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1. Introduction

AN5018

Basic Kalman Filter Theory

AN5018

Application note

This document derives the standard Kalman filter equations. It is intended as a primer
that should be read before tackling Application note AN5023 “Sensor Fusion Kalman
Filters” which describes the more specialized indirect complementary Kalman filter used
for the fusion of accelerometer, magnetometer and gyroscope data in the NXP Sensor

Fusion Library software.

Section 2 calculates some mathematical results used in the derivation. The derivation
itself is in Section 3.

1.1 Terminology

‘Symbol Definition

A, |The linear prediction or state matrix at sample k.
Xk = Akxk_l + Wi
X = AXio

C, | The measurement matrix relating z, to x; at sample k.
Zy = Ckxk + Vi

E[] |Expectation operator

K, |The Kalman filter gain matrix at sample k.

P; | The a priori covariance matrix of the linear prediction (a priori) error
X at sample k.

- ~— o= T

Py = E[xs,kxs,k ]

P} |The a posteriori covariance matrix of the Kalman (a posteriori) error
X, at sample k.
Pl = E &5 &% |

Q. x |The covariance matrix of the additive noise wy in the process xy.
Qux = Elwiw, "]

Q.,x |The covariance matrix of the additive noise v, in the measured
process zy.
Qi =E Vv, "]

V[] |Variance operator
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Symbol |Definition
v, | The additive noise in the measured process z, at sample k.
w; | The additive noise in the process of interest x;, at sample k.
x, | The state vector at time sample k of the process x;,.

Xk = Akxk_l + Wi

X, |The linear prediction (a priori) estimate of the process x;, at sample k.
X = AkXf_y

X¢ |The Kalman filter (a posteriori) estimate of the process x;, at sample k.
Xy = U - K Cxy + Kz = (I — K Cp)ApXp_1 + K2y,

X, | The errorin the linear prediction (a priori) estimate of the process xy.
Xep =Xj — X

X:, | The error in the a posteriori Kalman filter estimate of the process x;.

Xek = X — Xk

z, |The measured process at sample k.
Zy = Ckxk + Vi

8,,j |The Kronecker delta function. 6 ; = 1 for k = j and zero otherwise.

2. Mathematical Lemmas

21 Lemmal

The trace of the sum of two square matrices A and B equals the sum of the individual
traces. The proof is trivial.

N-1 N-1 N-1
tr(A + B) = z Aii+Bii = Z Aii + Z Bii = tT(A) + tT(B) (1)
i=0 i=0 i=0
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2.2 Lemma?2

The derivative with respect to A of the trace of the matrix product € = AB equals BT.

dtr(AB) dtr(AB) dtr(AB)

(e ram) ()

a{tr(0)} _ 6{tr(AB)} | <6tr(AB)> (6tr(AB)> <6tr(AB)> @)
0A 94, 04, 041N

\Btr(AB) otr(AB)\ [ 0tr(AB) )
(e () . (geam)

Proof: If the matrix A has dimensions M x N and the matrix B has dimensions N x M,
then € = AB has dimensions M X M.

The element C;; of matrix € has value:

E

-1N-1
AyBy ®)
k=0

N-1 M-1
- z AyBy = tr(C) = tr(AB) = Z Cy
i=0

k=0

I}
=]

i

Substituting equation (3) into equation (2) gives:

/(6 Diirsd Yy AikBki> <5 P iirsD Y AikBki> ( o XAz 01AlkBkl>\
|

I aAO,O aAO,I aAO N-1
6{tr(AB)} 2?451 Yhoo AikBki> <5 T YRS AikBki> ( S Yk OlAlkBkl> 4)
| aAlO aAll 6A1N 1
\(a Ziw 01 Zg OlAlkBla) <a Ziw 01 Zg &AlkBkl> (a Z leg OlAlkBkl>/
aAM*LO aAM*l,l aAMfl,Nfl
By inspection:
Z Z A kBkL (5)
=B
0A;m
Substituting equation (5) into equation (4) completes the proof:
BO,O Bl,O BN—l,O
a{tr(AB)} _ BO,l Bl,l BN—l,l — BT (6)
0A
BO,M—l Bl,M—l BN—l,M—l
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2.3 Lemma3

The derivative with respect to A4 of the trace of the matrix product ABAT equals
A(B + BT).

atr(ABAT)\ [(otr(ABA™) atr(ABA™)

(o) (o) ()

a{tr(ABA™)} |<atr(ABAT)> (6tr(ABAT)> <6tr(ABAT)>|
- 94y 941, T\ AN

94
\atr(AbAT) otr(ABAT)\  [dtr(ABAT) )
(i) (o) = ()

Proof: If the matrix A has dimensions M x N, then the matrix B must be square with
dimensions N x N in order for the product ABAT to exist. The product ABAT is always
square with dimensions M x M.

