK, SRKH cannot be programmed when OEM_WP is already set in SFP fuses.

LLDPUG

All information provided in this document is subject to legal disclaimers.

© 2023 NXP B.V. All rights reserved.

User guide

Rev. L6.1.1_1.0.0_23.08 — 4 August 2023

196 / 1053

NXP Semiconductors

LLDPUG

6.1.2.3.1

Fuse file structure

Layerscape Linux Distribution POC User Guide

WordD

‘WordlL
‘Waord2
Waord3
Wordd
WaordiS
WaordE
Waord?
‘WaordE
WordD
‘Waord 10
Waord1l
Word12
Word13
Word 14
Word 15
‘Word1E
‘Word 17
‘Waord 18
Waord 13
Word2D
WaordZ1
WordZ2
WaordZ3
‘Word2d
WaordZS
‘Word2E
WordZ?
‘Word28

‘Word22
Waord30
Word31

Flags
G0 Pin Mumbe
OTPNED
OTPAEL
OTPNEZ
OTPNES
OTPNKA
OTPNES
DTPNEE
OTPNKT
SRKHD
SREHL
SRKHZ
SREHS
SREHA
SRKHS
SREHE
SRKHT
OEN L
OEM U
OEN L
OEM U
IDiENS LU

EEHEE

OGPRO-Setting
of any bitinthis
field controfied

by Sys Oig field

Bk r Codie Sepimes wadue bo indicate & vl d fuss fils

OTPMEK Fags

Dither flams

o 1 & 9
3L 30 2 28 Z7 26 25 24 B 22

2

3 4

3 & 7

p L1 b A e = i T A
21 20 19 1B 17 16

OEM LHDO

DEM LIDL

DEM UID2

Reserved

R srwd

o

[l =R = R == R =]
[SRl=R =Rl=]

x x

i Bl o the fuses s per value indicate dinthe comre sponds ne word
[The connesponding fuss is not suppose d tobe Down

o

T

o

[= =

Program Winimal 'V afue

Prrogmram: rendom DTPME wailus

Program weer suppiiod OTPMK vaiue

Progmram rendom OTPME wabue with pre-programme d mini mal val e
Program wser suppiiod OTPME vahue with pre -poogramme d mi nimad vatwe
Dion't blow OTPME

Sample input file for fuse provisioning tool

Specify the platform.
Choose Platform - LS1/LS1043/LS1012/LS1046
PLATFORM=LS1046
GPIO Pin to be set for raising POVDD [Optional]

POVDD_GPIO=

[Mandatory]

One time programmable master key flags in binary form. [Mandatory]
0000 -> Program default minimal OTPMK value

LLDPUG

All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide

Rev. L6.1.1_1.0.0_23.08 — 4 August 2023
197 /1053

NXP Semiconductors LLDPUG

Layerscape Linux Distribution POC User Guide

0001 -> Program random OTPMK value

0010 -> Program user supplied OTPMK value

0101 -> Program random OTPMK value with pre-programmed minimal value

0110 -> Program user supplied OTPMK value with pre-programmed minimal value
lxxx —-> Don't blow OTPMK

OTPMK_FLAGS=0000

One time programmable master key value.

[Optional dependent on flags, Mandatory in case OTPMK FLAGS="0010" or "0110"]
OTPMK_0= a

OTPMK_1=

OTPMK 2=

OTPMK 3=

OTPMK_4=

OTPMK 5=

OTPMK_ 6=

OTPMK_7=

e

Super root key hash [Optional]
SRKH_0=

SRKH 1=

SRKH 2=

SRKH_ 3=

SRKH_4=

SRKH_ 5=

SRKH_6=

SRKH_ 7=

Specify OEM UIDs. [Optional]

e.g OEM UID 0=11111111

OEM UID 0=

OEM UID 1=

OEM UID 2=

OEM UID 3=

OEM UID 4=

Specify Debug challenge and response values. [Optional]
e.g DCV_0=11111111

DCV 0=

DCV 1=

Specify Debug Level in binary form. [Optional]

000 -> Wide open: Debug portals are enabled unconditionally.

001 -> Conditionally open via challenge response, without notification.
0lx -> Conditionally open via challenge response, with notification.

1xx -> Closed. All debug portals are disabled.

DBG_LVL=

System Configuration register bits in binary form [Optional]
WP (OEM write protect)

ITS (Intent to Secure)

NSEC (Non secure)

7D (ZUC Disable)

KO,K1,K2 (Key revocation bits)

FRO (Field return 0)

FR1 (Field return 1)

WP=

ITS=

NSEC=
LLDPUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.
User guide Rev. L6.1.1_1.0.0_23.08 — 4 August 2023

198 /1053

NXP Semiconductors LLDPUG

Layerscape Linux Distribution POC User Guide

ZD=

KO=

Kl=

K2=

FRO=

FR1=

Specify the output fuse provisioning file name. (Default:fuse scr.bin)
[Optional]

OUTPUT_FUSE_FILENAME:fuse_S cr.bin

6.1.2.4 Deploy and run fuse provisioning

6.1.2.4.1 Enable POVDD

To enable POVDD for different Layerscape platforms, perform the following steps:

1. TWR-LS1021A:
* Put J11 to enable SNVS in check state
* POVDD (J8 and J9)
2. LS1043ARDB:
e Put J13 to enable PWR_PROG_SFP
3. LS1012ARDB:
* Through 12C transactions, write to LDO1CT register to change LDO1EN bit in vr5100
¢ i2c mw 0x08 Ox6c 0x10
4. FRWY-LS1012A:
e Put J37 to enable PROG_SFP
* Through 12C transactions, write to LDO1CT register to change LDO1EN bit in vr5100
* i2c mw 0x08 Ox6c 0x10
5. LS1046ARDB:
e Put J21 to enable PWR_PROG_SFP
6. LS2088ARDB:
e Put J12 to enable PWR_PROG_SFP
7. LS1088ARDB:
e Put J10 to enable PWR_PROG_SFP
8. LX2160ARDB:
e Put J9 to enable PROG_SFP
9. LX2162AQDS:
¢ Put J35 to enable PROG_SFP
e Set SW9[4] =1
* LED to verify - D15

6.1.2.4.2 Build fuse provisioning firmware image

Use following bitbake commands to build composite fuse provisioning firmware image. For details about the
usage of bitbake, see Section 4.5.

Build Code Signing Tool (CST):

S bitbake gorig-cst

LLDPUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. L6.1.1_1.0.0_23.08 — 4 August 2023

199 /1053

NXP Semiconductors LLDPUG

Layerscape Linux Distribution POC User Guide

$ bitbake gorig-composite-firmware

The newly built composite firmware image is available at the following location:

<build-dir>/tmp/deploy/image/<board>/firmware <machine> <boottype>boot.img

<machine> can be Is1012ardb, Is1012afrwy, Is1021atwr, Is1028ardb, Is1043ardb, Is1046ardb, Is1046afrwy,
Is1088ardb_pb, Is2088ardb, Ix2162aqds.

<boottype> can be nor, sd, emmc, gspi, xspi, hand.

6.1.2.4.3 Deploy and run fuse provisioning firmware image on board

Program composite firmware image built using Section 6.1.2.4.2 on the required boot medium.

The following example shows commands to flash firmware 1sl1046ardb sdboot.img on the SD card
plugged into LS1046ARDB.

=> tftp a0000000 firmware 1lsl0O46ardb sdboot.img => mmc write a0000000 8 1fff8 =>
cpld reset sd

For steps to flash composite firmware on other boards and boot mediums, see board-specific Quick start guide
section.

6.1.2.4.4 Build and deploy fuse provisioning image manually
To build the fuse provisioning image manually

CST

1. Clone the cst directory from the Layerscape LDP components.
2. Run make command.

S:> make

3. Edit input file to select/change values to be programmed in fuses for a device.
 Edit “input_files/gen_fusescr/Is104x_1012/input_fuse_file” file for LS1021A, LS1043A, LS1046A, or
LS1012A
» Edit "input_files/gen_fusescr/Is2088_1088/input_fuse_file" file for LS1088A, LS2088A, LX2160A,
LX2162A, LS1028A
4. To generate fuse scr.bin, execute the following command:

$:> ./gen fusescr input files/gen fusescr/<platform>/input fuse file
platform: 1s104x 1012 for LS1021A, LS1043A, LS1046A or LS1012A
platform: 1s2088 1088 for LX2160A, LX2162A, LS1088A, LS1028A, or LS2088A

ATF

1. Clone the atf directory from the Layerscape LDP components.
2. Set the path.

$:> export CROSS COMPILE=<aarch64-toolchain-path->

3. Run the following make command in cloned atf repository.

$:> make realclean; make all fip pbl PLAT=<platform> BOOT MODE=<boot mode>
RCW=S$path/rcw.bin BL33=S$path/uboot.bin fip fuse FUSE PROG=1 FUSE PROV_FILE=
$path/fuse scr.bin

LLDPUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. L6.1.1_1.0.0_23.08 — 4 August 2023

200/1053

NXP Semiconductors LLDPUG

Layerscape Linux Distribution POC User Guide

Note:

» <platform> such as Is1046ardb, Is1088ardb, Is2088ardb

* <boot_mode> such as qspi, sd, nor as per boot mode supported by different platforms.

* Replace $path with the locations of the respective images to be used to build the image.
4. fip fuse.bin will be available at location . /build/release/<platform>.

To program fuse provisioning image built manually on the required boot medium
For FlexSPI/QSPI NOR flash:

=> tftp 82000000 $path/fip fuse.bin;
=> i2c mw 66 50 20;sf probe 0:0; sf erase 0x880000 +S$Sfilesize; sf write
0x82000000 0x880000 Sfilesize;

For SD or eMMC [file_size_in_block_sizeof 512 = (Size_of _bytes_tftp / 512)]:

=> tftp 82000000 Spath/fip fuse.bin;
=> mmc write 82000000 0x4400 <file size in block sizeof 512>;

For IFC NOR flash:

To program alternate bank: => tftp 82000000 Spath/fip fuse.bin; => protect off
64880000 +Sfilesize && erase 64880000 +$filesize && cp.b 82000000 64880000
Sfilesize To program current bank: => tftp 82000000 Spath/fip fuse.bin; =>
protect off 60880000 +$filesize && erase 60880000 +Sfilesize && cp.b 82000000
60880000 $filesize

For NAND flash:

=> tftp 82000000 Spath/fip fuse.bin;
=> nand erase 0x880000 S$filesize;nand write 0x82000000 0x880000 S$filesize;

Boot the board from the required boot medium. For U-Boot command or switch settings to boot the board from a
specific boot medium, see Quick start guide section for the respective board.

6.1.2.4.5 Validate fuse provisioning

1. At the U-Boot prompt, check DCFG scratch 4 register for any Section 6.1.2.5.
For example, run the following command for LS1046ARDB to check for error codes.

=> md 1lee020c 1

Note: LX2162AQDS doesn’t support reading register via U-Boot (using the md command). To verify SNVS
register status for LX2162AQDS, access register 0x1e90014 via CCS command.
For addresses for other board, see the device-specific SoC Reference Manual.

2. If the md command does not show any error, then fuse provisioning is successful.

0lee020c: 00000000

6.1.2.5 Error Codes

Table 1: Error Codes

Error Code Value Description

ERROR_FUSE_BARKER 0x1 Ocecurs if fuse script not found.

LLDPUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.
User guide Rev. L6.1.1_1.0.0_23.08 — 4 August 2023

201/1053

NXP Semiconductors LLDPUG

Layerscape Linux Distribution POC User Guide

ERROR_READFB_CMD 0x2 Occurs if SFP Read Fuse Box (READFB)
command fails.
ERROR_PROGFB_CMD 0x3 Occurs if SFP Program Fuse Box (PROGFB)
command fails.
ERROR_SRKH_ALREADY_BLOWN 0x4 Occurs if SRKH is already blown.
ERROR_SRKH_WRITE 0x5 Ocecurs if write to SRKH mirror registers fails.
ERROR_OEMUID_ALREADY_BLOWN 0x6 Occurs if OEMUID is already blown.
ERROR_OEMUID_WRITE 0x7 Occurs if write to OEMUID mirror registers fails.
ERROR_DCV_ALREADY_BLOWN 0x8 Occurs if DCV is already blown.
ERROR_DCV_WRITE 0x9 Ocecurs if write to DCV mirror registers fails.
ERROR_DRV_ALREADY_BLOWN Oxa Occurs if DRV is already blown.
ERROR_DRV_HAMMING_ERROR 0xb Ocecurs if write to DRV mirror registers gives
hamming error.
ERROR_OTPMK_ALREADY_BLOWN Oxc Occurs if OTPMK is already blown.
ERROR_OTPMK_HAMMING_ERROR Oxd Ocecurs if write to OTPMK mirror registers gives
hamming error.
ERROR_OTPMK_USER_MIN Oxe Occurs if user supplied OTPMK does not have

minimal OTPMK bits set in case where OTPMK
flags represents to program user supplied OTPMK
value with pre-programmed minimal value.

ERROR_OSPR1_ALREADY_BLOWN Oxf Occurs if OSPR1 is already blown.
ERROR_OSPR1_WRITE 0x10 Occurs if write to OSPR1 mirror register fails.
ERROR_SC_ALREADY_BLOWN 0x11 Occurs if SysCfg is already blown.
ERROR_SC_WRITE 0x12 Ocecurs if write to SysCfg mirror register fails.
ERROR_POVDD_GPIO_FAIL 0x13 Ocecurs if gpio number configured is incorrect.
ERROR_GPIO_SET_FAIL 0x14 Ocecurs if the gpio bit is not set correctly
ERROR_GPIO_RESET_FAIL 0x15 Occurs if the gpio bit reset is not reset to initial
state.

6.2 Bootloader security features

6.2.1 U-Boot

6.2.1.1 Verified boot [only for LX2162AQDS]

This topic explains:

6.2.1.1.1 Introduction
Note: Verified Boot is applicable only for LX2162AQDS.

Verified Boot ensures all executed code is originated from a trusted source, for example device OEMs,
rather than from an attacker or corrupted source. It establishes a full chain of trust, starting from a hardware-
protected root of trust to the bootloader, boot partition, and other verified partitions, such as system, vendor,

LLDPUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. L6.1.1_1.0.0_23.08 — 4 August 2023

202 /1053

NXP Semiconductors LLDPUG

Layerscape Linux Distribution POC User Guide

and optionally OEM . During device boot up, each stage verifies the integrity and authenticity of the next stage
before handing over the execution.

6.2.1.1.2 Build U-Boot, Linux, and RCW binaries

Build U-Boot binary

A specific defconfig file 1x2162aqds_tfa verified boot defconfigis included in the U-Boot config for
the LX2162AQDS board.

To build U-Boot binaries:

1. Ensure following flags are enabled in configs/1x2162aqds tfa verified boot defconfig.
a. CONFIG FIT SIGNATURE=y
b. CONFIG RSA=y
2. Set toolchain.
a. $ export PATH=/opt/gcc-linaro-7.4.1-2019.02-x86 64 aarché64-linux-gnu/bin:
SPATH
b. $ export CROSS COMPILE=aarch64-linux-gnu-
C. $ export ARCH=armé64
3. Execute following commands to build U-Boot binaries.
a. $ make mrproper
b. $ make 1x2162aqds tfa verified boot defconfig
Cc. $ make

The U-Boot binaries, u-boot .dtb and u-boot-nodtb.bin are available at u-boot.
Build Linux binary
To build Linux binaries:

1. Set toolchain :

$ export PATH=/opt/gcc-linaro-7.4.1-2019.02-x86 64 aarch64-linux-gnu/bin:
$PATH

$ export CROSS COMPILE=aarché64-linux-gnu-

$ export ARCH=arm64

2. Execute following commands to build Linux binaries:

S make distclean

$./scripts/kconfig/merge config.sh

$ arch/arm64/configs/defconfig arch/armé64/configs/lsdk.config
S make -7j4

The Linux binary, Image . gz is available at arch/arm64/boot and fs1-1x2162a-qgds.dtb is available at
arch/armé64/boot/dts/freescale

Build RCW binary
To build RCW binary, use the following steps:

S cd 1x2162aqgds/
$ make

The RCW binary is available at: 1x2162aqds/FFGG_XXXX PPPP HHHHH PPPP PPPP 19 5 2/rcw 2000
700 2900 19 5 2.bin.

LLDPUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. L6.1.1_1.0.0_23.08 — 4 August 2023

203 /1053

NXP Semiconductors LLDPUG

Layerscape Linux Distribution POC User Guide

6.2.1.1.3 Generate fit image

The following code snippet shows the sample ITS file.

/ *
* copyright 2020 NXP
*
*
/dts-vl/;
/|
description = "arm64 kernel, ramdisk and FDT blob";
#address-cells = <1>;
images {
kernel {
description = "ARM64 Kernel";
data = /incbin/ ("Image.gz");
type = "kernel";
arch = "arm64";
os = "linux";
compression = "gzip";
load = <0x81080000>;
entry = <0x81080000>;
hash {
algo = "shal";
i
signature {
algo = "shal, rsa2048";
key-name-hint = "dev";
1
}i
fsl-1x2162a-gds {
description = "1x2162agds-dtb";
data = /incbin/ ("fsl-1x2162a-gds.dtb") ;
type = "flat dt";
arch = "arm64";
os = "linux";
compression = "none";
load = <0x90000000>;
hash {
algo = "shal";
1
signature {
algo = "shal,rsa2048";
key-name-hint = "dev";
|
|
initrd {
description = "initrd for arm64d";
data /incbin/ ("fsl-image-core-1x2162aqgds.ext2.gz") ;
type "ramdisk";
arch = "arm64";
os = "linux";
compression = "none";
load = <0x00000000>;
entry = <0x00000000>;
hash {
algo = "shal";
|
signature {
algo = "shal,rsa2048";
LLDPUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.
User guide Rev. L6.1.1_1.0.0_23.08 — 4 August 2023

204 /1053

NXP Semiconductors LLDPUG

Layerscape Linux Distribution POC User Guide

key-name-hint = "dev";
bi
i
i
configurations {
default = "1x2162aqds";
1x2162aqgds {
description = "config for 1x2162aqgds";
kernel = "kernel";
ramdisk = "initrd";
fdt = "fsl-1x2162a-gds";
signature {
algo = "shal,rsa2048";
key-name-hint = "dev";
sign-images = "kernel", "fdt","ramdisk";

) 2
) g

To generate fit image:

1. Create a new directory, for example “Verified boot or Work” and copy the following binaries to this new
directory.

¢ u-boot.dtb and u-boot-nodtb.bin (see Section 6.2.1.1.2)
* Image.gz and fsl-Ix2162a-qds.dtb (see Section 6.2.1.1.2
* Rootfs file, fsl-image-core-Ix2162aqds.ext2.gz (rootfs file can be generated by yocto)
¢ Prepare <its_file_name>.its file as per the sample ITS file
2. Generate fit image from ITS file using the mkimage command.

mkimage -f <its file name>.its <fit image to be generated>.fit

For example:

mkimage -f 1x2162 gds verified boot.its 1x2162 gds verified boot.fit
Output:
1x2162 gds verified boot.fit

Note: The mkimage utility is available at u-boot/tools/mkimage.

6.2.1.1.4 Generate keys with OpenSSL

Generate public/private keys using openssl command

$ openssl genpkey -algorithm RSA -out keys/dev.key -pkeyopt rsa keygen bits:2048
-pkeyopt rsa keygen pubexp:65537

Generate public key certificate using openssl command

S openssl req -batch -new -x509 -key keys/dev.key -out keys/dev.crt

View public key

$ openssl rsa -in keys/dev.key -pubout

LLDPUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. L6.1.1_1.0.0_23.08 — 4 August 2023

205/1053

NXP Semiconductors LLDPUG

Layerscape Linux Distribution POC User Guide

6.2.1.1.5 Sign fit image and combine U-Boot DTB
Sign fit Image

The fit image generated in Section 6.2.1.1.3 needs to be signed using keys generated in Section 6.2.1.1.4 .

Command:

mkimage -F <path to fit image>.fit -k <PATH TO KEYS FOLDER> -K <path to u-
boot dtb file>.dtb -c "Comment about the image" -r

Example:

mkimage -F 1x2 gds verified boot.fit -k keys -K u-boot.dtb -c "Sign the FIT
Image" -r

Note: The mkimage utility is available at u-boot/tools/mkimage.
Combine U-Boot DTB
Make a common ‘dtb’ file with u-boot .dtb and u-boot-nodtb.bin

Command:

cat u-boot-nodtb.bin u-boot.dtb > <combined dtb.bin>

Example:

cat u-boot-nodtb.bin u-boot.dtb > u-boot-combine-dtb.bin

The following figure shows the generated binaries.

nxf51654@Llsv03032:~/data/source_code/verified boot/work$ 1s -1

total 122024

-rw-r--r-- 1 nxf51654 nxp 47772312 Mar 19 130 fsl-image-core-1x2160ardb.ext2.g
-rw-r--r-- 1 nxf51654 nxp 27744 Apr 13 117 fsl-1x2162a-qds.dtb

-rw-r--r-- 1 nxf51654 nxp 13869395 Apr 13 12:16 Image.gz

-rw-r--r-- 1 nxf51654 nxp 61671822 Apr 12:23 1x2162_qds_verified_boot.fit
-rw-r--r-- 1 nxf51654 nxp 2806 Apr 12:20 1x2162_qds_verified_boot.its
-rw-r--r-- 1 nxf51654 nxp 796806 Apr 13 12:25 u-boot-combine-dtb.bin
-rw-r--r-- nxf51654 nxp 7550 Apr 13 12:15 u-boot.dtb

-rwxr-xr-x 1 nxf51654 nxp 789256 Apr 13 12:15 u-boot-nodtb.bin

1
1
1
1
1
1

6.2.1.1.6 Generate fip binary
To build TF-A FIP binary:

1. Set toolchain

a. $ export PATH=/opt/gcc-linaro-7.4.1-2019.02-x86 64 aarch64-linux-gnu/bin:
SPATH

b. $ export CROSS COMPILE=aarché64-linux-gnu-
C. $ export ARCH=armé64
2. Execute the following command to build FIP binary.

make -j8 all fip pbl PLAT=1x2160agds BOOT MODE=flexspi nor RCW=<path to rcw
bin> BL33=<path to combined u-boot-dtb bin>

LLDPUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. L6.1.1_1.0.0_23.08 — 4 August 2023

206 /1053

NXP Semiconductors LLDPUG

Layerscape Linux Distribution POC User Guide

For example:

make -j8 all fip pbl PLAT=1x2160aqgds BOOT MODE=flexspi nor RCW=/home/ data/
source code/verified boot/lx2-rcw/1x2162aqgds/FFGG NNNN PPPP HHHH RR 18 5/
rcw 2000 650 2900 18 5.bin BL33=/home/data/source code/verified boot/work/u-
boot-combine-dtb.bin

For path to RCW and BL33 (combined U-Boot DTB), see sections Section 6.2.1.1.2 and Section 6.2.1.1.5,
respectively.
The FIP binary generated is unsigned and available at build/1x2160agds/release/fip.bin.

6.2.1.1.7 Flash FIP binary to FlexSPI NOR flash

Set up Ethernet connection
1. Boot the board from FlexSPI NOR flash 0 and stop autoboot to enter U-Boot prompt.
Load FIP binary from TFTP server
To flash image on the alternate bank:
1. Load FIP binary to the DDR memory.
=> tftp a0000000 <path to fip.bin>

For steps to generate fip.bin, see Section 6.2.1.1.6.
2. Switch to the alternate bank (FlexSPI NOR flash 1) on which FIP binary needs to be flashed.

=> i2c mw 66 50 20;sf probe 0:0;

3. Program the FIP binary to the alternate bank.

=> sf erase 0x100000 +S$filesize && sf write 0xa0000000 0x100000 S$filesize

4. Boot the board from alternate bank.

=> gixis reset altbank

5. Load the fit image to the alternate bank.

=> tftp a0000000 <path to 1x2162 gds verified boot.fit>

For steps to generate [x2162_qds_verified_boot.fit signed image, refer Section 6.2.1.1.5

6. Boot up the board with this fit image using the bootm command. In the bootm command, provide the name
of the configuration as the file location, for example Ix2162aqds.

=> bootm 0xa0000000S$ 1x2162aqgds

Note: The verified boot is successful if the board boots to the Linux prompt. If the verification fails, the
kernel will not boot.

6.2.1.2 U-Boot

To establish the secure boot Chain of Trust, some U-Boot commands have been added to the ESBC code.

6.2.1.2.1 esbc_validate command

esbc_validate [<pub key hash>]

Input arguments:

img_hdr — Location of CSF header of the image to be validated.

LLDPUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. L6.1.1_1.0.0_23.08 — 4 August 2023

207 /1053

NXP Semiconductors LLDPUG

Layerscape Linux Distribution POC User Guide

pub_key hash — hash of the public key used to verify the image. This is optional parameter. If not provided,
code makes the assumption that the key pair used to sign the image is same as that used with ISBC. So the
hash of the key in the header is checked against the hash available in SRK fuse for verification.

Description:

Perform CSF header validation on the address passed in the image header. During parsing of the header, the
image address is stored in an environment variable which is later used in source command in default secure
boot command.

Signature checks on the image.

6.2.1.2.2 esbc_halt command

esbc_halt (no arguments)

Description:

This command puts core in spin loop.

6.2.1.2.3 blob enc command

blob enc <src location> <dst location> <length> <key modifier address>

Input Arguments:

src location Address of the image to be encapsulated

dst location Address where the blob is created

length Size of the image to be encapsulated

key_modifier address Address where a random number 16 bytes long (key modifier) is placed
Description:

This command would create a cryptographic blob of the image placed at src location and place the blob at dst
location.

6.2.1.2.4 blob dec command

blob dec <src location> <dst location> <length> <key modifier address>

Input Arguments:

src location Address of the image blob to be decapsulated

dst location Address where the decapsulated image is placed

length Expected Size of the image after decapsulation

key_modifier address Address where a random number 16 bytes long(key modifier) is placed
Description:

This command would decapsulate the blob placed at src location and place the decapsulated data of expected
size at dst location.

LLDPUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. L6.1.1_1.0.0_23.08 — 4 August 2023

208 /1053

NXP Semiconductors LLDPUG

Layerscape Linux Distribution POC User Guide

6.2.1.2.5 Bootscript

Bootscript is a U-Boot script image that contains U-Boot commands. ESBC validates this bootscript before
executing commands in it.

1. Bootscript can have any commands which U-Boot supports. No checking is done on the allowed commands
in bootscript. Because it is a validated image, assumption is that commands in bootscript are correct.

2. If some basic scripting error is done in bootscript, such as unknown command, missing arguments, the
required usage of that command and core is put in infinite loop.

3. After execution of commands in bootscript, if the control unexpectedly comes back to U-Boot, an error
message is printed on the U-Boot console and the command esbc_halt is invoked.

4. Scatter gather images are not supported with the validate command.

5. If ITS fuse is blown, any error in verification of the image results in system reset. The error is printed on
console before system goes for a reset.

Where to place the bootscript?

ESBC U-Boot expects the bootscript to be loaded from flash. ESBC U-Boot code assumes that the public/
private key pair used to sign the bootscript is same as the one used while signing the U-Boot image. If the user
uses different key pair to sign the image, the hash of the N and E component of the key pair should be defined
in macro:

CONFIG_BOOTSCRIPT KEY HASH

6.2.1.2.5.1 Chain of Trust

The Bootscript contains information about the next level images, for example, MC, Linux ESBC validates
these images as per their public keys. MC is started with validated MC images if required and finally the bootm
command is executed to pass control to the Linux image.

‘ CSF Header ‘ ‘ CSF Header ‘
U-Boot Boot Script

CSF Header

Normal Boot Loader Stuff
- esbc_validate <MC Img header addr>

MC Images(s)

° esbc_validate <Linux Img header add>
End of Normal Boot Loader Stuff .

esbc_validate
<bootscript Header Address>

CSF Header

source <bootscript Address> L ‘

esbc_halt

Kernel Image(s)
bootm <Kernel Fit Image Address> ,—— 7

Figure 19. Secure boot flow (Chain of Trust from U-Boot)

Sample Bootscript

Get Images and Headers on DDR

Validate the Images. (<pub_key hash> is optional)
esbc validate <Imagel Header Address> <pub key hash>
esbc validate <Image2 Header Address> <pub key hash>

Boot the Linux

LLDPUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. L6.1.1_1.0.0_23.08 — 4 August 2023

209/1053

NXP Semiconductors LLDPUG

Layerscape Linux Distribution POC User Guide

bootm <Kernel Fit Image Address>

6.2.1.2.5.2 Chain of Trust with confidentiality

To establish chain of trust with confidentiality, cryptographic blob mechanism can be used. In this chain of
trust, validated image is allowed to use the One Time Programmable Master Key to decrypt system secrets.
Two bootscripts are to be used. First encapsulation bootscript is used which creates a blob of the next level
images (for example, MC, Linux) and saves them on flash. After this, the system is booted after replacing the
encapsulation bootscript with decapsulation bootscript which decapsulates the blobs and start MC and Linux.

[1sec \ CSF Header \ \ CSF Header ‘
= MC Images(s)
Boot Loader 1 Boot Script
Normal Boot Loader Stuff biob TS
K ob enc <Img1 addr:
: <Img1 dest addr> MC Images (s) Blob
. <Img1 size> <key_modifier address>
End of Normal Boot Loader Stuff blob enc <Img2 addr>
esbc_validate S gozlde
<bootscript Header Address> el ST <key_.m0dlfler Ellizss>
source <bootscript Address> L Kernel Image (s)
esbc_halt
reset

Kernel Image (s) Blob

Figure 20. Chain of Trust with Confidentiality (Encapsulation)

Sample Encapsulation Bootscript

Get Images on DDR

Create the Blobs

blob enc <Imgl addr> <Imgl dest addr> <Imgl size> <key modifier address>
blob enc <Img2 addr> <Img2 dest addr> <Img2 size> <key modifier address>
blob enc <Img3 addr> <Img3 dest addr> <Img3 size> <key modifier address>

Save The Blobs created on Flash

End of Encap Boot Script (This is one time only and must be replaced with
decap Boot Script)

LLDPUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. L6.1.1_1.0.0_23.08 — 4 August 2023

210/1053

NXP Semiconductors

LLDPUG

Layerscape Linux Distribution POC User Guide

CSF Header

CSF Header l

[isBc \\

Boot Loader 1

Boot Script

Normal Boot Loader Stuff

End of Normal Boot Loader Stuff

blob dec <Img1 addr>
<Img1 dest addr>
<Img1 size> <key_modifier address>

esbc_validate
<bootscript Header Address>

source <bootscript Address>

L

blob dec <Img2 addr>
<Img2 dest addr>
,<Img1 size> <key modifier address>

eshc_halt

bootm <Kernel Fit Image Address> ¢

Figure 21. Chain of Trust with Confidentiality (Decapsulation)

MC Images(s)

e

MC Images(s) Blob

-

Kernel Image(s)

Kernel Image(s) Blob

Sample Decapsulation Bootscript

Get Images Blobs on DDR

Decap the Blobs to get the actual images

blob dec <Imgl blob addr> <Imgl dest addr>

address>

blob dec <Img2 blob addr> <Img2 dest addr>

address>

blob dec <Img3 blob addr> <Img3 dest addr>

address>

Boot the Linux

bootm <Kernel Fit Image Address>

<expected Imgl size> <key modifier
<expected Img2 size> <key modifier

<expected Img3 size> <key modifier

6.2.1.2.6 How to compile secure U-Boot binary

You need to compile the u-boot .bin binary to build the fip.bin binary.

Clone the u-boot repository and compile the U-Boot binary for TF-A:

$ git clone https://github.com/nxp-qorig/u-boot.git

$ cd u-boot

$ git checkout -b <new branch name> <tag>

For example, $ git checkout -b LSDK-21.08 LSDK-21.08.

make distclean

Uy U U Ux

export ARCH=arm64
export CROSS COMPILE=aarch64-linux—-gnu-

make <platform> tfa SECURE BOOT defconfig

Note: A single defconfig is created for all the boot sources, <platform> tfa defconfig.

For example, for LX2162AQDS, defconfig is 1x2162aqds tfa SECURE BOOT defconfig.

S make

LLDPUG

All information provided in this document is subject to legal disclaimers.

© 2023 NXP B.V. All rights reserved.

User guide

Rev. L6.1.1_1.0.0_23.08 — 4 August 2023

211/1053

NXP Semiconductors LLDPUG

Layerscape Linux Distribution POC User Guide

Note: If the make command shows the error "*** Your GCC is older than 6.0 and is not
supported", ensure that you are using Ubuntu 18.04 64-bit version for building 21.08 U-Boot binary.

The compiled secure U-Boot image, u-boot .bin-tfa-secure-boot, is available at u-boot/.

6.3 Trusted OS

6.3.1 Trusted Execution (OP-TEE)

6.3.1.1 Introduction

Trusted Execution Environment (TEE), for Arm-based chips supporting TrustZone technology.

NXP platforms are enabled with Open Portable TEE (OP-TEE). OP-TEE is an open source project that contains
full implementation to develop a complete Trusted Execution Environment. This component meets the Global
Platform TEE System Architecture specification. It also provides the TEE Internal core API v1.1 as defined by
the Global Platform TEE Standard for the development of Trusted Applications.

OP-TEE consists of three components.

* OP-TEE client, which is the client API running in normal world user space.

¢ OP-TEE Linux Kernel driver, which is the driver that handles the communication between normal world user
space and secure world.

* OP-TEE Trusted OS, which is the Trusted OS running in secure world.

OP-TEE OS is made of 2 main components: the OP-TEE core and a collection of libraries designed for being
used by Trusted Applications. While OP-TEE core executes in the Arm CPU privileged level (also referred to

as 'kernel land'"), the Trusted Applications execute in the non-privileged level (also referred to as the 'userland').
The static libraries provided by the OP-TEE OS enable Trusted Applications to call secure services executing at
a more privileged level.

