Freescale Semiconductor Document Number: AN4324
Application Note Rev. 1, 03/2012

MPC5676R Software Initialization
and Optimization

by: David Erazmus
Applications Engineering
Austin, TX
USA

Contents

1 IntrOd uction I INtrodUCtion.......ccoveueeeeeeeeeeeeeeeeeeeeeee e

OVEIVIEW ...ttt e e e e eeaanees

This application note describes a recommended software
initialization procedure for the MPC5676R 32-bit Power
Architecture® automotive microcontroller. This covers
starting both Power Architecture cores, memory management
units (MMU), clock frequency (PLL), watchdog timers, flash
memory controller, and internal static RAM. Recommended
configuration settings for these modules will be given for the
purpose of optimizing system performance.

The MPC5676R is a high-performance 32-bit Power
Architecture Microcontroller for powertrain applications. The
two €200z7 host processor cores of the MPC5676R are
compatible with the Power Architecture™ Book E
architecture. They are 100% user-mode compatible (with
floating point library) with the classic PowerPC instruction
set. The Book E architecture has enhancements that improve
the architecture’s fit in embedded applications. In addition to
the standard and VLE Power Architecture instruction sets, this
core has additional instruction support for digital signal
processing (DSP).

> Nk W

The MPC5676R has two levels of memory hierarchy; separate
16 K instruction and 16 K data caches for each of two cores
and 384 KB of on-chip SRAM. 6 MB of internal flash
memory is provided. An external bus interface is also
available for special packaged parts to support application
development and calibration.

R/

>~ freescale

semiconductor

© 2012 Freescale Semiconductor, Inc.

Startup Code......oovueeriieiieniiiieeeee e
MCU OptimiZation.........cc.eeerveeerieenieenieeneeeneeennes

CONCIUSION.cvveiiieeeeiieee e

) 4

uverview
Power Architecture Power Architecture ¢
MPC5676R €200z7 Core €200z7 Core -I
MMU MMU
16K 16K 16K 16K
I-Cache D-Cache I-Cache D-Cache EBI
(Calibration)

LEGEND
ADC — Analog to Digital Convertor I-Cache - Instruction Cache
AMux - Analog Pin Multiplexer IRC — Internal RC Oscillator
CRC — Cyclic Redundancy Check JTAG - Joint Test Action Group controller
D-Cache— Data Cache MMU — Memory Management Unit
DECFILT- Decimation Filter MPU — Memory Protection Unit
DSPI - Deserial/Serial Peripheral Interface PIT — Periodic Interval Timer
DTS — Development Tool Semaphore PMU — Power Management Unit
EBI — External Bus Interface PPO — Protected Port Output
ECSM - Error Correction Status Module S/B — Stand-by
eDMA2 - Enhanced Direct Memory Access controller version 2 SIUA - System Integration Unit A
eMIOS - Enhanced Modular I/O System SIUB - System Integration Unit B
eQADC - Enhanced Queued Analog to Digital Converter SPE — Signal Processing Engine
eSCl — Enhanced Serial Communications Interface SRAM - Static RAM
eTPU2 - Enhanced Time Processing Unit version 2 STCU - Self Test Control Unit
FlexCAN- Flexible Controller Area Network controller STM — System Timer Module
FMPLL - Frequency Modulated Phase Lock Loop clock generator SWT — Software Watchdog Timer

VLE — Variable Length instruction Encoding

Figure 1. MPC5676R block diagram

2 Overview

There are several options to consider when discussing the structure of our embedded software application. The first is how it
will execute. The application can be stored in internal flash memory or it can be downloaded from an external device, such as
a debugger, or via a serial communications link. This affects certain steps in the initialization process and where applicable,
this will be noted. Another option is choosing Variable Length Encoding instructions (VLE) vs. PowerPC Book E
Instructions. The assembly code examples shown in this application note will use VLE mnemonics and syntax, but can easily
be translated into the Book E variant.

MPC5676R Software Initialization and Optimization, Rev. 1, 03/2012

2 Freescale Semiconductor, Inc.

g |

4
Startup code

3 Startup code

The first part of the initialization procedure executes on the primary core (core 0) from the reset vector or program entry
point and performs the minimal setup needed to prepare for C code execution later. Another goal of this stage is to optimize
the startup procedure’s execution time. This involves taking certain initialization steps in a particular order:

Reset configuration and watchdog
Program PLL

Configure memory management unit
Enable instruction and data caches
Initialize SRAM

Initialize C runtime environment
Start core 1

Nk wb =

Steps 1-6 are performed first by core 0. Core 1 will not be started until execution enters the main C routine. It is possible to
start core 1 slightly earlier but core 0 should at least complete PLL. and SRAM initialization first.

3.1 Reset configuration and watchdog

There are several ways to begin software execution after device reset. These are controlled by the Boot Assist Module
(BAM).

* Boot from internal flash

* Serial boot via SCI or CAN interface with optional baud-rate detection

* Boot from a memory connected to the MCU development bus (EBI) with multiplexed or separate address and data lines
(not available on all packages)

When using a hardware debugger connected via the JTAG or Nexus ports, the BAM can be bypassed. The debugger can
download software to RAM via the debug interface and specify a start location for execution. In this case, much of the low-
level device initialization is accomplished by the debugger using configuration scripts.

This application note will focus on the internal flash boot case because it performs all initialization tasks either in the BAM
or explicitly in the application code. During any power-on, external, or internal reset event, except for software reset, the
BAM begins by searching for a valid Reset Configuration Half Word (RCHW) in internal flash memory at one of the
following pre-defined addresses.

Table 1. Possible RCHW locations in the internal flash

Boot Search Order Address Flash A Block Block Size
1st 0x0002_0000 L8 64 K
2nd 0x0003_0000 L9 64 K
3rd 0x0000_0000 LO 16 K
4th 0x0000_4000 L1 16 K
5th 0x0001_0000 L4 16 K
6th 0x0001_C000 L7 16 K

The RCHW is a collection of control bits that specify a minimal MCU configuration after reset. If a valid RCHW is not
found, the BAM will attempt a serial boot. Here is the format for the RCHW:

MPC5676R Software Initialization and Optimization, Rev. 1, 03/2012

Freescale Semiconductor, Inc. 3

3
4

4
A

Swrup code

Table 2. Reset configuration half word

0 1 2 3 4 5 6 7 8 | 9 | 10 | 1 | 12 | 13 | 14 | 15
0 0 0 0 | SWT | WTE | PSO | VLE Boot Identifier
Reserved x1 x1 x1 x1 0 1 0 1 1 0 1 0