(@)

The element C;; of the matrix C = AB has value:

N-1
Gij = z A By (8)
k=0

The element D;; of matrix D = ABAT = CAT has value:

N-1 N-1N-1
Dy = z CijAy; = Ay By A ©)
=0 7=0 k=0

N-1 N-1N-1N-1
tT(D) = Dii = Z Z AikBijij (10)
i=0 i=0 j=0 k=0

The derivative of tr(D) with respect to A, is:

atr(D)\ (0 Yo XN YRZg AucBrj A (0 Yo XR=0 AuBijAy (11)
0Am 0Aim 0Aim
N-1 N-1
j=0 j=0
o{tr(ABAT
L O (ABADY o e (13)
0A
AN5018 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2016. All rights reserved.

Application note Rev. 2.0 — 21 June 2016 6 of 15



NXP Semiconductors AN5018

Basic Kalman Filter Theory

If B is also symmetric, then:

o{tr(ABA™)}

— ; — BT (14)
A 2ABif B=B

3. Kalman Filter Derivation

AN5018

Application note

3.1

Process Model

The Kalman filter models the vector process of interest x,, with the linear and recursive
model:

X = Akxk_1 + Wi (15)

If x;, has N degrees of freedom, then 4, is an N x N linear prediction matrix (possibly
time varying but assumed known) and w,, is an N X 1 zero mean white noise vector.

The process x,, is assumed to be not directly measurable and must be estimated from a
process z;, which can be measured. z, is modeled as being linearly related to x; with
additive zero mean white noise v,.

Zk = Ckxk + vk (16)

z, isan M x 1 vector, €y is an M x N matrix (possibly time varying but assumed known)
and v, is an M x 1 noise vector. Since the noise vectors wx and vk are zero-mean white
noise processes their expectation vector is zero and their covariance matrices are
uncorrelated at different times jand 4.

E[w,] =0 17)

Elv,]=0 (18)
coviwy, w;} = E[w,w;T]| = Q1 8; (19)
cov(vy, v} = E[v,0;7] = Qx84 (20)

Covariance matrices are, by definition, symmetric but not necessarily diagonal:
Qw,kT = {E[w,w, 1} = E[(w,w,,])T] = E[WijT] =Quxk (21)

The covariance matrices Q,,, and @,,;, need not be stationary and can, and generally
will, vary with time.
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3.2 Derivation

The objective of the Kalman filter is to compute an unbiased a posterori estimate x} of
the underlying process x;, from i) extrapolation from the previous iteration's a posteriori
estimate Xx;_; and ii) from the current measurement z;:

52; = K;ci'\,t_l + Kka (22)

The time-varying Kalman gain matrices K;, and K, define the relative weightings given to
the previous iteration’s Kalman filter estimate K, and to the current measurement z,. If
the measurements z; have low noise then the measurement term K, z, will have a
higher weighting compared to the extrapolated component K}, x;_; and vice versa. The
Kalman filter is, therefore, a time varying, recursive filter.

Unbiased estimate constraint (determines Kj},)

For x{ to be an unbiased estimate of x,, the expectation value of the a posteriori Kalman
filter error X7, must be zero:

E[zf ] =E®f —x]=0 (23)
Subtracting x, from equation (22) gives:
f;’_k = 52; - xk = K;Cf,t_l + Kka - xk (24)

Substituting equation (16) for the measurement z,, gives:

f;k = K;(Qlt—l + Kk(Ckxk + vk) - xk (25)
Substituting for x;,, from equation (15) and rearranging gives:

x5 = K (R + x21) + K {C (A xi—y + W) + 33 — (Axy—y + W) (26)

= K;(Qg—,k—l + (KkaAk - Ak + K;C)xk_l + (chk - I)Wk + Kkvk (27)

Taking the expected value of equation (27) and applying the unbiased estimate
constraint gives:

E[&%] = E[Ki® 1] + E[(K Co Ay — Ay + KXy ] + E[(Ki €y — D, ] + E[K, v, ] = 0 (28)

Because the noise vectors w,, and v, are zero mean and uncorrelated with the Kalman
matrices for the same iteration, it follows that:
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With the additional assumption that the process x,,_; is independent of the slowly varying
matrices 4, C,, K, and K, at iteration k:

E[(KiCiAy — A + Ki)xy 1] = (K Ci Ay — A + K E[x 1] =0 (30)
Because x; is not, in general, a zero-mean process:
K C Ay — A+ K = 0= Ky = A, — K G A = (I - K Ci) Ay (1)
Substituting for K}, in equation (22) gives:
xf = - K, CHAZ_, + Ky 2z, (32)
A priori estimate
The a priori Kalman filter estimate X5, is the result of applying the linear prediction matrix
A, to the previous iteration's a posteriori estimate Xj_;:
X = A X, Kalman equation (A) (33)

Definition of a posteriori estimate

Substituting the a priori estimate x, from equation (33) into equation (32) gives:

X5 = - K,C)X; + K.z, Kalman equation (D) (34)
An equivalent form is:

xXF =% + K (2 — C.xy) (35)

From equation (16), the term C, X, can be interpreted as the a priori estimate z;, of the
measurement z, giving another form of equation (34):

xXp =%, + K (2, — 2) (36)

Py, as afunction of Py_,

The a priori and a posteriori error covariance matrices Pj and P; are defined as:

- ~— e ~— o= T ~— ~—
Pi = cov{®;, 55} = E[X5,%zr | = EL®i — 0 @ — x)"] @7
P} = cov{®},, ®E ) = E[®5&E | = EI®E — x) @F — x)7] (38)
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Substituting the definitions of X; and x, into equation (37) gives an expression relating
the current a priori error covariance P, to the previous iteration's a posteriori error
covariance estimate P} _;:

Py = E[(AcXi_; — AxXpor = W) (A Xy — Ay —wy)" ] (39)
= E[{Ax(®i_1 — xp—1) — Wi HA®; — x1) — Wi }T] (40)

= AE[®_; — %) @iy — %) "1A" + Qu (41)

= Py = A P;_ A" +Q,, Kalman equation (B) (42)

Minimum error covariance constraint (determines Kj)

The Kalman gain matrix K; minimizes the a posteriori error X}, variance via the trace of
the a posteriori error covariance matrix P} :

B[zt %8 ] = tr(P) (43)

Substituting equation (16) for z, into equation (32) gives a relation between the a
posteriori and a priori errors:

/x\k = Q;’_k + xk = (I - Kka)(f;_k + xk) + Kk(Ckxk + vk) (44)
= Q;—,k + xk = (I - chk)fg,k + xk - Kkaxk + Kk(Ckxk + vk) (45)
= Qs,k = (I - Kka)f;k + Kkvk (46)

Substituting this result into the definition of the a posteriori covariance matrix Pj in
equation (38) gives:

Pi = E[{( - K€%z + Ko J{U — K€z + Ko | @7
= (I — K COE[X;, 22, | — K €)D" + Ky E[v, v, T1K," (48)

= (I - K, .C )P, (I - K,.C)" + K, Qui K" (49)

=Py — P;C."K," — K, C Py + K, C,PrC.'K," + K,.Q, K," (50)

The Kalman filter gain K, is that which minimizes the trace of the a posteriori error
covariance matrix P} as in equation (43):

P a
mtr(}’;) = O—Kk{tr(P,;) — tr(PrC"K,") — tr(Ky € Py) + tr(Ky € PR €T Ky ") + tr(K QuiKi ")} = 0 (51)

The first term tr(P;) has no dependence on K, giving:
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o{tr(P)} _ o{tr(AwPi1 A" + Qui)} 0 (52)
oK, 0K, B

Because a matrix trace is obviously unaffected by transposition, the second term of
equation (51) can be transposed and simplified using equation (6) to give:

oftr(PLC"Ki D} _ o{tr (K CiPy)}

= T = p= T (53)
e T = (€T = Pic,

The fourth term can be simplified using equations (13) and (14) exploiting the fact that
the covariance matrix P, is symmetric:

oftr(K,C.P;C,"K,"
{tr( - (I;KI; — )} = K {CkPECkT + (CkP,;CkT)T} = 2K, C,P;C," (54)