6.3.1.1.1 Support platform

OP-TEE is supported on the following NXP boards:

* LS1046ARDB
* LS1043ARDB
» LS2088ARDB
* LS1088ARDB
* LS1012ARDB
* LX2160ARDB Rev2
* LS1028ARDB
* LX2162AQDS

6.3.1.1.2 Test Sequence

Execute the test sequence specified below on target machine:
On the target NXP board:

1. To check if the OP-TEE kernel driver is successfully initialized (after successfully communicating with OP-
TEE OS running in OP-TEE), look for the following in Linux boot logs:

optee: probing for conduit method.
optee: revision <version> (git commit id)

LLDPUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. L6.1.1_1.0.0_23.08 — 4 August 2023

212/1053

https://github.com/OP-TEE/optee_os
https://github.com/OP-TEE/optee_os

NXP Semiconductors LLDPUG

Layerscape Linux Distribution POC User Guide

optee: initialized driver

Note: TF-A FIP image must be compiled with OP-TEE binary. Else, the following error appears:

optee: api uid mismatch

2. Run the tee-supplicant (binary generated from optee_client repo) binary
$>: tee-supplicant & (press enter)
3. Run the xtest (binary generated from optee_test repo) application as follows:

$>: xtest -1 15 (press enter and look for the below logs to verify app runs
successfully) :

47123 subtests of which 0 failed

79 test cases of which 0 failed

0 test case was skipped

OP-TEE test application done!

6.3.1.1.3 How to compile OP-TEE binary

This is an optional step. You may need to compile the tee .bin binary to build fip.bin with OP-TEE.
However, OP-TEE is optional, you can skip the procedure to compile OP-TEE if you want to build the FIP binary
without OP-TEE.

To clone the optee os repository and build the OP-TEE binary, perform the following steps:

1. $ git clone https://github.com/nxp-gorig/optee os

2. $ cd optee os

3. $ git checkout -b <new branch name> LSDK-<LSDK version>.Forexample, $ git

checkout -b 1f-6.1.1-1.0.0 1f-6.1.1-1.0.0

4. $ export ARCH=arm

. $ export CROSS COMPILE64=aarché64-linux-gnu-

. $ make CFG ARM64 core=y PLATFORM=ls-<platform>.For example, $ make
CFG_ARM64_ core=y PLATFORM=1s-1s1088ardb

[o22Né)]

The compiled OP-TEE image tee-raw.bin is available at optee os/out/arm-plat-1ls/core/.

6.4 PKCS#11 and Secure Object Library

6.4.1 Introduction

NXP SoCs such as LS1046A can store keys securely using built-in SoC capabilities - virtual HSM. With such
devices, sensitive private keys never leave the device and cryptographic operations are performed on this
virtual HSM.

The PKCS#11 is a standard programming interface to communicate with HSMs. This standard specifies an
application programming interface (API), called “Cryptoki” to devices which hold cryptographic information and
perform cryptographic functions.

LLDPUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. L6.1.1_1.0.0_23.08 — 4 August 2023

213/1053

https://github.com/OP-TEE/optee_client
https://github.com/OP-TEE/optee_test

NXP Semiconductors LLD P U G

Layerscape Linux Distribution POC User Guide

Applications

SMC Interface

Secure Storage O LA
Module o :

Slot

T T

L T P T T T Ty

Figure 22. Block Diagram

Proprietary interfaces using Secure Object Library are provided to interact with the HSM for:

* Generating key pair within the HSM.
* Installing existing key in the HSM.
» Manufacturing Protection key operations.

The private keys are never visible to normal world.

Sensitive Cryptographic operations using these keys can only be done using PKCS#11 cryptographic token
standard.

An OpenSSL engine on Secure Object Library is also provided to interface directly with OpenSSL APIs
The PKCS#11 library release is compliant to v2.40. It is targeted for LS1046ARDB and supports

* RSA keys of size 1K and 2K.
» ECDSA keys curve prime256v1 and secp384r1.

LLDPUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. L6.1.1_1.0.0_23.08 — 4 August 2023

214/1053

NXP Semiconductors

LLDPUG

Layerscape Linux Distribution POC User Guide

OpenSSl App

1
{0ty Sep) pkcs_apg mp_app :
il l ; / 1
DpenS5L Engime

(Mong. secuen obf) ibpkes 11 sot]_app :
w -
E ibsecure_oby]
[77] 1
= l 1
I
TEE client APl I
]
I

___________ I
o]
w I
o |

wi

-} 1
= i
[I
= I
1
I

REE ! Marmal Weord

Secure Morifor
PPASPD

Figure 23. Details of HSM

seCue_sloage_ta

USER

OP-TEEOS

PRIVILEGED '

OP-TEE/ Secure VWorkd

6.4.2 Supported APls

6.4.2.1 PKCS#11 Library — libpkcs11.so

The PKCS#11 interfaces are exposed and implemented via a shared library with a name called 1ibpkcsll.so
(Cryptoki Library). Any PKCS#11 library has a static CK FUNCTION LIST structure, and a pointer to it may be

obtained by the C_GetFunctionList () function.

Table summarizes the list of supported PKCS#11 interfaces. The return values and API behaviors are compliant
with the PKCS#11 standard v2.40. The PKCS#11 library expects the caller to use the interfaces in a standard

way.

API Description

C_lInitialize Initialize Cryptoki library

C_Finalize Clean up cryptoki related resources
C_GetFunctionList Obtains entry points of Cryptoki library functions.
C_GetInfo Obtains general information about Cryptoki

C_GetSlotInfo Obtains information about a particular slot

C_GetTokenlnfo Obtains information about a particular token

C_GetSlotList Obtain list of slots in the system.

supported.

Only a fixed slot with fixed token is supported. Dynamic slot or token addition is not

C_OpenSession Opens/Closes a session.

C_CloseSession
C_CloseAllSessions

¢ All types of sessions are supported with Token.
¢ Only Token Objects can be created/destroyed, Session Objects are not supported.

C_Login

LLDPUG

Logs in to a token.

All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide

Rev. L6.1.1_1.0.0_23.08 — 4 August 2023
215/1053

NXP Semiconductors

LLDPUG

Layerscape Linux Distribution POC User Guide

C_Logout Logs out from a token
C_CreateObject Creates an object (RSA Keys of size up to 2048bits are supported)
C_DestroyObject Destroys an object
C_FindObjectslInit Objects search operations.
C_FindObjects RSA public and private key objects of size up to 2048bits are supported.
C_FindObjectsFinal ECDSA public and private key objects of size 256 and 384 bits are supported.
C_GetAttributeValue Obtains the value of one or more attributes of the objects.
C_GetMechanismlList Obtains List of mechanism supported by token.
C_GetMechanisminfo Obtains the information about a mechanism.
C_GenerateKeyPair Generates a public-key/private-key pair (RSA Keys of size up to 2048bits are supported)
C_Signinit Initialize a signature operation.
C_Sign Signs single-part data.
C_SignUpdate Continues a multiple-part signature operation.
C_SignFinal Finishes a multiple-part signature operation.
Mechanisms supported:
* RSA-based Mechanisms
— CKM_RSA_PKCS
— CKM_MD5_RSA_PKCS
— CKM_SHA1_RSA_PKCS
— CKM_SHA256_RSA_PKCS
— CKM_SHA384_RSA_PKCS
— CKM_SHA512_RSA_PKCS
* ECDSA-based Mechanisms (Single Part Only)
— CKM_ECDSA
— CKM_ECDSA_SHA1
C_Digestlnit Initializes a message-digesting operation.
C_Digest Digests single-part data.
C_DigestUpdate Continues a multiple-part digesting operation.
C_DigestFinal Finishes a multiple-part digesting operation.
Mechanisms supported:
« CKM_MD5
* CKM_SHA1
* CKM_SHA256
* CKM_SHA384
* CKM_SHA512
C_Decryptinit Initializes a decryption operation.
C_Decrypt Decrypts single-part encrypted data.
Mechanisms supported:
* CKM_RSA_PKCS
* CKM_RSA_PKCS_OAEP

6.4.2.2 Secure Object Library — libsecure_obj.so

6.4.2.2.1 Secure Object Library

The following are the details of the supported interfaces to generate/import keys using the Secure Object library.

1. Import Keys:

LLDPUG All information provided in this document is subject to legal disclaimers.

User guide Rev. L6.1.1_1.0.0_23.08 — 4 August 2023

© 2023 NXP B.V. All rights reserved.

216 /1053

NXP Semiconductors LLDPUG

Layerscape Linux Distribution POC User Guide

SK_RET_CODE SK_CreateObject(SK_ATTRIBUTE *attr, uint16_t attrCount, SK_OBJECT_HANDLE
*phObject);
The API creates an Object on the HSM, and returns a handle to it. API always succeeds even if an object
with same attributes exists in HSM. Duplicate object is created. Application needs to take care that duplicate
objects should not be created.
attr is an array of attributes that the object should be created with. Some of the attributes may be
mandatory, such as SK_ATTR OBJECT TYPE and SK_ATTR OBJECT INDEX (the id of the object), and
some are optional.
Application needs to take care that valid attributes are passed, library does not return any error on receiving
inconsistent or incompatible attributes.
paramlin] attr: The array of attributes to be used in creating the Object.
param[in] attrCount: The number of attributes in attr
paramlin, out] phObject IN: A pointer to a handle (must not be NULL);
OUT: The handle of the created Object
Return Values:
SKR_OK: Successful execution, phObiject filled with created object handle.
SKR_ERR_BAD_PARAMETERS: Invalid function arguments.
SKR_ERR_OUT_OF_MEMORY: Memory allocation failed.
SKR_ERR_NOT_SUPPORTED: The function and/or parameters are not supported by the library.
Note: Some internal error code other than the code mentioned above can be returned. Refer to
securekey api types.h for the error code description.

2. Generate Key:
SK_RET_CODE SK_GenerateKeyPair(SK_MECHANISM_INFO *pMechanism, SK_ATTRIBUTE *attr,
uint16_t attrCount, SK_OBJECT_HANDLE *phKey);
This API generates key pair on the HSM, and returns a handle to it. API always succeeds even if an object
with same attributes exists in HSM. Duplicate object is created. Application needs to take care that duplicate
objects should not be created.
pMechanism is a mechanism for key pair generation. For example: SKM_RSA PKCS KEY PAIR GEN.
attr is an array of attributes that the object should be created with. Some of the attributes may be
mandatory, such as SK_ATTR OBJECT INDEX (the id of the object), and some are optional.
Application needs to take care that valid attributes are passed, library does not return any error on receiving
inconsistent/incompatible attributes.
param[in] pMechanism: Mechanism for key pair generation.
param[in] attr: The array of attributes to be used in creating the Object.
param[in] attrCount: The number of attributes in attr.
param[in, out] phKey IN: A pointer to a handle (must not be NULL);
OUT: The handle of the created Object.
Return Values:
SKR_OK: Successful execution, phobject is filled with created object handle.
SKR_ERR_BAD_PARAMETERS: Invalid function arguments
SKR_ERR_OUT_OF_MEMORY: Memory allocation failed.
SKR_ERR_NOT_SUPPORTED: The function and/or parameters are not supported by the library.
Note: Some internal error code other than mentioned above can be returned. Refer to
securekey api types.h for error code description.

3. Erase Object:
SK_RET_CODE SK_EraseObject(SK_OBJECT_HANDLE hObject);
Erases an object from the HSM. It indicates that the object with the specified handle is not in usage.
paraml[in] hObject: The handle of the Object to be erased.
Return Values:
SKR_OK: Successful execution
SKR_ERR_BAD_PARAMETERS: Invalid function arguments.

LLDPUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. L6.1.1_1.0.0_23.08 — 4 August 2023

217 /1053

NXP Semiconductors LLDPUG

Layerscape Linux Distribution POC User Guide

Note: Some internal error code other than mentioned above to be returned. Refer to

securekey api types. h forthe error code description.

Further details of the APIs and its types are available in the files <securekey api.h>and

<securekey api types.h>inthe secure obj folder.

Note:

* Maximum of 50 objects can be created/generated.

» Secure Object Library does not generate any error, if multiple objects having same attributes are being
created. It is the applications responsibility to take care of the attributes that are passed during creation/
generation of objects.

6.4.2.2.2 Manufacturing Key APIs:

Following the secure boot, the system runs the key generation routine producing an ECC public and private Key
pair. This is referred to as Manufacturing Protection Key Pair.

Key Generation is performed by BootROM.

» For complete documentation on how to perform the key generation, public key export, and signing with the
ECC private key, refer to the Manufacturing-protection chip-authentication process section in the SoC'’s
Security (SEC) Reference Manual.

» To work out this feature, boot the board in the secure boot mode and configure the ITS bit to 1.

The APIs for availing the MP public key, signing using the MP private key, and availing the MP Tag are
described below:

1. Get MP Public key: enum sk_status_code sk_mp_get_pub_key(struct sk_EC_point *pub_key);
Get Manufacturing Protection (MP) Public Key (ECC P256 Key).
param[in,out] pub_key: This is MP Public Key to be returned. Application needs to allocate memory
for sk_EC point. Each of the coordinate x and y needs to allocate sk EC_point.len memory.
sk_EC point.len can be obtained using sk mp get pub key len().
Return Values:
SK_SUCCESS on success, error value otherwise.

2. Sign using MP private key
enum sk status code sk mp sign(unsigned char * msg, uint8 t msglen,
struct sk EC sig * sig, uint8 t * digest, uint8 t digest len)
Sign the msg using MP Priv Key. While signing MP Message, it will be prepended to message. Message
over which signature will be calculated = MP message + msg.
param[in] msg: Pointer to the message to be signed.
param[in] msglen: Length of the message to be signed.
param[in,out] sig: This is Signature calculated. Application needs to allocate memory for sk_EC sig.
Each of the parts r and s needs to be allocated sk EC _sig.len memory. sk EC sig.len can be
obtained using sk_ mp get sig len().
param[in, out] digest: Digest (SHA-256) of the message to be signed. Digest is calculated by prepending
MP Message to the msg.
param[in] digest_len: Length of digest. Application needs to allocate memory for sk EC_point. Each
of the coordinate x and y needs to allocate sk EC_point.len memory. sk EC point.len can be
obtained using sk mp get pub key len().
Return Values:
SK_SUCCESS on success, error value otherwise.

3. Get MP Tag
enum sk_status_code sk_mp_get_mp_tag(uint8_t *mp_tag_ptr,uint8_t mp_tag_len);
Get the MP Message. While signing, the MP Message is prepended to message automatically. To avail the
MP message tag, you can call this function during the verification operation.

LLDPUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. L6.1.1_1.0.0_23.08 — 4 August 2023

218 /1053

NXP Semiconductors LLDPUG

Layerscape Linux Distribution POC User Guide

paramlin, out] mp_tag_ptr: Pointer to the message to be signed. Application needs to allocate memory of
length returned by sk_mp_get_tag_len().

param[in] mp_tag_len: Length of the mp tag ptr buffer.

Return Values:

SK_SUCCESS on success, error value otherwise.

The API definition can be found in file securekey mp.h. The sample applications are provided to
demonstrate the usage of APlIs.

6.4.3 Integrating applications with Secure Object

Applications can interact with Secure Objects stored in HSM/Token using the followings APls:

» Secure Object
e OpenSSL
— Secure Object Library based OpenSSL Engine (1ibeng secure obj)

Note: For more information on how to use the Secure Object APIs, refer to the sobj app application.

6.4.3.1 Using PKCS#11 APlIs

Applications can directly use the PKCS#11 APIs to interact with the Secure Objects stored in HSM/Token.
Currently, we support PKCS#11 APIs mentioned in PKCS#11 APls.

PKCS#11 library can also be used with any OpenSource PKCS#11 application such as p11tool, softhsm2-utils,
and so on.

We have tested this library with p11tool for following operations:

e Listing tokens: p11tool --list-tokens

* Initializing token: p11tool --initialize

* Initializing User pin: p11tool --initialize-pin

* Initializing SO pin: p11tool --initialize-so-pin

* Generating RSA Key: p11tool --generate-rsa

* Importing RSA Key: p11tool --write --load-privkey <rsa_key.pem>

For more information on p11tool commands, check here

We have also created a reference application pkcs11_app for showing how to use the PKCS#11 APIs for writing
your own application.

Commands to run pkcs11_app are shown here

6.4.3.2 Using Secure Object APIs

Applications can directly use the Secure Object Library APls to interact with the Secure Objects stored in HSM/
Token. Currently we support APls mentioned in Secure Object APIs.

We have also created a reference application sobj_app for showing how to use the Secure Object APIs.

Commands to run sobj_app are provided here.

6.4.3.3 Applications using OpenSSL APIs

This topic provides examples of usage with OpenSSL. It is recommended that you should familiarize yourself
with Open SSL.

Refer to the appropriate documents for Open SSL commands at the following location:

LLDPUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. L6.1.1_1.0.0_23.08 — 4 August 2023

219/1053

https://www.gnutls.org/manual/html_node/p11tool-Invocation.html

NXP Semiconductors LLDPUG

Layerscape Linux Distribution POC User Guide

http://www.openssl.org/docs/

Open SSL provides the support of engine (basically hardware devices) to store the keys on hardware devices to
make keys more secure.

There are 2 ways in which applications using the OpenSSL APIs can access the Secure Objects stored in HSM/
Token.

» Secure Object Library based OpenSSL Engine (libeng_secure_obj).
* PKCS#11 based OpenSSL Engine (Third-party OpenSCl/libp11).

6.4.3.3.1 Secure Object Library based OpenSSL Engine (libeng_secure_obj)

NXP provides the Secure Object Library based OpenSSL Engine that is used to communicate with underlying
HSM. This engine is based on Secure Object Library. Using this engine, you can perform the following
operations:

* RSA Private Encryption
* RSA Private Decryption
» ECDSA Signing Operation

All the other RSA/ECDSA operations can be performed by OpenSSL itself.

This engine does not support generation of RSA Keys. Keys are generated by another app sobj app and
these keys are used in the applications using this OpenSSL Engine.

Refer to the Section 6.4.4.2.5 section for the screenshots of application using OpenSSL engine.

6.4.3.3.1.1 Example Usage with OpenSSL

This topic provides examples of usage with OpenSSL.:

* Using the engine from command line, change the following in openssl.cnf (oftenin /etc/ssl/
openssl.cnf).
1. Add the following given line at the top, before any sections are defined:
openssl conf = conf section
2. Add following section at the bottom of the file:

[conf section]

engines = engine section
[engine section]
secure obj = sobj section

[sobj section]

engine_ id = eng_ secure obj

dynamic_path = <path where lib_eng secure obj.so is placed>
default algorithms = RSA

init =1

This section shows only RSA examples. Same can be done for EC by changing default algorithms in
openssl.cnf as shown below:

default algorithms = RSA, EC

Testing the engine operation:
To verify that the engine is properly operating, use the following example:

user@Ubuntu: ~#

user@Ubuntu:~# openssl engine

(dynamic) Dynamic engine loading support
(eng_secure obj) secure object OpenSSL Engine.

LLDPUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. L6.1.1_1.0.0_23.08 — 4 August 2023

220/1053

http://www.openssl.org/docs/

NXP Semiconductors LLDPUG

Layerscape Linux Distribution POC User Guide

user@Ubuntu: ~#
user@Ubuntu: ~#

If you do not update the OpenSSL configuration file, specify the engine configuration explicitly.

$: openssl engine -t dynamic -pre SO PATH:<path-to-libeng secure obj.so> -pre
ID:eng_secure obj -pre LIST ADD:1 -pre LOAD

user@Ubuntu:~#

user@Ubuntu:~# openssl engine -t dynamic -pre SO PATH:/usr/lib/aarché64-linux-
gnu/openssl-1.0.0/
engines/libeng secure obj.so -pre ID:eng secure obj -pre LIST ADD:1 -pre LOAD
(dynamic) Dynamic engine loading support
[Success] : SO PATH:/usr/lib/aarch64-linux-gnu/openssl-1.0.0/engines/
libeng secure obj.SO
[Success] : ID:eng secure obj
[Success] : LIST ADD:1
[Success] : LOAD
LOADED: (eng secure obj) Secure object OpenSSL Engine.
[available]
user@Ubuntu: ~#

* Using OpenSSL from the command line.

Generate RSA/ECDSA key-pair using the following commands and use them in signing any data and verifying
the signatures generated.

S: sobj app -G -m rsa-pair -s 2048 -1 "rsa gen 2048" -i 1 -w rsa 2048.pem ##
Generating RSA keypair ##

$: openssl rsa —-in rsa 2048.pem -pubout -out rsa pub 2048.pem ## Taking out
Public Key for verifying signature ##

$: openssl dgst -shal -sign rsa 2048.pem -out sig.data data ## Generating
Signature "sig.data" of "data" ##

S: openssl dgst -shal -verify rsa pub 2048.pem -signature sig.data data ##
Verifying the signature using Public Key ##

Similarly as in above step, generate for ECDSA keys of prime256v1 by using following commands:

$: sobj app -G -m ec-pair -c prime256vl -1 "ecc 256" -i 2 -w ec256.pem
$: openssl ec -in ec256.pem -pubout -out ec pub 256.pem

$: openssl dgst -shal -sign ec256.pem -out sig.data data

$: openssl dgst -shal -verify ec pub 256.pem -signature sig.data data

For ECDSA secp384r1 curve, use the following commands:

S: sobj app -G -m ec-pair -c secp384rl -1 "ecc 384" -i 3 -w ec384.pem
$: openssl ec -in ec384.pem -pubout -out ec pub 384.pem
S: openssl dgst -shal -sign ec384.pem -out sig.data data
$: openssl dgst -shal -verify ec pub 384.pem -signature sig.data data

* This section describes how to use the command line to create a self-signed certificate for "NXP
Semiconductor”. The key of the certificate is generated in the Secure Object HSM and will not exportable.
As per the following examples, generate a private key in the HSM with sobj_app, This will also create a fake
PEM file dev_key.pem having information to get the required key from HSM.

To generate the RSA key-pair, use the command:

$: sobj app -G -m rsa-pair -s 2048 -1 "Test Key" -i 1 -w dev_ key.pem
To generate the ECDSA key-pair, use the command:

$S: sobj app -G -m ec-pair -c prime256vl -1 "ecc 256" -i 30 -w dev_key.pem

LLDPUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. L6.1.1_1.0.0_23.08 — 4 August 2023

221/1053

NXP Semiconductors LLDPUG

Layerscape Linux Distribution POC User Guide

To generate a certificate with key in the Secure Object module, use the following commands:

$ openssl req -new -key dev key.pem -out reqg.pem -text -x509 -subj "/CN=NXP
Semiconductor"
$ openssl x509 -signkey dev key.pem -in reg.pem -out cert.pem
The first command creates a self-signed Certificate for “NXP Semiconductor". The signing is done using the
key specified by the fake PEM file.
The second command creates a self-signed certificate for the request. The private key used to sign the
certificate is the same as the private key used to create the request.

6.4.3.3.2 PKCS#11 based OpenSSL Engine (Third-party OpenSC/libp11)

libp11 is a library implementing a thin layer on top of PKCS#11 API to make using PKCS#11 implementations
easier.

You can get library from: https://github.com/OpenSC/libp11 .

This code repository produces two libraries:

* libp11 provides a higher-level (compared to the PKCS#11 library) interface to access PKCS#11 objects. It is
designed to integrate with applications that use OpenSSL.

* pkcs11 engine plugin for the OpenSSL library allows accessing PKCS#11 modules in a semi-transparent way.
pkcs11 engine for OpenSSL can be installed on board using command sudo apt-get install libengine-pkcs11-
openssl

Above command will install the libpkcs11.so (pkcs11 engine) in /usr/lib/aarch64-linux-gnu/engines-1.1/libpkcs11.
so and this will be dynamic_path in OpenSSL configuration file.

For running the PKCS#11 OpenSSL Engine with our PKCS#11 Library add following into your global OpenSSL
configuration file (often in /etc/ssl/openssl.cnf). This line must be placed at the top, before any sections are
defined:

openssl conf = openssl init

This should be added to the bottom of the file:

[openssl init]

engines=engine section

[engine section]

pkcsll = pkcsll section

[pkcsll section]

engine id = pkcsll

dynamic _path = <path-to-pkcsll-engine>/libpkcsll.so
MODULE PATH = <path-to-NXP-pkcsll-library>/libpkcsll.so

init = 0

The dynamic_path value is the pkcs11 engine plug-in, the MODULE_PATH value is the NXP PKCS#11 library.
The engine_id value is an arbitrary identifier for OpenSSL applications to select the engine by the identifier.

6.4.3.3.2.1

Testing the engine operation

To verify that the engine is properly operating you can use the following example.

S openssl engine pkcsll -t
(pkcsll) pkcsll engine

LLDPUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. L6.1.1_1.0.0_23.08 — 4 August 2023

222/1053

https://github.com/OpenSC/libp11

NXP Semiconductors LLDPUG

Layerscape Linux Distribution POC User Guide

[available]

6.4.3.3.2.2

Using p11tool and OpenSSL from the command line:

This section demonstrates how to use the command line to create a self-signed certificate for "NXP
Semiconductor". The key of the certificate will be generated in the token and will not exportable.

p11tool from GnuTLS and this engine with OpenSSL work in combination.

p11tool is a tool that manipulates PKCS #11 tokens. Export/import data from PKCS #11 tokens. To use PKCS
#11 tokens with gnutls the configuration file /etc/gnutls/pkcs11.conf must exist and contain number lines of the
form "load=<pkcs-library-path>" or this PKCS#11 module can be provided directly as —provider in command line
as argument.

p11tool can be installed by running command sudo apt-get install gnutls-bin

For more configuration options check: https://www.gnutls.org/manual/html_node/p11tool-Invocation.html.

Check for key which is already created from sobj_app via p11tool.

The following commands utilize p11tool for that.

$ plltool --provider <path-to-NXP-PKCS-library>/libpkcsll.so --list-privkeys

root@1sl1028ardb:~# plltool --provider /root/libpkcsll.so --list-privkeys
Object 0:

URL: pkcsll:model=;manufacturer=NXP;serial=1;token=TEE BASED TOKEN;
%01%00%00%00;0bject=Device Key3;type=private

Type: Private Key

Label: Device Key3

Flags: CKA NEVER EXTRACTABLE; CKA SENSITIVE;

ID: 01:00:00:00
Object 1:

URL: pkcsll:model=;manufacturer=NXP;serial=1;token=TEE BASED TOKEN;
%01%00%00%00;0bject=Device Key2;type=private

Type: Private Key

Label: Device Key?2

Flags: CKA NEVER EXTRACTABLE; CKA SENSITIVE;

ID: 01:00:00:00
Object 0:

URL: pkcsll:model=;manufacturer=NXP;serial=1;token=TEE BASED TOKEN;
%01%00%00%00;0bject=Device Key3;type=private

Type: Private Key

Label: Device Key

Flags: CKA NEVER EXTRACTABLE; CKA SENSITIVE;

ID: 01:00:00:00
root@1sl1028ardb: ~#

Note the PKCS #11 URL shown above and use it in the commands below.
To generate a certificate with its key in the PKCS #11 module, the following command can be used.

Following command creates a self-signed Certificate for "NXP Semiconductor”. The signing is done using the
key specified by the URL.

$ openssl reqg -engine pkcsll -new -key
"pkcsll:model=;manufacturer=NXP;serial=1;token=TEE BASED TOKEN;id=
%01%00%00%00; object=Device Key3

LLDPUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. L6.1.1_1.0.0_23.08 — 4 August 2023

223 /1053

https://www.gnutls.org/manual/html_node/p11tool-Invocation.html

NXP Semiconductors

LLDPUG

Layerscape Linux Distribution POC User Guide

;type=private" -keyform engine -out req.pem -text -x509 -subj "/CN=NXP
Semiconductor"

6.4.4 Board Bootup and Running applications

6.4.4.1 Board Bootup

1. Prepare the images using the Layerscape LDP documentation and boot up the board with secure-boot
and ITS set to 1.
ITS =1 is required for BootROM to generate the Manufacturing Protection Private Key.
For setting ITS bit to 1, run following command after programming SRKH and before removing the boot hold
off. The test is performed on LS1046ARDB.
#7To do ITS=1
ces::write_mem 32 0x1e80200 4 0 0x00000004

2. After booting up the board with LDP images, check if the following images are placed in their corresponding
places.

Binary Place in rootfs

b05bcf48-9732-4efa-a9e0-141c7c888c34.ta

/lib/optee_armtz/

libsecure_obj.so Jusr/lib
sobj_app /usr/bin
mp_app /usr/bin
mp_verify /usr/bin

libeng_secure_obj.so

/usr/lib/aarch64-linux-gnu/openssl-1.0.0/engines/

sobj_eng_app /usr/bin
securekeydev.ko This path depends on Linux Kernel Version:
Linux Kernel <version> - /lib/modules/<version>/extra/
libpkcs11.so usr/lib
pkcs11_app /usr/bin
thread_test /usr/bin

For compilation steps, see Section 6.4.6

B ow

Run tee-supplicant & command from the Linux prompt.
Depending on the Linux kernel version used insmod securekeydev. ko from right folder.

5. Run the applications as described in Running the applications.

6.4.4.2 Running applications

Two applications are available with the package.

* sobj_app : Provides interface to generate/import key objects via Secure Object Library

» pkcs11_app: Provides interface to enumerate objects in the HSM and perform cryptographic operations.

* mp_app: This application demonstrates how to Get MP Public Key, sign a message using MP private key, Get
Message tag.

* mp_verify: This app uses OpenSSL APIs to verify the signature obtained by using mp_app application.

LLDPUG All information provided in this document is subject to legal disclaimers.

User guide Rev. L6.1.1_1.0.0_23.08 — 4 August 2023

© 2023 NXP B.V. All rights reserved.

224 /1053

NXP Semiconductors

LLDPUG

Layerscape Linux Distribution POC User Guide

* sobj_eng_app: This app uses OpenSSL APIs to show how to use Secure Object based OpenSSL Engine.
This application is loading the private key and then doing cryptographic operations using this key.

* thread_test: PKCS#11 application to test multithreading feature of PKCS#11 library.
Note: These are reference applications to demonstrate the usage of APIs as described in Supported APIs.

6.4.4.2.1 sobj_app

To create or generate objects, run the sobj app application.

* sobj_app: This command shows help related to sobj app.

root@Ubuntu: ~# sobj_app

Only one of the below options are allowed per execution:-
- - Create Object
- - Generate Object
-A - Attributes of the Chject
-L - IList Chject
-R - Remove/Erase CObject

Usze below Sub options along with Main options:-

-o - Object Type (Supported: pair, puhb)

-k - Eey Type (3upported: rsa, ec)

-5 - RBA Key Size/Length (Supported: 1024, Z2Z048).
-2 - EC Curve (Supported: primeZ5évl, secp3B84rl).
-f - File Name (.pem) (Private EKey).

-1 Ohject Lahel

-1

-h

Uzage:

Ohject Id. (In Decimal)

Ohject Handle (In Decimal)

Number of Objects (Default = 3)

Mechanism Id (Supported: ec-palr)

Fake .pem file. (Optional command while generating/ereating RESA,

rsa-pair,
ECD3A key-pair).

Creation:

sobj_app -C -f <private.pem> -k <key-typer -o <obj-typer -= <key
sobj_app -C -f sk_private.pem -k rsa -o pair -5 Z048 -1 "Device_
sobj_app -C¢ -f sk_private.pem -k ec -0 pair -1 "Dewvice Rey" -i 1
zobj_app -C -f sk_private.pem -k rsa -o pair -3 Z048 -1 "Device_
Generation:

zob]_app -G -m <mechanism-ID> -3 <key-size> -1 <key-lahel> -i <k
sob]_app - -m rsa-pair -s 2048 -1 "Device Key" -1 1

sob]_app -% -m ec-pair -¢ prime2536vl -1 "Device Key" -1 1
sobh]_app -% -m rsa-pair -s 2048 -1 "Device Key" -1 1 -w dev_key.

Attributes:

sobj_app -A -h <obj-handle>

zobj_app -A -h 1

List:

sobj_app -L [-n <num-of-obj> -k <key-type> -1 <chj-lakel> -s <ke
Obhjects can be listed based on combination of any above criteri
Remove

zob]j_app -R -h <ohj-handle>

sobj_app -R -h 1

* Importing an RSA key pair to HSM:
sobj_app -C -f <private.pem> -k <key-type> -0 <obj-type> -s <key-size> -l <obj-label> -i <obj-ID>
This command helps in importing a key to the HSM. It creates an object in HSM reading key from
<private.pem> with object label <obj-label> and object ID <obj-ID>. This private.pem can be
generated by openssl using the command below:
openssl genrsa -out rsa_key_2048.pem 2048
Handle of the object created in the HSM is printed as an output to the command. This handle can be used for
further operations on the created object (for example, delete, printing attributes and so on).

LLDPUG

All information provided in this document is subject to legal disclaimers.

© 2023 NXP B.V. All rights reserved.

User guide

Rev. L6.1.1_1.0.0_23.08 — 4 August 2023

225/1053

NXP Semiconductors LLDPUG

Layerscape Linux Distribution POC User Guide

root@localhost:~# sob) app -C -f rsa key 2048.pem -k rsa -o palr -5 2048 -1 "rsa create 2048" -1 0
Creating the Object.

Import Key from rsa key 2048.pem

Fey Length = 2048

Object created successfully handle = 0

root@localhost:~#

root@localhost:~#

root@localhost:~# sob) app -C -f rsa key 2048.pem -k rsa -o pub -5 2048 -1 "rsa create 2048" -1 0
Creating the Object.