1. x = User-defined

The RCHW occupies the most significant 16 bits of the first 32-bit internal memory word at the boot location. The next 32
bits contain the boot vector address. After applying the RCHW, the BAM will branch to this boot vector. During software
initialization, reserve space for both of these 32-bit locations in the linker directive file as follows:

MEMORY

flash rcw : org = FLASH BASE ADDR, len = 0x8
SECTIONS
{

.rcw : {} > flash rcw

}

In the initialization code file, these two locations are generated with a valid RCHW encoding and the start address symbol for
code entry point.2

.section .rcw
.LONG 0x015A0000 # RCHW
.LONG _start # Code entry point

In the example above, the core and software watchdog timers are both disabled. These can operate independently, but it is
common to use just one or the other in an application. When debugging, the RCHW is not applied when the BAM does not
execute, so the debugger must disable these timers so that they do not interfere with application debug sessions. Disabling the
core watchdog is necessary, because it cannot be disabled by software once it is enabled. The software watchdog starts out in
an unlocked state, so the control register is still writable. If desired, the enable bit can be cleared to prevent watchdog
operation during a debug session, if the debug tool does not handle this with its own configuration scripts.

NOTE
If either watchdog timer is enabled, there may be points within the initialization
procedure that require watchdog service, depending on the timeout period of the
watchdog.

3.2 Programming the PLL

The FMPLL module contains the frequency modulated phase lock loop (FMPLL), enhanced frequency divider (ERFD),
enhanced synthesizer control registers (ESYNCR1 and ESYNCR?2), synthesizer status register (SYNSR), and clock/PLL
control logic. The module also contains a reference frequency pre-divider controlled by the EPREDIV bits in the ESYNCRI.
This enables the use of a high frequency crystal or external clock generator to obtain finer frequency synthesis resolution than
would be available if the raw input clock were used directly by the analog loop.

The FMPLL on this device can synthesize clock frequencies ranging from 48 to 148 times the reference frequency of the
predivider output. The post-divider can reduce this output frequency without forcing a re-lock. In normal operation, the
following equation can be used to calculate the programming values for the FMPLL:

MPC5676R Software Initialization and Optimization, Rev. 1, 03/2012

4 Freescale Semiconductor, Inc.

g |

Fiy = Feya X (EMFD + 16) / (EPREDIV + 1)(EFRD + 1))

Table 3. Example PLL settings

Startup code

Fsys Fextal EMFD EPREDIV ERFD
132 MHz 40 MHz 50 4 3
180 MHz 40 MHz 74 4 3

The following example sets up the PLL to produce a 180 MHz system clock assuming a 40 MHz reference crystal.

ESYNCR1
e lis r3, O0xC3F8
e lis r4, 0x7004 # EPREDIV = 4
e or2i r4, O0x004A # EMFD = 74
e stw r4, 8(r3)

ESYNCR2
e 1i r4, 0x0003 # ERFD = 3
e stw r4, 12(r3)

wait for lock:
e lwz r5, 4(r3) # load SYNSR
e andi. r5, r5, 0x8
se beq wait for lock

PLL is now at 180Mhz.

At this point, though the PLL is locked on the desired clock rate, the device is still being clocked by the internal RC
oscillator. Select the PLL as the new system clock source.

Select PLL as system clock

e lis r3, 0xC3F9
e or2i r3,0x09A0
e 1i r4,0x2010
e stw r4,0(r3)

3.3 Memory management unit (MMU)

The BAM includes a default setup for the MMU, which is identical to the previous generation device. In order to provide
access to the larger SRAM and peripheral bridge spaces, you must change these MMU table entries yourself. The resulting

MMU table is as follows:

Table 4. MMU table configuration

TLB Space Address Size Attributes
0 Peripheral bridge B OxFFEO0_0000 2 MB Cache inhibit, Guarded
1 Flash 0x0000_0000 8 MB VLE
2 External bus 0x2000_0000 16 MB VLE
3 SRAM 0x4000_0000 512 KB Write-through cache, VLE
4 Peripheral bridge A 0xC3E0_0000 2 MB Cache inhibit, Guarded
5 Stack 0x4008_0000 8 KB -
#TLB1 = internal flash @ 0x0000_ 0000, VLE
e lis r3,0x1001

MPC5676R Software Initialization and Optimization, Rev. 1, 03/2012

Freescale Semiconductor, Inc.

r
4\ L __

Swrup code

mtspr mas0,r3

e 1lis r3,0xC000

e or2i 1r3,0x0680

mtspr masl,r3

e lis r3,0x0000

e or2i r3,0x0020

mtspr mas2,r3

e lis r3,0x0000

e or2i r3,0x003F

mtspr mas3,r3

msync # Synchronize in case running from flash
tlbwe

se_isync # Synchronize in case running from flash

#TLB3 = internal SRAM @ 0x4000 0000, VLE, Write-Through Cache
e lis r3,0x1003
mtspr mas0,r3
e lis r3,0xC000
e or2i 3,0x0480
mtspr masl,r3
e lis r3,0x4000
e or2i r3,0x0030
mtspr mas2,r3
e lis r3,0x4000
e or2i r3,0x003F
mtspr mas3,r3
msync # Synchronize in case running from SRAM
tlbwe
se_isync # Synchronize in case running from SRAM

#TLBO = pbridgeB @ OxXFFEO 0000, Cache inhibited, Guarded
e lis r3,0x1000
mtspr mas0,r3
e lis r3,0xC000
e or2i 1r3,0x0580
mtspr masl,r3
e lis r3, 0XFFEO
e or2i r3,0x000A
mtspr mas2,r3
e lis r3, 0XFFEO
e or2i r3,0x003F
mtspr mas3,r3
tlbwe

#TLB2 = external bus @ 0x2000_0000, VLE
e lis r3,0x1002
mtspr mas0, r3
e lis r3,0xC000
e or2i r3,0x0700
mtspr masl,r3
e lis r3,0x2000
e or2i r3,0x0020
mtspr mas2,r3
e lis r3,0x0000
e or2i r3,0x003F
mtspr mas3,r3
tlbwe

#TLB4 = pbridgeA @ O0xC3EO_0000, Cache inhibited, Guarded
e lis r3,0x1004
mtspr mas0,r3
e lis r3,0xC000
e or2i 1r3,0x0580
mtspr masl,r3
e lis r3,0xC3E0
e or2i r3,0x000A
mtspr mas2,r3
e lis r3,0xC3E0
e or2i r3,0x003F
mtspr mas3,r3

MPC5676R Software Initialization and Optimization, Rev. 1, 03/2012

6 Freescale Semiconductor, Inc.

A\ 4
g gl 4
Startup code

tlbwe

#TLBS5 = 4k stack for each core (will be locked in cache)
(Note: located just after 512k TLB3 entry for SRAM)

e lis r3,0x1005

mtspr mas0,r3

e lis r3,0xC000

e or2i r3,0x0180

mtspr masl,r3

e lis r3,0x4008

e or2i r3,0x0000

mtspr mas2,r3

e lis r3,0x4008

e or2i r3,0x003F

mtspr mas3,r3

tlbwe

Note that in this example, tlbwe is preceded by msync and followed by se_isync for TLB1 and TLB3. These synchronization
steps are taken in case the code being executed is from the region being modified.