The final term can be simplified also using equations (13) and (14) and the symmetry of
Q. to give:

a{tr(Kk Qv,kKkT)}

= 2Ky Qi (55)

Substituting equations (52) to (55) back into equation (51) gives an expression for the
optimal Kalman filter gain matrix K:

—2P;C," + 2K, .C,.P;C." +2K,.Q,, =0 (56)
= K (€ PrC" +Q,) = P CT (57)

= K, = P;C,"(C,PrC," + Q,,‘k)_1 Kalman equation (C) (58)

P} as afunction of P,

Rearranging equation (57) gives:

KyQ,x = Py C," — K, C, P C," (59)
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Substituting K, Q,,, from equation (59) into equation (49) gives:

P} =U-K.COPy(I-C.K,")+ - K,C)PC,K," (60)
= P; — K,C,P; — PiC,"K,” + K, C,P;C,"K,” + Py C,"K," — K, C,P7C."K," (61)
= P} = (I — K,C,)P; Kalman equation (E) (62)

This completes the derivation of the standard Kalman filter equations.

3.3 Standard Kalman Equations

This section simply re-lists the key Kalman filter equations derived in the previous
section.

Kalman equation (A)

The linear prediction (a priori) estimate X is made by applying the linear prediction matrix
A, to the previous sample’s Kalman (a posteriori) filter estimate x;_;.

56\; = Akk\;_l (A)

Kalman equation (B)

The a priori (linear extrapolation) error covariance matrix Py, is then updated using the
model matrix 4; and the noise matrix Q,, ;.

Py = AP A" + Qi (B1)

Kalman equations (B) and (E) can be combined to give a recursive update of P, without
explicit calculation of the a posteriori error covariance matrix P; in Kalman equation (E):

Py = A (I — Ky_1Ci_ )Py, A" + Qi (B2)

The only purpose of P;, is to permit the calculation of the Kalman gain matrix K, for the
determination of the a posteriori estimate X .

Kalman equation (C)

The Kalman filter gain matrix K, is updated:

_ _ -1
K, =Py CkT(CkPk C" + Qv,k) ©
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Kalman equation (D)

The Kalman filter (a posteriori) estimate X; is computed from the current a priori estimate
X, and the current measurement z,.

56\; =/x\;+Kk(Zk_Ck/x\;) = (I—Kka)f,:-l-Kka (D)

Kalman equation (E)
The a posteriori Kalman error covariance matrix Pj is updated and ready for the next
iteration. This equation can be skipped if Py is updated recursively.

3.4 Limiting Cases
From equation (C), as the measurement noise covariance @, ;, decreases relative to the
process noise covariance Q,, ,, the Kalman gain matrix K, satisfies:

K,C,P;C," = P;C," = K,C,, = I (63)

Using equation (D), the a posteriori estimate X is then only dependent on the
measurement z;:

56\; = (I - Kka)fc\; + Kka = Kka (64)

As the measurement noise covariance @, increases relative to the process noise
covariance Q,,x, the Kalman gain matrix K, approaches zero:

K, = PECkT(Qv,k)_l =0 (65)
The a posteriori process estimate x} then approximates the a priori estimate x:

xXp =%, + K (2, — C X)) = X% (66)
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Draft — The document is a draft version only. The content is still under
internal review and subject to formal approval, which may result in
modifications or additions. NXP Semiconductors does not give any
representations or warranties as to the accuracy or completeness of
information included herein and shall have no liability for the consequences
of use of such information.
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Information in this document is provided solely to enable system and
software implementers to use NXP products. There are no express or
implied copyright licenses granted hereunder to design or fabricate any
integrated circuits based on the information in this document. NXP reserves
the right to make changes without further notice to any products herein. NXP
makes no warranty, representation, or guarantee regarding the suitability of
its products for any particular purpose, nor does NXP assume any liability
arising out of the application or use of any product or circuit, and specifically
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disclaims any and all liability, including without limitation consequential or
incidental damages. “Typical” parameters that may be provided in NXP data
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“typicals,” must be validated for each customer application by customer's
technical experts. NXP does not convey any license under its patent rights
nor the rights of others. NXP sells products pursuant to standard terms and
conditions of sale, which can be found at the following address:
nxp.com/salestermsandconditions.
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