Import Key from rsa key 2048.pem

Fey Length = 2048

Object created successfully handle = 1

* Importing an ECDSA key pair to HSM:
sobj_app -C -f <private.pem> -k <key-type> -o <obj-type> -l <obj-label> -i <obj-ID>
This command helps in importing a key to the HSM. It will create an object in HSM reading key from
<private.pem> with object label <obj-1label> and object ID <obj-ID>.
This private.pem can be generated by openssl using below command:
openssl ecparam -genkey -name prime256v1 -noout -out ec_key 256.pem
Handle of the object created in the HSM is printed as an output to the command. This handle can be used for
further operations on the created object (for example, delete, printing attributes, and so on).

root@localhost:~#

root@localhost:~# sobj app -C -f ec key 256.pem -k ec -o pair -1 "ecc create 25" -1 2
Creating the Object.

Object created successfully handle = 2

root@localhost:~#

root@localhost:~# sob] app -C -f ec key Z56.pem -k ec -0 pub -1 "ecc create 256" -1 2
Creating the Object.

Object created successfully handle = 3

root@localhost:~#

* Generating an RSA key pair in HSM:
sobj_app -G -m <mechanism-ID> -s <key-size> -l <key-label> -i <key-ID>
This command generates an object of type derived from mechanism-ID of size <key-size> with label <key-
label> and ID <key-ID>
Handle of the object created is printed as an output to the command. This handle can be used for further
operations on the created object (for example, delete, printing attributes and so on)

root@localhost:~#

root@localhost:~# sobj app -G -m rsa-pailr -3 2048 -1 "rsa gen 2048" -1 1

Generating the Object.

Objects generated successfully handle

Private Key = 4, Public Key = 5

Exiting GenerateKeyPair

root@localhost:~#
root@localhost:~#

* Generating ECDSA key pair in HSM:
sobj_app -G -m <mechanism-ID> -c¢ <curve> -l <key-label> -i <key-ID>
This command will generate an object of type derived from mechanism-ID of size <key-size> with label <key-
label> and ID <key-ID>
Handle of the object created is printed as an output to the command. This handle can be used for further
operations on the created object (for example, delete, printing attributes, and so on).

root@localhost:~#

root@localhosti:~# sob] app -G -m ec-pair -c primeZbevl -1 "ecc gen 256" -i 4
Generating the Object.

Objects generated successfully handle

Private Key = 6, Public Key = 7

Exiting GenerateKeyPair

root@localhost:~#

* Display attributes of an object in the HSM:

LLDPUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. L6.1.1_1.0.0_23.08 — 4 August 2023

226 /1053

NXP Semiconductors LLDPUG

Layerscape Linux Distribution POC User Guide

sobj_app -A -h <obj-handle>
This command shows some attributes related to object created. Pass the object handle <obj-handle> to
the command. This <obj-handle> is printed during generation or import of objects to HSM.

root@localhost:~# sobj app -Z -h 0
Attributes of Object Handle: 0

Object Label: rsa_create_2048

Object Id: 0

Object Type: EKEY PAIR[0x10000]

Object Key Type: RSA[0x0]
root@localhost:i~#
roct@localhaost:~#
root@localhost:~# sobj_app -& -h 6
Attributes of Object Handle: 6

Object Label: ecc gen 256

Object Id: 4

Object Type: EEY_PAIR[0x10000]

Object RKey Type: EC[0x1]
roct@localhost:~#
root@localhost:~#
root@localhost:~#
root@localhost:~# sobj_app -A -h 4
Attributes of Object Handle: 4

Object Label: rsa_gen_ 2048

Object Id: 1

Object Type: EKEY PAIR[0x10000]

Object Key Type: RSA[0x0]
root@localhast:i~#
roct@localhaost:~#

* List handles of the objects available in the HSM:
sobj_app -L [-n <num-of-obj> -k <key-type> -l <obj-label> -s <key-size> -i <obj-id>]
This command list handles the objects that are already created or generated based on some search criteria
(if given). You can then use this command handle to print the rest of the attributes. For more details, see the
above command.

rootl@localhost:~# sobj_app -L -n 20

None of the search option (-1 -o -k -s -1) is provided. Listing all object.
Following objects found:

Object[0] handle = 0

Object[l] handle =
Ghject[2] handle =
Object[3] handle =
Object[4] handle =
Object[5] handle =
Object[&] handle =
Object[7] handle =
root@localhost:~#
roct@localhosti~#
roct@localhost:~#
root@localhost:~# sob]_app -L -1 ecc_create_ 256
Missing Cption [-n]. Listing max of 5 objects.
Following objects found:

Object[0] handle = 2

Object[l] handle = 3

root@localhost:~#

root@localhost:~#

roct@localhost:~# sobj app -L -1 ecc create
Missing option [-n]. Listing max of 5 objects.
No Object Found.

~1 O s L e

Following objects found:

roct@localhosti~#

roct@localhost:~#

rooct@localhost:~# sobj_app -L -s 2048

Missing Cption [-n]. Listing max of 5 objects.
Following objects found:

Object[0] handle = 0

Object[l] handle = 1

Object[2] handle = 4

Object[3] handle = 5

roct@localhost:i~#

LLDPUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.
User guide Rev. L6.1.1_1.0.0_23.08 — 4 August 2023

22711053

NXP Semiconductors LLD P U G

Layerscape Linux Distribution POC User Guide

6.4.4.2.2 pkcs11_app

* pkcs11_app — This command shows commands available.

rootfUbuntu: /greengrass# pkosll app
Only one of the below option is allowed per execution:-

-I - Library Information.

=T - Token

-P - Slot

=M = Nechanism
-F - Find

-5 - Sim

=¥ - Verify

-E - Encrypt
=D - Decrypt

Use below Sub options along with Main oprions:-
=i = Info.
-1 - List.
-k - Eey Type (Supported: rsa, ec)
-o - Object Type (Supported: pub, prv)
=b = Object Label.
-p - Slot Id.
-t - Humber of Object to be Listed (Defamlt n =10).
-m - Mechanism Id
Supported Mechanism: r=a, rsa-oasp, ndS-rsa, shal-rsa, sha2S6-raa, sha384-rsa, shaSlZ-rsa, ec, shal-ec
EC/R5A Sign/Verify: rsa, mdS-rsa, shal-rsa, shaZ56-rsa, sha38d-rsa, shaSlZ-rsa, ec, shal-ec
R34 Encrypt/Decrypt: rsa, rsa-oasp
-d - Plain Data
-3 - Signature Data
-& - Encrypted Data

Usage:
Library Informatiom:
pkesll_app -1

Glot/Token Commands:
pkesll_app -F -1
pkcsll_app =P =i =p <slot=ID>; (pkcsll_app =P =i =p 0)
pkcsll_app -T -i -p <slot-ID>; (pkcsll_app -T -i -p 0)

Mechanism:
pkesll_app -M -1 -p <slot-ID>; (pkcsll_app -M -1 -p 0)
pkcsll_app -M -m <mech-ID>= -i -p <slot-ID>; (pkcsll_app -M -m rsa -i -p 0)
pkesll app -M -i -p <sloc-ID>; (pkcsll app -M -i -p 0}

Object Search:
pkesll_aspp -F -p <slot-ID: [-n <mm-of-obj> -k <key-type> -b <obj-label> -o <obj-type:]
Objects can be listed based on combination of any abowe criteria.

Signature Generation
pkcsll_app -5 -k <key-type> -b <key-label> -d <Data-to-be-signed> -m <mech-ID> -p <slot-ID>
pkczll_app -5 -k rsa -b Device_Key -d "PEC311 TEST DATL" -m mdS-rza -p 0
pkcsll _app -3 -k ec -b Dewvice Key -d "PKC5L1 TEST DATA" -m shal-ec -p 0

Signature Verification

pkesll_app -V -k <key-type> -b <key-label> -d <Data-previously-sigmed> -5 <{signature-file> -m <mech-ID> -p <slot-ID>

pkcall_app -V -k rsa -b Device Key -d "PEC31l TEST DATA" -3 sig.data -m md5-rsa -p 0
pkcsll_app -V -k ec -b Device Key -d "PECSL1l TEST DATA" -= sig.data -m shal-ec -p 0

Public Eey Encryption (R34 Only)
pkesll_app -E -k <key-type> -b <{key-label> -d <Data-to-be-encrypteds -m <mech-ID> -p <slot-ID
pkesll_app -E -k rsa -b Dewice Key -d "PKC311 TEST DATA" -m rsa -p 0

Private Key Decryption (RS54 Only)
pkcsll app -D -k <key-type> -b <{key-label> -e enc.data -m <mech-ID> -p <slot-ID>
pkesll_app -D -k rsa -b Dewice Key -e enc.data -m rsa -p 0

* pkcs11_app -I: Library Information
pkcs11_app -P -l: List the all available slots
pkcs11_app -P -i -p <slot-ID> : Provides the information about Slot with <slot-ID>
pkcs11_app -T -i -p <slot-ID> : Provides the information about Token inserted in Slot <slot-ID>

LLDPUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. L6.1.1_1.0.0_23.08 — 4 August 2023

228 /1053

NXP Semiconductors

LLDPUG

Layerscape Linux Distribution POC User Guide

root@Ubuntu: ~#
root@Ubuntu:~# pkcsll app -1

Getting Information about Cryptoki Library

Library Manufacturer = NXP
Library Description = libpkcsll
root@Ubuntu:~#
root@Ubuntu: ~#
root@Ubuntu:~# pkesll app -P -1
slot Liszt
5lot ID = 0O
root@Ubuntu:~#
root@Ubuntu:~# pkcsll app -P -1 -p 0
5lot info of in-use slot with ID = 0
Slot Description:TEE BASED SLOT
5lot Manufacturer = NXP
root@Ubuntu: ~#
root@Ubuntu: ~#
root@Ubuntu:~# pkcsll app -T -1 -p 0
TokenInfo for Slot Id: O.
Token Label = TEE BASED TOKEN
Token Manufacturer = NXFP
root@Ubuntu:~#
root@Ubuntu:~#
root@Ubuntu:~#

* pkcs11_app -M -l -p <slot-ID> : Lists the Mechanism List supported by token in Slot <slot-ID>
pkcs11_app -M -m <mech-ID> -i -p <slot-ID> : Gives information about the mechanism with <mech-ID> for

Slot <slot-ID>

LLDPUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. L6.1.1_1.0.0_23.08 — 4 August 2023

229 /1053

NXP Semiconductors LLDPUG

Layerscape Linux Distribution POC User Guide

root@Ubuntu: ~/newH# pkesll app -M -1 -p 0O
Mechanism listing from the Slot Id = 0:
CEM_ MD5 with mechanism ID[5Z8].
CEM SHA 1 with mechanism ID[544].
CEM SHAZSE with mechanism ID[52Z2].
CHM_SHA384 with mechanism ID[&08].
CEM_ SHAS51Z with mechanism ID[624]
CEM RSA PECS with mechanism ID[1].
CEM MDE _RBA PECE with mechanism ID[5].
CHM_SHAI_RSA_PKCS with mechanism ID[6].
CEM_ SHAZS56 RBA PECS with mechanism ID[64].
CEM SHA3S84 RSA PECS with mechanism ID[65].
CEM SHAS51Z RSA PECS with mechanism ID[66].
CEM_ECDSA SHALl with mechanism ID[4162].
CEM ECDSA with mechanism ID[4161].
CEM RSA DPECS KEY PATR GEN with mechanism ID[O].
CEM _EC KEY PAIE GEN with mechanism ID[4160].
CEM_RSA PECS OAEP with mechanism ID[9].
root @Ubuntu: ~/ newf
root @Ubuntu: ~/ news
root@Ubuntu: ~/newH# pkesll app -M -m rsa -1 -p 0
Mechanism Info for CEM RSA PECS with mechanism ID[1].
Minimum Eey Size = 512
Maximum Key Size = 2048
Mechanism Capabilties: CEF_DERYPT, CEF_SIGHN,
root @Ubuntu: ~/ new#
root@Ubuntu: ~/new# pkesll app -M -m rsa-casp -1 -p 0
Mechanism Info for CEM RSA PECS OAEP with mechanism ID[2].
Minimum Key Size = 1024
Maximum Key 2Zize = 2048
Mechanism Capabilties: CKF_DERYPT,
root@Ubuntu: ~/ new#
root @Ubuntu: ~/ newf
root@Ubuntu: ~/new# pkcsll app -M -m ec -1 —-p O
Mechanism Infe for CEM ECDSA with mechanism ID[4161].
Minimum Eey Size = 2E56&
Maximum Key Size = 384
Mechanism Capabilties: CEF_SIGH,
root @Ubuntu: ~/ news

* pkcs11_app -F -p <slot-ID>: List all objects associated with token present in slot <slot-ID>
We have 2 objects already created via the sobj_app, which will be shown here through pkcs11_app find
operation.

LLDPUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. L6.1.1_1.0.0_23.08 — 4 August 2023

230/1053

NXP Semiconductors LLDPUG

Layerscape Linux Distribution POC User Guide

root@Ubuntu:~# pkcsll app -F -p O
None of the search option (-b -o -k) 1is provided. Listing all Object.
Misging Option [-n]. Listing ¢bject max upto Count = 10.
object[0] = aaabl04baba&
Label: ecc gen 256
Class: CEO PRIVATE EKEY
Object ID: 0x3
Key Type: CKK EC
object[1] = aaab04bab3a0
Label: ecc gen 256
Class: CEO PUBLIC KEY
Object ID: 0x3
Key Type: CKK_EC
object[2] = aaabl45aalel
Label: rsa gen 2048
Class: CEKO PRIVATE KEY
Object ID: 0xZ2
Key Type: CKK RSA
object[3] = aaabl045aalel
Label: rsa gen 2048
Class: CTEO PUBLIC EKEY
Object ID: 0x2
Key Type: CKK RSA
object[4] = aaab045a%5d0
Label: ecc create 256
Class: CEO PRIVATE EKEY
Object ID: 0xl
Key Type: CKK EC
object[5] = aaab045a%1f0
Label: ecc create 256
Class: CEO PUBLIC EEY
Object ID: 0xl
Key Type: CKK EC
object[6] = aaab045a8870
Label: rsa create 2048
Class: CEKO PRIVATE KEY
Object ID: 0x0
Key Type: CKK _RSA
object[7] = aaab045a7e30
Label: rsa create 2048
Class: CTEO PUBLIC EKEY
Object ID: 0x0
Key Type: CKK RSA
root@Ubuntu:~# [

* Currently search can be made based on 3 criteria via this app:
-0: Object type (Can be public key, private key, certificates and so on)(For now supports only public and
private keys)
-k: Key type (Can be RSA, EC, AES and so on)(For now supports only RSA)
-b: Object Label associated with object while creating/generating.
pkcs11_app -F -o <obj-type> -k <key-type> -b <label> -p <slot-ID> : List all objects which are having
object type <obj-type> of key type <key-type> and with label < label> on token present in slot <slot-ID>

LLDPUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. L6.1.1_1.0.0_23.08 — 4 August 2023

231/1053

NXP Semiconductors LLDPUG

Layerscape Linux Distribution POC User Guide

root@Ubuntu:~# pkcsll app -F —E 0 -0 prv
Missing Option [-n]. Listing Object max upto Count = 10.
object[0] = zaaact933a80
Label: ecc gen 256
Claszs: CEO PRIVATE EKEY
Object ID: 0x3
Key Type: CKE EC
object[l] = aaaacs’32a00
Label: rsa gen 2048
Class: CEO PRIVATE EKEY
Object ID: 0x2
Key Type: CKE RSAR
object[2] = zaaack3315f0
Label: ecc_create 256
Class: CEO PRIVATE EKEY
Object ID: 0xl
Key Type: CEEK EC
object[3] = aaaacs3308%0
Label: rsa create 2048
Class: CKO PRIVATE KEY
Object ID: 0x0
Fey Type: CEE RSA
root@BUbuntu:~#
root@Ubuntu:~# pkcsll app -F -p 0 -k ec
Missing Option [-n]. Lizting Object max upto Count = 10.
object[0] = aaaacBadbasl
Label: ecc gen 256
Class: CEO PRIVATE EKEY
Object ID: 0x3
Key Type: CKE EC
object[l] = zaaacBadb380
Label: ecc gen 256
Class: CEO PUBLIC KEY
Object ID: 0x3
Key Type: CEEK EC
object[2] = aaaacBadd3f0
Label: ecc create 256
Class: CKO PRIVATE KEY
Object ID: 0xl
Fey Type: CEE EC
object[3] = zaaaacBad’210
Label: ecc create 256
Clags: CEC PUELIC KEY
Object ID: 0xl
Key Type: CKEK EC
root@Ubuntu:~# [

* pkcs11_app -S -k <key-type> -b <key-label> -d <Data-to-be-signed> -m <mech-ID> -p <slot-ID>

LLDPUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. L6.1.1_1.0.0_23.08 — 4 August 2023

232/1053

NXP Semiconductors LLDPUG

Layerscape Linux Distribution POC User Guide

This command will sign the <Data> with private key of type <key-type> having label <key-label> using
mechanism specified by <mech-ID> with functions provided by token in slot <slot-ID>
After successful signing, the signature will be saved in file “sig.data”
RSA signing:
root@Ubuntu:~#
root@Ubuntu:~# pkesll app -8 -k rsa -b Device Key -d "PKCS11 TEST DATA" -m md5-rsa -p 0
signing. ..
Size of Unsigned data = 1&
Signature size: 256
Signature is saved in the file sig.data:
root@Ubuntu:~#
ECDSA signing:
root@Ubuntu:~#
root@Ubuntu:~# pkecsll app -5 -k ec -b ecc gen 256 -d "PKCS1l TEST DATA" -m shal-ec -p O
Signing. ..
Size of Unsigned data = 16

Signature size: §l12
Signature is saved in the file sig.data:

* pkcs11_app -V -k <key-type> -b <key-label> -d <Data-previously-signed> -s <signature-file> -m <mech-
ID> -p <slot-ID>
This command verifies the signature <signature-file> with public key of type <key-type> having label <key-
label> using mechanism specified by <mech-ID> with functions provided by token in slot <slot-ID> by
comparing the data recovered from signature to <Data-previously-signed>. This command uses OpenSSL
APIs to do the verification. Refer to the application code for details.
<mech-ID> passed must match with the <mech-ID> passed during signature otherwise verification fails, as
shown in following picture.
RSA Verification:

root@Ubuntu:~# pkesll app -V -k rsa -b Device Key -d "PECs1ll TEST DATA" -3 sig.data -m md5-rsa -p 0
verifying...

CEM MD5 RSA PECS verification success

root@Ubuntu:~#

root@Ubuntu:~#

root@Ubuntu:~# pkcsll app -V -k rsa -b Device Key -d "PKCS11TEST DATA" -5 sig.data -m md5-rsa -p 0
Verifying...

CKM MD5 RSA PECS verification failure

root@Ubuntu:~#

ECDSA Verification:

root@Ubuntu:~# pkcsll app -¥ -k ec -b ecc gen 256 -d "PECS11l TEST DAT" -s sig.data -m shal-ec -p 0
verifying...

sig bytes = 64

ret = 0, CEM ECDSA SHAl verification failed

root@Ubuntu: ~#

root@Ubuntu:~# pkesll app -V -k ec -b ecc gen 256 -d "PECS511 TEST DATA" -3 sig.data -m shal-ec -p O
Verifying...

sig bytes = 64

CEM ECDSA SHR1 verification success

root@Ubuntu: ~#

* pkcs11_app -E -k <key-type> -b <key-label> -d <Data> -m <mech-ID> -p <slot-ID>
This command will encrypt the <Data> with public key of type <key-type> having label <key-label> using
mechanism specified by <mech-ID> with functions provided by token in slot <slot-ID>
After successful signing, the signature will be saved in file “enc.data”

LLDPUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. L6.1.1_1.0.0_23.08 — 4 August 2023

233/1053

NXP Semiconductors LLDPUG

Layerscape Linux Distribution POC User Guide

root@Ubuntu: ~/ new#

root@Ubuntu: ~/new# pkcsll app -E -k rga -b Device Key -d "PKCS1l TEST DATA"™ -m r=a -p O
Encrypting. .

Encrypted data saved in enc.data

root@Ubuntu: ~/ new#

root@Ubuntu: ~/ new

* pkcs11_app -D -k <key-type> -b <key-label> -e enc.data -m <mech-ID> -p <slot-ID>
This command will decrypt the encrypted data in "enc.data" with private key of type <key-type> having label
<key-label> using mechanism specified by <mech-ID> with functions provided by token in slot <slot-ID>
After successful signing, the signature will be saved in file “enc.data”

root@Ubuntu: ~/ newH#

root@Ubuntu: ~/new# pkcsll app -D -k rga -b Device Key -e enc.data -m rsa -p 0
Decrypting. . .

Decrypted Data: PECE11 TEZT DATA

root @Ubuntu: ~/ news

root@Ubuntu: ~/ newd#

6.4.4.2.3 mp_app

This application demonstrates how to use the following APls:

* Get MP public key.
» Sign a message using MP private key.
* Get Message tag.

The application source code at location “secure_obj/securekey_lib/app/mp_app.c” can be used as reference
for integration of these APlIs.

mp_app - This application gives 3 options.
Usage:

* mp_app -p: Get the MP public key and store it in a file "pub_key"
* mp_app -s <MSG>: Sign <MSG> with MP private key and store signature in file "signature"
* mp_app -m: Get the MP Message tag and store it in file "mtag"

LLDPUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. L6.1.1_1.0.0_23.08 — 4 August 2023

234/1053

NXP Semiconductors LLDPUG

Layerscape Linux Distribution POC User Guide

root@Ubuntu: ~#

root@Ubuntu:~# mp app -p

Generating the MP Public Eey

Public key x part = 94d5548%63b8fd4fdebd253320ccB8a7ad3342b16288c18eccdde2fdl482a%b0b
Public key v part = eZd4bdZicd0a7cZadladcabdz04c0a346dde?721bh710be3a5df31a5009%0572
Public key in form of x followed by v is saved in pub key file

root@Ubuntu: ~#

root@Ubuntu:~# mp app -3 "HELLO"

Signing message "HELLO' with MP Priv Key

HELLO in Hex = 48454cdcdf

Generated Hash = 504eb5a93c0abdacbhzTe78ckhedd36bdic36bdidbatetoclbachaZzibdbbb04%49
Signature part r = 37a3bachc2ia%8lf68260603e6841f16687a838e24fcb5fb9dda809b567a5fc194
Signature part s = Zbabeeaddall®ZdZee363eebcl79e43dbefs33865213a0215eb0ach3g8laccdd
Signature in form of r followed by 3 is saved in signature file

root@Ubuntu: ~#

root@Ubuntu: ~#

root@Ubuntu:~# mp app -m

MP Tag = 9%bac8cbh220dcbec0114d65187925d58811608cf14e3d544d7240305a81252dedd
MP Tag is saved in mptag file

root@Ubuntu:~#

root@Ubuntu:~#

6.4.4.2.4 mp_verify

This app uses OpenSSL APIs to verify the signature obtained by using the mp_app application. For reference,
use the application source code at location secure_obj/securekey_lib/app/mp_verify.c.

mp_verify: This application verifies the signature generated by mp_app -s.
Usage:
mp_verify -p <pubkeyfile> -s <signaturefile> -m <mtagfile> -M <MSG>

This <MSG> must be same which is used inmp _app -s <MSG>

root@Ubuntu:~# mp verify -5 signature -p pub key -m mtag -M "HELLO"

pub key file = pub key, sign file = signature, mtag file = mtag, Message = HELLO
Pub Key read from file = 94d5548%563b8fd4fdebd253320cc8aTad3342ble288c]l8eccddezfd
1482a9%b0beZddbd22cd0a7c2541a80a6820400a346dde721bb710be3a5dE31450095¢572
Signature read from file = 37a3bacbcZ7ad8lfe8Zectcl3estdlife87a838e24fc5fh5%dd8600
b567a5fcl1%42babeeaddalls2dies363eebol 73e49dbef233865e13a40215eh06ach380a60dd
Mtag read from file = Sbac8ch220dcbec0114d65187%e5d5851160fcfl14e3d5a4d79403chal2
5Z2ded?s

Generated Hash = 504ebba%9%clabdachiie7dcheddicbdic3ehdbdhateooclocachazibdibbh045a
5

verifed EC Signature

verification successful

root@Ubuntu:~# [

6.4.4.2.5 sobj_eng_app
This app uses OpenSSL APIs to show how to use Secure Object based OpenSSL Engine.

Code for this app is at “secure_obj/secure_obj-openssl-engine/app/sobj_eng_app.c “.

LLDPUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. L6.1.1_1.0.0_23.08 — 4 August 2023

235/1053

NXP Semiconductors LLDPUG

Layerscape Linux Distribution POC User Guide

This application is internally loading RSA private key and then doing cryptographic operations using this key.

Private key operations are offloaded to Secure Object Library via this engine, and Public Key operations are
done through OpenSSL itself.

The following figure shows steps to create a key via sobj_app. It will be used by sobj_eng_app (using
OpenSSL APIs) to do the cryptographic operations.

This sobj_eng_app is internally offloading the cryptographic operation to Secure Object Library using the
OpenSSL Engine based on Secure Object Library.

root@localhost:~# sob] app -G -m rsa-pair -s 2048 -1 "Device Key" -1 1 -w dev_key.pem
Generating the object.

Objects generated successfully handle

Private Key = 0, Public Eey =1

Exiting GenerateKeyPair

root@localhost:~#

root@localhost:~# sob] eng app dev key.pem pkcs

¥ey File = dev_key.pem

Padding Scheme = pkcs

Flain Text = This is test data to be tested
Starting RSZ Public Encrypt....

Encryption Complete: Length of Encrypted Data = 256

Starting RSA Private Decryption....
Decryption Complete: Decrypted Text = This is test data to be tested

Starting RSA Private Encryption....
Plain Text = This is test data to be tested
Encryption Complete: Length of Encrypted Data = 256

Starting RSA Public Decryption....
Decryption Complete: Decrypted Text = This is test data to be tested

root@localhost:~#

root@localhost:~# sob] eng app dev key.pem oaep
¥ey File = dev key.pem

Padding Scheme = oaep

Flain Text = This is test data to be tested
Starting RSA Public Encrypt....

Encryption Complete: Length of Encrypted Data = 256

Starting RSA Private Decryption....
Decryption Complete: Decrypted Text = This is test data to be tested

root@localhost:~# |J

6.4.4.2.6 thread_test
PKCS#11 based application to test the multithreading support in PKCS#11 Library.

This application will be taking the number of threads to create as an argument, if not given by default it will
create 10 threads.

thread_test <num-of-threads>
This application is making threads and each thread is doing the signing operation.
As part of signing operation each thread is doing following operations:

* Opening a R/O session with token.
* Find an RSA private key from token.

LLDPUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. L6.1.1_1.0.0_23.08 — 4 August 2023

236/1053

NXP Semiconductors LLDPUG

Layerscape Linux Distribution POC User Guide

* Sign data using this RSA private key.
* Get the public part of the RSA private key.
* Verify the generated signature using OpenSSL.

All threads try to do this in parallel, but if one of the threads finished its work and “Finalized” the library, all other
threads will terminate, because library is not in initialized state now.

NOTE: This sequence of operations is used only for test purpose.

6.4.5 Validation
Above steps are fully validated and verified on LS1046ARDB platform.

6.4.6 Appendix

6.4.6.1 Appendix A: Steps to build the PKCS#11 Library

PKCS Library is using Secure Object Library. For steps compiling Secure Object Library, see section Appendix
B: Steps to build the Secure Object Library.

From Yocto environment:

bitbake -c libpkcsll

Standalone Build:

1. Clone the libpkcs11 from: https://github.com/nxp-qorig/libpkcs11.
2. Checkouttag 1f-<release number>

For example, 1£-5.15.32-2.0.0
3. Set path for cross-compile:

$:> export CROSS COMPILE=<aarch64-toolchain>

4. Set path for Secure Object:

$:> export SECURE OBJ PATH=<path-to-secure obj>/secure obj/securekey lib/out/
export/

5. Set path for OpenSSL:
Note: For interoperability, we are verifying the signature generated by PKCS Library via OpenSSL, so
reference application needs OpenSSL library, so exporting OPENSSL_PATH.
We have cloned and compiled the OpenSSL in “Steps to build the Secure Object Library”, therefore, only
give path of that folder in OPENSSL_PATH.

$:> export OPENSSL PATH=<openssl-folder>

6. Run make:

$:> make

This compiles the libpkcs11 and reference applications and put it into “images” folder in libpkcs11. Following
images are generated:

* libpkcs11.so0 — PKCS#11 User space library.
e pkcs11_app — PKCS#11 Test App.
 thread_test - PKCS#11 application to test multithreading feature of PKCS#11 library

LLDPUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. L6.1.1_1.0.0_23.08 — 4 August 2023

237/1053

https://github.com/nxp-qoriq/libpkcs11

NXP Semiconductors LLDPUG

Layerscape Linux Distribution POC User Guide

6.4.6.2 Appendix B: Steps to build the Secure Object Library

From Yocto environment:

echo 'DISTRO FEATURES:append = " secure"' >>conf/local.conf
bitbake gorig-atf

Standalone Build:
Order of repo compilation for Secure Object Library.

1. OP-TEE OS
a. Clone optee_os from: https://github.com/nxp-qorig/optee_os
b. Checkouttag 1f-6.1.1-1.0.0
c. Set the path for the following:

$:> export CROSS COMPILE64=<aarché64-toolchain>

d. Now make.

$:> make CFG ARM64 core=y PLATFORM=1ls-1sl1046ardb ARCH=arm

2. OP-TEE Client
a. Clone optee_client from the linkhttps://github.com/nxp-gorig/optee_client
b. Checkouttag 1f-6.1.1-1.0.0
c. Set path for the following:

$:> export CROSS COMPILE=<aarché64-toolchain-path->

d. Now make.

S:> make

3. OpenSSL:
a. Clone openssl from: https://github.com/nxp-gorig/openssl|
b. Checkouttag 1f-6.1.1-1.0.0.
c. Set path for the following:

$:> export CROSS COMPILE=<aarché64-toolchain-path->

d. Run configure as follows:

$:>. /Configure shared linux-aarch64

e. Run make

S:> make

4. Secure Object:
a. Clone secure_obj from: https://github.com/nxp-qorig/secure_obj
b. Checkouttag 1f-6.1.1-1.0.0
» Secure Object Library code - securekey _lib
» Secure Object Trusted Application code - secure_storage_ta
» Secure Key Dev Kernel Module - securekeydev
» Secure Object OpenSSL Engine - secure_obj-openssl-engine

LLDPUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. L6.1.1_1.0.0_23.08 — 4 August 2023

238/1053

https://github.com/nxp-qoriq/optee_os
https://github.com/nxp-qoriq/optee_client
https://github.com/nxp-qoriq/openssl
https://github.com/nxp-qoriq/secure_obj

NXP Semiconductors LLDPUG

Layerscape Linux Distribution POC User Guide

There is script “compile.sh” which compiles all above components and put all binaries in “images”.
c. Follow the below compilation steps:
* Export CROSS_COMPILE path:

$:> export CROSS COMPILE= <aarch64-toolchain-path->
Export ARCH path:
$:> export ARCH=armé64

» Set the paths from OP-TEE OS:

$:> export TA DEV KIT DIR=<path-to-optee-os>/optee os/out/arm-plat-1ls/
export-ta arm64/

» Set path for OP-TEE Client

$:> export OPTEE CLIENT EXPORT=<path-to-optee-client>/optee client/out/
export/

* Set path for Secure Storage:

$:> export SECURE STORAGE PATH=<path-to-secure obj>/secure obj/
secure storage ta/ta/

¢ Set path for OpenSSL.:

$:> export OPENSSL PATH=<openssl-folder-path>

 Set path for Linux code using bitbake:

$:> export KERNEL SRC=<path-in-kernel-source-code>
For example,
$:> export KERNEL SRC=~/git repo/linux-nxp

* Set path for Linux build directory using bitbake:

$:> export KERNEL BUILD=<path-in-kernel-build>
For example,
$:> export KERNEL BUILD=~/build/linux-nxp/output

» Set module installation path using bitbake:

$:> export INSTALL MOD PATH=<path-in-modules>
For example:
$:> export INSTALL MOD PATH=~/build/linux/armé64/LS/module/

* Run “./compile.sh”. It compiles TA, library, and kernel module.

$:> ./compile.sh

It compiles all the binaries and put them into the images folder in secure obj. After compilation,

images folder has the following:

* b05bcf48-9732-4efa-a9e0-141c7c888c34.ta - Trusted application for Secure Object library.

* libsecure_obj.so - User space Secure Object Library

* sobj_app - Application for creating and erasing objects.

e mp_app - Application for getting MP public key, signing using MP private key and getting the MP tag.

* mp_verify - Application for verifying the signature generated through mp_app.

» securekeydev.ko - Kernel Module for offloading MP key feature to CAAM. Binaries to be placed at
following locations in rootfs.

* libeng_secure_obj - Secure Object based OpenSSL engine offloading Private key operations to the
Secure Object Library.

LLDPUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. L6.1.1_1.0.0_23.08 — 4 August 2023

239/1053

NXP Semiconductors LLDPUG

Layerscape Linux Distribution POC User Guide

* sobj_eng_app - This app uses OpenSSL APIs to show how to use Secure Object based OpenSSL
Engine. This application is loading the private key and then doing cryptographic operations using this
key.

LLDPUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. L6.1.1_1.0.0_23.08 — 4 August 2023

240/1053

NXP Semiconductors LLD P U G

Layerscape Linux Distribution POC User Guide

7 Linux kernel

7.1 Introduction

The Linux kernel is a monolithic Unix-like computer operating system kernel. It is the central part of Linux
operating systems that are extensively used on PCs, servers, handheld devices, and various embedded
devices such as routers, switches, wireless access points, set-top boxes, smart TVs, DVRs, and NAS
appliances. It manages tasks/applications running on the system and manages system hardware. A typical
Linux system looks like this:

User Applications

User System Windowing Graphics System Data Plane
Space Daemons System Libraries Frameworks
C Standard Library
A F 3 F 3
Linux Kernel
System Call interface

Kernel

Space Process Memory Virtual File IPC Networking

Scheduler Managemen System

Device Drivers

A

Architecture support
I

=

Legend: Standard SW components

- NXP updated SW components

Figure 24. Typical Linux System

The Linux kernel was created in 1991 by Linus Torvalds and released as an open source project under GNU
General Public License(GPL) version 2. It rapidly attracted developers around the world. In 2015 the Linux
kernel has received contributions from nearly 12,000 programmers from more than 1,200 companies. The

LLDPUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. Al rights reserved.

User guide Rev. L6.1.1_1.0.0_23.08 — 4 August 2023

241 /1053

NXP Semiconductors LLDPUG

Layerscape Linux Distribution POC User Guide

software is officially released on http://www.kernel.org website through downloadable packages and Git
repositories. A general Linux kernel introduction from kernel.org can also be found at https://www.kernel.org/
doc/html/latest/admin-guide/README.html.

7.2 Kernel Releases and relationship with Layerscape LDP

There are different Linux kernel releases coming from different sources. Below we listed the ones that are
related to the Layerscape LDP kernel.

Kernel.org official kernel releases

* Mainline
Mainline tree is maintained by Linus Torvalds. It is the tree where all new features are introduced and where
all the exciting new development happens. New mainline kernels are released every 2-3 months.

* Long-term (LTS)
There are several "Long-term maintenance" kernel releases provided for the purposes of backporting bug
fixes for older kernel trees. Only important bug fixes are applied to such kernels and they do not see very
frequent releases, especially for older trees.
Refer to https://www.kernel.org/category/releases.html for the current maintained Long-term releases.

Linaro LSK kernel release

Linaro is an open organization focused on improving Linux on Arm. They are also providing a Linux kernel
release called Linaro Stable Kernel (LSK). It is based on kernel.org Long-term kernel releases and included
Arm related features developed by Linaro. Normally these features are generic kernel features for the Arm
architecture. Refer to https://wiki.linaro.org/LSK for more information about the LSK releases.

NXP Layerscape SDK kernel

NXP’s SDK kernel often contains patches that are not upstream yet so essentially the Layerscape LDP kernel
is an enhanced Linaro LSK which is in turn an enhanced kernel.org LTS. In order to fully utilize the Arm open
source eco-system. The kernel versions provided in NXP Layerscape LDP will be chosen from the kernel.org
Long-term releases to include the important bug fixes backported. It will also include generic Arm kernel
features provided by the Linaro LSK release which could be important for some users.

7.3 Getting the Layerscape LDP kernel source code

With Layerscape LDP, NXP owned or updated software components are published on Github.
You can use Git commands and get the latest kernel source code.

* Install Git command if not there already. For example, on Ubuntu:

$ sudo apt-get install git

¢ Clone the Linux kernel source code with Git.

$ git clone https://github.com/nxp-gorig/linux.git

» Checkout the desired kernel version. It is possible that the default one is not your desired kernel version.

S cd linux $ git branch

Check the name of the current branch. If it is not the Kernel version you want, use the following command to
check out your desired kernel version: x.y

$ git checkout -b 1lf-x.y origin/lf-x.y

LLDPUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. L6.1.1_1.0.0_23.08 — 4 August 2023

242 /1053

http://www.kernel.org
https://www.kernel.org/doc/html/latest/admin-guide/README.html
https://www.kernel.org/doc/html/latest/admin-guide/README.html
https://www.kernel.org/category/releases.html

NXP Semiconductors LLDPUG

Layerscape Linux Distribution POC User Guide

7.4 Configuring and building

Configuring and building the Linux kernel is controlled by the Kbuild subsystem. You can find documents
describing the internal of Kbuild subsystem under the Documentation/kbuild/ folder in the Linux source
code tree if you are adding new files or new configure options to the kernel. Otherwise as a user of Linux kernel,
you probably only want to know how to fine-tune the kernel configuration base on your system requirements
and build new kernel image with updated configuration. These are done through make commands, this topic
explains the make commands that you probably need to know as a kernel user.

7.4.1 Environment setting for cross-compiling

These following settings are applicable when you are configuring and building kernel on a different architecture
from the target. For example, compiling an Armv8 kernel on an X86 computer. If you are compiling the kernel
natively on a machine of the same architecture as the target, you should skip this section.

1. Install the cross compiler of your distribution.
2. Specify the target architecture in ARCH environment variable.
3. Specify the prefix (and path) of a cross compiler in CROSS_COMPILE environment variable

$ export CROSS COMPILE=/path/to/dir/tool-chain-prefix-

Or, the prefix if the cross-compiler commands are already in the execution PATH.

$ export CROSS COMPILE=tool-chain-prefix-

For example, the commands needed on Ubuntu Linux will be like:
* 64-bit Arm:

$ sudo apt-get install gcc-aarché64-1linux-gnu
$ export CROSS COMPILE=aarché64-linux-gnu-
$ export ARCH=arm64

¢ 32-bit Arm (Armv7 / 32-bit mode of Armv8):

$ sudo apt-get install gcc-arm-linux-gnueabihf
$ export CROSS COMPILE=arm-linux-gnueabihf-
$ export ARCH=arm

For the shell environment variables exported above, you can also include them directly in each make command
you use. For example $ ARCH=arm64 CROSS COMPILE=aarch64-linux-gnu- make {targets}.
Exporting them will save effort if you are using make in kernel frequently.

7.4.2 Configuring kernel

The current kernel configuration for a kernel source tree will be kept in a hidden file named .config at the top
level of the kernel source code after you changed the configuration with any of the make config command
variants. You can copy it directly from one kernel source tree to another with the same kernel version to
duplicate the configuration exactly. Also, you can edit it with a text editor, in which you can see a list of
CONFIG * symbols corresponding to each of the kernel configure option.

The following targets from the Linux kernel Kbuild framework are used to load the default kernel configuration
for Layerscape LDP:

* defconfig/${PLATFORM} defconfig
Create the . config file by using the default config options of the architecture or platform defined in the
arch/S$ARCH/configs/ directory. This normally includes all the device drivers needed for the architecture or
platform.

* S{FRAGMENT}.config

LLDPUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. L6.1.1_1.0.0_23.08 — 4 August 2023

243 /1053

NXP Semiconductors LLDPUG

Layerscape Linux Distribution POC User Guide

Merge a configuration fragment that enables certain features into the .config file.
Specific command to load the default configuration of different platforms for Layerscape LDP will be:

* For Layerscape Armv8 platforms in 64bit mode:

S make defconfig lsdk.config

* For Layerscape Armv7 platforms:

$ make multi v7 defconfig multi v7 lpae.config lsdk.config

* For Layerscape Armv8 platforms in 32bit mode:

$ make multi v7 defconfig multi v7 lpae.config multi v8.config lsdk.config

To further fine-tune the configuration based on your system need, you can use the following make commands.

* 5 make menuconfig
Choose configure options in text-based color menus, radio lists and dialogs. It is a good way to navigate
through all the selectable kernel configure options in a well-organized human-readable hierarchy and you can
get a description of every option when it is highlighted by selecting the <He1p> button. In the device driver
part of this User’s Manual we also provided the path to the configure options needed for a feature to work in
the menuconfig.

* $ make ${FRAGMENT}.config
You can also utilize this capability to enable options for a specific feature in your custom kernel configuration
quickly without selecting each one of them in the menuconfig. In the device driver part of this User’s Manual,
we listed the CONFIG_* symbols needed by a specific feature/driver. Put these symbols with “=y” or “=m”
depending on if you want these features/drivers to be built in or built as loadable kernel module into a
S{FEATURE}.config file under arch/$ARCH/configs/ directory. Run $ make ${FEATURE}.config
command, it will enable all these listed kernel configure options together.

7.4.3 Building kernel

Building the kernel is simple.

* To build kernel images and device tree images.

S make

¢ To build loadable kernel modules:

S make modules

You can supply -3 <NUM> option to the above make commands to spin NUM concurrent threads to reduce build
time on multicore systems.

After a successful build:

» Compiled kernel images are in arch/${ARCHY}/boot/ folder.
» Compiled device trees (dtb files) are in arch/${ARCH}/boot/dts folder.

» Compiled kernel modules are spread out in driver folders. You can extract them to a specific folder (For
example, /folder/to/install) by using command:

$ make modules install INSTALL MOD PATH=/folder/to/install

7.4.4 Install new kernel and modules
The path or naming convention of kernel images and modules are different for different Linux distributions. The

following instructions are based on the convention of Layerscape LDP.

LLDPUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. L6.1.1_1.0.0_23.08 — 4 August 2023

24411053

NXP Semiconductors LLDPUG

Layerscape Linux Distribution POC User Guide

Using bitbake scripts

* Checkout kernel branch to your customized development branch.
Force compile:

S bitbake linux-qorig -c compile -f
S bitbake linux-gorig

* Regenerate the bootpartition and rootfs (for commands below: $ {ARCH} = arm32 | armé64)

$ bitbake linux-gorig

Update the target filesystem directly

This can be more convenient if you are compiling the kernel on the target device locally or you can easily
update the filesystem of target device remotely (For example, using scp, tftp, or so on).

» Copy your Image file to /boot folder on the target using cp if compiled locally; Use any available remote
update approach if compiled remotely.

» Copy dtb files to /boot folder on the target using cp if compiled locally; Use any available remote update
approach to do the same if compiled remotely.

» Update kernel modules.
Note: Kernel modules are required to be updated when you updated the kernel image
— If you compiled the kernel on the target device locally. Use the command below:

$ make modules install

— If you compiled the kernel remotely. Do the following:
— Install the modules into a temporary folder (For example, /tmp/deploy/images).

$ make modules install INSTALL MOD PATH=/tmp/deploy/images

— Transfer the 1ib/ directory from the temporary location above to the target device using any file transfer
approach and put it in the path of the filesystem.

7.5 Device Drivers

7.5.1 Enhanced Direct Memory Access (eDMA)

7.5.1.1 Description

The SoC integrates NXP's Enhanced Direct Memory Access module. Slave device such as 12C or SAl can
deploy the DMA functionality to accelerate the transfer and release the CPU from heavy load.

7.5.1.2 Kernel Configure Options

Tree View

Below are the configure options need to be set/unset while doing "make menuconfig" for kernel

Kernel Configure Tree View Options Description
DMA engine subsystem driver and eDMA driver
support
Device Drivers —--->
[*] DMA Engine support ---> —--->
LLDPUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.
User guide Rev. L6.1.1_1.0.0_23.08 — 4 August 2023

245/1053

NXP Semiconductors

LLDPUG

Layerscape Linux Distribution POC User Guide

Kernel Configure Tree View Options Description
<k > Freescale eDMA engine
support
Identifier

Below are the configure identifiers which are used in kernel source code and default configuration files.

Option Values Default Value Description

CONFIG_FSL_EDMA y/m/n n eDMA Driver

7.5.1.3 Device Tree Binding

Device Tree Node

Below is an example device tree node required by this feature. Note there may be differences among platforms.

edmal: edma@2c00000 {

i

#dma-cells = <2>;
compatible = "fsl,vf6l10-edma";
reg = <0x0 0x2c00000 0x0 0x10000>,
<0x0 0x2cl10000 0x0 0x10000>,
<0x0 0x2c20000 0x0 0x10000>;
interrupts = <GIC_SPI 135 IRQ TYPE LEVEL HIGH>,
<GIC SPI 135 IRQ TYPE LEVEL HIGH>;
interrupt-names = "edma-tx", "edma-err";
dma-channels = <32>;
big-endian;
clock—-names = "dmamuxO0", "dmamuxl";
clocks = <gplatform clk 1>,
<&platform clk 1>;

Device Tree Node Binding for Slave Device

Below is the device tree node binding for a slave device which deploys the eDMA functionality.

i2c0: 12c@2180000 {

157

#address-cells = <1>;
#size-cells = <0>;
compatible = "fsl,vf6l10-i2c";
reg = <0x0 0x2180000 0x0 0x10000>;
interrupts = <GIC SPI 88 IRQ TYPE LEVEL HIGH>;
clock-names = "i2c";
clocks = <gplatform clk 1>;
dmas = <&edmalO 1 39>,
<&edmalO 1 38>;
dma-names = "tx", "rx";
status = "disabled";

7.5.1.4 Source Files

The following source files are related to this feature in Linux kernel.

LLDPUG

All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide

Rev. L6.1.1_1.0.0_23.08 — 4 August 2023
246/ 1053

NXP Semiconductors LLDPUG

Layerscape Linux Distribution POC User Guide

Table 50. Source Files
Source File Description

drivers/dmal/fsl-edma.c The eDMA driver file

7.5.1.5 Verification in Linux

1. Use the slave device which deploys the eDMA functionality to verify the eDMA driver, below is a verification
with the 12C salve.

root@lslO2lagds:~# i2cdetect O
WARNING! This program can confuse your I2C bus, cause data loss and worse!
I will probe file /dev/i2c-0.
I will probe address range 0x03-0x77.
Continue? [Y/n]
0 1 2 3 4 5 6 7 8 9 a b c¢c d e f£

00: S= om os om o= os os o= o= o= o= o= o=
lo- —— e e e e e e e e e e e e e e e
208 == == == == == == == == == == == == == == == ==
03 == == == == == == == == == == == == == == == ==
40- e M e e e e e e e
50. e oo oo oo oo o o o o oo oo oo o o o oo
608 == == == == == == == == == (§ == == == == == ==
705 == == == == == == == ==
root@lsl02lagds:~# i2cdump 0 0x69 i

0o 1 2 3 4 5 6 7 8 9 a b c d e f 0123456789%abcdef
00: 05 07 f£ff f£f 5d 55 10 55 11 05 le 00 e8 03 b5 ff ??..]020222.22°2.
10: £ff 8 03 95 00 00 00 00 aa fe 9a 00 00 00 00 78 LP22..0..222.0...%
20: 05 12 04 f£ff 00 7f 40 14 1d 60 3c 83 05 00 40 00 ?P2..20@?°°<??.@.
30: fe 80 c6 29 00 00 00 7a 00 ff ff ff ff ff ff ff 222) e e Ze e
40: 05 07 ff f£f 5d 55 10 55 11 05 le 00 e8 03 b5 ff ??..]020?22.22°2.
50: ff e8 03 95 00 00 00 00 aa fe 9a 00 00 00 OO 78 LP22....222.0...%
60: 05 12 04 £f 00 7f 40 14 1d 60 3c 83 05 00 40 00 ??7..20@2?2°<??.@.
70: fe 80 c6 29 00 00 00 7a 00 ff ff ff ff ff ff ff 222) e Ze e
80: 07 ff ff 5d 55 10 55 11 05 le 00 e8 03 b5 ff ff ?..]1020222.222..
90: e8 03 95 00 00 00 00 aa fe 9a 00 00 00 00 78 00 PP2....222. .. .X.
a0: 12 04 £ff 00 7f 40 14 1d 60 3c 83 05 00 40 00 fe ?7..2@272°<??2.@.7?
b0: 80 c6 29 00 00 00 7a 00 ff ff ff ff ff ff ff ff 22) e e Ze e
cO: 07 f£ff f£ff 5d 55 10 55 11 05 le 00 e8 03 b5 ff ff ?..]020222.222..
d0: e8 03 95 00 00 00 00 aa fe 9a 00 00 00 00 78 00 PP2....222. 0. K.

e0: 12 04 £f 00 7f 40 14 1d 60 3c 83 05 00 40 00 fe ?2..2@22°<?2.Q.7
fO0: 80 c6 29 00 00 00 7a 00 ff ff ff ff ff ff ff ff 22) e Ze e
root@lsl02lagds:~# cat /proc/interrupts

CPUO CPU1

293 0 0 GIC 29 arch timer
30: 5563 5567 GIC 30 arch timer
112: 260 0 GIC 112 fsl-lpuart
120: 32 0 GIC 120 2180000.i2c
121: 0 0 GIC 121 2190000.i2c
167: 8 0 GIC 167 eDMA

IPIO: 0 1 CPU wakeup interrupts
IPI1: 0 0 Timer broadcast interrupts
IPI2: 1388 1653 Rescheduling interrupts
IPI3: 0 0 Function call interrupts
IPI4: 2 4 Single function call interrupts
IPI5: 0 0 CPU stop interrupts
Err: 0

root@lsl02lagds:~#

LLDPUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. L6.1.1_1.0.0_23.08 — 4 August 2023

24711053

NXP Semiconductors LLDPUG

Layerscape Linux Distribution POC User Guide

7.5.2 CAAM Direct Memory Access (DMA)

The CAAM DMA module implements a DMA driver that uses the CAAM DMA controller to provide both SG
and MEMCPY DMA capability to be used by the platform. It is based on the CAAM JR interface that must be
enabled in the kernel config as a prerequisite for the CAAM DMA driver.

The driver is based on the DMA engine framework and it is located under the DMA Engine support category in
the kernel config menu.

Note: This feature/driver is supported for LS1012A.

7.5.2.1 Kernel configure options

Tree overview

To enable the CAAM DMA module, set the following options for make menuconfig:

-*- Cryptographic API --->
[*] Hardware crypto devices --->
<*> Freescale CAAM-Multicore driver backend
<E> Freescale CAAM Job Ring driver backend
Device Drivers —--->
<*> DMA Engine support --->
<*> CAAM DMA engine support

Note: Be aware that the CAAM DMA driver depends on the CAAM and CAAM JR drivers, which also have to
be enabled.

7.5.2.2 Identifier

The following configure identifier is used in kernel source code and default configuration files.

Option Values Default value |Description

CONFIG_CRYPTO DEV y/m/n n CAAM DMA engine support
FSL CAAM DMA

7.5.2.3 Device tree node

Below is an example device tree node required by this feature.

caam_dma {
compatible = "fsl,sec-v5.4-dma";

k7

7.5.2.4 Source files

The following source file is related to this feature in the Linux kernel.

Source File Description

The CAAM DMA driver

drivers/dma/caam dma.c

LLDPUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. L6.1.1_1.0.0_23.08 — 4 August 2023

248 /1053

NXP Semiconductors

LLDPUG

7.5.2.5 Verification in Linux

On a successful probing, the driver will print the following message in dmesg:

Layerscape Linux Distribution POC User Guide

[1.964549]

caam-dma caam-dma:

caam dma support with 3 job rings

Additionally, you can also run the following commands:

root@lsl1028ardb:~# 1s -1 /sys/class/dma

total O

lrwxrwxrwx 1 root root 0O Jan 28 15:58

soc/2c00000.edma/dma/dmalchan0

lrwxrwxrwx 1 root root 0 Jan 28
soc/2c00000.edma/dma/dmalchanl

lrwxrwxrwx 1 root root 0 Jan 28
soc/2c00000.edma/dma/dmalchanl0
lrwxrwxrwx 1 root root 0 Jan 28
soc/2c00000.edma/dma/dmalchanll
lrwxrwxrwx 1 root root 0 Jan 28
soc/2c00000.edma/dma/dmaOchanl?2
lrwxrwxrwx 1 root root 0 Jan 28
soc/2c00000.edma/dma/dmalchanl3
lrwxrwxrwx 1 root root 0 Jan 28
soc/2c00000.edma/dma/dmalchanl4
lrwxrwxrwx 1 root root 0 Jan 28
soc/2c00000.edma/dma/dmalchanl5
lrwxrwxrwx 1 root root 0 Jan 28
soc/2c00000.edma/dma/dmalchanl6
lrwxrwxrwx 1 root root 0 Jan 28
soc/2c00000.edma/dma/dmalchanl’
lrwxrwxrwx 1 root root 0 Jan 28
soc/2c00000.edma/dma/dmalchanl8
lrwxrwxrwx 1 root root 0 Jan 28
soc/2c00000.edma/dma/dmalchanl?
lrwxrwxrwx 1 root root 0 Jan 28
soc/2c00000.edma/dma/dmaOchan?

lrwxrwxrwx 1 root root 0 Jan 28
soc/2c00000.edma/dma/dmalchan20
lrwxrwxrwx 1 root root 0 Jan 28
soc/2c00000.edma/dma/dmalchan21
lrwxrwxrwx 1 root root 0 Jan 28
soc/2c00000.edma/dma/dmalchan2?2
lrwxrwxrwx 1 root root 0 Jan 28
soc/2c00000.edma/dma/dmalchan23
lrwxrwxrwx 1 root root 0 Jan 28
soc/2c00000.edma/dma/dmalchan24
lrwxrwxrwx 1 root root 0 Jan 28
soc/2c00000.edma/dma/dmalchan25
lrwxrwxrwx 1 root root 0 Jan 28
soc/2c00000.edma/dma/dmalchan26
lrwxrwxrwx 1 root root 0 Jan 28
soc/2c00000.edma/dma/dmaOchan27
lrwxrwxrwx 1 root root 0 Jan 28
soc/2c00000.edma/dma/dmalchan28
lrwxrwxrwx 1 root root 0 Jan 28
soc/2c00000.edma/dma/dmalchan29
lrwxrwxrwx 1 root root 0 Jan 28
soc/2c00000.edma/dma/dmalchan3

LLDPUG

15

15

15

15

15

15

15

15

15

15

15

15

15

15

15

15

15

15

15

15

15

15

15

:58

:58

:58

:58

:58

:58

:58

:58

:58

:58

:58

:58

:58

:58

:58

:58

:58

:58

:58

:58

:58

:58

:58

dmaOchan0 ->
dmaOchanl ->
dmaOchanl0 ->
dmaOchanll ->
dmaOchanl2 ->
dmaOchanl3 ->
dmaOchanl4 ->
dmaOchanl5 ->
dmaOchanl6 ->
dmaOchanl7 ->
dmaOchanl8 ->
dmaOchanl9 ->
dmaOchan2 ->
dmaOchan20 ->
dmaOchan2l ->
dmaOchan22 ->
dmaOchan23 ->
dmaOchan24 ->
dmaOchan25 ->
dmaOchan26 ->
dmaOchan27 ->
dmaOchan28 ->

dmaOchan29 ->

dmaOchan3 ->

./../devices/platform/

./../devices/platform/

.o/
20l o
./
..

VAR

./devices/platform/
./devices/platform/
./devices/platform/
./devices/platform/
./devices/platform/
./devices/platform/
./devices/platform/
./devices/platform/
./devices/platform/
./devices/platform/
../devices/platform/

./devices/platform/
./devices/platform/
./devices/platform/
./devices/platform/
./devices/platform/
./devices/platform/
./devices/platform/
./devices/platform/
./devices/platform/

./devices/platform/

./../devices/platform/

All information provided in this document is subject to legal disclaimers.

© 2023 NXP B.V. All rights reserved.

User guide

Rev. L6.1.1_1.0.0_23.08 — 4 August 2023

249 /1053

NXP Semiconductors LLDPUG

Layerscape Linux Distribution POC User Guide

lrwxrwxrwx 1 root root 0 Jan 28 15:58 dmaOchan30 -> ../../devices/platform/
soc/2c00000.edma/dma/dmalchan30

lrwxrwxrwx 1 root root 0 Jan 28 15:58 dmaOchan31 -> ../../devices/platform/
soc/2c00000.edma/dma/dmalchan31

lrwxrwxrwx 1 root root 0 Jan 28 15:58 dmaOchand4 -> ../../devices/platform/
soc/2c00000.edma/dma/dmalchand

lrwxrwxrwx 1 root root 0 Jan 28 15:58 dmaOchan5 -> ../../devices/platform/
s0c/2c00000.edma/dma/dmal0chan5

lrwxrwxrwx 1 root root 0 Jan 28 15:58 dmaOchan6 -> ../../devices/platform/
soc/2c00000.edma/dma/dmalchan6

lrwxrwxrwx 1 root root 0 Jan 28 15:58 dmaOchan7 -> ../../devices/platform/
soc/2c00000.edma/dma/dmalchan’

lrwxrwxrwx 1 root root 0 Jan 28 15:58 dmaOchan8 -> ../../devices/platform/
soc/2c00000.edma/dma/dmal0chan8

lrwxrwxrwx 1 root root 0 Jan 28 15:58 dmaOchan9 -> ../../devices/platform/
soc/2c00000.edma/dma/dmalchan9

lrwxrwxrwx 1 root root 0 Jan 28 15:58 dmalchan0 -> ../../devices/platform/
soc/1700000.crypto/caam-dma/dma/dmalchan0

lrwxrwxrwx 1 root root 0 Jan 28 15:58 dmalchanl -> ../../devices/platform/
soc/1700000.crypto/caam-dma/dma/dmalchanl

lrwxrwxrwx 1 root root 0 Jan 28 15:58 dmalchan2 -> ../../devices/platform/
soc/1700000.crypto/caam-dma/dma/dmalchan?

7.5.2.6 Component testing

To test both the SG and memcpy capability of the CAAM DMA driver use the dmatest module provided by the
kernel.

Build dmatest

Build the dmatest utility as a module by running the command:

$ make menuconfig

Then select from the kernel menuconfig to build the dmatest.ko as a module:

Device Drivers —--->
<*> DMA Engine support --->
<M> DMA Test client

Configure dmatest

Before testing insert the module:

$ insmod dmatest.ko

Configure the dmatest. There is a general configuration that applies for both the sg and memcpy functionality:

echo 1 > /sys/module/dmatest/parameters/max channels
echo 2000 > /sys/module/dmatest/parameters/timeout

echo 0 > /sys/module/dmatest/parameters/noverify

echo 4 > /sys/module/dmatest/parameters/threads per chan
echo 0 > /sys/module/dmatest/parameters/dmatest

echo 1 > /sys/module/dmatest/parameters/iterations

echo 2000 > /sys/module/dmatest/parameters/test buf size

Uy Ur O U Ur O -

The above configuration is self-explanatory except a few:

LLDPUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. L6.1.1_1.0.0_23.08 — 4 August 2023

250/1053

NXP Semiconductors

LLDPUG

Layerscape Linux Distribution POC User Guide

If you set the 'noverify' parameter to 0 it will not perform check of the copied buffer at the end of each testing
round. This should be used for performance testing. Set the 'noverify' parameter to 1 for functional testing.

Set the 'dmatest' parameter to 0 to test the memcpy functionality and to 1 to test the sg functionality.
Perform the test

To perform the test, simply run the command:

$ echo 1 > /sys/module/dmatest/parameters/run

Depending on the type of test performed (sg/memcpy) the output may vary. Here is an example of output
obtained with the above parameters:

[72.113769] dmatest:

[72.105334] dmatest:
9009 KB/s (0)

[72.113649] dmatest:
119 KB/s (0)

[72.114927] dmatest:

Started 4 threads using dmaOchanO
dmaOchanO-copy0: summary 1 tests, 0 failures 9009 iops
dmaOchanO-copyl: summary 1 tests, 0 failures 119 iops

dmaOchan0O-copy2: summary 1 tests, 0 failures 24390 iops

0 KB/s (0)
[72.115098] dmatest: dmaOchanO-copy3: summary 1 tests, 0 failures 37037 iops
0 KB/s (0)

7.5.3 DCU Display Device Driver User Manual

7.5.3.1 Description

This manual describes how to use the Two Dimensional Animation and Compositing Engine (2D-ACE or DCU)
and frame buffer on TWR-LS1021A board.

7.5.3.2 Module Loading

The DCU device driver supports kernel built-in and module.

7.5.3.3 U-Boot Configuration
Use ‘Is1021atwr_lpuart_config’ to build the U-Boot.

Runtime options.

Env Variable Description Sub Option Option Description
bootargs Kernel command-line |HDMI console=ttyL P0,115200 |select LPUARTO as the
argument passed to hdmi system console
kernel LCD console=ttyL P0,115200

7.5.3.4 Kernel Configure Options

Tree View

Below are the Kernel Configure Tree View options need to be set/unset while doing "make menuconfig" for
kernel and enable DCU/HDMI drivers and Linux Penguin Logo picture.

Device Drivers —--->
< > Multimedia support ----

LLDPUG

All information provided in this document is subject to legal disclaimers.

© 2023 NXP B.V. All rights reserved.

User guide

Rev. L6.1.1_1.0.0_23.08 — 4 August 2023

251/1053

NXP Semiconductors LLDPUG

Layerscape Linux Distribution POC User Guide

Graphics support --->
<*> Support for frame buffer devices --->
<*> Si Image SII9022 DVI/HDMI Interface Chip
<*> Freescale DCU framebuffer support

[] Exynos Video driver support ----
[] Backlight & LCD device support ----
Console display driver support —--->
<*> Framebuffer Console support
[*] Map the console to the primary display device
[*] Framebuffer Console Rotation
[*] Bootup logo —--->
--—- Bootup logo
[*] Standard black and white Linux logo
[*] Standard 1l6-color Linux logo
[*] Standard 224-color Linux logo
< > Sound card support ----

Identifier
Below are the configure identifiers which are used in kernel source code and default configuration files.

Special Configure needs to be enabled ("Y") for LS1021A. Find in below table with default value as "N"

Option Values Default Value Description
CONFIG_ FB_FSL_SII902X y/m/n y Si Image S119022 DVI/HDMI
Interface Chip
CONFIG_FB_FSL_DCU y/m/n y NXP DCU frame buffer support
CONFIG_LOGO y/m/n y Bootup logo
CONFIG_LOGO_LINUX_MONO y/m/n y Standard black and white Linux
logo
CONFIG_LOGO_LINUX_VGA16 y/m/n y Standard 16-color Linux logo
CONFIG_LOGO_LINUX_CLUT224 y/m/n y Standard 224-color Linux logo
CONFIG_FRAMEBUFFER_CONSOLE y/m/n y Frame buffer Console support

7.5.3.5 Device Tree Binding

Special Configure needs to be enabled ("Y") for LS1021A. Find in below table with default value as "N".
The default configuration display through LCD, as specified below.
arch/arm/boot/dts/Is1021a.dtsi

dculO: dcu@2ce0000 {
compatible = "fsl,vf6l10-dcu";
reg = <0x0 0x2ce0000 0x0 0x10000>;
interrupts = <GIC SPI 172 IRQ TYPE LEVEL HIGH>;
clocks = <&platform clk 0>;
clock-names = "dcu";
scfg-controller = <&scfg>;
big-endian;
status = "disabled";

LLDPUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. L6.1.1_1.0.0_23.08 — 4 August 2023

252/1053

NXP Semiconductors

LLDPUG

Layerscape Linux Distribution POC User Guide

arch/arm/boot/dts/Is1021a-twr.dts

&dcul0 {
display = <&display>;
status = "okay";
display: display@0 {
bits-per-pixel = <24>;
display-timings {
native-mode = <&timing0>;
timing0: nl14827hcl9 {

clock-frequency = <10870000>;

hactive = <480>;
vactive = <272>;
hback-porch = <2>;
hfront-porch = <2>;
vback-porch = <2>;
viront-porch = <2>;
hsync-len = <41>;
vsync-len = <4>;
hsync-active = <1>;
vsync-active = <1>;

}i

Ramdisk:

Use the 'fsl-image-x11-1s1021a(XXXXX)rootfs.ext2.gz.gz' ramdisk from each release image, or you can use the

ramdisk image which has 'x11' label.

If you want to HDMI display, change the following configuration:

arch/arm/boot/dts/1sl02la-twr.dtscan
diff --git

a/arch/arm/boot/dts/1lsl02la-twr.dts b/arch/arm/boot/dts/1sl02la-twr.dtsindex

cc351e3..928d376 100644---
a/arch/arm/boot/dts/1sl02la-twr.dts+++
b/arch/arm/boot/dts/1s102la-twr.dts@RR -122,7 +122,7
@@
port {

dcu out: endpoint
= remote-endpoint <&panel in>;
+ remote-endpoint = <&sii%022a out>;

}i

—_

}i
}i
@@ -204,6 +204,18 @a@
VDDIO-supply = <® 3p3v>;
clocks = <&sys mclk>;
}i

s1i19022a: hdmi@39 {
compatible = "sil,sii9022";
reg = <0x39>;
interrupts = <GIC SPI 167 IRQ TYPE EDGE RISING>;

port@0 {
5119022a out: endpoint {

4k Ak dE 4R 4R dF 4 4

LLDPUG

remote-endpoint = <&dcu out>;

All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide

Rev. L6.1.1_1.0.0_23.08 — 4 August 2023
253 /1053

NXP Semiconductors LLDPUG

Layerscape Linux Distribution POC User Guide

+ }’
+ }’
+ 1

}i

&ifc |

7.5.3.6 Source Files

The driver source is maintained in the Linux kernel source tree.

Source File Description
drivers/video/fsl-dcu-fb.c NXP DCU driver

7.5.3.7 Testing LCD/DHMI at U-Boot Level
1. Display with LCD:

=> setenv video-mode "fslfb:480x272-32@60,monitor=twr lcd"
=> save
=> setenv stdout vga

2. Display with HDMI:

=> setenv video-mode "fslfb:640x480-320@60,monitor=hdmi"
=> save
=> setenv stdout vga

7.5.3.8 Testing LCD at Kernel Level

1. Configure and rebuild the kernel as configuration list above, let the DCU driver built into the Kernel Image.

2. Boot up Linux kernel, upon the kernel has been uncompressed, the TFT Panel will display the Linux
Penguin Logo.

3. And then after the root filesystem has been mounted, and the Xwindows Desktop will be display.

4. Or also you can start the Xwindow using:

root@lsl02latwr:~# killall matchbox-window-manager root@lslO2latwr:~# xinit /
etc/init.d/xserver-nodm restart

5. Plug out and plug in the HDMI to test the hot plug.

7.5.3.9 Testing HDMI at Kernel Level

1. 1.Configure and rebuild the kernel as configuration list above, let the HDMI and DCU drivers built into the
Kernel Image.