3.4 Enable caches

The core instruction and data caches are enabled through the L1 Cache Control and Status Registers 0 & 1 (L1CSRO and
L1CSR1). The instruction cache is invalidated and enabled by setting the ICINV and ICE bits in LICSR1. The data cache is
enabled by setting DCINV and DCE in L1CSRO. The cache invalidate operation takes some time and can be interrupted or
aborted. Because nothing else is going on in the boot-up procedure at this point, it won't be interrupted or aborted. Set the bits
and move on.

Bomm e o #
invalidate and enable the data and instruction caches
Pommm - #

data cache
e lis r3,0x0010
e or2i r3,0x0003

mtspr llcsx0, 3
inst cache

e lis r3,0x0

e or21 r3,0x0003
mtspr llcsrl,r3

The following code represents a more robust cache enable routine that may be used elsewhere in the application, if desired.
This code checks to ensure the invalidation has successfully completed and if not, retries the operation before enabling the
cache. This code may be used with interrupts enabled, provided that those interrupts are properly handled and cleared. If the
invalidate operation cannot complete without being interrupted due to a heavy interrupt load in the system, it is better to
disable interrupts first.

cfg ICACHE:
- #
Invalidate Instruction Cache - Set ICINV
bit in L1CSR1 Register
Bomm #

e lis r5, 0x0000
e or2i r5, 0x0002

mtspr llcsrl, r5

se_isync

Fommm #
Mask out ICINV and ICABT to see if
invalidation is complete (i.e. ICINV=0,
ICABT=0)
Fommm #

MPC5676R Software Initialization and Optimization, Rev. 1, 03/2012

Freescale Semiconductor, Inc. 7

\
Y

4
A

Swrup code

Load Registers with Masks:
Load ICINV mask into R4
Load ICABT mask into R6
Load ICABT clear mask into R7
Fommm #
e lis r4, 0x0000
e or2i r4, 0x0002
e lis r6, 0x0000
e or2i 1r6, 0x0004
e lis r7, OXFFFF
e or2i r7, OxFFFB

CHECK ICINV:
Bommmmmm e #
Read L1CSR1 register, store in r3
Hommm #
mfspr r3, llcsrl
Bommmmmm e #
check for an ABORT of the cache invalidate
operation
Fommm #
se and. r6, r3
se beq NO_ABORT
Hommm #
If abort detected, clear ICABT bit and
re-run invalidation
Fi R i ke #
se and. r7, r3
mtspr llcsrl, r7
se_isync
se b cfg ICACHE

NO_ABORT:
Bommmmmm e #
Check that invalidation has completed -
(ICINV=0). Branch if invalidation not
complete.
Bommmmmm e #
se and. r4, r3
se_bne CHECK ICINV
Bommmmmm e #
Enable the ICache by performing a
read/modify/write of the ICE bit in the
L1CSR1 register
Bommmmmm e #

mfspr r5, llcsrl

e or2is r5, 0x0000

e or2i r5, 0x0001 # Store L1ICSR1 value to R5 (ICE=1)
mtspr llcsrl, r5 # Write R5 to L1CSR1 register
se_isync

se blr

3.5 SRAM initialization

The internal SRAM features Error Correcting Code (ECC). Because these ECC bits can contain random data after the device
is turned on, all SRAM locations must be initialized before being read by application code. Initialization is done by executing
64-bit writes to the entire SRAM block. The value written does not matter at this point, so the Store Multiple Word
instruction will be used to write 32 general-purpose registers with each loop iteration.

Store number of 128Byte (32GPRs) segments in Counter
e _lis r5, _SRAM_SIZE@h # Initialize r5 to size of SRAM (Bytes)
e or2i r5, SRAM SIZEel

MPC5676R Software Initialization and Optimization, Rev. 1, 03/2012

8 Freescale Semiconductor, Inc.

3
4

4
A

Startup code

e srwi 5, r5, 0x7 # Divide SRAM size by 128
mtctr r5 # Move to counter for use with "bdnz"

Base Address of the internal SRAM
e lis r5, _SRAM BASE ADDR@h
e or2i r5, _SRAM BASE ADDR@l

Fill SRAM with writes of 32GPRs
sram_loop:

e stmw 1r0,0(r5) # Write all 32 registers to SRAM
e addi r5,r5,128 # Increment the RAM pointer to next 128bytes
e bdnz sram loop # Loop for all of SRAM

3.6 C runtime register setup

The Power Architecture Enhanced Application Binary Interface (EABI) specifies certain general purpose registers as having
special meaning for C code execution. At this point in the initialization code, the stack pointer, small data, and small data 2
base pointers are set up. EABI-conformant C compilers will generate code that makes use of these pointers later on.

e lis rl, _ SP INIT@h
e or2i rl, SP INITel

Initialize stack pointer rl to
value in linker command file.

#

#
e lis rl3, SDA BASE @h # Initialize rl3 to sdata base
e or2i rl13, SDA BASE el # (provided by linker).
#
#

Initialize r2 to sdata2 base
(provided by linker).

e _lis r2, _SDA2 BASE_@h
e or2i r2, SDA2 BASE el

As noted in the comments above, these values are defined in the linker command file for this project.

__DATA SRAM_ADDR ADDR (.data) ;
__ SDATA SRAM ADDR = ADDR(.sdata) ;

__DATA SIZE = SIZEOF(.data);
__SDATA SIZE = SIZEOF (.sdata);

__DATA ROM_ADDR ADDR (.ROM.data) ;
~_SDATA _ROM_ADDR = ADDR (.ROM.sdata) ;

These values in the internal flash boot case will be used to copy initialized data from flash to SRAM, but first the SRAM
must be initialized.

This runtime setup procedure may vary depending on the compiler. Consult your compiler's documentation. There may also
be additional setup required for initializing the C standard library.

3.7 Copy initialized data

When booting from flash, the program image stored in flash will contain the various data segments created by the C compiler
and linker. Initialized read-write data must be copied from read-only flash to read-writable SRAM before branching to the C
main routine.

The following example assumes the initialized data values are stored uncompressed in the flash. Some compilers compress
this data to save space in the flash image. The example code attached to this application note invokes the compiler-dependent
_start routine to accomplish the C runtime setup and data copy for core 0. This example is provided as a reference.

HH#--------- Initialized Data - ".data" -------------"““""“"“"—“"“~“““~ -~~~
DATACOPY :

e lis r9, _ DATA SIZE@ha # Load upper SRAM load size

e or2i r9, _ DATA SIZEe@l # Load lower SRAM load size into R9

MPC5676R Software Initialization and Optimization, Rev. 1, 03/2012

Freescale Semiconductor, Inc. 9

Swrup code

e cmpléi r9,0 # Compare to see if equal to O

se_beq SDATACOPY # Exit cfg ROMCPY if size is zero

mtctr r9 # Store no. of bytes to be moved in counter

e_lis rl0, _ DATA ROM ADDR@h # Load address of first SRAM load into R10

e or2i rl0, _ DATA ROM ADDR@l # Load lower address of SRAM load into R10

se subi rlo, 1 # Decrement address

e_lis r5, _ DATA SRAM ADDR@h # Load upper SRAM address into R5

e or2i r5, _ DATA SRAM ADDR@l # Load lower SRAM address into R5

se subi r5, r5, 1 # Decrement address
DATACPYLOOP :

e lbzu r4, 1(rlo0) # Load data byte at R10 into R4

e stbu r4, 1(r5) # Store R4 data byte into SRAM at R5

e bdnz DATACPYLOOP # Branch if more bytes to load from ROM
HH#--------- Small Initialised Data - ".sdata" --------=--—---—--—-—-~—-—~—“—~—~—~—~—~—~—~—~—~—~—~—~—~—~—-
SDATACOPY :

e lis r9, _ SDATA SIZE@ha # Load upper SRAM load size

e or2i r9, _ SDATA SIZEe@l # Load lower SRAM load size into R9

e cmpléi r9,0 # Compare to see if equal to 0

e beq ROMCPYEND # Exit cfg ROMCPY if size is zero

mtctr r9 # Store no. of bytes to be moved in counter

e lis r1l0, _ SDATA ROM ADDR@h # Load address of first SRAM load into R10

e or2i rl0, _ SDATA ROM ADDRe@l # Load lower address of SRAM load into R10

e subi rl0,rl10, 1 # Decrement address

e lis r5, _ SDATA SRAM ADDR@h # Load upper SRAM address into R5

e or2i r5, _ SDATA SRAM ADDRe@l # Load lower SRAM address into R5

e subi r5, r5, 1 # Decrement address
SDATACPYLOOP:

e lbzu r4, 1(rlo0) # Load data byte at R10 into R4

e stbu r4, 1(r5) # Store R4 data byte into SRAM at R5

e bdnz SDATACPYLOOP # Branch if more bytes to load from ROM
ROMCPYEND :

3.8 Start core 1

While core 0 begins execution immediately after device reset, core 1 remains held in reset. Its reset input is controlled by the
Halt register (SIU_HLT) and the Core 1 Reset Vector register (SIU_RSTVECI). Clearing either the core 1 HLT bit in
SIU_HLT or the RST bit in SIU_RSTVECI1 will de-assert reset to core 1 and allow it to begin execution. When core 1 comes
out of reset, it begins executing code at the address specified in the RSTVEC field of register SIU_RSTVECI. By default,
this field points to the address 0xFFFF_FFFC, which is the address of the Boot Assist Module (BAM). 1'STU_RSTVEC also
contains a field to specify whether this start code should be executed in Book E Power Architecture or Variable Length
Encoding (VLE) format. If you want to supply a different start address, you must set the RSTVEC field before clearing either
the HLT or RST bits.

The following example main C routine is used by both cores. It first checks the core's Processor ID Register (PIR) to
determine which core is executing the code. PIR will read O for core 0 and 1 for core 1. The main routine then branches to
core-specific code depending upon the value in PIR. Core 0 begins by starting core 1 and then enters an infinite loop to
toggle a GPIO. Core 1 simply toggles a different GPIO.

1. While it is possible to start core 1 from the Boot Assist Monitor address, it is more efficient to supply your own start routine
address in RSTVEC even if it is the same address as used by core 0. Doing so avoids having BAM perform the Reset
Configuration Half-Word search in flash again as well as the setup of the MMU which must be updated anyway in the
initialization routine. As noted above, if you do not want the BAM to be executed again for core 1 then you must set a new
start address value in the RSTVEC field of register SIU_RSTVEC1 before clearing either the core 1 HLT or RST bits.

MPC5676R Software Initialization and Optimization, Rev. 1, 03/2012

10 Freescale Semiconductor, Inc.

g |

4
Startup code

#define RSTVEC VLE 1
#define RSTVEC RESET 0x2
#define RSTVEC RST MASK OxXFFFFFFFC

extern unsigned long _ start;

int main (void)

{

int pid;

asm ("1i r0, 0x4000");

asm ("mthido =r0O"); /* enable TB and decrementer */
pid = _ MFSPR(286) ;

if (pid == 0)
volatile int i;
SIU.PCR[144].R = ALTO | OBE; /* PA=0, OBE=1 for GPIO[0] PA[1] */

/* Start Core 1 in VLE mode */
SIU.RSTVEC1.R = ((unsigned long)& start & RSTVEC RST MASK) | RSTVEC VLE;

while (1)/* loop forever (core 0) */

1++;
if (i % 1000000 == 0)

SIU.GPDO[144] .R "= 1;

}

} else {
volatile int i;

SIU.PCR[113].R = ALTO | OBE; /* PA=0, OBE=1 for GPIO[0] PA[0] */

while (1)/* loop forever (core 1) */

{
i++;
if (i % 1000000 == 0)

SIU.GPDO[113].R "= 1;

}
}
}
}

Because core 1 has been pointed at the same startup procedure as core 0, you need to add similar PIR checks and branches to
skip initialization tasks that do not need to be repeated for core 1, such as PLL configuration and SRAM ECC initialization.
For example:

mfpir r5 # Check core id
se cmpi r5,0
bne pll end # Skip pll init if this is core 1

Another important consideration is MMU setup. By default, core 1 will have a single MMU entry out of reset. TLBO will
allow access to the 4 K address space beginning at the start address provided in RSTVEC. The startup code must program the
remaining MMU table entries to cover all other address spaces, expanding TLBO as necessary, or using a different entry to
cover additional code execution space.