2. Boot up Linux kernel, upon the kernel has been uncompressed, the TFT Panel will not display any picture
correctly.

3. And then after the root filesystem has been mounted, and the Xwindows Desktop will be displayed on the
HDMI Monitor.

4. Or also you can start the Xwindow using:

root@lsl02latwr:~# killall matchbox-window-manager root@lslO2latwr:~# xinit /
etc/init.d/xserver-nodm restart
Note: Unplug the TWR-LDC RGB daughter board when testing the HDMI.

LLDPUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. L6.1.1_1.0.0_23.08 — 4 August 2023

254 /1053

NXP Semiconductors LLDPUG

Layerscape Linux Distribution POC User Guide

7.5.3.10 Known Bugs, Limitations, or Technical Issues

Unplug the SD card before testing the DCU/HDMI, or the system will hang.
7.5.4 Enhanced Secured Digital Host Controller (eSDHC)

7.5.4.1 Description

The enhanced secured host controller (eSDHC) provides an interface between the host system and the MMC/
SD/SDIO cards.

The eSDHC device driver supports either kernel built-in or module.

7.5.4.2 Kernel Configure Options

Tree View
Kernel Configure Options Tree View Description
Enable MMC block device driver support
Device Drivers --->
<E> MMC/SD/SDIO card support —--->
<*E> MMC block device driver
(32) Number of minors per

block device

Enable eSDHC driver support

*** MMC/SD/SDIO Host Controller
Drivers ***

<> Secure Digital Host Controller
Interface support

<xE> SDHCI platform and OF driver
helper

[*] SDHCI OF support for the
Freescale eSDHC controller

7.5.4.3 Compile-time Configuration Options

Option Values Default Value |Description

CONFIG_MMC y/n y Enable MMC bus protocol

CONFIG_MMC_BLOCK y/n y Enable MMC block device driver
support

CONFIG_MMC_BLOCK_MINORS integer 32 Number of minors per block
device

CONFIG_MMC_SDHCI y/n y Enable generic SDHC interface

CONFIG_MMC_SDHCI_PLTFM y/n y Enable common helper function
support for SDHCI platform and
OF drivers

CONFIG_MMC_SDHCI_OF_ESDHC y/n y Enable eSDHC support

LLDPUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. L6.1.1_1.0.0_23.08 — 4 August 2023

255/1053

NXP Semiconductors

LLDPUG

7.5.4.4 Source Files

Layerscape Linux Distribution POC User Guide

The driver source is maintained in the Linux kernel source tree.

Source File

Description

drivers/mmc/host/sdhci.c

SDHCI driver support

drivers/mmc/host/sdhci-pltfm.c

SDHCI platform devices support driver

drivers/mmc/host/sdhci-of-esdhc.c eSDHC driver
7.5.4.5 Device Tree Binding

Property Type Status Description
compatible String Required Should be 'fsl,esdhc'
reg integer Required Register map
Example:

esdhc: esdhc@1560000 ({

compatible = "fsl,1s1046a-esdhc", "fsl,esdhc";

reg = <0x0 0x1560000 0x0 0x10000>;
interrupts = i
clocks = <&clockgen 2 1>;
voltage-ranges =
sdhci, auto-cmdl2;
big-endian;
bus-width =

}i

<4>;

<GIC_SPI 62 IRQ TYPE LEVEL HIGH>;

<1800 1800 3300 3300>;

7.5.4.6 Verification in U-Boot

=> mmcinfo

Device: FSL SDHC
Manufacturer ID: 74
OEM: 4a4d5

Name: SDC

50000000
512

Tran Speed:

Rd Block Len:

SD version 3.0

High Capacity: Yes

Capacity: 7.5 GiB

Bus Width: 4-bit

Erase Group Size: 512 Bytes

=> mw.l 81000000 11111111 100

=> mw.l 82000000 22222222 100

=> cmp.l 81000000 82000000 100

word at 0x0000000081000000 (0x11111111)
(0x22222222)

Total of 0 word(s) were the same

=> mmc write 81000000 0 2

MMC write: dev # 0, block # 0, count 2
=> mmc read 82000000 0 2
MMC read: dev # 0, block # 0, count 2

=> cmp.l 81000000 82000000 100
Total of 256 word(s) were the same
=>

!= word at 0x0000000082000000

2 blocks written: OK

2 blocks read: OK

LLDPUG

All information provided in this document is subject to legal disclaimers.

© 2023 NXP B.V. All rights reserved.

User guide

Rev. L6.1.1_1.0.0_23.08 — 4 August 2023

256 /1053

NXP Semiconductors LLDPUG

Layerscape Linux Distribution POC User Guide

7.5.4.7 Verification in Linux

Initialization information

[3.913163] sdhci: Secure Digital Host Controller Interface driver

[3.919339] sdhci: Copyright(c) Pierre Ossman

[3.931467] sdhci-pltfm: SDHCI platform and OF driver helper

[3.938900] sdhci-esdhc 1560000.esdhc: No vmmc regulator found

[3.944728] sdhci-esdhc 1560000.esdhc: No vgmmc regulator found

[3.978676] mmcO: SDHCI controller on 1560000.esdhc [1560000.esdhc] using

ADMA 64-bit
[4.197784] mmcO: new high speed SDHC card at address b368
[4.203502] mmcblk0O: mmc0O:b368 SDC 7.45 GiB

Partition with fdisk

fdisk /dev/mmcblk0
Welcome to fdisk (util-linux 2.26.2).
Changes will remain in memory only, until you decide to write them.
Be careful before using the write command.
Device does not contain a recognized partition table.
Created a new DOS disklabel with disk identifier 0x5a5f34Db3.
Command (m for help): n
Partition type
o) primary (0 primary, 0 extended, 4 free)
e extended (container for logical partitions)
Select (default p):
Using default response p.
Partition number (1-4, default 1):
First sector (2048-15628287, default 2048):
Last sector, +sectors or +size{K,M,G,T,P} (2048-15628287, default 15628287) :
Created a new partition 1 of type 'Linux' and of size 7.5 GiB.
Command (m for help): w
The partition table has been altered.
Calling ioctl() [410.501876] mmcblk0O: pl
to re-read partition table.
Syncing disks.

Format with mkfs

mkfs.ext2 /dev/mmcblkOpl

Mount and r/w

mount /dev/mmcblkOpl /mnt/
1s /mnt/

lost+found

cp -r /lib /mnt/

1s /mnt/

1lib lost+found

LLDPUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. L6.1.1_1.0.0_23.08 — 4 August 2023

257 /1053

NXP Semiconductors LLDPUG

Layerscape Linux Distribution POC User Guide

7.5.4.8 Verification of eMMC RPMB

RPMB is Replay Protected Memory Block which is a hardware partition of eMMC. The verification uses mmc-
utils which provides a "mmc" tool. With the "mmc" tool, we can operate on RPMB partition such as writing key,
reading, writing and reading counter.

If mmc-utils is notinstalled, you can install it by running sudo apt install mmc-utils atthe command
line.

mmc tool help information

mmc

mmc rpmb write-key <rpmb device> <key file>
Program authentication key which is 32 bytes length and stored

in the specified file. Also you can specify '-' instead of
key file path to read the key from stdin.

NOTE! This is a one-time programmable (unreversible) change.
Example:

$ echo -n AAAABBBBCCCCDDDDEEEEFFFFGGGGHHHH | \
mmc rpmb write-key /dev/mmcblkOrpmb -
mmc rpmb read-counter <rpmb device>
Counter value for the <rpmb device> will be read to stdout.
mmc rpmb read-block <rpmb device> <address> <blocks count> <output file> [key
file]
Blocks of 256 bytes will be read from <rpmb device> to output
file or stdout if '-' is specified. If key is specified - read
data will be verified. Instead of regular path you can specify
'-' to read key from stdin.
Example:
$ echo -n AAAABBBBCCCCDDDDEEEEFFFFGGGGHHHH | \
mmc rpmb read-block /dev/mmcblkOrpmb 0x02 2 /tmp/block -
or read two blocks without verification
$ mmc rpmb read-block /dev/mmcblkOrpmb 0x02 2 /tmp/block
mmc rpmb write-block <rpmb device> <address> <256 byte data file> <key file>
Block of 256 bytes will be written from data file to

<rpmb device>. Also you can specify '-' instead of key
file path or data file to read the data from stdin.
Example:

$ (awk 'BEGIN {while (c++<256) printf "a"}' | \
echo -n AAAABBBBCCCCDDDDEEEEFFFFGGGGHHHH) | \
mmc rpmb write-block /dev/mmcblkOrpmb 0x02 - -

RPMB operations

mmc rpmb read-counter /dev/mmcblklrpmb

RPMB operation failed, retcode 0x0007

echo -n AAAABBBBCCCCDDDDEEEEFFFFGGGGHHHH | mmc rpmb write-key /dev/mmcblklrpmb -

mmc rpmb read-counter /dev/mmcblklrpmb

Counter value: 0x00000000

echo -n AAAABBBBCCCCDDDDEEEEFFFFGGGGHHHH | mmc rpmb read-block /dev/mmcblklrpmb 0x02 2 /tmp/block -
cat /tmp/block

#

awk '"BEGIN {while (c++<256) printf "a"}' > ./data

1s -1h data

-rw-r--r-- 1 root root 256 May 7 10:59 data

echo -n AAAABBBBCCCCDDDDEEEEFFFFGGGGHHHH | mmc rpmb write-block /dev/mmcblklrpmb 0x02 ./data -

echo -n AAAABBBBCCCCDDDDEEEEFFFFGGGGHHHH | mmc rpmb read-block /dev/mmcblklrpmb 0x02 2 /tmp/block -
cat /tmp/block
aa
aa
aa

echo -n AAAABBBBCCCCDDDDEEEEFFFFGGGGHHHK | mmc rpmb read-block /dev/mmcblklrpmb 0x02 2 /tmp/block -
RPMB MAC missmatch

mmc rpmb read-counter /dev/mmcblklrpmb

Counter value: 0x00000001

LLDPUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. L6.1.1_1.0.0_23.08 — 4 August 2023

258 /1053

NXP Semiconductors LLDPUG

Layerscape Linux Distribution POC User Guide

7.5.4.9 Known Bugs, Limitations, or Technical Issues

1.

Call trace of more than 120 seconds task blocking when running iozone performance test. This is not issue
and use below command to disable the warning.

echo 0 > /proc/sys/kernel/hung task timeout secs

. Layerscape boards could not provide a power cycle to SD card but according to SD specification, only a

power cycle could reset the SD card working on UHS-I speed mode. When the card is on UHS-I speed
mode, this hardware problem may cause unexpected result after board reset. The workaround is using
power off/on instead of reset when using SD UHS-I card.

. Transcend 8G class 10 SDHC card has some compatibility issue. It is observed it could not work on 50

MHz high-speed mode on LS2 boards, but other brand SD cards (Sandisk, Kingston, Sony ...) worked fine.
Reducing SD clock frequency could also resolve the issue. The workaround is using other kind SD cards
instead.

. After sleep of LS1046ARDB, the card will get below interrupt timeout issue. This is hardware issue. CMD18

(multiple blocks read) has hardware interrupt timeout issue.

mmcO: Timeout waiting for hardware interrupt.

. Linux MMC stack does not have SD UHS-II support currently. It could not handle SD UHS-II card well. If

UHS-I support is enabled in eSDHC dts node, the driver may make SD UHS-II card enter 1.8v mode. Only a
power cycle could reset the card, so use power off/on instead of reset for SD UHS-II card if UHS-I support is
enabled in eSDHC dts node.

. For LS1012ARDB RevD and later versions, 12C reading for DIP switch setting is not reliable so U-Boot

could not enable/disable SDHC2 automatically. If SDHC2 is used, "esdhc1" should be set in U-Boot
hwconfig environment to enable it manually.

. On LX2160A eSDHC1 for SD card, when eSDHC operates at 3.3 V, damage can accumulate in an internal

level shifter at a higher than expected rate. The faster the interface runs, the more damage accumulates.
The recommended hardware workaround is to use an onboard level shifter that is 1.8 V on SoC side and
3.3 V on SD card side. For current LX2160ARDB boards without hardware workaround, below U-Boot
option could be enabled that ensures 1.8 V 10 voltage and disables eSDHC if no card.

CONFIG FSL ESDHC 33V IO RELIABILITY WORKAROUND

This option assumes no hotplug, and U-Boot has to make all the way to Linux to use 1.8 V UHS-I speed
mode if has card. If user does not want the workaround, user can choose not to select it, by running eSDHC
in unsafe mode.

7.5.5 IEEE 1588/802.1AS

7.5.5.1 Description

NXP’s QorlQ platform provides hardware assist for 1588 compliant time stamping with the 1588 timer module.
The software components required to run IEEE 1588/802.1AS protocol utilizing the hardware feature are listed
below:

1.
2.
3.

Linux PTP Hardware Clock (PHC) driver
Linux Ethernet controller driver with hardware timestamping support
A software stack application for IEEE 1588/802.1AS

7.5.5.2 Kernel configure options

Tree view

LLDPUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. L6.1.1_1.0.0_23.08 — 4 August 2023

259/1053

NXP Semiconductors LLDPUG

Layerscape Linux Distribution POC User Guide

1. eTSEC
Kernel configure tree view options Description
. . QorlQ PTP clock driver
Device Drivers -—--->
PTP clock support --->

<*> Freescale QorIQ 1588 timer
as PTP clock

. . eTSEC Ethernet driver
Device Drivers —---—>

[*] Network device support --->
[*] Ethernet driver support --->
[*] Freescale devices
<E> Gianfar Ethernet

2. DPAA SDK

Kernel configure tree view options Description

)) QorlQ PTP clock driver
Device Drivers -—---—->

PTP clock support --->
<*> Freescale QorIQ 1588 timer
as PTP clock

: : DPAA SDK Ethernet driver and HW timestamping support
Device Drivers —--->

[*] Network device support --->
[*] Ethernet driver support --->
[*] Freescale devices
<*> DPAA Ethernet --->
[*] Linux compliant
timestamping

3. DPAA upstream driver

Kernel configure tree view options Description

Device Drivers ---> QorlQ PTP clock driver
PTP clock support --->

<*> Freescale QorlQ 1588 timer as PTP clock

Device Drivers ---> DPAA upstream version Ethernet driver
[*] Network device support --->
[*] Ethernet driver support --->
[*] Freescale devices

<*> DPAA Ethernet --->

4. DPAA2
Kernel configure tree view options Description
. . QorlQ PTP clock driver
Device Drivers -—--->
PTP clock support --->

<*> Freescale QorIQ 1588 timer
as PTP clock

. . DPAA2 Ethernet driver and PTP clock driver
Device Drivers -—--->

LLDPUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. L6.1.1_1.0.0_23.08 — 4 August 2023

260/1053

NXP Semiconductors

LLDPUG

Layerscape Linux Distribution POC User Guide

Kernel configure tree view options

Description

[*] Network device support --->
[*] Ethernet driver support
-———>
[*] Freescale devices
<Kk > Freescale DPAA2
Ethernet
<Kk > Freescale DPAA2 PTP
clock

. ENETC

Kernel configure tree view options

Description

Device Drivers --->
PTP clock support --->
<*> Freescale QorIQ 1588 timer
as PTP clock

Device Drivers --->
[*] Network device support --->
[*] Ethernet driver support

QorlQ PTP clock driver

ENETC Ethernet driver and PTP clock driver

———>
%] Freescale devices
<Kk > ENETC PF driver
<Kk > ENETC PTP clock driver
. Felix switch

Kernel configure tree view options

Description

Device Drivers --->
[*] Network device support
Distributed Switch
Architecture drivers --->
<*> QOcelot / Felix Ethernet
switch support

———>

Felix switch driver

Compile-time configuration options

1. eTSEC
Option Values Default Value |Description
CONFIG_GIANFAR y/n/m y eTSEC Ethernet driver
CONFIG_PTP_1588_CLOCK_QORIQ y/n/m y QorlQ PTP clock driver
2. DPAA SDK
Option Values Default Value | Description
CONFIG_FSL_SDK_DPAA_ETH y/n/m y DPAA SDK Ethernet driver
CONFIG_FSL_DPAA_TS y/n n DPAA HW timestamping support
CONFIG_PTP_1588_CLOCK_QORIQ y/n/m y QorlQ PTP clock driver
3. DPAA upstream driver
LLDPUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.
User guide Rev. L6.1.1_1.0.0_23.08 — 4 August 2023

261/1053

NXP Semiconductors

LLDPUG

Layerscape Linux Distribution POC User Guide

Option Values Default Value |Description
CONFIG_FSL_DPAA ETH y/n/m n DPAA upstream version
Ethernet driver
CONFIG_PTP_1588 CLOCK_QORIQ y/n/m y QorlQ PTP clock driver
4. DPAA2
Option Values Default Value |Description
CONFIG_FSL_DPAA2_ETH y/n/m y DPAA2 Ethernet driver
CONFIG_FSL_DPAA2_PTP_CLOCK y/n/m y DPAA2 PTP clock driver
CONFIG_PTP_1588 CLOCK_QORIQ y/n/m y QorlQ PTP clock driver
5. ENETC
Option Values Default value |Description
CONFIG_FSL_ENETC y/n/m y ENETC Ethernet driver
CONFIG_FSL_ENETC_PTP_CLOCK y/n/m y ENETC PTP clock driver
CONFIG_PTP_1588_CLOCK_QORIQ y/n/m y QorlQ PTP clock driver
6. Felix switch
Option Values Default value |Description
CONFIG_NET_DSA_MSCC_FELIX y/n/m y Felix switch driver
7.5.5.3 Source files
The driver source is maintained in the Linux kernel source tree.
1. eTSEC
Source File Description
drivers/net/ethernet/freescale/gianfar.c eTSEC Ethernet driver
drivers/ptp/ptp_qoriq.c QorlQ PTP clock driver
2. DPAA SDK
Source File Description
drivers/net/ethernet/freescale/sdk_dpaa/dpaa_eth.c DPAA SDK Ethernet driver
drivers/ptp/ptp_qoriq.c QorlQ PTP clock driver
3. DPAA upstream driver
Source File Description
drivers/net/ethernet/freescale/dpaa/dpaa_eth.c DPAA upstream version Ethernet driver
drivers/ptp/ptp_qoriq.c QorlQ PTP clock driver
4. DPAA2
LLDPUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.
User guide Rev. L6.1.1_1.0.0_23.08 — 4 August 2023

262 /1053

NXP Semiconductors

LLDPUG

Layerscape Linux Distribution POC User Guide

Source File

Description

drivers/net/ethernet/freescale/dpaa2/dpaa2-eth.c

DPAA2 Ethernet driver

drivers/net/ethernet/freescale/dpaa2/dpaa2-ptp.c

DPAA2 PTP clock driver

drivers/ptp/ptp_qorig.c

QorlQ PTP clock driver

5. ENETC

Source file

Description

drivers/net/ethernet/freescale/enetc/enetc.c

ENETC Ethernet driver

drivers/net/ethernet/freescale/enetc/enetc_ptp.c

ENETC PTP clock driver

drivers/ptp/ptp_qorig.c

QorlQ PTP clock driver

6. Felix switch

Source file

Description

drivers/net/dsa/ocelot/felix.c

Felix switch driver

7.5.5.4 Device tree binding
1. eTSEC/DPAA SDK/DPAA2/ENETC

Property Type Status Description

compatible String Required “fsl,etsec-ptp”, “fsl,fman-
ptp-timer”, "fsl,dpaa2-ptp" or
"fsl,enetc-ptp"

reg Integer Required Register map

2. Felix switch
NA.

7.5.5.5 Verification

See “QorlQ networking technologies” -> “IEEE 1588/802.1AS” section.

7.5.6 Integrated Flash Controller (IFC)

7.5.6.1 Integrated Flash Controller NOR Flash User Manual

7.5.6.1.1 Description

NXP’s Integrated Flash Controller can be used to connect various types of flashes, For example NOR/NAND on

board for boot functionality as well as data storage.

7.5.6.1.2 U-Boot Configuration

Compile-time options

Below are major U-Boot configuration options related to this feature defined in platform-specific config files

under include/configs/ directory.

LLDPUG All information provided in this document is subject to legal disclaimers.

User guide Rev. L6.1.1_1.0.0_23.08 — 4 August 2023

© 2023 NXP B.V. All rights reserved.

263 /1053

NXP Semiconductors

LLDPUG

Layerscape Linux Distribution POC User Guide

Option Identifier

Description

CONFIG_FSL_IFC

Enable IFC support

CONFIG_FLASH_CFI_DRIVER
CONFIG_SYS_FLASH_CFI
CONFIG_SYS_FLASH_EMPTY_INFO

Enable CFI Driver for NOR Flash devices

7.5.6.1.3 Source Files

The following source files are related to this feature in U-Boot.

Source File

Description

Jdrivers/misc/fsl_ifc.c

Set up the different chip select parameters from board
header file

drivers/mtd/cfi_flash.c

CFI driver support for NOR flash devices

7.5.6.1.4 Kernel Configure Options

Tree View

Below are the configure options need to be set/unset while doing "make menuconfig" for kernel

Kernel Configure Tree View Options

Description

Device Drivers —--->
<*> Memory Technology Device
(MTD) support
———>

[*] MTD partitioning support

[*] Command line partition

table parsing

<*> Flash partition map
based

on OF description

<*> Direct char device
access to

MTD devices

—-*— Common interface to

These options enable CFl support for NOR Flash under
MTD subsystem and Integrated Flash Controller support on
Linux

block
layer for MTD 'translation
layers'
<*> Caching block device
access
to MTD devices
< > FTL (Flash Translation
Layer)
support
RAM/ROM/Flash chip drivers
———>
<*> Detect flash chips by
Common Flash Interface (CFI)
probe
<*> Support for Intel/Sharp
flash chips
<*> Support for AMD/Fujitsu/
Spansion flash chips
LLDPUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.
User guide Rev. L6.1.1_1.0.0_23.08 — 4 August 2023

264 /1053

NXP Semiconductors LLDPUG

Layerscape Linux Distribution POC User Guide

Kernel Configure Tree View Options Description

Mapping drivers for chip
access ——-—

>

<*> Flash device in

physical memory map based on
OF description

This option enables JFFS2 file system support for MTD

. Devices
File systems --->
[*] Miscellaneous
filesystems --->

<*> Journalling Flash
File System v2 (JFFS2) support

Identifier
Below are the configure identifiers which are used in kernel source code and default configuration files.

Special Configure needs to be enabled("Y") for LS1021. Find in below table with default value as "N"

Option Values Default Value |Description

CONFIG_FSL_IFC Y/N Y Integrated Flash Controller
support

CONFIG_MTD Y/N Y Memory Technology Device
(MTD) support

CONFIG_MTD_PARTITIONS Y/N Y MTD partitioning support

CONFIG_MTD_CMDLINE_PARTS Y/N Y Allow generic configuration of

the MTD partition tables via the
kernel command line.

CONFIG_MTD_OF_PARTS Y/N Y This provides a partition parsing
function which derives the
partition map from the children
of the flash nodes described in
Documentation/powerpc/booting-
without-of.txt

CONFIG_MTD_CHAR Y/N Y Direct char device access to MTD
devices
CONFIG_MTD_BLOCK Y/N Y Caching block device access to
MTD devices
CONFIG_MTD_CFlI Y/N Y Detect flash chips by Common
Flash Interface (CFI) probe
CONFIG_MTD_GEN_PROBE Y/N Y NA
CONFIG_MTD_MAP_BANK_WIDTH_1 Y/N Y Support 8-bit bus width
CONFIG_MTD_MAP_BANK_WIDTH_2 Y/N Y Support 16-bit bus width
CONFIG_MTD_MAP_BANK_WIDTH_4 Y/N Y Support 32-bit bus width
CONFIG_MTD_PHYSMAP_OF Y/N Y Flash device in physical memory
map based on OF description
LLDPUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.
User guide Rev. L6.1.1_1.0.0_23.08 — 4 August 2023

265/1053

NXP Semiconductors

LLDPUG

Layerscape Linux Distribution POC User Guide

Option Values Default Value |Description

CONFIG_FTL Y/N N FTL (Flash Translation Layer)
support

CONFIG_MTD_CFI_INTELEXT Y/N Y Support for Intel/Sharp flash chips

CONFIG_MTD_CFI_AMDSTD Y/N Y Support for AMD/Fujitsu/Spansion
flash chips

7.5.6.1.5 Device Tree Binding

Documentation/devicetree/bindings/powerpc/fsl/ifc.txt

Documentation/devicetree/bindings/memory-controllers/fsl/ifc.txt

Flash partitions are specified by platform device tree.

7.5.6.1.6 Source Files

The driver source is maintained in the Linux kernel source tree.

Source File

Description

drivers/memory/fs|_ifc.c

Integrated Flash Controller driver to handle error interrupts

drivers/mtd/mtdpart.c

Simple MTD partitioning layer

drivers/mtd/mtdblock.c

Direct MTD block device access

drivers/mtd/mtdchar.c

Character-device access to raw MTD devices.

drivers/mtd/ofpart.c

Flash partitions described by the OF (or flattened) device
tree

drivers/mtd/ftl.c

FTL (Flash Translation Layer) support

drivers/mtd/chips/cfi_probe.c

Common Flash Interface probe

drivers/mtd/chips/cfi_util.c

Common Flash Interface support

drivers/mtd/chips/cfi_cmdset_0001.c

Support for Intel/Sharp flash chips

drivers/mtd/chips/cfi_cmdset_0002.c

Support for AMD/Fujitsu/Spansion flash chips

7.5.6.1.7 Verification in U-Boot

Test the Read/Write/Erase functionality of NOR Flash
1. Boot the U-Boot with above config options to get NOR Flash access enabled. Check this in boot log,

FLASH: * MiB

where * is the size of NOR Flash

Erase NOR Flash

Make test pattern on memory, For example DDR
Write test pattern on NOR Flash

o0k wnN

Test Log:

Test log with initial U-Boot log removed

Read the test pattern from NOR Flash to memory, for example DDR
Compare the test pattern data to verify functionality.

LLDPUG

All information provided in this document is subject to legal disclaimers.

© 2023 NXP B.V. All rights reserved.

User guide

Rev. L6.1.1_1.0.0_23.08 — 4 August 2023

266 /1053

NXP Semiconductors LLDPUG

Layerscape Linux Distribution POC User Guide

FLASH: 128 MiB

/* u-boot prompt */
=> mw.b 80000000 Oxa5 10000
=> md 80000000
80000000: abab5abab abab5abab5 abababab abababab
80000010: abab5abab abab5abab5 abababab abababab
80000020: abab5abab abab5abab5 abababab abababa5
80000030: abab5abab abababab5 abababab abababab
=> protect off all
Un-Protect Flash Bank # 1
=> erase 0x584100000 +0x10000

done
Erased 1 sectors
=> cp.b 80000000 0x584100000 10000
Copy to Flash... 9....8....7....6....5....4....3....2....1....done
=> cmp.b 80000000 0x584100000 10000
Total of 65536 bytes were the same
=>

7.5.6.1.8 Verification in Linux

To cross-check whether IFC NOR driver has been configured in the kernel or not, see the kernel boot log with
following entries. Note mtd partition number can be changed depending upon device tree.

[2.368207] 60000000.nor: Found 1 x16 devices at 0x0 in 16-bit bank.
Manufacturer ID 0x000001 Chip

ID 0x002801

.378219] Amd/Fujitsu Extended Query Table at 0x0040

.446228

[2

[2.383374] Amd/Fujitsu Extended Query version 1.3.

[2.388427] number of CFI chips: 1

[2.391835] 8 cmdlinepart partitions found on MTD device 60000000.nor
[2.398277] Creating 8 MTD partitions on "60000000 nor":

[2.403591] 0x000000000000-0x000000100000 : "nor bankO rcw"

[2.409553] 0x000000100000-0x000001000000 - "nor_bankO_uboot"
[2.415653] 0x000001000000-0x000002000000 : "nor bankO kernel"
[2.421839] 0x000002000000-0x000004000000 : "nor bank0 rootfs"
[2.428027] 0x000004000000-0x000004100000 : "nor bank4 rcw"

[2.433948] 0x000004100000-0x000005000000 : "nor bank4 uboot"
[2.440043] 0x000005000000-0x000006000000 : "nor bank4 kernel"
[2]

0x000006000000-0x000008000000 : "nor:bank4:rootfs"

Note: NOR address and number of partitions will vary from SoC to SoC supported in Layerscape LDP.

To verify NOR flash device accesses, see the following test:

[root@ root]# cat /proc/mtd dev: size erasesize name mtd0: 00100000 00020000
"nor bank0 rcw" mtdl: 00f00000 00020000 "nor bank0 uboot" mtd2: 01000000
00020000 "nor bank0 kernel"™ mtd3: 02000000 00020000 "nor bankO rootfs" mtd4:
00100000 00020000 "nor bank4 rcw" mtd5: 00£00000 00020000 "nor bank4 uboot"
mtd6: 01000000 00020000 "nor bank4 kernel" mtd7: 02000000 00020000
"nor bank4 rootfs" mtd8: 01000000 00040000 "nand uboot" mtd9: 01000000 00040000
"nand kernel” mtdl0: 02000000 00040000 "nand free" mtdll: 00600000 00001000
"uboot" mtdl2: 00a00000 00001000 "free" mtdl3: 00080000 00001000 "spiO.1"
mtdl4: 00800000 00001000 "spiO.2" [root@ root]# flash eraseall -j /dev/mtd2
Erasing 128 Kibyte @ 1400000 -- 100% complete. Cleanmarker written at 13e0000.
[root@P1010RDB root]# mount -t Jjffs2 /dev/mtdblock2 /mnt/

LLDPUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. L6.1.1_1.0.0_23.08 — 4 August 2023

267 /1053

NXP Semiconductors LLDPUG

Layerscape Linux Distribution POC User Guide

JFFS2 notice: (1202) jffs2 build xattr subsystem: complete building xattr
subsystem, 0 of xdatum (0 unchecked, 0 orphan) and 0 of xref (0 dead, 0 orphan)
found.

[root@ root]# cd /mnt/

[root@ mnt]# 1ls -1
[root@ mnt]# touch flash file
[root@ root]# umount mnt

//1ls must list local file
[root@ root]# ls mnt

//mount again
[root@ root]# mount -t Jjffs2 /dev/mtdblock2 /mnt/

JFFS2 notice: (1219) jffs2 build xattr subsystem: complete building xattr
subsystem, 0 of xdatum (0 unchecked, 0 orphan) and 0 of xref (0 dead, 0 orphan)
found.

//use 1ls ; it must show the created file
[root@ root]# l1ls /mnt/

flash file

//unmount
[root@ root]# umount /mnt/

7.5.6.2 Integrated Flash Controller NAND Flash User Manual

7.5.6.2.1 Description

NXP’s Integrated Flash Controller can be used to connect various types of flashes (For example NOR/NAND)
on board for boot functionality as well as data storage.

7.5.6.2.2 U-Boot Configuration

Compile-time options

Below are major U-Boot configuration options related to this feature defined in platform-specific config files
under include/configs/ directory.

Option Identifier Description

CONFIG_FSL_IFC Enable IFC support

CONFIG_NAND_FSL_IFC Enable NAND Machine support on IFC
CONFIG_SYS_MAX_NAND_DEVICE No of NAND Flash chips on platform
CONFIG_MTD_NAND_VERIFY_WRITE Verify NAND flash writes

CONFIG_CMD_NAND Enable various commands support for NAND Flash
CONFIG_SYS_NAND_BLOCK_SIZE Block size of the NAND flash connected on Platform

7.5.6.2.3 Source Files

The following source files are related to this feature in U-Boot.

Source File Description
Jdrivers/misc/fs|_ifc.c Set up the different chip select parameters from board
header file
drivers/mtd/nand/fsl_ifc_nand.c IFC nand flash machine driver file
LLDPUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.
User guide Rev. L6.1.1_1.0.0_23.08 — 4 August 2023

268 /1053

NXP Semiconductors

LLDPUG

7.5.6.2.4 Kernel Configure Options

Tree View

Layerscape Linux Distribution POC User Guide

Below are the configure options need to be set/unset while doing "make menuconfig" for kernel

Kernel Configure Tree View Options

Description

Device Drivers --->
<*> Memory Technology Device
(MTD)
support —--->
[*] MTD partitioning support
[*] Command line partition
table

parsing=

<*> Flash partition map
based on OF

description

<*> Direct char device
access to MTD

devices

-*- Common interface to
block layer for

MTD 'translation layers'

<*> Caching block device
access to MTD

devices

<*> NAND Device Support --->

<*> NAND support for
Freescale IFC

controller

Enable UBIFS filesystem in
linux configuration

Device Drivers —--->

<*> Memory Technology Device

(MTD)

support —--->

UBI - Unsorted block images
-———>

<*> Enable UBI

(4096) UBI wear-leveling
threshold

(1) Percentage of reserved
eraseblocks for

bad eraseblocks handling

< > MTD devices emulation
driver (gluebi)

*** UBI debugging options

These options enable Integrated Flash Controller NAND
support to work with MTD subsystem available on Linux.

Also UBIFS support needs to be enabled.

* % %
[] UBI debugging
File systems --->
[*] Miscellaneous
filesystems —--->
<*> UBIFS file system
support
[*] Extended attributes
support
[] Advanced compression
options
LLDPUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.
User guide Rev. L6.1.1_1.0.0_23.08 — 4 August 2023

269 /1053

NXP Semiconductors LLDPUG

Layerscape Linux Distribution POC User Guide

Kernel Configure Tree View Options Description

[] Enable debugging

Identifier

Below are the configure identifiers which are used in kernel source code and default configuration files.

Option Values Default Value |Description

CONFIG_FSL_IFC y/n y Enable Integrated Flash
Controller support

CONFIG_MTD_NAND_FSL_IFC y/n Y Enable Integrated Flash
Controller NAND Machine support

CONFIG_MTD_PARTITIONS y/n Y MTD partitioning support

CONFIG_MTD_CMDLINE_PARTS y/n Y Allow generic configuration of

the MTD partition tables via the
kernel command line.