MPC5676R Software Initialization and Optimization, Rev. 1, 03/2012

Freescale Semiconductor, Inc. 11

g |

mivu optimization

4 MCU optimization

In this section, the following areas for potential optimization will be discussed:

* Wait states, prefetch, and BIU settings for the flash controller
* Branch target buffer
¢ Crossbar switch

4.1 Flash optimization

The on-chip flash array controller comes out of reset with fail-safe settings. Wait states are set to maximum and performance
features like prefetch, read buffering, and pipelining are disabled. These settings can typically be optimized based on the
operating frequency, using the information specified in the MPC5676R data sheet. The following code can be modified to
select the appropriate value for the flash array’s Bus Interface Unit Control Register (BIUCR).

The following example selects the 180 MHz operating settings which accomplish the following optimizations:

* Enable instruction prefetch for both cores on buffer hits and misses
* Enable read buffer

* Reduce read wait states to 2

* Enable pipelining with 2 hold cycles between access requests

* Reduce write wait states to 1

Because in this example you are executing from flash memory, you need to load instructions to perform the update of BIUCR
and BIUCR3 into SRAM, and then temporarily execute from there.

#******************************

Optimize Flash

#******************************

Code is copied to RAM first, then executed, to avoid executing code from flash
while wait states are changing.

o

copy_ to_ram

settings for 180MHz

#

BIUCR = 0x00016bl5

M8PFE = 0bO (Core 0 Nexus master pre-fetch disabled)
MOPFE = 0bl (Core 0 master pre-fetch enabled)

APC and RWSC = 0b010 (2 additional hold cycles)

WWSC = 0b01l (1 wait)

DPFEN = 0bO (data pre-fetch disabled)

ARB = 0bO (fixed priority arbitration)

IPFEN = 0bl (instruction pre-fetch enabled)

PRI = 0bO (core 0 higher priority)

PFLIM = Oblx (prefetch on miss or hit)bot

BFEN = 0bl (read line buffer enabled)

#

BIUCR3 = 0x00020015

MOPFE = 0bO (Core 1 Nexus master pre-fetch disabled)
M6PFE = 0bO (FlexRay master pre-fetch disabled)
M5PFE = 0bO (eDMA B master pre-fetch disabled)
M4PFE = 0bO (eDMA A master pre-fetch disabled)
M1PFE = 0Obl (Core 1 master pre-fetch enabled)

DPFEN = 0bO (data pre-fetch disabled)

IPFEN = 0bl (instruction pre-fetch enabled)

PFLIM = 0Oblx (prefetch on miss or hit)

BFEN = 0bl (read line buffer enabled)

#

MPC5676R Software Initialization and Optimization, Rev. 1, 03/2012

12 Freescale Semiconductor, Inc.

A
4

4
A

flash opt:
e lis
e or2i
e lis
e or2i
e _stw
e lis
e or2i
e_lis
e or2i
e_stw
se isync
msync
se_blr

r3,0x0001
r3,0x6bl5
r4,0xC3F8
r4,0x801C
r3,0(r4) # BIUCR
r3,0x0002
r3,0x0015
r4,0xC3F8
r4,0x8028
r3,0(r4) # BIUCR3

copy_to ram:

e_lis

e or2i
e lis

e or2i
e _subf
se_mtctr
e lis
se mtlr

copy:

e lbz

e stb

e addi
e _addi
e bdnz
isync
msync
blrl

4.2 Branch target buffer

r3,flash opteh

r3,r3,flash optel
r4,copy to ram@h
r4,copy_ to rame@l

r4,r3,r4

r4

r5,0x4000

r5
r6,0(r3)
r6,0(r5)
r3,r3,1
r5,r5,1
copy

MCU optimization

NOTE

These settings are currently preliminary and subject to change pending characterization

of the device.

The MPC5676R Power Architecture cores feature a branch prediction optimization which can be enabled to improve overall
performance by storing the results of branches and using those results to predict the direction of future branches at the same
location. To initialize the branch target buffer, we need to flash invalidate the buffer and enable branch prediction. This can
be accomplished with a single write to the Branch Unit Control and Status Register (BUCSR) in each core.

e 1i
mtspr

r3, 0x0201
1013, r3

se_isync

NOTE

If the application modifies instruction code in memory after this initialization procedure,
the branch target buffer may need to be flushed and re-initialized as it may contain
branch prediction for the code that previously existed at the modified locations.

MPC5676R Software Initialization and Optimization, Rev. 1, 03/2012

Freescale Semiconductor, Inc.

13

g |

vounclusion

4.3 Crossbar switch

In most cases, the crossbar settings can be left at their reset defaults. Knowing certain things about the application behavior
and use of different masters on the crossbar, it is possible to customize priorities and use algorithms accordingly to obtain
some slight performance improvements. For example, DMA transfers may benefit from a higher priority setting than the
CPU load/store when communicating with the peripheral bus. This would prevent DMA transfers from stalling if the CPU
were to poll a status register in a peripheral. However, this is a specific case which may not apply for all applications.

5 Conclusion

This application note has presented some specific recommendations for initializing this device and optimizing some of the
settings from their reset defaults. This is a starting point only. Other areas to consider include compiler optimization and
efficient use of system resources such as DMA and cache. Consult the MPC5676R reference manual for additional
information.

Appendix A Code

A.1 init.s file

#***
#* FILE: init.s

#*

#* DESCRIPTION:

#* Example init code for MPC5676R. Performs following setup tasks:

#* 1) Sets FMPLL to 180MHz. (may require modification for desired

#* operating frequency)

#* 2) Configure MMU

#* 3) Add MMU entry to support C stack in cache.

#* 4) Invalidate and enable both instruction and data caches.

#* 5) Enable SPE instructions (GHS compiler will use SPE by default)
#* 6) Intialize ECC bits on all 384K of internal SRAM.

#* 7) Reduce flash wait states. (may require modification of wait

#* state parameters for desired operating frequency)

#* 8) Enables branch target buffer for performance increase.

#* 9) Lock the stack in cache memory. (included linker file required)
#* 10)Branch to _start in GHS provided crt0.s file to finish setup

#* of the C environment. start in crtO.s will call main().
B*o——————————————=———————==—=————===—=—===================================
#* UPDATE HISTORY

#* Revision Author Date Description of change

#* 1.0 B. Terry 11/12/2009 Initial version for MPCS5674F.

#* 1.1 D. Erazmus 12/14/2010 Ported to MPC5676R.

#* 1.2 D. Erazmus 07/27/2011 Converted to VLE instruction set.
koo oo —oooo————oooo———o—o—————o————————————————————————————————=—====

#* COPYRIGHT (c) Freescale Semiconductor, Inc. 2011
#* All Rights Reserved

#***

.vle

.globl _ start
.section .rcw, ax
.long 0x015a0000
.long _ start

.section .init,avx # The "ax" generates symbols for debug

MPC5676R Software Initialization and Optimization, Rev. 1, 03/2012

14 Freescale Semiconductor, Inc.

P

__start:

mfpir
se_cmpi
se bne

r5 # Check core id

r5,0

pll end # Skip pll init if this is core 1

#******************************

configure FMPLL to 180MHz (40MHz crystal)
#******************************

ESYNCR1
e_lis
e lis
e or2i
e stw

ESYNCR2
e 1i
e stw

r3, 0xC3F8
r4, 0x7004
r4, 0x004A
r4, 8(r3)

r4, 0x0003
r4, 12(r3)

wait_for lock:

e lwz
e andi.

r5, 4(r3)
r5, r5, 0x8

se_beqg wait_for_lock

PLL is now at 180MHz

EPREDIV = 4
EMFD = 74

ERFD

]
w

load SYNSR

Select PLL as system clock

e lis
e or2i
e 1i
e stw

pll end:

r3, 0xC3F9
r3,0x09A0
r4,0x2010
r4,0(r3)

#*****************************

configure

the MMU

#*****************************

Note 1: Explicitly configure MMU here because MPC5676R BAM does not cover
all available SRAM or PBRIDGE spaces when it sets up the MMU. Also, when

core 1 is

running this

from RAM or Flash with

#
#
#
Note 2: configure TLB1
#
#
#

TLB1 = internal flash @

e lis
mtspr
e lis
e or2i
mtspr
e_lis
e or2i
mtspr
e lis
e or2i
mtspr
msync
tlbwe

se_isync

r3,0x1001
mas0,r3
r3,0xC000
r3,0x0680
masl,r3
r3,0x0000
r3,0x0020
mas2,r3
r3,0x0000
r3,0x003F
mas3,r3

same code it may not have executed BAM at all.

and TLB3 first before TLBO since core 1 may be running
the default 4k TLBO page out of reset.

0x0000_0000, VLE

Synchronize in case running from flash

Synchronize in case running from flash

#TLB3 = internal SRAM @ 0x4000 0000, VLE, Write-Through Cache

e lis
mtspr
e lis
e or2i
mtspr
e_lis
e or2i

r3,0x1003
mas0,r3
r3,0xC000
3,0x0480
masl,r3
r3,0x4000
r3,0x0030

MPC5676R Software Initialization and Optimization, Rev. 1, 03/2012

init.s file

Freescale Semiconductor, Inc.

15

r
4\ L __

s file

mtspr mas2,r3

e lis r3,0x4000

e or2i r3,0x003F

mtspr mas3,r3

msync # Synchronize in case running from SRAM
tlbwe

se _isync # Synchronize in case running from SRAM

#TLBO = pbridgeB @ OxXFFEO_0000, Cache inhibited, Guarded
e lis r3,0x1000
mtspr mas0, r3
e lis r3,0xC000
e or2i r3,0x0580
mtspr masl,r3
e lis r3, 0XFFEOQ
e or2i r3,0x000A
mtspr mas2,r3
e lis r3, 0xFFEO
e or2i r3,0x003F
mtspr mas3,r3
tlbwe

#TLB2 = external bus @ 0x2000 0000, VLE
e lis r3,0x1002
mtspr mas0,r3
e lis r3,0xC000
e or2i r3,0x0700
mtspr masl,r3
e lis r3,0x2000
e or2i r3,0x0020
mtspr mas2,r3
e lis r3,0x0000
e or2i r3,0x003F
mtspr mas3,r3
tlbwe

#TLB4 = pbridgeA @ 0xC3E0_0000, Cache inhibited, Guarded
e lis r3,0x1004
mtspr mas0, r3
e lis r3,0xC000
e or2i r3,0x0580
mtspr masl,r3
e lis r3, 0xC3E0
e or2i 1r3,0x000A
mtspr mas2,r3
e lis r3,0xC3E0
e or2i r3,0x003F
mtspr mas3,r3
tlbwe

#TLBS5 = 4k stack for each core (will be locked in cache)
(Note: located just after 512k TLB3 entry for SRAM)

e lis r3,0x1005

mtspr mas0, r3

e lis r3,0xC000

e or2i r3,0x0180

mtspr masl,r3

e lis r3,0x4008

e or2i r3,0x0000

mtspr mas2,r3

e lis r3,0x4008

e or2i r3,0x003F

mtspr mas3,r3

tlbwe

#******************************

invalidate and enable the data and instruction caches
#******************************

data cache
e 1is r3,0x0010

MPC5676R Software Initialization and Optimization, Rev. 1, 03/2012

16 Freescale Semiconductor, Inc.

4
A

init.s file

e or2i r3,0x0003

mtspr llcsr0,r3
inst cache

e lis r3, 0x0

e or2i r3,0x0003

mtspr llcsrl,r3

#*****************************

Enable SPE
#*****************************
mfmsxr ré6
e or2is r6,0x0200
mtmsr ré6

#*****************************

initialize 384k SRAM
(core 0 only)
#*****************************
mfpir r5 # Check core id
se cmpi r5,0
se _bne flashopt end # Skip sram init and flash optimization if this is core 1

Store number of 128Byte (32GPRs) segments in Counter
e lis r5, _SRAM SIZEe@h # Initialize r5 to size of SRAM (Bytes)
e_or2i r5, _SRAM SIZEel
e srwi 5, r5, 0x7 # Divide SRAM gize by 128
mtctr r5 # Move to counter for use with "bdnz"

Base Address of the internal SRAM
e lis r5, _SRAM BASE ADDReh
e or2i r5, SRAM BASE ADDR@l

Fill SRAM with writes of 32GPRs
sram_loop:

e stmw r0,0(x5) # Write all 32 registers to SRAM
e addi r5,r5,128 # Increment the RAM pointer to next 128bytes
e bdnz sram_ loop # Loop for all of SRAM

sram_end:

#******************************

Optimize Flash

#******************************

Code is copied to RAM first, then executed, to avoid executing code from flash
while wait states are changing.

se b copy to_ram
settings for 180MHz

BIUCR = 0x00016bl5
M8PFE = 0bO

MOPFE = 0bl

APC and RWSC = 0b010
WWSC = 0bO1

DPFEN = 0bO

Core 0 Nexus master pre-fetch disabled)
Core 0 master pre-fetch enabled)

2 additional hold cycles)

1 wait)

data pre-fetch disabled)

ARB = 0bO fixed priority arbitration)
IPFEN = 0bl instruction pre-fetch enabled)
PRI = 0bO core 0 higher priority)