CONFIG_MTD_OF_PARTS y/n Y This provides a partition parsing
function which derives the
partition map from the children

of the flash nodes described in
Documentation/powerpc/booting-
without-of.txt

CONFIG_MTD_CHAR y/n Y Direct char device access to MTD
devices

CONFIG_MTD_BLOCK y/n Y Caching block device access to
MTD devices

CONFIG_MTD_GEN_PROBE y/n Y NA

CONFIG_MTD_PHYSMAP_OF y/n Y Flash device in physical memory

map based on OF description

7.5.6.2.5 Device Tree Binding

Documentation/devicetree/bindings/memory-controllers/fsl/ifc.txt

Flash partitions are specified by platform device tree.

7.5.6.2.6 Source Files

The driver source is maintained in the Linux kernel source tree.

Source File Description

drivers/memory/fsl_ifc.c Integrated Flash Controller driver to handle error interrupts
drivers/mtd/nand/fsl_ifc_nand.c Integrated Flash Controller NAND Machine driver
include/linux/fsl_ifc.h IFC Memory Mapped Registers

7.5.6.2.7 Verification in U-Boot

Test the Read/Write/Erase functionality of NAND Flash
1. Boot the U-Boot with above config options to get NAND Flash driver enabled. Check this in boot log,

LLDPUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. L6.1.1_1.0.0_23.08 — 4 August 2023

270/1053

NXP Semiconductors

LLDPUG

Layerscape Linux Distribution POC User Guide

NAND: * MiB

Where * is NAND flash size

Erase NAND Flash

Make test pattern on memory, For example DDR

Write test pattern on NAND Flash

Read the test pattern from NAND Flash to memory, for example DDR
Compare the test pattern data to verify functionality.

o0k wnN

Test Log:

NAND: 512 MiB

/* U-boot prompt */
=> nand erase.chip
NAND erase.chip: device 0 whole chip
Bad block table found at page 65504,
65472, version 0x01
Skipping bad block at
Skipping bad block at
Skipping bad block at
Skipping bad block at
OK
=> mw.b 80000000 Oxab
=> md 80000000
80000000: abababab
80000010: abababab
80000020: abababab abababab abababab
80000030: abababab abababab abababab
=> nand write 80000000 O 100000
NAND write: device 0 offset 0xO0,
1048576 bytes written: OK
=> nand read 90000000 0 100000
NAND read: device 0 offset 0xO0,
1048576 bytes read: OK
=> cmp.b 80000000 90000000 100000
Total of 1048576 bytes were the same

version 0x01l Bad block table found at page

0x01££0000
0x01££4000
0x01££8000
0x01££c000

100000

ab5ababab
ab5ababab

ab5ababab
ab5ababab

ab5ababab
ab5ababab
abababab
ab5ababab

size 0x100000

size 0x100000

7.5.6.2.8 Verification in Linux

To cross-check whether IFC NAND driver has been configured in the kernel or not, check the following. Note
mtd partition numbers can be changed depending upon board device tree

[root@ (none) root]# cat /proc/mtd

dev: size erasesize name

mtd0: 00100000 00020000 "nor bankO rcw"

mtdl: 00£00000 00020000 "nor bank0 uboot"

mtd2: 01000000 00020000 "nor bank0 kernel"

mtd3: 02000000 00020000 "nor bank0 rootfs"

mtd4: 01000000 00040000 "nand uboot"

mtd5: 01000000 00040000 "nand kernel"

mtd6: 02000000 00040000 "nand free"

[root@ (none) root]# flash eraseall /dev/mtd4 Erasing 16 Kibyte @ £00000 -- 100%
complete.

[root@ (none) root]# ubiattach /dev/ubi ctrl -m 4

LLDPUG

All information provided in this document is subject to legal disclaimers.

© 2023 NXP B.V. All rights reserved.

User guide

Rev. L6.1.1_1.0.0_23.08 — 4 August 2023

271/1053

NXP Semiconductors

LLDPUG

Layerscape Linux Distribution POC User Guide

UBI: attaching mtd4 to ubiO

UBI: physical eraseblock size: 16384 bytes (16 KiB)
UBI: logical eraseblock size: 15360 bytes
UBI: smallest flash I/0O unit: 512

UBI: VID header offset: 512 (aligned 512)
UBI: data offset: 1024

UBI: empty MTD device detected

UBI: create volume table (copy #1)

UBI: create volume table (copy #2)

UBI: attached mtd4 to ubil

UBI: MTD device name: "NAND Root File System"
UBI: MTD device size: 15 MiB

UBI: number of good PEBs: 960

UBI: number of bad PEBs: 0

UBI: max. allowed volumes: 89

UBI: wear-leveling threshold: 4096

UBI: number of internal volumes: 1

UBI: number of user volumes: 0O

UBI: available PEBs: 947

UBI: total number of reserved PEBs: 13

UBI: number of PEBs reserved for bad PEB handling: 9
UBI: max/mean erase counter: 0/0

UBI: image sequence number: 0

UBI: background thread "ubi bgt0d" started, PID 7541 UBI device number 0, total

960 LEBs (14745600

bytes, 14.1 MiB), available 947 LEBs (14545920 bytes, 13.9 MiB), LEB size 15360

bytes (15.0 KiB)

[root@ (none) root]l# ubimkvol /dev/ubiO -N rootfs -s 14205KiB Volume ID 0, size

947 LEBs (14545920
bytes, 13.9 MiB), LEB size 15360 bytes (15.0 KiB), dynamic,
alignment 1
[root@ (none) root]# mount -t ubifs /dev/ubiO 0 /mnt/
UBIFS: default file-system created
UBIFS: mounted UBI device 0, volume 0, name "rootfs"
UBIFS: file system size: 14361600 bytes (14025 KiB, 13 MiB,
UBIFS: journal size: 721920 bytes (705 KiB, 0 MiB, 47 LEBs)
UBIFS: media format: w4/r0 (latest is w4/r0)
UBIFS: default compressor: lzo
UBIFS: reserved for root: 678333 bytes (662 KiB)
[root@ (none) rootl# cd /mnt/
[root@ (none) mnt]# 1s
(

)
[root@ (none) mnt]# touch flash file
[root@ (none) mnt]# 1s -1
total O

-rw-r--r-—- 1 root root 0 Jul 6 14:45 flash file

[root@ (none) mnt]# cd

[root@ (none) root]# umount /mnt/

UBIFS: un-mount UBI device 0, volume 0

[root@ (none) root]# mount -t ubifs /dev/ubi0 0 /mnt/

UBIFS: mounted UBI device 0, volume 0O, name "rootfs"

UBIFS: file system size: 14361600 bytes (14025 KiB, 13 MiB,
UBIFS: journal size: 721920 bytes (705 KiB, 0 MiB, 47 LEBSs)
UBIFS: media format: w4/r0 (latest is w4/r0)

UBIFS: default compressor: lzo

UBIFS: reserved for root: 678333 bytes (662 KiB)

[root@ (none) root]l# 1ls -1 /mnt/

total O

-rw-r—-r-- 1 root root 0 Jul 6 14:45 flash file

name "rootfs",

935 LEBs)

935 LEBs)

LLDPUG

All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide

Rev. L6.1.1_1.0.0_23.08 — 4 August 2023
27211053

NXP Semiconductors LLDPUG

Layerscape Linux Distribution POC User Guide

7.5.6.2.9 Known Bugs, Limitations, or Technical Issues

Boards which have NAND Flash with 512 byte page size, JFFS2 cannot be supported using H/'W ECC support
of IFC, as there is not enough remaining space in the OOB area.

To use JFFS2, use SOFT ECC.
7.5.7 Low Power Universal Asynchronous Receiver/Transmitter (LPUART)

7.5.7.1 Description

Low Power Universal asynchronous receiver/transmitter (LPUART) is a high speed and low-power UART. Refer
to below table for the NXP SoCs that can support LPUART.

SoC Num of LPUART module
LS1021A 6
LS1043A 6

7.5.7.2 U-Boot Configuration Compile-time options

Below are major U-Boot configuration options related to this feature defined in platform-specific config files
under include/configs/ directory.

Option Identifier Description

CONFIG_LPUART Enable LPUART support
CONFIG_FSL_LPUART Enable NXP LPUART support
CONFIG_LPUART_32B_REG Select 32-bit LPUART register mode

Choosing predefined U-Boot board configs:
Make the defconfig include 'lpuart’, such as: Is1021atwr_nor_lpuart_defconfig. This will support LPUART.

Runtime options

Env Env Description Sub option Option Description

Variable

bootargs Kernel command-line argument console=ttyLP0,1152000 Select LPUARTO as the
passed to kernel system console

7.5.7.3 Kernel Configure Options

Tree View

Below are the configure options need to be set/unset while doing "make menuconfig" for kernel

Kernel Configure Tree View Options Description
LPUART driver and enable console support

Device Drivers —--->
Character devices --->
Serial drivers --->
<*> Freescale lpuart
serial port support

LLDPUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. L6.1.1_1.0.0_23.08 — 4 August 2023

27311053

NXP Semiconductors LLDPUG

Layerscape Linux Distribution POC User Guide

Kernel Configure Tree View Options Description

[*] Console on
Freescale lpuart serial port

Identifier

Below are the configure identifiers which are used in kernel source code and default configuration files.

Option Values Default Value |Description

CONFIG_SERIAL_FSL_LPUART y/m/n n LPUART driver

7.5.7.4 Device Tree Binding

Below is an example device tree node required by this feature. Note that it may have differences among
platforms.

lpuart0: serial@2950000 ({
compatible = "fsl,vf6l0-lpuart";
reg = <0x0 0x2950000 0x0 0x1000>;
interrupts = <GIC SPI 80 IRQ TYPE LEVEL HIGH>;
clocks = <&sysclk>;

clock-names = "ipg";
fsl,lpuart32;
status = "okay";

7.5.7.5 Source Files

The following source files are related to this feature in U-Boot.

Source File Description
drivers/serial/serial_lpuart.c The LPUART driver file

The following source files are related to this feature in Linux kernel.

Source File Description
drivers/tty/serial/fs|_lpuart.c The LPUART driver file

7.5.7.6 Verification in U-Boot

1. Boot up U-Boot from bank0, and update rcw and U-Boot for LPUART support to bank4, first copy the rcw
and U-Boot binary to the TFTP directory.

2. Refer to the platform deploy document to update the rcw and U-Boot.

3. After all is updated, run U-Boot command to switch to alt bank, then will bring up the new U-Boot to the
LPUART console.

CPU: Freescale LayerScape LS1020E, Version: 1.0, (0x87081010)
Clock Configuration:

CPUO (ARMV7) :1000 MHz,

Bus:300 MHz, DDR:800 MHz (1600 MT/s data rate),
Reset Configuration Word (RCW) :

00000000: 0608000a 00000000 00000000 00000000

00000010: 60000000 00407900 e0025a00 21046000

LLDPUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. L6.1.1_1.0.0_23.08 — 4 August 2023

27411053

NXP Semiconductors LLDPUG

Layerscape Linux Distribution POC User Guide

00000020: 00000000 00000000 00000000 08038000
00000030: 00000000 001b7200 00000000 00000000

I2C: ready

Board: LS1021ATWR

CPLD: V2.0

PCBA: V1.0

VBank: O

DRAM: 1 GiB

Using SERDES1 Protocol: 48 (0x30)

Flash: 0 Bytes

MMC : FSL SDHC: O

EEPROM: NXID v16777216

PCIel: Root Complex no link, regs @ 0x3400000

PCIe2: disabled

In: serial
Out: serial
Err: serial

SATA link 0 timeout.

AHCI 0001.0300 1 slots 1 ports ? Gbps Oxl impl SATA mode
flags: 64bit ncqg pm clo only pmp fbss pio slum part ccc
Found 0 device(s).

SCSI: Net: eTSEC]1 is in sgmii mode.

eTSEC2 is in sgmii mode.

eTSEC1, eTSEC2 [PRIME], eTSEC3

=>

7.5.7.7 Verification in Linux

1. After U-Boot startup, set the command-line parameter to pass to the linux kernel including
console=ttyl P0,115200 in bootargs. For deploy the ramdisk as rootfs, the bootargs can be set as: "set
bootargs root=/dev/ramO rw console=ttyLP0,115200"

=> set bootargs root=/dev/ram0 rw console=ttyLP0,115200

=> dhcp 81000000 <tftpboot dir>/zImage.lsl02la;tftp 88000000 <tftpboot dir>/

initrd.lsl.uboot;tftp 8£000000 <tftpboot dir>/1sl02latwr.dtb;bootz 81000000
88000000 8£f000000

[...]

Starting kernel

Uncompressing Linux... done, booting the kernel.

Booting Linux on physical CPU 0xf00

Linux version 3.12.0+ (xxx@rock) (gcc version 4.8.3 20131202 (prerelease)
(crosstool-NG

linaro-1.13.1-4.8-2013.12 - LinaroGCC 2013.11)) #664 SMP Tue Jun 24 15:30:45
CST 2014

CPU: ARMv7 Processor [410fc075] revision 5 (ARMv7), cr=30c73c7d

CPU: PIPT / VIPT nonaliasing data cache, VIPT aliasing instruction cache

Machine: Freescale Layerscape LS1021A, model: LS1021A TWR Board

Memory policy: ECC disabled, Data cache writealloc

PERCPU: Embedded 7 pages/cpu @8901c000 s7936 r8192 dl12544 u32768

Built 1 zonelists in Zone order, mobility grouping on. Total pages: 520720

Kernel command line: root=/dev/ram rw console=ttyLP0,115200

PID hash table entries: 4096 (order: 2, 16384 bytes)

[...]

1sl02latwr login: root

root@lsl02latwr:~4#

2. After the kernel boot up to the console, you can type any shell command in the LPUART TERMINAL.

LLDPUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. L6.1.1_1.0.0_23.08 — 4 August 2023

275/1053

NXP Semiconductors

LLDPUG

7.5.8 PCI Express Interface Controller

7.5.8.1 PCle Linux Driver

7.5.8.1.1 Module Loading

Layerscape Linux Distribution POC User Guide

The MPC85xx/Layerscape PCIE host bridge support code is compiled into the kernel. It is not available as a

module.

7.5.8.1.2 Kernel Configure Tree View Options

Kernel Configure Tree View Options

Description

Device Drivers --->
[*] PCI support —--->
[*] PCI Express Port Bus support
—-*- Message Signaled Interrupts
(MSI and MSI-X)

Enables PCle Port Bus and MSI/MSI-X support

Device Drivers —-->
[*] PCI support —--->
PCI controller drivers —--->
DesignWare PCI Core Support --—->

[*] Freescale Layerscape PCIe
controller - Host mode

Enables NXP Layerscape PCle controller RC mode
driver

Device Drivers --->
[*] Network device support --->
[*] Ethernet driver support --->
[*] Intel devices —--->
<*> Intel (R) PRO/1000 PCI-Express
Gigabit Ethernet support

Intel PRO/1000 PCI-Express support

Device Drivers —--->
<*> Serial ATA and Parallel ATA
drivers (libata) --->

<*> Silicon Image 3124/3132 SATA
support

Enables support for Silicon Image 3124/3132 Serial
ATA.

7.5.8.1.3 Compile-time Configuration Options

Option Values Default Value |Description

CONFIG_PCI y/n y Enable PCI host bridge

CONFIG_PCIEPORTBUS y/n y Enables PCle Port Bus support

CONFIG_PCI_MSI y/n y MSI/MSI-X support

CONFIG_PCI_LAYERSCAPE y/n y Enable PCle controller RC mode
driver for Layerscape

LLDPUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. L6.1.1_1.0.0_23.08 — 4 August 2023

276 /1053

NXP Semiconductors LLDPUG

Layerscape Linux Distribution POC User Guide

Option Values Default Value |Description
CONFIG_E1000E y/m/n y Enable Intel Pro/1000 driver
CONFIG_SATA_SIL y/m/n y Silicon Image SATA support

7.5.8.1.4 Source Files

The driver source is maintained in the Linux kernel source tree.

Source File Description

arch/powerpc/sysdev/fsl_pci.c The MPC85XX platform PCle host bridge support
source

drivers/pci/controller/dwc/pci-layerscape.c The Layerscape platform PCle host bridge support
source

drivers/net/ethernet/intel/e1000e/ Intel Pro/1000 driver source code

drivers/ata/sata_sil.c Silicon Image source code

7.5.8.1.5 SATA Card Test Procedure

The user can use command fdisk, mke2fs mount to operate the ide disk.

After kernel boots up, please follow the log to operate:
[root@pX0XX /root]# fdisk -1

Disk /dev/sda: 85.8 GB, 85899345920 bytes

255 heads, 63 sectors/track, 10443 cylinders

Units = cylinders of 16065 * 512 = 8225280 bytes

Disk /dev/sda doesn't contain a valid partition table

[root@pX0XX /root]# fdisk /dev/sda

Device contains neither a valid DOS partition table, nor Sun, SGI or OSF
disklabel

Building a new DOS disklabel. Changes will remain in memory only,

until you decide to write them. After that the previous content

won't be recoverable.

The number of cylinders for this disk is set to 10443.

There is nothing wrong with that, but this is larger than 1024,
and could in certain setups cause problems with:

1) software that runs at boot time (e.g., old versions of LILO)
2) booting and partitioning software from other OSs

(e.g., DOS FDISK, 0OS/2 FDISK)

Command (m for help): n

Command action

e extended

p primary partition (1-4)

p

Partition number (1-4): 1

First cylinder (1-10443, default 1): Using default value 1

Last cylinder or +size or +sizeM or +sizeK (1-10443, default 10443): 100

Command (m for help): w

The partition table has been altered!

Calling ioctl() to re-read partition table

sd 0:0:0:0: [sda] 167772160 512-byte hardware sectors (85899 MB)
sd 0:0:0:0: [] Write Protect is off

sd 0:0:0:0: [sda] Asking for cache data failed

sd 0:0:0:0: [] Assuming drive cache: write through

sda: sdal

[root@pX0XX /root]l# mke2fs /dev/sdal

LLDPUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. L6.1.1_1.0.0_23.08 — 4 August 2023

27711053

NXP Semiconductors LLDPUG

Layerscape Linux Distribution POC User Guide

mke2fs 1.34 (25-Jul-2003)

Filesystem label=

OS type: Linux

Block size=4096 (log=2)

Fragment size=4096 (log=2)

100576 inodes, 200804 blocks

10040 blocks (5.00%) reserved for the super user

First data block=0

7 block groups

32768 blocks per group, 32768 fragments per group

14368 inodes per group

Superblock backups stored on blocks:

32768, 98304, 163840

Writing inode tables: done

Writing superblocks and filesystem accounting information: done
This filesystem will be automatically checked every 31 mounts or
180 days, whichever comes first. Use tune2fs -c or -i to override.
[root@pX0XX /root]# mkdir sdal test

[root@pX0XX /root]# mount /dev/sdal sdal test/

[root@pX0XX /root]# cp /bin/tar sdal test/

[root@pX0OXX /root]#

7.5.8.1.6 Ethernet Card Test Procedure

Plug Intel Pro/1000e network card into standard PCI-E slot on a board. After Linux bootup, run ifconfig
ethx <IP address> netmask <netmask>, then do ping testing.

Here, x is the Ethernet interface number. For example, Ethernet interface number for Intel 1000 network card
is ethO.

For example:

After kernel boot up, bring up the board with the PCI Ethernet card.
ifconfig ethx 192.168.20.100

IP address should not conflict with other Ethernet port.

At the Linux prompt, run command ping 192.168.20.101

7.5.8.1.7 Known Bugs, Limitations, or Technical Issues

* LSI-SAS card cannot be used on the second PCle controller when system enables more than one PCle
controller. As a workaround for this issue, make following modifications in the code.

--— a/arch/powerpc/sysdev/fsl pci.c
+++ b/arch/powerpc/sysdev/fsl pci.c
@@ -549,7 +549,7 @@ int fsl add bridge(struct platform device *pdev, int
is primary)
printk (KERN WARNING "Can't get bus-range for 3%pOF, assume"
" bus 0\n", dev):;
= pci add flags (PCI_REASSIGN ALL BUS) ;
+ pci add flags (PCI_ENABLE PROC DOMAINS) ;
hose = pcibios alloc controller (dev) ;
if ('hose)
return -ENOMEM;
@@ -851,7 +851,7 @@ int init mpc83xx add bridge (struct device node *dev)
" bus 0\n", dev);

}

LLDPUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. L6.1.1_1.0.0_23.08 — 4 August 2023

278 /1053

NXP Semiconductors LLDPUG

Layerscape Linux Distribution POC User Guide

= pci add flags(PCI _REASSIGN ALL BUS);

+ pci add flags (PCI_ENABLE PROC_DOMAINS) ;
hose = pcibios alloc_controller (dev) ;
if ('hose)

return -ENOMEM;

7.5.8.2 PCle Advanced Error Reporting User Manual

7.5.8.2.1

This section explains steps to test the PCI Express Advanced Error Reporting (AER) function.

7.5.8.2.2

Testing the PCle AER error recovery code in actual environment is difficult because it is hard to trigger real
hardware errors. So, a software tool is used for error injection to fake various kinds of PCle errors.

7.5.8.2.3 Kernel Configure Tree View Options

Kernel Configure Tree View Options Description

Enables PCI Express AER and AER-INJECTOR in

Device Drivers --->
kernel.

[*] PCI support —--->
[*] PCI Express Port Bus support
[*] Root Port Advanced Error
Reporting support
<*> PCIe AER error injector
support

7.5.8.2.4 Kernel compile-time Configuration Options

Option Values Default Value |Description
CONFIG_PCIEAER y/n y Enable AER
CONFIG_PCIEAER_INJECT y/m/n n Enables AER INJECT

7.5.8.2.5 Source Files

The driver source is maintained in the Linux kernel source tree.

Source File Description
AER driver support

drivers/pci/pcie/aer*

7.5.8.2.6 Prepare aer-inject test tool

1. Download aer-inject test utility.
2. Write a test config file. For example:

$ vi aer-cfg
AER
DOMAIN 0001
BUS 1

LLDPUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. L6.1.1_1.0.0_23.08 — 4 August 2023

279/1053

NXP Semiconductors LLDPUG

Layerscape Linux Distribution POC User Guide

DEV O

FN O

COR_STATUS BAD TLP
HEADER LOG 0 1 2 3

Note: Error type can be ["COR_STATUS", "UNCOR_STATUS"]

Corrected error can be: ['BAD _TLP", "RCVR", "BAD_DLLP", "REP_ROLL", "REP_TIMER"] Uncorrected
non-fatal error can be: ["POISON_TLP", "COMP_TIME", "COMP_ABORT", "UNX_COMP", "ECRC",
"UNSUP"] Uncorrected fatal error can be: ["TRAIN", "DLP", "FCP", "RX_OVER", "MALF_TLP"]

Test Steps

1.

Insert a PCle device in PCle slot of board, ensure the PCle device has AER capability, for example e1000e
PCle NIC network card.

2. At the U-Boot prompt, add "pcie_ports=native" in bootargs command line.

=> setenv othbootargs pcie ports=native

Boot the kernel and filesystem.
Check AER device and config.

zcat /proc/config.gz | grep -i CONFIG PCIEAER INJECT

CONFIG PCIEAER INJECT=y

cat /proc/cmdline

root=/dev/ram rw console=ttyS0,115200 pcie ports=native

check "pcie ports=native" has been set.

1ls /dev/aer inject

Check if the aer injector device is created.

lspci

00:00.0 Class 0604: 1957:0410

01:00.0 Class 0200: 8086:10d3

e.g. here device "01:00.0" is the PCIe NIC e1000 network card in the test
scenario.

. Download aer-inject and aer-cfg from host to test-board.

S scp aer-inject aer-cfg root@test-board-ip:~

Ensure the PCle device domain-number/bus-number/device-number/function-number in aer-cfg is as per
the output of Ispci

Run aer-inject, the corresponding error information is reported as follows and AER recovers the PCle device
according to the type of errors.

./aer—-inject aer-cfg

example of error report as below:

pcieport 0000:00:00.0: AER: Corrected error received: id=0100

el000e 0000:01:00.0: PCIe Bus Error: severity=Corrected, type=Data Link
Layer, id=0100 (Receiver ID)

e1000e 0000:01:00.0: device [8086:10d3] error status/mask=00000040/00002000
el1000e 0000:01:00.0: [6] Bad TLP

root@lsxxxx:~#

8. The PCle device (e1000e PCle NIC) should still work after AER error recovery.

ping 192.168.1.1 -c 2 -s 64

PING 192.168.1.1 (192.168.1.1): 64 data bytes

72 bytes from 192.168.1.1: icmp seg=0 ttl=64 time=0.272 ms
72 bytes from 192.168.1.1: icmp seqg=1 ttl=64 time=0.210 ms
-—-192.168.1.1 ping statistics ---

2 packets transmitted, 2 packets received, 0% packet loss
round-trip min/avg/max/stddev = 0.210/0.241/0.272/0.031 ms

LLDPUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. L6.1.1_1.0.0_23.08 — 4 August 2023

280/1053

NXP Semiconductors LLDPUG

Layerscape Linux Distribution POC User Guide

Note:

On some legacy platforms with legacy PCI controller (for example, some non-DPAA platforms), hardware
does not support Fatal error type for AER, hardware only supports Non-Fatal error.
DPAA platforms with new PCle controller can support both Fatal error and Non-Fatal error.

7.5.8.3 PCle Remove and Rescan User Manual

7.5.8.3.1

This section explains how to remove and rescan a PCle device under runtime Linux system.

7.5.8.3.2 U-Boot Configuration

Use the default configurations.

7.5.8.3.3 Kernel Configure Options

Use the default configurations. Ensure that the configure option is set while executing make menuconfig for
kernel.

Kernel Configure Tree View Options Description

This option enables kernel support for Intel PCle
Device Drivers —---> €1000e network card.

[*] Network device support --->
[*] Ethernet driver support —--->
[*] Intel devices —--——>

<*> Intel (R) PRO/1000 PCI-Express
Gigabit Ethernet support

Below are the configure identifiers which are used in kernel source code and default configuration files.

Option Values Default Value Description
CONFIG_E1000E y/m/n y Intel PCle €1000e network
card driver

7.5.8.3.4 Device Tree Binding
Use the default dtb file.

7.5.8.3.5 Verification in Linux

Ensure that the PCle controller which you add the PCle e1000e network card to works as RC mode. Use the
kernel, dtb, and ramdisk rootfs to boot the board.

1. Suppose the PCle device under /sys/bus/pci/devices/0001\:03\:00.0 is the Intel PCle e1000e
network card, recognized as ethO. The /sys/bus/pci/devices/0001\:02\:00.0 is the bus of network
card. Configure an ip and ping another host which is in the same subnet, make sure the network card works
well.

1s /sys/bus/pci/devices/0001\:03\:00.0/net
ethO

ifconfig eth0 10.193.20.100

ping -I eth0 10.193.20.31

LLDPUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. L6.1.1_1.0.0_23.08 — 4 August 2023

281/1053

NXP Semiconductors LLDPUG

Layerscape Linux Distribution POC User Guide

2. Remove the PCle network card from system.

echo 1 > /sys/bus/pci/devices/0001\:03\:00.0/remove
el000e 0001:03:00.0 eth0O: removed PHC

3. Check whether the PCle network card still exists in system. All should fail.

ifconfig ethO
1s /sys/bus/pci/devices/0001\:03\:00.0

4. Rescan it from the bus.

echo 1 > /sys/bus/pci/devices/0001\:02\:00.0/rescan

5. Check whether the device is rescanned and works well.

1s /sys/bus/pci/devices/0001\:03\:00.0
ifconfig eth0 10.193.20.100
ping -I eth0 10.193.20.31

6. All the commands in step 5 should be successful.

7.5.8.3.6 Known Bugs, Limitations, or Technical Issues

None

7.5.8.4 PCle Endpoint Mode Linux driver
The Layerscape Endpoint mode driver is developed based on the Endpoint framework to create endpoint

controller driver, endpoint function driver, and use configfs interface to bind the function driver to the controller
driver.

7.5.8.4.1 Kernel Configure Tree View Options

Kernel Configure Tree View Options Description
. . Enables PCle Endpoint framework driver.
Device Drivers —--->
[*] PCI support —--->
PCI Endpoint --->

[*] PCI Endpoint Support

] PCI Endpoint Configfs
Support

LE> PCI Endpoint Test driver

Enables NXP Layerscape PCle controller EP mode

Device Drivers ---> .
[*] PCI support ---> driver.
PCI controller drivers —--->

DesignWare PCI Core Support --->

[*] Freescale Layerscape PCIe
controller - Endpoint mode

Enables host side test driver for PCI Endpoint.

Device Drivers --->
Misc devices --->
<*> PCI Endpoint Test driver

LLDPUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. L6.1.1_1.0.0_23.08 — 4 August 2023

282/1053

NXP Semiconductors

LLDPUG

7.5.8.4.2 Compile-time Configuration Options

Layerscape Linux Distribution POC User Guide

Option Values Default Value |Description

CONFIG_PCI y/n y Enables PCI and PCle local bus
support

CONFIG_PCI_ENDPOINT y/n y Enables PCI Endpoint support

CONFIG_PCI_ENDPOINT_CONFIGFS y/n y Enables PCI Endpoint configfs
support

CONFIG_PCI_EPF_TEST y/m/n m Enables PCI Endpoint test driver

CONFIG_PCI_LAYERSCAPE_EP y/n n Enables PCle controller Endpoint
mode driver for Layerscape

CONFIG_PCI_ENDPOINT_TEST y/m/n m Enables host side test driver for
PCI Endpoint

7.5.8.4.3 Source Files

The driver source is maintained in the Linux kernel source tree.

Source File Description

drivers/pci/endpoint/*

The PCI Endpoint framework source

drivers/pci/endpoint/functions/pci-epf-test.c

The PCI Endpoint test driver source

drivers/pci/controller/dwc/pci-layerscape-ep.c

The Layerscape platform PCle Endpoint support source

drivers/misc/pci_endpoint_test.c

The host side driver for PCI Endpoint source

7.5.8.4.4 Test Procedure (with LS1088A as example)

1. Update RCW to specify the PCle controller to work as Endpoint.

For example:

Configurate the first PCle controller as Endpoint, add the following line to the RCW file.

HOST AGT PEX1=1

2. Boot up Linux on Endpoint board and execute the following commands at the prompt.

Setup the first PF:

cd /sys/kernel/config/pci ep/
mkdir functions/pci epf test/funcl

o S S o e e

echo 0x1957 > functions/pci _epf test/funcl/vendorid
echo 0x80c0 > functions/pci epf test/funcl/deviceid
echo 2 > functions/pci epf test/funcl/msi interrupts
echo 8 > functions/pci epf test/funcl/msix interrupts
1In -s functions/pci_epf test/funcl controllers/3400000.pcie ep

If the controller supports 2 PFs, execute the following command to set up second PF:

cd /sys/kernel/config/pci ep/

mkdir functions/pci epf test/func2
echo
echo
echo
echo

o e S o S

LLDPUG

All information provided in this document is subject to legal disclaimers.

0x1957 > functions/pci _epf test/func2/vendorid
0x80c0 > functions/pci epf test/func2/deviceid
2 > functions/pci epf test/func2/msi interrupts
8 > functions/pci epf test/func2/msix interrupts

© 2023 NXP B.V. All rights reserved.

User guide

Rev. L6.1.1_1.0.0_23.08 — 4 August 2023

283 /1053

NXP Semiconductors

LLDPUG

1ln -s functions/pci epf test/func2 controllers/3400000.pcie ep

Layerscape Linux Distribution POC User Guide

3. Boot up Linux on RC board and run the functionality tests
a. Get the pcitest application and script and install to /usr/sbin

Note: The pcitest application and script is at <Linux kernel>/tools/pci/

b. Run pcitest.sh.
Note: This script can only test the first PF. To test the second PF, you need to specify the second PF
by adding the option ‘-D /dev/pci-endpoint-test.1’ to each pcitest command in pcitest.sh and run the
script again.

./pcitest.sh

BAR te
BARO:
BAR1:
BAR2:
BAR3:
BAR4:
BARS:

sts

OKAY
NOT OKAY
OKAY
NOT OKAY
OKAY
NOT OKAY

Interrupt tests
SET IRQ TYPE TO LEGACY:

LEGACY IRQ: NOT OKAY
SET IRQ TYPE TO MSTI:
MSTI1: OKAY
MSI2: OKAY
SET IRQ TYPE TO MSI-X:
MSI-X1: OKAY
MSI-X2: OKAY
MSI-X3: OKAY
MSI-X4: OKAY
MSI-X5: OKAY
MSI-X6: OKAY
MSI-X7: OKAY
MSI-X8: OKAY
Read Tests

SET IRQ TYPE TO MSI:
READ 1 bytes):
READ (1024 bytes)
READ (1025 bytes)
READ (1024000 bytes)
READ (1024001 bytes)
Write Tests

WRITE (1 bytes)
WRITE (1024 bytes)
WRITE (1025 bytes)
WRITE (1024000 bytes)
WRITE (1024001 bytes)
Copy Tests

COPY (1 bytes)
COPY (1024 bytes)
COPY (1025 bytes)
COPY (1024000 bytes)
COPY (1024001 bytes)

OKAY

OKAY

OKAY

OKAY
OKAY
OKAY
OKAY
OKAY
OKAY

OKAY
OKAY
OKAY
OKAY
OKAY

OKAY
OKAY
OKAY
OKAY
OKAY

7.5.8.4.5 Known Bugs, Limitations, or Technical Issues

Currently supported platforms: LS1028A, LS1046A, LS1088A, LX2160A rev2, and LX2162A.

LLDPUG

All information provided in this document is subject to legal disclaimers.

© 2023 NXP B.V. All rights reserved.

User guide

Rev. L6.1.1_1.0.0_23.08 — 4 August 2023

284 /1053

NXP Semiconductors

LLDPUG

7.5.9 Quad Serial Peripheral Interface (QSPI)

7.5.9.1 U-Boot Configuration
Ensure that your board supports booting via QSPI.

Layerscape Linux Distribution POC User Guide

For information about booting modes supported on your board and how to boot the board from the specific boot

option, see Layerscape Quick Start.

7.5.9.2 Kernel Configure Tree View Options

Device Drivers --->
[*] SPI support --->
<*> Freescale QSPI controller

7.5.9.3 Compile-time Configuration Options

Config Values

Default Value

Description

CONFIG_SPI_FSL_QUADSPI y/n

Yy

Enable QSPI module

7.5.9.4 Verification in U-Boot

=> sf probe 0:0

SEF: Detected s25f1512s with page size 256 Bytes,

MiB

=> sf erase 0x1000000 0x100000

SF: 1048576 bytes @ 0x1000000 Erased: OK
=> sf write 0x82000000 0x1000000 0x100000
device 0 offset 0x1000000, size 0x100000
SEF: 1048576 bytes @ 0x1000000 Written: OK
=> sf read 0x81000000 0x1000000 0x100000
device 0 offset 0x1000000, size 0x100000
SF: 1048576 bytes @ 0x1000000 Read: OK
=> cmp.b 0x81000000 0x82000000 0x100000
Total of 1048576 byte(s) were the same

=

erase size 256 KiB,

total 64

7.5.9.5 Verification in Linux:

The booting log
spi-nor spiO.
spi-nor spi0.
spi-nor spi0.
spi-nor spi0.

s25fs512s (65536 Kbytes)

R P OoOOoO

s25fs512s (65536 Kbytes)

Erase the QSPI flash

Failed to parse optional parameter table:

Failed to parse optional parameter table:

~# mtd debug erase /dev/mtdl 0x1000000 0x100000
Erased 1048576 bytes from address 0x01000000 in flash

Write the QSPI flash

LLDPUG All information provided in this document is subject to legal disclaimers.

f£81

f£81

© 2023 NXP B.V. All rights reserved.

User guide Rev. L6.1.1_1.0.0_23.08 — 4 August 2023

285/1053

NXP Semiconductors LLDPUG

Layerscape Linux Distribution POC User Guide

~# dd if=/dev/urandom of=data.hex count=1 bs=1M

1+0 records in

1+0 records out

1048576 bytes (1.0 MB) copied, 0.0132132 s, 79.4 MB/s

~# mtd debug write /dev/mtdl 0x1000000 0x100000 data.hex
Copied 1048576 bytes from data.hex to address 0x01000000 in flash
Read the QSPI flash

~# mtd debug read /dev/mtdl 0x1000000 0x100000 dump

Copied 1048576 bytes from address 0x01000000 in flash to dump
Check Read and Write

Use compare tools

~ # diff data.hex dump

~ 4

If diff command has no print log, the QSPI verification is passed.

7.5.10 Flexible Serial Peripheral Interface (FlexSPI)

7.5.10.1 U-Boot Configuration

Ensure that your board supports booting via FlexSPI.

For information about booting modes supported on your board and how to boot the board from the specific boot
option, see Layerscape Quick Start.

7.5.10.2 Kernel Configure Tree View Options

Device Drivers —--—->
[*] SPI support --->
<*E> NXP Flex SPI controller

7.5.10.3 Compile-time Configuration Options

Config Values Default Value |Description
Enable FlexSPI module

CONFIG SPI_NXP FLEXSPI y/n y

7.5.10.4 Verification in U-Boot

=> sf probe 0:0

SE: Detected mt35xub5l2aba with page size 256 Bytes, erase size 128 KiB, total 64
MiB

=> sf erase 0x1000000 0x100000

SF: 1048576 bytes @ 0x1000000 Erased: OK
=> sf write 0x82000000 0x1000000 0x100000
device 0 offset 0x1000000, size 0x100000
SE: 1048576 bytes @ 0x1000000 Written: OK
=> sf read 0x81000000 0x1000000 0x100000
device 0 offset 0x1000000, size 0x100000
SF: 1048576 bytes @ 0x1000000 Read: OK

=> cmp.b 0x81000000 0x82000000 0x100000
Total of 1048576 byte(s) were the same

=>
LLDPUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.
User guide Rev. L6.1.1_1.0.0_23.08 — 4 August 2023

286/1053

NXP Semiconductors LLDPUG

Layerscape Linux Distribution POC User Guide

7.5.10.5 Verification in Linux:

The booting log
spi-nor spi0.
spi-nor spi0.
spi-nor spi0.
spi-nor spi0.

found mt35xub5l12aba, expected m25p80
mt35xu512aba (65536 Kbytes)
found mt35xub5l2aba, expected m25p80
mt35xub5l2aba (65536 Kbytes)

PP OoOO

Erase the FlexSPI flash

~# mtd debug erase /dev/mtdl 0x1000000 0x100000

Erased 1048576 bytes from address 0x01000000 in flash

Write the FlexSPI flash

~# dd if=/dev/urandom of=data.hex count=1 bs=1M

1+0 records in

1+0 records out

1048576 bytes (1.0 MB) copied, 0.00926398 s, 113 MB/s

~# mtd debug write /dev/mtdl 0x1000000 0x100000 data.hex

Copied 1048576 bytes from data.hex to address 0x01000000 in flash
Read the FlexSPI flash

~# mtd debug read /dev/mtdl 0x1000000 0x100000 dump

Copied 1048576 bytes from address 0x01000000 in flash to dump
Check Read and Write

Use compare tools

~# diff data.hex dump

~4

If diff command has no print log, the FlexSPI verification is passed.

7.5.11 Queue Direct Memory Access Controller (QDMA)

The gDMA controller transfers blocks of data between one source and one destination. The blocks of data
transferred can be represented in memory as contiguous or noncontiguous using scatter/gather table(s).
Channel virtualization is supported through enqueuing of DMA jobs to, or dequeuing DMA jobs from, different
work queues.

QDMA can support Layerscape platform with DPAA1 or DPAA2.
7.5.11.1 QDMA for platform with DPAA1

Kernel Configure Options

Below are the configure options need to be set/unset while doing "make menuconfig" for kernel.

Kernel Configure Tree View Options Description

Support the Freescale gDMA engine with command queue
and legacy mode.

Channel virtualization is supported through enqueuing of

<*> Freescale gDMA engine DMA jobs to,
support or dequeuing DMA jobs from, different work queues.

This module can be found on Freescale LS SoCs.

Device Drivers —--->
[*] DMA Engine support --->
———>

Identifier

Below are the configure identifiers which are used in kernel source code and default configuration files.

LLDPUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. L6.1.1_1.0.0_23.08 — 4 August 2023

287 /1053

NXP Semiconductors

LLDPUG

Layerscape Linux Distribution POC User Guide

Option

Values Default Value |Description

CONFIG_FSL_QDMA

y/m/n n gDMA driver

Device Tree Binding

Device Tree Node

Below is an example device tree node required by this feature. Note that there may be differences among

platforms.
gdma: gdma@8380000 {
compatible = "fsl,1s1046a-gdma", "fsl,1s102la-gdma";
reg = <0x0 0x8380000 0x0 0x1000>, /* Controller regs */
<0x0 0x8390000 0x0 0x10000>, /* Status regs */
<0x0 0x83a0000 0x0 0x40000>; /* Block regs */
interrupts = <0 153 0x4>,
<0 39 0x4>;
interrupt-names = "gdma-error", "gdma-queue";
channels = <8>;
queues = <2>;
status-sizes = <64>;
queue-sizes = <64 64>;
big-endian;
i
Source File

The following source files are related the feature in Linux kernel.

Source File

Description

drivers/dmalfsl-qdma.c

The qDMA driver file

Verification in Linux

root@lsl043ardb:~# echo 1024 > /sys/module/dmatest/parameters/test buf size;
root@lsl043ardb:~# echo 4 > /sys/module/dmatest/parameters/threads per chan;
root@lsl043ardb:~# echo 2 > /sys/module/dmatest/parameters/max channels;
root@lsl043ardb:~# echo 100 > /sys/module/dmatest/parameters/iterations;
root@l1sl043ardb:~# echo 1 > /sys/module/dmatest/parameters/run
[32.498138] dmatest: Started 4 threads using dmaOchanO
[32.503430] dmatest: Started 4 threads using dmaOchanl
[32.508939] dmatest: Started 4 threads using dmaOchan2
[32.520073] dmatest: dmaOchanO-copy0O: summary 100 tests, 0 failures 4904 iops
2452 KB/s (0)
[32.520076] dmatest: dmaOchanO-copy2: summary 100 tests, 0 failures 4923 iops
2461 KB/s (0)
[32.520079] dmatest: dmaOchanO-copy3: summary 100 tests, 0 failures 4928 iops
2661 KB/s (0)
[32.520176] dmatest: dmaOchanO-copyl: summary 100 tests, 0 failures 4892 iops
2446 KB/s (0)
[32.526438] dmatest: dmalOchanl-copyO: summary 100 tests, 0 failures 4666 iops
2240 KB/s (0)
[32.526441] dmatest: dmaOchanl-copy2: summary 100 tests, 0 failures 4675 iops
2291 KB/s (0)
[32.526469] dmatest: dmaOchanl-copy3: summary 100 tests, 0 failures 4674 iops
2197 KB/s (0)
[32.529610] dmatest: dmaOchan2-copyl: summary 100 tests, 0 failures 5168 iops
2791 KB/s (0)
LLDPUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.
User guide Rev. L6.1.1_1.0.0_23.08 — 4 August 2023

288 /1053

NXP Semiconductors

LLDPUG

Layerscape Linux Distribution POC User Guide

[32.529613] dmatest: dmalOchan2-copy0O: summary 100 tests, 0 failures 5164 iops
2478 KB/s (0)

[32.529754] dmatest: dmaOchan2-copy3: summary 100 tests, 0 failures 5215 iops
2555 KB/s (0)

[32.529756] dmatest: dmalOchan2-copy2: summary 100 tests, 0 failures 5211 iops
2709 KB/s (0)

[32.537881] dmatest: dmalOchanl-copyl: summary 100 tests, 0 failures 3044 iops
1461 KB/s (0) (0)

dmatest: dmaOchanO-copy3: summary 1000 tests, 0 failures 4078 iops 33474 KB/s
(0)

dmatest: dmaOchanO-copy0O: summary 1000 tests, 0 failures 3024 iops 24486 KB/s
(0)

dmatest: dmaOchanO-copy2: summary 1000 tests, 0 failures 2881 iops 23588 KB/s
(0)

7.5.11.2 QDMA for platform with DPAA2

Kernel Configure Options

Below are the configure options need to be set/unset while doing "make menuconfig" for kernel.

Kernel Configure Tree View Options

Description

Device Drivers --->
[*] DMA Engine support ---> —--->
<K > NXP DPAA2 QDMA

NXP Data Path Acceleration
Architecture 2 QDMA driver, using the NXP MC bus driver.

Identifier

Below are the configure identifiers which are used in kernel source code and default configuration files.

Option Values Default Value Description
CONFIG_FSL_DPAA2_ y/m/n n qDMA driver
QDMA

Source Files

The following source files are related the feature in Linux kernel.

Source File

Description

drivers/dma/dpaa2-qgdma/*

The qDMA driver file

Verification in Linux

Create DPDMAI object using restool:
restool dpdmai create --priorities=2,5

restool dprc assign dprc.l --object=dpdmai.0 --plugged=1
Configure parameters for dmatest and run it:

echo
echo
echo
echo
echo
echo
echo
Example log:

LLDPUG

All information provided in this document is subject to legal disclaimers.

8 > /sys/module/dmatest/parameters/test flag

100 > /sys/module/dmatest/parameters/sg size

10000 > /sys/module/dmatest/parameters/iterations

1 > /sys/module/dmatest/parameters/threads per chan
8 > /sys/module/dmatest/parameters/max channels

64 > /sys/module/dmatest/parameters/test buf size

1 > /sys/module/dmatest/parameters/run

© 2023 NXP B.V. All rights reserved.

User guide

Rev. L6.1.1_1.0.0_23.08 — 4 August 2023

289/1053

NXP Semiconductors

LLDPUG

root@ls2085ardb:~#
root@ls2085ardb: ~#
root@ls2085ardb: ~#
root@ls2085ardb:~#
root@ls2085ardb:~#
root@ls2085ardb: ~#

echo
echo
echo
echo
echo
echo

[68.460353] dmatest:
[68.465549] dmatest:
[68.465755] dmatest:

422686 KB/s (0)

[68.465963] dmatest:

367095 KB/s (0)

[68.470694] dmatest:

608838 KB/s (0)

[68.470987] dmatest:

517419 KB/s (0)

[68.503858] dmatest:
[68.509042] dmatest:
[68.509255] dmatest:

549944 KB/s (0)

[68.509454] dmatest:

473514 KB/s (0)

[68.514518] dmatest:

414714 KB/s (0)

[68.515016] dmatest:

512859 KB/s (0)

Layerscape Linux Distribution POC User Guide

8 > /sys/module/dmatest/parameters/test flag

10 > /sys/module/dmatest/parameters/iterations

2 > /sys/module/dmatest/parameters/threads per chan
32384 > /sys/module/dmatest/parameters/test buf size
4 > /sys/module/dmatest/parameters/max channels

1 > /sys/module/dmatest/parameters/run

Started 2 threads using dmaOchanO

Started 2 threads using dmaOchanl

dmaOchan0-sg0: summary 10 tests, 0 failures 1847 iops

dmaOchanO-sgl: summary 10 tests, 0 failures 1786 iops
dmaOchanl-sg0: summary 10 tests, 0 failures 1938 iops
dmaOchanl-sgl: summary 10 tests, 0 failures 1843 iops
Started 2 threads using dmaOchan2

Started 2 threads using dmaOchan3

dmaOchan2-sg0: summary 10 tests, 0 failures 1849 iops
dmaOchan2-sgl: summary 10 tests, 0 failures 1789 iops

dmaOchan3-sgl: summary 10 tests, 0 failures 1830 iops

dmaOchan3-sg0: summary 10 tests, 0 failures 1670 iops

7.5.12 Real Time Clock (RTC)

7.5.12.1 Linux SDK for QorlQ Processors

7.5.12.2 Description

Provides the RTC function.

7.5.12.3 Kernel Configure Tree View Options

Kernel Configure Tree View Options Description

Enable RTC driver

Device Drivers->

time (new)

< [
rtc0)
<[*

] /dev/rtcN

Real Time Clock-->
[*] Set system time from RTC on
startup and resume
(rtcO0) RTC used to set the system

(new)

<[*] /sys/class/rtc/rtcN (sysfs)
] /proc/driver/rtc (procfs for

(character devices)

7.5.12.4 Compile-time Configuration Options

Option

Values Default Value |Description

CONFIG_RTC_LIB

y/m/n y Enable RTC lib

LLDPUG

All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide

Rev. L6.1.1_1.0.0_23.08 — 4 August 2023
290 / 1053

NXP Semiconductors

LLDPUG

Layerscape Linux Distribution POC User Guide

Option Values Default Value |Description
CONFIG_RTC_CLASS y/m/n y Enable generic RTC class
support
CONFIG_RTC_HCTOSYS y/n y Set the system time from RTC
when startup and resume
CONFIG_RTC_HCTOSYS_DEVICE "rtcQ" RTC used to set the system time
CONFIG_RTC_INTF_SYSFS y/m/n y Enable RTC to use sysfs
CONFIG_RTC_INTF_PROC y/m/n y Use RTC through the proc
interface
CONFIG_RTC_INTF_DEV y/m/n y Enable RTC to use /dev interface

7.5.12.5 Source Files

The driver source is maintained in the Linux kernel source tree.

Source File Description

drivers/rtc/ Linux RTC driver

7.5.12.6 Device Tree Binding

Preferred node name: rtc

Property Type Status

Description

compatible string Required

Should be "dallas,ds3232"

7.5.12.7 Default node:

12c@3000 {
#address-cells = <1>;
#size-cells = <0>;
compatible = "fsl-i2c";
reg = <0x3000 0x100>;
interrupts = <43 2>;
interrupt-parent = <&mpic>;
dfsrr;
rtc@68 {
compatible = "dallas,ds3232";
reg = <0x68>;
i
bi

7.5.12.8 Verification in Linux

Here is the RTC booting log

rtc-ds3232 1-0068: rtc core: registered ds3232 as rtcO
MC object device driver dpaa2 rtc registered
rtc-ds3232 0-0068: setting system clock to 2000-01-01 00

NOTE: Please refer to the related DTS file to enable the
building.

LLDPUG All information provided in this document is subject to legal disclaimers.

:00:51 UTC (946684851)

RTC driver before

© 2023 NXP B.V. All rights reserved.

User guide Rev. L6.1.1_1.0.0_23.08 — 4 August 2023

291/1053

NXP Semiconductors

LLDPUG

For example, LS2080AQDS board,
<*> Dallas/Maxim DS3232

Layerscape Linux Distribution POC User Guide

should enable the below option:

Change the RTC time in Linux Kernel

~ # 1s /dev/rtc -1

lrwxrwxrwx 1 root root 4 Jan 11 17:55 /dev/rtc -> rtcO

~ # date
Sat Jan 1 00:01:38 UTC 2000
~ # hwclock

Sat Jan 1 00:01:41 2000 0.000000 seconds

~ # date 011115502011

Tue Jan 11 15:50:00 UTC 2011
~ # hwclock -w

~ # hwclock

Tue Jan 11 15:50:36 2011 0.000000 seconds

~ # date 011115502010

Mon Jan 11 15:50:00 UTC 2010
~ # hwclock -s

~ # date

Tue Jan 11 15:50:49 UTC 2011

NOTE: Before using the rtc driver, make sure the /dev/rtc node in your file

system is
correct. Otherwise,

you need to make correct node for /dev/rtc

7.5.13 Synchronous Audio Interface (SAl)

7.5.13.1 Description

This document describes how to configure and test SAl audio driver for TWR-LS1021A and LS1028ARDB.
The integrated 12S module is NXP's Synchronous Audio Interface (SAl). The codec is SGTL5000 stereo audio

codec.

7.5.13.2 RCW configuration

Refer to the below table for the RCW for Audio on the TWR-LS1021A.

Board

RCW

TWR-LS1021A

Bit 364, EC1_EXT_SAI2_TX = 1; Bit 365, EC1_EXT_SAI2_
RX =1; Bit 366-367, EC1_BASE = 00

LS1028ARDB

rcw_1300_audio.rcw, EC1_SAl4_5 PMUX =2

7.5.13.3 Kernel Configure Options Tree View

Kernel Configure Tree View Options

Description

Device Drivers --->
<*> I2C support --->

[*] Enable compatibility bits for
old user-space

[*] I2C device interface

[*] I2C bus multiplexing support

LLDPUG

All information provided in this document is subject to legal disclaimers.

Enable ALSA SOC driver, 12C driver, and EDMA
driver.

© 2023 NXP B.V. All rights reserved.

User guide

Rev. L6.1.1_1.0.0_23.08 — 4 August 2023

292/1053

NXP Semiconductors

LLDPUG

Layerscape Linux Distribution POC User Guide

Kernel Configure Tree View Options

Description

Multiplexer I2C Chip support
—-——=>
<*> NXP PCA954x and PCA984x
I2C Mux/switches
[*] Autoselect pertinent helper
modules
I2C Hardware Bus support
<*> IMX I2C interface
<*> Voltage and Current Regulator
SUPROTE ===>
[*] Regulator debug support
[*] Provide a dummy regulator if
regulator lookups fail
[*] Fixed voltage regulator
support
<*> Sound card support
<*> Advanced Linux Sound
Architecture ->
[*] OSS PCM (digital audio)

-——>

APT
%] 0SS PCM (digital
audio) API - Include plugin system
[*] Support old ALSA API
[*] Verbose procfs contents
ALSA for SoC audio support

-———>

SoC Audio for Freescale
CPUs —--—->

<*> Synchronous Audio
Interface (SAI) module support

CODEC drivers —--->

<*> Freescale SGTL5000
CODEC

<*> ASoC Simple sound card
support

<*> DMA Engine support ===
<*> Freescale eDMA engine support
support

Identifier

Below are the configure identifiers which are used in kernel source code and default configuration files.

Option Values Default value Description
CONFIG_I2C_IMX y/m/n y I12C driver needed for
configuring SGTL5000
CONFIG_SOUND y/m/n y Enable sound card support
CONFIG_SND y/m/n y Enable advanced Linux sound
architecture supports
CONFIG_SND_PCM_OSS y/m/n y Enable OSS digital audio
CONFIG_SND_PCM_OSS_PLUGINS y/m/n y Support conversion of channels,
formats, and rates
CONFIG_SND_SUPPORT_OLD_API y/m/n y Enable support old ALSA API

LLDPUG

All information provided in this document is subject to legal disclaimers.

© 2023 NXP B.V. All rights reserved.

User guide

Rev. L6.1.1_1.0.0_23.08 — 4 August 2023

293 /1053

NXP Semiconductors LLDPUG

Layerscape Linux Distribution POC User Guide

Option Values Default value Description
CONFIG_SND_SOC_FSL_SAl y/m/n y Enable SAI module support
CONFIG_SND_SOC_GENERIC_DMAENGINE_PCM |y/m/n y Enable generic dma engine for
PCM
CONFIG_SND_SIMPLE_CARD y/m/n y Enable generic simple sound
card support
CONFIG_SND_SOC_SGTL5000 y/m/n y Enable codec sgtl5000 support
CONFIG_FSL_EDMA y/m/n y Enable EDMA engine support

7.5.13.4 Source files

The driver source is maintained in the Linux kernel source tree.

Source file Description

sound/soc/fsl ALSA SOC driver source

7.5.13.5 Verification in Linux

1.

W

The following messages will be shown in the kernel boot process:

sgtl1l5000 5-000a: sgtl5000 revision 0Ox11
sgtl5000 5-000a: Using internal LDO instead of VDDD
asoc-simple-card sound: sgtl5000 <-> 2b60000.sai mapping ok
ALSA device list:

#0: 2b60000.sai-sgtl15000

If the device nodes do not already exist, create directory /dev/snd/, and create device nodes with the
following commands in /dev/snd/ directory.

mknod controlCO c 116 0
mknod pcmCODOc c 116 24
mknod pcmCODOp c 116 16

On TWR-LS1021A, the LineOut interface is J8 and the Lineln interface is J13

. On LS1028ARDB, set the switches SW5[8] = ON. To configure BRDCFG3[2] = 1, use latest CPLD or run

this command “i2c mw 0x66 0x53 0x4” in U-Boot prompt. The lineout interface is J34.
Run the following aplay commands to test playback. Run the following arecord command to test record.

aplay -f S16 LE -r 44100 -t wav -c 2 44k-lébit-stereo.wav
arecord -d 10 -f S16 LE -r 44100 -t wav -c 2 44k-l6bit-stereo-10s.wav
aplay -f S16 LE -r 44100 -t wav -c 2 44k-loébit-stereo-10s.wav

Use alsamixer to adjust the volume for playing by the option “PCM” and recording gain by the option "Mic" .
Use alsamixer to choose LINE IN or MIC.

7.5.14 Serial Advanced Technology Attachment (SATA)

7.5.14.1 Description

The driver supports NXP native SATA controller.

LLDPUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. L6.1.1_1.0.0_23.08 — 4 August 2023

294 /1053

NXP Semiconductors

LLDPUG

Layerscape Linux Distribution POC User Guide

7.5.14.2 Module Loading

SATA driver supports either kernel built-in or module.

Kernel Configure Tree View Options Description

Device Drivers—--->

<*> Serial ATA and Parallel ATA
drivers --->

-—— Serial ATA and Parallel ATA
drivers

<Kk > AHCI SATA support
<*k> Freescale QorIQ AHCI SATA
support

Enables SATA controller support on Arm-based SoCs

7.5.14.3 Compile-time Configuration Options

Option Values Default Value |Description
CONFIG_SATA_AHCI=y y/m/n y Enables SATA controller
CONFIG_SATA_AHCI_QORIQ=y y/m/n y Enables SATA controller

7.5.14.4 Source Files

The driver source is maintained in the Linux kernel source tree.

Source File Description

drivers/ata/ahci_qorig.c Platform AHCI SATA support

7.5.14.5 Test Procedure

Please follow the following steps to use USB in Simics
(1) Boot up the kernel

fsl-sata ffel8000.sata: Sata FSL Platform/CSB Driver init

scsi0 : sata fsl
atal: SATA max UDMA/133 irqg 74

fsl-sata f£fel9000.sata: Sata FSL Platform/CSB Driver init

scsil : sata fsl
ata2: SATA max UDMA/133 irqg 41

(2) The disk will be found by kernel.

atal: Signature Update detected @ 504 msecs

ata2: No Device OR PHYRDY change,Hstatus = 0xa0000000
ata?2: SATA link down (SStatus 0 SControl 300)

atal: SATA link up 1.5 Gbps (SStatus 113 SControl 300)

atal.00: ATA-8: WDC WD1600AAJS-22WAAQ, 58.01D58, max UDMA/133
atal.00: 312581808 sectors, multi 0: LBA48 NCQ (depth 16/32)

atal.00: configured for UDMA/133

scsi 0:0:0:0: Direct-Access ATA WDC WD1600AAJS-2 58.0 PQ: O ANSI: 5

sd 0:0:0:0: [sda] 312581808 512-byte logical blocks: (160 GB/149 GiB)

sd 0:0:0:0: Attached scsi generic sg0 type O

sd 0:0:0:0: [sda] Write Protect is off
LLDPUG Al information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. Al rights reserved.
User guide Rev. L6.1.1_1.0.0_23.08 — 4 August 2023

295/1053

NXP Semiconductors LLDPUG

Layerscape Linux Distribution POC User Guide

sd 0:0:0:0: [sda] Write cache: enabled, read cache: enabled, doesn't support DPO
or FUA

sda: sdal sda2 sda3 sdad4 < sdab sda6 >

sd 0:0:0:0: [sda] Attached SCSI disk

(3)play with the disk according to the following log.
[root@1s1046 rootl# fdisk -1 /dev/sda

Disk /dev/sda: 160.0 GB, 160041885696 bytes

255 heads, 63 sectors/track, 19457 cylinders

Units = cylinders of 16065 * 512 = 8225280 bytes
Device Boot Start End Blocks Id System

/dev/sdal 1 237 1903671 83 Linux

/dev/sda2 238 480 1951897+ 82 Linux swap

/dev/sda3 481 9852 75280590 83 Linux

/dev/sdad4 9853 19457 77152162+ £ Win95 Ext'd (LBA)
/dev/sdab5 9853 14655 38580066 83 Linux

/dev/sda6 14656 19457 38572033+ 83 Linux
[root@1s1046 root]#

[root@1s1046 root]l# mke2fs /dev/sdal

mke2fs 1.41.4 (27-Jan-2009)

Filesystem label=

OS type: Linux

Block size=4096 (log=2)

Fragment size=4096 (log=2)

65280 inodes, 261048 blocks

13052 blocks (5.00%) reserved for the super user
First data block=0

Maximum filesystem blocks=268435456

8 block groups

32768 blocks per group, 32768 fragments per group
8160 inodes per group

Superblock backups stored on blocks:

32768, 98304, 163840, 229376

Writing inode tables: done

Writing superblocks and filesystem accounting information: done
This filesystem will be automatically checked every 22 mounts or
180 days, whichever comes first. Use tune2fs -c or -i to override.
[root@1s1046 root]#

[root@1s1046 root]# mkdir sata

[root@1s1046 root]# mount /dev/sdal sata
[root@1s1046 root]# 1ls sata/

lost+found

[root@1s1046 rootl# cp /bin/busybox sata/
[root@1sl1046 root]# umount sata/

[root@1s1046 root]# mount /dev/sdal sata/
[root@1s1046 root]# ls sata/

busybox lost+found

[root@1s1046 root]# umount sata/

[root@1ls1046 root]# mount /dev/sda3 /mnt
[root@1s1046 rootl# df

Filesystem 1K-blocks Used Available Use% Mounted on
rootfs 852019676 794801552 13937948 99% /

/dev/root 852019676 794801552 13937948 99% /

tmpfs 1036480 52 1036428 1% /dev

shm 1036480 0 1036480 0% /dev/shm

/dev/sda3 74098076 4033092 66300956 6% /mnt

7.5.14.6 Known Bugs, Limitations, or Technical Issues
e CD-ROM is not supported due to the silicon limitation

LLDPUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. L6.1.1_1.0.0_23.08 — 4 August 2023

296 /1053

NXP Semiconductors LLDPUG

Layerscape Linux Distribution POC User Guide

7.5.15 Security Engine (SEC)

SEC Device Drivers

7.5.15.1 Introduction and Terminology

The Linux kernel contains a Scatterlist Crypto API driver for the NXP SEC v4.x, v5.x security hardware blocks.

It integrates seamlessly with in-kernel crypto users, such as IPsec, in a way that any IPsec suite that configures
IPsec tunnels with the kernel will automatically use the hardware to do the crypto.

SEC v5.x is backward compatible with SEC v4.x hardware, so one can assume that subsequent SEC v4.x
references include SEC v5.x hardware, unless explicitly mentioned otherwise.

SEC v4.x hardware is known in Linux kernel as 'caam’, after its internal block name: Cryptographic Accelerator
and Assurance Module.

There are several HW interfaces ("backends") that can be used to communicate (that is submit requests) with
the engine, their availability depends on the SoC:

* Register Interface (RI) - available on all SoCs (though access from kernel is restricted on DPAA2 SoCs)
Its main purpose is debugging (For example, single-stepping through descriptor commands), though it is
used also for RNG initialization.

» Job Ring Interface (JRI) - legacy interface, available on all SoCs; on most SoCs there are 4 rings
Note: there are cases when fewer rings are accessible / visible in the kernel - For example, when firmware
like Trusted Firmware-A (TF-A) reserves one of the rings.

* Queue Interface (QlI) - available on SoCs implementing DPAA v1.x (Data Path Acceleration Architecture)
Requests are submitted indirectly via Queue Manager (QMan) HW block that is part of DPAA1.

» Data Path SEC Interface (DPSECI) - available on SoCs implementing DPAA v2.x
Similar to Ql, requests are submitted via Queue Manager (QMan) HW block; however, the architecture is
different - instead of using the platform bus, the Management Complex (MC) bus is used, MC firmware
performing requires configuration to link DP objects. For more details, see DPAA2 Linux Software" section.

NXP provides device drivers for all these interfaces. Current section is focused on JRI, though some general /
common topics are also covered. For Ql and DPSECI backends and compatible frontends, refer to the
dedicated chapters: for the DPAA1, Security Engine for DPAA2.

On top of these backends, there are the "frontends" - drivers that sit between the Linux Crypto API and backend
drivers. Their main tasks are to:

* register supported crypto algorithms

* process crypto requests coming from users (via the Linux Crypto API) and translate them into the proper
format understood by the backend being used

» forward the CAAM engine responses from the backend being used to the users

It is obvious that QI and DPSECI backends cannot co-exist (they can be compiled in the same "multi-platform”
kernel image, however runtime detection will make sure only the proper one is active). However, JRI + QI

and JRI + DPSECI are valid combinations, and both backends will be active if enabled; if a crypto algorithm is
supported by both corresponding frontends. For example, both caamalg and caamalg_qi register cbc(aes)), a
user requesting cbc(aes) will be bound to the implementation having the highest "crypto algorithm priority".

If the user wants to use a specific implementation:

* it is possible to ask for it explicitly by using the specific (unique) "driver name" instead of the generic
"algorithm name" - see official Linux kernel Crypto APl documentation (section Crypto API Cipher References
And Priority); currently default priorities are: 3000 for JRI frontend and 2000 for QI and DPSECI frontends

* crypto algorithm priority could be changed dynamically using the "Crypto use configuration API" (provided that
CONFIG_CRYPTO_USER is enabled); one of the tools available that is capable to do this is "Linux crypto

LLDPUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. L6.1.1_1.0.0_23.08 — 4 August 2023

297 /1053

https://www.kernel.org/doc/html/latest/crypto/architecture.html#crypto-api-cipher-references-and-priority
https://www.kernel.org/doc/html/latest/crypto/architecture.html#crypto-api-cipher-references-and-priority
https://sourceforge.net/projects/crconf

NXP Semiconductors

LLDPUG

Layerscape Linux Distribution POC User Guide

layer configuration tool" and an example of increasing the priority of QI frontend based implementation of
echainiv(authenc(hmac(sha1),cbc(aes))) algorithm is:

$./crconf update driver "echainiv-authenc-hmac-shal-cbc-aes-caam-gi" type 3
priority 5000

User space

/dev/hwrng
hwrng API

cryptodev-linux

Kernel space Linux Crypto API

SEC dnvers

Interface specific Shared HW description

(CCSRregs, etc.)
Descriptors library

(caamalg_desc, Power
caamhash_desc) Management

Descriptor construction
library (inline append /

JRI frontends
RNG (caamalg, caamhash,
(caamrng) caam_pkc)

DPSECI frontend
(caamalg_qi2)

Ql frontend
(caamalg_qi)

Init {(global settings,
RNG, etc.) (caam)

QI backend DPSECI backend

JRI backend (caam_jr)

(caam) (dpseci) RTA)

I N4

Job Ring Interface Queue Interface Register Interface
(JRI) Qn (Rl)

Figure 25. Linux kernel - SEC device drivers overview

7.5.15.2 Source Files

The drivers source code is maintained in the Linux kernel source tree, under drivers/crypto/caam. Below is
a non-exhaustive list of files, mapping to Security Engine (SEC)(some files have been omitted since their
existence is justified only by driver logic / design):

Source File(s) Description Module name
ctrl.[c,h] Init (global settings, RNG, power caam
management, and so on.)
desc.h HW description (CCSR registers, N/A
and so on.)
desc_constr.h Inline append - descriptor N/A

construction library

(Shared) Descriptors library
(symmetric encryption, AEAD)

caamalg_desc.[c,h] caamalg_desc

caamrng.c RNG (runtime) caamrng

jr.[c,h] JRI backend caam_jr

qgi.[c,h] Ql backend caam

dpseci.[c,h], dpseci_cmd.h DPSECI backend N/A (built-in)

caamalg.c JRI frontend (symmetric encryption, |caamalg
AEAD)

caamhash.c JRI frontend (hashing) caamhash

caampkc.c, pkc_desc.c JRI frontend (public key caam_pkc
cryptography)

caamalg_qi.c Ql frontend (symmetric encryption, |caamalg_qi
AEAD)

caamalg_qi2.[c,h] DPSECI frontend (symmetric dpaa2_caam

encryption, AEAD)

LLDPUG

All information provided in this document is subject to legal disclaimers.