PFLIM = 0Oblx
BFEN = 0bl

(
(
(
(
(
(
(
(
(prefetch on miss or hit)bot
(read line buffer enabled)
BIUCR3 = 0x00020015
MO9PFE = 0bO (Core 1 Nexus master pre-fetch disabled)
M6PFE = 0bO (FlexRay master pre-fetch disabled)
M5PFE = 0bO (eDMA_B master pre-fetch disabled)

M4PFE = 0bO (eDMA A master pre-fetch disabled)

M1PFE = 0bl (Core 1 master pre-fetch enabled)

DPFEN = 0bO (data pre-fetch disabled)

IPFEN = 0bl (instruction pre-fetch enabled)

HHEHFHHFHHFHHFEHEHFEHFEHFFHFHHFEHFHH

MPC5676R Software Initialization and Optimization, Rev. 1, 03/2012

Freescale Semiconductor, Inc. 17

P

s file

PFLIM = 0b
BFEN = 0bl
#
flash opt:
e_lis
e or2i
e lis
e or2i
e stw
e lis
e or2i
e lis
e or2i
e _stw
se_isync
msync
se blr

copy_to_ram:
e lis
e or2i
e lis
e or2i
subf r
se_mtctr
e lis
se mtlr
copy:
e lbz
e stb
e addi
e addi
e _bdnz
se_isync
msync
se blrl

flashopt end

#***********

enable BTB

#***********
e 1i
mtspr
se_isync

#***********

lock the s

#***********

1x (prefetch on miss or hit)
(read line buffer enabled)

r3,0x0001
r3,0x6b1l5
r4,0xC3F8
r4,0x801C
r3,0(r4) # BIUCR
r3,0x0002
r3,0x0015
r4,0xC3F8
r4,0x8028
r3,0(rd) # BIUCR3

r3,flash opteh

r3,flash optel

r4,copy to rameh

r4,copy to rame@l
4,r3,r4

r4

r5,0x4000

r5

r6,0(r3)
r6,0(r5)
r3,r3,1
r5,r5,1
copy

EEE R SRR EEEEEEEEE RS

LR R R SRS EEEEE SRR E RS

r3, 0x0201
1013, 3

EEEE SRS EEEEEEEEE SRS

tack into cache and set stack pointer (core 1)
khkkkkhkkkhkkhkhkkhkkhkkhkhkkkkkxkx

mfpir r5 # Check core id
se cmpi r5,0
se beq stack cache 0
stack cache 1:
e lis r3, STACK SIZE 1@h
e or2i r3, STACK SIZE lel
se_srwi r3,5 # Shift the contents of R5 right by 5 bits (size/32)
se mtctr r3
e lis r3, SP END 1@h
e or2i r3, SP END l@l
lock cache loop 1:
dcbz r0,r3 # Establish address in cache for 32 bytes and zero
dcbtls 0,r0,r3 # Lock the address into the cache
se_addi r3,32 # Increment to start of next cache line (+32 bytes)
e bdnz lock cache loop 1 # Decrement the counter (CTR), branch if nonzero
e lis rl, (__SP_INIT 1-0x10)@h
e or2i rl, (_ SP INIT 1-0x10)el
2 R T Set up stack and run time environment Core 1 ---------
MPC5676R Software Initialization and Optimization, Rev. 1, 03/2012
18 Freescale Semiconductor, Inc.

4
A

main.c file
e_lis rl, _ SP_INIT_leh # Initialize stack pointer rl to
e or2i rl, SP INIT lel # value in linker command file.
e lis rl3, SDA BASE @h # Initialize rl3 to sdata base
e_or2i rl3, _SDA BASE @l # (provided by linker).
e lis r2, SDA2 BASE @h # Initialize r2 to sdata2 base
e or2i r2, SDA2 BASE el # (provided by linker).
e stwu 1r0,-64(rl)# Terminate stack.
e b main
#******************************
lock the stack into cache and set stack pointer (core 0)
#******************************
stack_cache 0:
e lis r3, STACK SIZE Oeh
e or2i r3, STACK SIZE Oel
se srwi r3,5 # Shift the contents of R5 right by 5 bits (size/32)
se mtctr r3
e lis r3, SP_END Oeh
e or2i r3, SP END O@l
lock _cache loop 0:
dcbz r0,r3 # Establish address in cache for 32 bytes and zero
dcbtls 0,r0,r3 # Lock the address into the cache
se addi r3,32 # Increment to start of next cache line (+32 bytes)
e _bdnz lock cache loop 0 # Decrement the counter (CTR), branch if nonzero
e lis rl, (_ SP_INIT 0-0x10)eh
e or2i rl, (_ SP INIT 0-0x10)el
#******************************
call ghs init code (_start in crt0.s) This
call to the GHS code insures heap etc. are
configured and intialized correctly.
#******************************
e b start
hang if here
loop_ forever:
se_b loop_ forever
/**/
/* FILE: main.c * /
/* */
/* DESCRIPTION: */
/* Example project for MPC5676R. */
/*===========z====z====z====z====z====z====z============================z=======% /
/* UPDATE HISTORY */
/* Revision Author Date Description of change */
/* 1.0 D. Erazmus 12/13/2010 Initial version. */
/*===========z====z====z====z====z====z====z========z============z========z====z===% /
/* COPYRIGHT (c) Freescale Semiconductor, Inc. 2011 */
/* All Rights Reserved */
/**/
/**
INCLUDE FILES
**/
#include <ppc_ghs.h>
MPC5676R Software Initialization and Optimization, Rev. 1, 03/2012
Freescale Semiconductor, Inc. 19

P

cinker definition file

#include "MPC567xR.h"
#include "siu.h"

#define RSTVEC VLE 1
#define RSTVEC RESET 0x2
#define RSTVEC RST MASK OxFFFFFFFC

/**

Global vars
**/

extern unsigned long _ start;

/**/

/*

MAIN */

/**/

int main (void)

{

int pid;

asm ("e 1i r0, 0x4000") ;

asm ("mthid0o rO0"); /* enable TB and decrementer */
pid = _ MFSPR(286) ;

if (pid == 0)
volatile int i;
SIU.PCR[144].R = ALTO | OBE; //PA=0, OBE=1 for GPIO[0] PA[1l]

/* Start Core 1 in VLE mode */

SIU.RSTVECL1.R = ((unsigned long)& start & RSTVEC RST MASK) | RSTVEC_VLE;

while (1) /* loop forever (core 0) */
1++;
if (i % 1000000 == 0)
SIU.GPDO[144] .R 7= 1;
!
} else {
volatile int i;
SIU.PCR[113].R = ALTO | OBE; //PA=0, OBE=1 for GPIO[0] PA[0]
while (1) /* loop forever (core 1) */
{
i++;
if (i % 1000000 == 0)
SIU.GPDO[113].R "= 1;
!