© 2023 NXP B.V. Al rights reserved.

User guide

Rev. L6.1.1_1.0.0_23.08 — 4 August 2023

298 /1053

https://sourceforge.net/projects/crconf

NXP Semiconductors

LLDPUG

7.5.15.3 Module loading

Layerscape Linux Distribution POC User Guide

CAAM device drivers can be compiled either built-in or as modules (with the exception of DPSECI backend,
which is always built in). See Section 7.5.15.2 for the list of module names and Section 7.5.15.4 for how kernel
configuration looks like and a mapping between menu entries and modules and / or functionalities enabled.

7.5.15.4 Kernel Configuration

CAAM device drivers are located in the "Cryptographic API" -> "Hardware crypto devices" submenu in the
kernel configuration. Depending on the target platform and / or configuration file(s) used, the output will be
different; below is an example taken from NXP Layerscape SDK for ARMv8 platforms with default options:

Kernel Configure Tree View Options

Description

Cryptographic API --->
] Hardware crypto devices
-———>
<E> Freescale CAAM-Multicore

platform driver backend (SEC)
[] Enable debug output in
CAAM driver

<xE> Freescale CAAM Job Ring
driver backend (SEC)

(9) Job Ring size

[] Job Ring interrupt
coalescing

<& Register algorithm

implementations with the Crypto API
<k > Queue Interface as
Crypto API backend

<*> Register hash
algorithm implementations with
Crypto API

<k > Register public key

cryptography implementations with

Enable CAAM device drivers, options:

e basic platform driver: Freescale CAAM-Multicore
platform driver backend (SEC); all non-DPAA2
suboptions depend on it

* backends / interfaces:

— Freescale CAAM Job Ring driver backend (SEC) -
JRI; this also enables QI (Ql depends on JRI)

— QorlQ DPAA2 CAAM (DPSECI) driver - DPSECI

» frontends / crypto algorithms:

— symmetric encryption, AEAD, "stitched" AEAD, TLS;
Register algorithm implementations with the Crypto
API - via JRI (caamalg driver) or Queue Interface as
Crypto API backend - via Ql (caamalg_qi drive)

— Register hash algorithm implementations with Crypto
API - hashing (only via JRI - caamhash driver)

— Register public key cryptography implementations
with Crypto API - asymmetric / public key (only via
JRI - caam_pkc driver)

<*> TCP/IP networking

<*E> IP: AH transformation

<k > IP: ESP transformation
<k > IP: IPsec transport mode
<*x> IP: IPsec tunnel mode

Crypto API — Register caam device for hwrng APl - HW RNG (only
<> Register caam device via JRI - caamrng driver)

for hwrng API _ ; _
P QorIQ DPAA2 CAAM (DPSECI) QorlQ DPAA2.CAAM (QPSECI) dr/vgr DPSECI

e options: debugging, JRI ring size, JRI interrupt

coalescing
For IPsec support the TCP/IP networking option and
Networking support —---> corresponding suboptions should be enabled.
Network option --->

7.5.15.5 Device Tree binding

Property Type Status Description
compatible String Required fsl,sec-vX.Y (preferred)
OR fsl,secX.Y
LLDPUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.
User guide Rev. L6.1.1_1.0.0_23.08 — 4 August 2023

299 /1053

NXP Semiconductors

LLDPUG

Layerscape Linux Distribution POC User Guide

7.5.15.6 Sample Device Tree crypto node

crypto@30000 {
compatible =
fsl,sec-era =
#address-cells =
#size-cells = <1>;
reg = <0x300000 Ox1
ranges = <0 0x30000
interrupt-parent =
interrupts =

<2>;

"fsl,sec-v4.0";

Lll>p

0000>;
0 0x10000>;

<&mpic>;
<92 2>;

clocks = <&clks IMX6QDL CLK CAAM MEM>,
<&clks IMX6QDL CLK_CAAM ACLK>,
<&clks IMX6QDL_CLK CAAM IPG>,
<&clks IMX6QDL CLK EIM SLOW>;

clock-names = "mem",

}i

"aclk", "igg", "emi slow";

Note: See linux/Documentation/devicetree/bindings/crypto/fsi-sec4.txt file in the Linux kernel tree for more info.

7.5.15.7 How to test the drivers

To test the drivers, under the "Cryptographic API -> Cryptographic algorithm manager" kernel
configuration submenu, ensure that runtime self-tests are not disabled, that is the "Disable run-time self tests"
entry is not set. (CONFIG_CRYPTO_MANAGER_DISABLE TESTS=n). This will run standard test vectors
against the drivers after they register supported algorithms with the kernel crypto API, usually at boot time.
Then run test on the target system. Below is a snippet extracted from the boot log of ARMv8-based LS1046A

platform, with JRI and QI enabled:

[oool

platform caam gi:

caam l7000OO.Erypto: Instantiated RNG4 SHI1

caam 1700000.crypto:
caam 1700000.crypto:

ecb-cipher null-caam)

alg: No test for authenc (hmac(sha256),ecb (cipher null))

ecb-cipher null-caam)

alg: No test for authenc (hmac(sha384),ecb(cipher null))

ecb-cipher null-caam)

alg: No test for authenc (hmac (sha512) ,ecb (cipher null))

ecb-cipher null-caam)

alg: No test for authenc (hmac (md5),cbc (aes))
alg: No test for echainiv (authenc (hmac (md5),cbc (aes)))

md5-cbc-aes—-caam)

alg: No test for echainiv (authenc (hmac(shal), cbc (aes)))

shal-cbc-aes-caam)

alg: No test for authenc (hmac(sha224),cbc (aes))

caam)

alg: No test for echainiv (authenc (hmac (sha224),cbc(aes)))

hmac-sha224-cbc-aes-caam)

alg: No test for echainiv (authenc (hmac(sha256),cbc (aes)))

hmac-sha256-cbc-aes-caam)

alg: No test for authenc (hmac(sha384),cbc (aes))

caam)

alg: No test for echainiv (authenc (hmac (sha384),cbc(aes)))

hmac-sha384-cbc-aes-caam)

LLDPUG

device ID =
job rings = 4,
alg: No test for authenc (hmac(sha224),ecb (cipher null))

0x0a11030100000000
gi = 1, dpaa2 =

All information provided in this document is subject to legal disclaimers.

Linux CAAM Queue I/F driver initialised

(Era 8)
no

(authenc-hmac-sha224-
(authenc-hmac-sha256-
(authenc-hmac-sha384-

(authenc-hmac-sha512-

(authenc-hmac-md5-cbc-aes—-caam)
(echainiv-authenc-hmac-

(echainiv-authenc-hmac-

(authenc-hmac-sha224-cbc-aes-

(echainiv-authenc-

(echainiv-authenc-

(authenc-hmac-sha384-cbc-aes-

(echainiv-authenc-

© 2023 NXP B.V. All rights reserved.

User guide

Rev. L6.1.1_1.0.0_23.08 — 4 August 2023

300/1053

NXP Semiconductors LLDPUG

Layerscape Linux Distribution POC User Guide

alg: No test for echainiv (authenc (hmac(sha512),cbc(aes))) (echainiv-authenc-
hmac-sha512-cbc-aes-caam)

alg: No test for authenc (hmac(md5),cbc(des3 ede)) (authenc-hmac-md5-cbc-

des3 ede-caam)

alg: No test for echainiv(authenc (hmac (md5),cbc(des3 ede))) (echainiv-authenc-
hmac-md5-cbc-des3 ede-caam)

alg: No test for echainiv(authenc (hmac (shal),cbc(des3 ede))) (echainiv-authenc-
hmac-shal-cbc-des3 ede-caam)

alg: No test for echainiv(authenc (hmac (sha224),cbc(des3 ede))) (echainiv-
authenc-hmac-sha224-cbc-des3 ede-caam)

alg: No test for echainiv(authenc (hmac (sha256),cbc(des3 ede))) (echainiv-
authenc-hmac-sha256-cbc-des3 ede-caam)

alg: No test for echainiv(authenc (hmac (sha384),cbc(des3 ede))) (echainiv-
authenc-hmac-sha384-cbc-des3 ede-caam)

alg: No test for echainiv(authenc (hmac (sha512),cbc(des3 ede))) (echainiv-
authenc-hmac-sha5l2-cbc-des3 ede-caam)

alg: No test for authenc (hmac (md5),cbc(des)) (authenc-hmac-md5-cbc-des-caam)
alg: No test for echainiv (authenc (hmac (md5),cbc(des))) (echainiv-authenc-hmac-
md5-cbc-des—-caam)

alg: No test for echainiv (authenc (hmac (shal),cbc(des))) (echainiv-authenc-hmac-
shal-cbc-des—-caam)

alg: No test for echainiv (authenc (hmac (sha224),cbc(des))) (echainiv-authenc-
hmac-sha?224-cbc-des-caam)

alg: No test for echainiv (authenc (hmac (sha256),cbc(des))) (echainiv-authenc-
hmac-sha256-cbc-des-caam)

alg: No test for echainiv (authenc (hmac (sha384),cbc(des))) (echainiv-authenc-
hmac-sha384-cbc-des-caam)

alg: No test for echainiv (authenc (hmac (shab512),cbc(des))) (echainiv-authenc-
hmac-sha512-cbc-des-caam)

alg: No test for authenc (hmac (md5),rfc3686(ctr(aes))) (authenc-hmac-md5-rfc3686—
ctr-aes-caam)

alg: No test for seqgiv (authenc (hmac (md5),rfc3686 (ctr(aes)))) (segiv-authenc-
hmac-md5-rfc3686-ctr-aes—-caam)

alg: No test for authenc (hmac(shal),rfc3686(ctr(aes))) (authenc-hmac-shal-
rfc3686-ctr-aes—caam)

alg: No test for seqgiv (authenc (hmac(shal),rfc3686 (ctr(aes)))) (segiv-authenc-
hmac-shal-rfc3686-ctr-aes—-caam)

alg: No test for authenc (hmac(sha224),rfc3686 (ctr(aes))) (authenc-hmac-sha224-
rfc3686-ctr—-aes—caam)

alg: No test for seqgiv (authenc (hmac(sha224),rfc3686 (ctr(aes)))) (segiv-authenc-
hmac-sha?224-rfc3686-ctr-aes—-caam)

alg: No test for authenc (hmac(sha256),rfc3686 (ctr(aes))) (authenc-hmac-sha256-
rfc3686-ctr-aes-caam)

alg: No test for seqgiv (authenc (hmac(sha256),rfc3686 (ctr(aes)))) (segiv-authenc-
hmac-sha256-rfc3686-ctr-aes—-caam)

alg: No test for authenc (hmac(sha384),rfc3686(ctr(aes))) (authenc-hmac-sha384-
rfc3686-ctr-aes—caam)

alg: No test for segiv (authenc (hmac(sha384),rfc3686 (ctr(aes)))) (segiv-authenc-
hmac-sha384-rfc3686-ctr-aes-caam)

alg: No test for authenc (hmac(shab512),rfc3686 (ctr(aes))) (authenc-hmac-shab5l2-
rfc3686-ctr—-aes—caam)

alg: No test for seqgiv (authenc (hmac(sha512),rfc3686 (ctr(aes)))) (segiv-authenc-

hmac-shab512-rfc3686-ctr-aes—-caam)
caam algorithms registered in /proc/crypto

alg: No test for authenc (hmac (md5),cbc(aes)) (authenc-hmac-md5-cbc-aes-caam-qgi)
alg: No test for echainiv (authenc (hmac (md5),cbc(aes))) (echainiv-authenc-hmac-
md5-cbc-aes-caam-qgi)

alg: No test for echainiv (authenc (hmac (shal),cbc(aes))) (echainiv-authenc-hmac-

shal-cbc-aes-caam—-qgi)

LLDPUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. L6.1.1_1.0.0_23.08 — 4 August 2023

301/1053

NXP Semiconductors LLDPUG

Layerscape Linux Distribution POC User Guide

alg: No test for authenc (hmac (sha224),cbc(aes)) (authenc-hmac-sha224-cbc-aes-
caam-gi)

alg: No test for echainiv (authenc (hmac (sha224),cbc(aes))) (echainiv-authenc-
hmac-sha224-cbc-aes-caam-qgi)

alg: No test for echainiv (authenc (hmac (sha256),cbc(aes))) (echainiv-authenc-
hmac-sha256-cbc-aes-caam-qgi)

alg: No test for authenc (hmac (sha384),cbc(aes)) (authenc-hmac-sha384-cbc-aes-
caam-gi)

alg: No test for echainiv (authenc (hmac (sha384),cbc(aes))) (echainiv-authenc-
hmac-sha384-cbc-aes-caam-qgi)

alg: No test for echainiv (authenc (hmac (shab512),cbc(aes))) (echainiv-authenc-
hmac-sha5l12-cbc-aes-caam-qgi)

alg: No test for authenc (hmac (md5),cbc(des3 ede)) (authenc-hmac-md5-cbc-

des3 ede-caam-qgi)

alg: No test for echainiv(authenc (hmac (md5),cbc(des3 ede))) (echainiv-authenc-
hmac-md5-cbc-des3 ede-caam-gi)

alg: No test for echainiv(authenc (hmac(shal),cbc(des3 ede))) (echainiv-authenc-
hmac-shal-cbc-des3 ede-caam-gi)

alg: No test for echainiv (authenc (hmac (sha224),cbc(des3 ede))) (echainiv-
authenc-hmac-sha224-cbc-des3 ede-caam-gi)

alg: No test for echainiv(authenc (hmac (sha256),cbc(des3 ede))) (echainiv-
authenc-hmac-sha256-cbc-des3 ede-caam-gi)

alg: No test for echainiv(authenc (hmac (sha384),cbc(des3 ede))) (echainiv-
authenc-hmac-sha384-cbc-des3 ede-caam—-gi)

alg: No test for echainiv(authenc (hmac(sha512),cbc(des3 ede))) (echainiv-
authenc-hmac-shab5l2-cbc-des3 ede-caam-gi)

alg: No test for authenc (hmac (md5),cbc(des)) (authenc-hmac-md5-cbc-des-caam-qgi)
alg: No test for echainiv (authenc (hmac (md5),cbc(des))) (echainiv-authenc-hmac-
md5-cbc-des-caam-qgi)

alg: No test for echainiv (authenc (hmac(shal),cbc(des))) (echainiv-authenc-hmac-
shal-cbc-des-caam-qgi)

alg: No test for echainiv (authenc (hmac (sha224),cbc(des))) (echainiv-authenc-
hmac-sha224-cbc-des-caam-gi)

alg: No test for echainiv (authenc (hmac (sha256),cbc(des))) (echainiv-authenc-
hmac-sha256-cbc-desi-caam-qgi)

alg: No test for echainiv (authenc (hmac (sha384),cbc(des))) (echainiv-authenc-
hmac-sha384-cbc-des-caam-qgi)

alg: No test for echainiv (authenc (hmac (shab512),cbc(des))) (echainiv-authenc-

hmac-shab5l2-cbc-des-caam-gi)

platform caam gi: algorithms registered in /proc/crypto

caam_jr 1710000.jr: registering rng-caam

caam 1700000.crypto: caam pkc algorithms registered in /proc/crypto
[...]

7.5.15.8 Crypto algorithms support
Algorithms Supported in the linux kernel scatterlist Crypto API

The Linux kernel contains various users of the Scatterlist Crypto API, including its IPsec implementation,
sometimes referred to as the NETKEY stack. The driver, after registering supported algorithms with the Crypto
API, is therefore used to process per-packet symmetric crypto requests and forward them to the SEC hardware.

Since SEC hardware processes requests asynchronously, the driver registers asynchronous algorithm
implementations with the crypto API: ahash, ablkcipher, and aead with CRYPTO_ALG_ASYNC set in .cra_flags.

Different combinations of hardware and driver software version support different sets of algorithms, so
searching for the driver name in /proc/crypto on the desired target system will ensure the correct report of what
algorithms are supported.

Authenticated Encryption with Associated Data (AEAD) algorithms

LLDPUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. L6.1.1_1.0.0_23.08 — 4 August 2023

302/1053

NXP Semiconductors

LLDPUG

Layerscape Linux Distribution POC User Guide

These algorithms are used in applications where the data to be encrypted overlaps, or partially overlaps, the
data to be authenticated, as is the case with IPsec and TLS protocols. These algorithms are implemented in the
driver such that the hardware makes a single pass over the input data, and both encryption and authentication
data are written out simultaneously. The AEAD algorithms are mainly for use with IPsec ESP (however there is
also support for TLS 1.0 record layer encryption).

CAAM drivers currently support offloading the following AEAD algorithms:

« "stitched" AEAD: all combinations of { NULL, CBC-AES, CBC-DES, CBC-3DES-EDE, RFC3686-CTR-AES } x
HMAC-{MD-5, SHA-1,-224,-256,-384,-512}

» "true" AEAD: generic GCM-AES, GCM-AES used in IPsec: RFC4543-GCM-AES and RFC4106-GCM-AES

* TLS 1.0 record layer encryption using the "stitched" AEAD cipher suite CBC-AES-HMAC-SHA1

Encryption algorithms

The CAAM driver currently supports offloading the following encryption algorithms.
Authentication algorithms

The CAAM driver's ahash support includes keyed (hmac) and unkeyed hashing algorithms.
Asymmetric (public key) algorithms

Currently, RSA is the only public key algorithm supported.

Random Number Generation

caamrng frontend driver supports random number generation services via the kernel's built-in hwrng interface
when implemented in hardware. To enable:

1. verify that the hardware random device file, For example, /dev/hwrng or /dev/hwrandom exists. If it does not
exist, make it with:

$ mknod /dev/hwrng c¢ 10 183

2. verify /dev/hwrng does not block indefinitely and produces random data:

$ rngtest -C 1000 < /dev/hwrng

3. verify the kernel gets entropy:

$ rngtest -C 1000 < /dev/random

If it blocks, a kernel entropy supplier daemon, such as rngd, may need to be run. See linux/Documentation/
hw_random.txt for more info.

Table 51. Algorithms supported by each interface / backend

Algorithm name / Backend

Job Ring Interface

Queue Interface

DPSEC Interface

rsa Yes No No
pkcs1pad(rsa, sha*) Yes No No
tiIs10(hmac(sha1), cbc(aes)) No Yes Yes

authenc(hmac(md>5), cbc(aes))

Yes (also echainiv)

Yes (also echainiv)

Yes (also echainiv

authenc(hmac(sha1), cbc(aes))

Yes (also echainiv)

Yes (also echainiv)

Yes (also echainiv

authenc(hmac(sha224), cbc(aes))

Yes (also echainiv)

Yes (also echainiv)

Yes (also echainiv

authenc(hmac(sha256), cbc(aes))

Yes (also echainiv)

Yes (also echainiv)

Yes (also echainiv

authenc(hmac(sha384), cbc(aes))

Yes (also echainiv)

Yes (also echainiv)

Yes (also echainiv

)
)
)
)

authenc(hmac(sha512), cbc(aes))

(
(
(
(
(
(

Yes (also echainiv)

Yes (also echainiv)

— —m === =

Yes (also echainiv

LLDPUG All information provided in this document is subject to legal disclaimers.

User guide Rev. L6.1.1_1.0.0_23.08 — 4 August 2023

© 2023 NXP B.V. All rights reserved.

303 /1053

NXP Semiconductors

LLDPUG

Table 51. Algorithms supported by each interface / backend...continued

Layerscape Linux Distribution POC User Guide

Algorithm name / Backend

Job Ring Interface

Queue Interface

DPSEC Interface

authenc(hmac(md>5), cbc(des3_ede))

Yes (also echainiv)

Yes (also echainiv)

Yes (also echainiv

authenc(hmac(sha1), cbc(des3_ede))

Yes (also echainiv)

Yes (also echainiv)

Yes (also echainiv

authenc(hmac(sha224), cbc(des3_ede))

Yes (also echainiv)

Yes (also echainiv)

Yes (also echainiv

authenc(hmac(sha256), cbc(des3_ede)) Yes (also echainiv) Yes (also echainiv) Yes (also echainiv
authenc(hmac(sha384), cbc(des3_ede)) Yes (also echainiv) Yes (also echainiv) Yes (also echainiv

authenc(hmac(sha512), cbc(des3_ede))

Yes (also echainiv)

Yes (also echainiv)

Yes (also echainiv

authenc(hmac(md>5), cbc(des)) Yes (also echainiv) Yes (also echainiv)
authenc(hmac(sha1), cbc(des)) Yes (also echainiv) Yes (also echainiv) Yes (also echainiv

authenc(hmac(sha224), cbc(des))

Yes (also echainiv)

Yes (also echainiv)

Yes (also echainiv

Yes (also echainiv)

Yes (also echainiv

)
authenc(hmac(sha256), cbc(des))
authenc(hmac(sha384), cbc(des))

<

es (also echainiv)

Yes (also echainiv)

Yes (also echainiv

authenc(hmac(sha512), cbc(des))

Yes (also echainiv)

Yes (also echainiv)

)
)
)
)
)
)
Yes (also echainiv)
)
)
)
)
)

Yes (also echainiv

authenc(hmac(md>b), rfc3686(ctr(aes)))

Yes (also seqiv)

Yes (also seqiv)

Yes (also seqiv)

authenc(hmac(sha1), rfic3686(ctr(aes)))

Yes (also seqiv)

Yes (also seqiv)

Yes (also seqi

authenc(hmac(sha224), rfc3686(ctr(aes)))

Yes (also seqiv)

Yes (also seqiv)

\
Yes (also seqiv

authenc(hmac(sha256), rfc3686(ctr(aes)))

Yes (also seqiv)

Yes (also seqiv)

authenc(hmac(sha384), rfc3686(ctr(aes)))

Yes (also seqiv)

Yes (also seqiv)

Yes (also seqiv

authenc(hmac(sha512), rfc3686(ctr(aes)))

(
(
(
(
(
(
(
(
(
Yes (also echainiv)
(
(
(
(
(
(
(
(

Yes (also seqiv)

Yes (also seqiv)

)
)
Yes (also seqiv)
)
)

Yes (also seqiv

authenc(hmac(md>5), ecb(cipher_null)) Yes No No
authenc(hmac(sha1), ecb(cipher_null)) Yes No No
authenc(hmac(sha224), ecb(cipher_null)) Yes No No
authenc(hmac(sha256), ecb(cipher_null)) Yes No No
authenc(hmac(sha384), ecb(cipher_null)) Yes No No
authenc(hmac(sha512), ecb(cipher_null)) Yes No No
rfc7539(chacha20, poly1305) Yes (LX2160A only) No Yes (LX2160A only)
rfc7539esp(chacha20, poly1305) Yes (LX2160A only) No Yes (LX2160A only)
gcm(aes) Yes Yes Yes
rfc4543(gcm(aes)) Yes Yes Yes
rfc4106(gcm(aes)) Yes Yes Yes

ecb(aes) Yes No No

ecb(des3_ede) Yes No No

ecb(des) Yes No No

ecb(arc4) Yes No No

cbc(aes) Yes Yes Yes

cbc(des3_ede) Yes Yes Yes

cbc(des) Yes Yes Yes

LLOPUG Al information provided in this document is subject to legal disclaimers. ©2023 NXP B.V. Al rights reserved.
User guide Rev. L6.1.1_1.0.0_23.08 — 4 August 2023

304 /1053

NXP Semiconductors

LLDPUG

Table 51. Algorithms supported by each interface / backend...continued

Layerscape Linux Distribution POC User Guide

Algorithm name / Backend

Job Ring Interface

Queue Interface

DPSEC Interface

ctr(aes) Yes Yes Yes
rfc3686(ctr(aes)) Yes Yes Yes
chacha20 No No Yes (LX2160A only)
xts(aes) Yes Yes Yes
cmac(aes) Yes No No
xcbc(aes) Yes No No
hmac(md>5) Yes No Yes
hmac(sha1) Yes No Yes
hmac(sha224) Yes No Yes
hmac(sha256) Yes No Yes
hmac(sha384) Yes No Yes
hmac(sha512) Yes No Yes
md5 Yes No Yes
sha1 Yes No Yes
sha224 Yes No Yes
sha256 Yes No Yes
sha384 Yes No Yes
sha512 Yes No Yes

7.5.15.9 CAAM Job Ring backend driver specifics

CAAM Job Ring backend driver (caam_jr) implements and utilizes the job ring interface (JRI) for submitting
crypto API service requests from the frontend drivers (caamalg, caamhash, caam_pkc, caamrng) to CAAM

engine.

CAAM drivers have a few options, most notably hardware job ring size and interrupt coalescing. They can be
used to fine-tune performance for a particular use case.

The option Freescale CAAM-Multicore platform driver backend enables the basic platform driver (caam). All

(non-DPAAZ2) suboptions depend on this.

The option Freescale CAAM Job Ring driver backend (SEC) enables the Job Ring backend (caam_jr).

The suboption Job Ring Size allows the user to select the size of the hardware job rings; if requests arrive at the
driver enqueue entry point in a bursty nature, the bursts' maximum length can be approximated, and so on. One

can set the greatest burst length to save performance and memory consumption.

The suboption Job Ring interrupt coalescing allows the user to select the use of the hardware’s interrupt

coalescing feature. Note that the driver already performs IRQ coalescing in software, and zero-loss benchmarks

have in fact produced better results with this option turned off. If selected, two additional options become

effective:

» Job Ring interrupt coalescing count threshold (CRYPTO_DEV_FSL_CAAM_INTC_THLD)
Selects the value of the descriptor completion threshold, in the range 1-256. A selection of 1 effectively
defeats the coalescing feature, and any selection equal or greater than the selected ring size will force

timeouts for each interrupt.

« Job Ring interrupt coalescing timer threshold (CRYPTO_DEV_FSL_CAAM_INTC_TIME_THLD)

LLDPUG

All information provided in this document is subject to legal disclaimers.

© 2023 NXP B.V. All rights reserved.

User guide

Rev. L6.1.1_1.0.0_23.08 — 4 August 2023

305/1053

NXP Semiconductors LLDPUG

Layerscape Linux Distribution POC User Guide

Selects the value of the completion timeout threshold in multiples of 64 SEC interface clocks, to which, if no
new descriptor completions occur within this window (and at least one completed job is pending), then an
interrupt will occur. This is selectable in the range 1-65535.

The options to register to Crypto API, hwrng API respectively, allow the frontend drivers to register their
algorithm capabilities with the corresponding APIs. They should be deselected only when the purpose is to
perform Crypto API requests in software (on the GPPs) instead of offloading them on SEC engine.

caamhash frontend (hash algorithms) may be individually turned off, since the nature of the application may be
such that it prefers software (core) crypto latency due to many small-sized requests.

caam_pkc frontend (public key / asymmetric algorithms) can be turned off too, if needed.

caamrng frontend (Random Number Generation) may be turned off in case there is an alternate source of
entropy available to the kernel.

7.5.15.10 Verifying driver operation and correctness

Other than noting the performance advantages due to the crypto offload, one can also ensure the hardware is
doing the crypto by looking for driver messages in dmesg.

The driver emits console messages at initialization time:

caam algorithms registered in /proc/crypto
caam_jr 1710000.jr: registering rng-caam
caam 1700000.crypto: caam pkc algorithms registered in /proc/crypto

If the messages are not present in the logs, either the driver is not configured in the kernel, or no SEC
compatible device tree node is present in the device tree.

7.5.15.11 Incrementing IRQs in /procl/interrupts

Given a time period when crypto requests are being made, the SEC hardware will fire completion notification
interrupts on the corresponding Job Ring:

$ cat /proc/interrupts | grep jr
CPUO CPUl1 CPU2 CPU3

[...]

78: 1007

0 0 0 GICv2 103 Level 1710000.7r
79: 7 0 0 0 GICv2 104 Level 1720000.jr
80: 0 0 0 0 GICv2 105 Level 1730000.3r
81: 0 0 0 0 GICv2 106 Level 1740000.9r

If the number of interrupts fired increment, then the hardware is being used to do the crypto.

If the numbers do not increment, then first check the algorithm being exercised is supported by the driver.
If the algorithm is supported, there is a possibility that the driver is in polling mode (NAPI mechanism) and
the hardware statistics in debugfs (inbound / outbound bytes encrypted / protected - see below) should be
monitored.

7.5.15.12 Verifying the 'self test' fields say 'passed' in /proc/crypto

An entry such as the one below means the driver has successfully registered support for the algorithm with the
kernel crypto API:

name : cbc(aes) driver : cbc-aes-caam module : kernel priority : 3000 refcnt : 1
selftest : passed internal : no type : givcipher async : yes blocksize : 16 min
keysize : 16 max keysize : 32 ivsize : 16 geniv : <built-in>

LLDPUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.
User guide Rev. L6.1.1_1.0.0_23.08 — 4 August 2023

306 /1053

NXP Semiconductors LLDPUG

Layerscape Linux Distribution POC User Guide

Note that although a test vector may not exist for a particular algorithm supported by the driver, the kernel will
emit messages saying which algorithms weren't tested, and mark them as 'passed' anyway:

[...]

alg: No test for authenc (hmac(sha224),ecb(cipher null)) (authenc-hmac-sha224-
ecb-cipher null-caam)
alg: No test for authenc (hmac(sha256),ecb(cipher null)) (authenc-hmac-sha256-

ecb-cipher null-caam)

[ooo]

alg: No test for authenc (hmac (md5),cbc(aes)) (authenc-hmac-md5-cbc-aes-caam)
alg: No test for echainiv (authenc (hmac (md5),cbc(aes))) (echainiv-authenc-hmac-
md5-cbc-aes—-caam)

alg: No test for echainiv (authenc (hmac (shal),cbc(aes))) (echainiv-authenc-hmac-

shal-cbc-aes-caam)

[ooo]

alg: No test for authenc (hmac(sha512),rfc3686 (ctr(aes))) (authenc-hmac-sha512-
rfc3686-ctr—-aes—-caam)
alg: No test for segiv (authenc (hmac(sha512),rfc3686 (ctr(aes)))) (segiv-authenc-

hmac-sha512-rfc3686-ctr-aes-caam)

[ooo]

7.5.15.13 Examining the hardware statistics registers in debugfs

When using the JRI or QI backend, performance monitor registers can be checked, provided
CONFIG_DEBUG_FS is enabled in the kernel’s configuration. If debugfs is not automatically mounted at boot
time, then a manual mount must be performed in order to view these registers. This normally can be done with
a superuser shell command:

$ mount -t debugfs none /sys/kernel/debug

Once done, the user can read controller registers in /sys/kernel/debug/1700000.crypto/ctl. It should be noted
that debugfs will provide a decimal integer view of most accessible registers provided, with the exception of the
KEK/TDSK/TKEK registers; those registers are long binary arrays, and should be filtered through a binary dump
utility such as hexdump.

Specifically, the CAAM hardware statistics registers available are:

fault_addr, or FAR (Fault Address Register): holds the value of the physical address where a read or write error
occurred.

fault_detail, or FADR (Fault Address Detail Register): holds details regarding the bus transaction where the
error occurred.

fault_status, or CSTA (CAAM Status Register): holds status information relevant to the entire CAAM block.

ib_bytes_decrypted: holds contents of PC_IB_ DECRYPT (Performance Counter Inbound Bytes Decrypted
Register)

ib_bytes_validated: holds contents of PC_IB_VALIDATED (Performance Counter Inbound Bytes Validated
Register)

ib_rq_decrypted: holds contents of PC_IB_DEC_REQ (Performance Counter Inbound Decrypt Requests
Register)

kek: holds contents of JDKEKR (Job Descriptor Key Encryption Key Register)

ob_bytes encrypted: holds contents of PC_OB_ENCRYPT (Performance Counter Outbound Bytes Encrypted
Register)

LLDPUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. L6.1.1_1.0.0_23.08 — 4 August 2023

307 /1053

NXP Semiconductors LLDPUG

Layerscape Linux Distribution POC User Guide

ob_bytes_protected: holds contents of PC_OB_PROTECT (Performance Counter Outbound Bytes Protected
Register)

ob_rg_encrypted: holds contents of PC_OB_ENC_REQ (Performance Counter Outbound Encrypt Requests
Register)

rq_dequeued: holds contents of PC_REQ_DEQ (Performance Counter Requests Dequeued Register)
tdsk: holds contents of TDKEKR (Trusted Descriptor Key Encryption Key Register)
tkek: holds contents of TDSKR (Trusted Descriptor Signing Key Register)

For more information see section "Performance Counter, Fault and Version ID Registers" in the Security (SEC)
Reference Manual (SECRM) of each SoC (available on company's website).

Note: for QI backend there is also qi_congested: SW-based counter that shows how many times queues going
to / from CAAM to QMan hit the congestion threshold.

7.5.15.14 Kernel configuration to support CAAM device drivers

Using the driver
Once enabled, the driver will forward kernel crypto API requests to the SEC hardware for processing.
Running IPsec

The IPsec stack built in to the kernel (usually called NETKEY) will automatically use crypto drivers to offload
crypto operations to the SEC hardware. Documentation regarding how to set up an IPsec tunnel can be found in
corresponding open source IPsec suite packages, For example, strongswan.org, openswan, setkey, a