}

/* end of main */

A.3 Linker definition file

//***
// FILE: standalone romrun.ld

//

// DESCRIPTION:

*
*
*

MPC5676R Software Initialization and Optimization, Rev. 1, 03/2012

20

Freescale Semiconductor, Inc.

g |

Linker definition file

// Linker definition file for MPC5676R project *
S
// UPDATE HISTORY
// Revision Author Date Description of change *
// 1.0 D. Erazmus 12/13/2010 Initial version. *
e ——
// COPYRIGHT (c) Freescale Semiconductor, Inc. 2011 *
// All Rights Reserved *
//***
DEFAULTS {

SRAM_ SIZE = 384K

SRAM MMU SIZE = 512K

SRAM_BASE_ADDR = 0x40000000

STACK SIZE O = 4K // 4KB Stack for core 0

STACK SIZE 1 = 4k // 4KB Stack for core 1

stack _reserve = 4k

heap reserve = 4k

}

MEMORY {

// 6M Internal Flash
flash rsvdl : ORIGIN = 0x00000000, LENGTH = 8
flash memory : ORIGIN = ., LENGTH = 6M-8
flash rsvd2 : ORIGIN = ., LENGTH = O

// 384KB of internal SRAM starting at 0x40000000

dram_rsvdl : ORIGIN = 0x40000000, LENGTH = 0x200
dram_reset : ORIGIN = ., LENGTH = 0

dram_memory : ORIGIN = ., LENGTH = SRAM SIZE-0x200
dram_rsvd2 : ORIGIN = ., LENGTH = O

// 4k of stack per core to be locked in cache
stack_ramo : ORIGIN = SRAM_BASE_ADDR+SRAM_MMU_SIZE, LENGTH STACK_SIZE_O
stack_raml : ORIGIN = SRAM BASE ADDR+SRAM MMU SIZE+STACK SIZE 0, LENGTH = STACK SIZE 1

// Program layout for starting in ROM, copying data to RAM,
// and continuing to execute out of ROM.

//
SECTIONS
//
// RAM SECTIONS
//
.PPC.EMB.sdata0 ABS : > dram memory
.PPC.EMB. sbss0 CLEAR ABS : >
.sdabase ALIGN (16) > dram_ memory
.sdata >
.sbss >
.data >
.bss >
.heap ALIGN(16) PAD (heap reserve) >
.__exception handlers ALIGN (4k) >
.stack ALIGN(16) PAD(STACK SIZE 0) : {} > stack ram0 // Stack Area
.stackl ALIGN(16) PAD(STACK SIZE 1) : {} > stack raml // Stack Area
//
// ROM SECTIONS
//
.rcw NOCHECKSUM : > flash rsvdl

MPC5676R Software Initialization and Optimization, Rev. 1, 03/2012

Freescale Semiconductor, Inc. 21

h o
g |

.init
.text
.vletext
.syscall

.rodata
.sdata2

.secinfo
.fixaddr
.fixtype

.CROM.PPC.EMB.sdata0 CROM (.PPC.EMB.sdata0)

.CROM. sdata
.CROM.data

\%

\%

CROM (.sdata)
CROM (.data)

VvV Vv

/* Stack Address Parameters */

__SP_INIT - ADDR(.stack) + SIZEOF (stack ram0) ;
__SP_INIT O = ADDR(.stack) + SIZEOF (stack ramoO) ;
__SP_INIT 1 = ADDR(.stackl) + SIZEOF (stack raml) ;
__SP_END = ADDR (.stack) ;

~_SP_END 0 = ADDR(.stack) ;

__SP_END 1 = ADDR(.stackl) ;

__STACK_SIZE = SIZEOF (stack_ram0) ;

__ STACK SIZE 0 = SIZEOF (stack ram0) ;

__STACK SIZE 1 = SIZEOF (stack raml) ;

_SRAM BASE_ADDR = ADDR (dram_rsvdl) ;
= SIZEOF (dram_rsvdl) + SIZEOF (dram reset) + SIZEOF (dram memory) +

_SRAM_SIZE

SIZEOF (dram_rsvd2) ;

//

// These special symbols mark the bounds of RAM and ROM memory.
// They are used by the MULTI debugger.

//

//

__ghs_ramstart = MEMADDR (dram_rsvdl) ;

__ghs ramend

= MEMENDADDR (dram_memory) ;

__ghs romstart = MEMADDR (flash rsvdl);

_ghs_romend

= MEMENDADDR (flash rsvd2) ;

*(.init) } > flash memory

// These special symbols mark the bounds of RAM and ROM images of boot code.
// They are used by the GHS startup code (_start and _ ghs ind crt0).

//
__ghs rambootcodestart = 0;
___ghs rambootcodeend = 0;
__ghs_rombootcodestart = ADDR(.text);
___ghs rombootcodeend = ENDADDR (. fixtype) ;
MPC5676R Software Initialization and Optimization, Rev. 1, 03/2012
22 Freescale Semiconductor, Inc.

g |

How to Reach Us:

Home Page:
www.freescale.com

Web Support:
http://www.freescale.com/support

USA/Europe or Locations Not Listed:
Freescale Semiconductor

Technical Information Center, EL516

2100 East Elliot Road

Tempe, Arizona 85284

+1-800-521-6274 or +1-480-768-2130
www.freescale.com/support

Europe, Middle East, and Africa:
Freescale Halbleiter Deutschland GmbH
Technical Information Center
Schatzbogen 7

81829 Muenchen, Germany

+44 1296 380 456 (English)

+46 8 52200080 (English)

+49 89 92103 559 (German)

+33 1 69 35 48 48 (French)
www.freescale.com/support

Japan:

Freescale Semiconductor Japan Ltd.
Headquarters

ARCO Tower 15F

1-8-1, Shimo-Meguro, Meguro-ku,
Tokyo 153-0064

Japan

0120 191014 or +81 3 5437 9125
support.japan @freescale.com

Asia/Pacific:

Freescale Semiconductor China Ltd.
Exchange Building 23F

No. 118 Jianguo Road

Chaoyang District

Beijing 100022

China

+86 10 5879 8000

support.asia @freescale.com

Document Number: AN4324
Rev. 1, 03/2012

Information in this document is provided solely to enable system and software
implementers to use Freescale Semiconductors products. There are no express or implied
copyright licenses granted hereunder to design or fabricate any integrated circuits or
integrated circuits based on the information in this document.

Freescale Semiconductor reserves the right to make changes without further notice to any
products herein. Freescale Semiconductor makes no warranty, representation, or
guarantee regarding the suitability of its products for any particular purpose, nor does
Freescale Semiconductor assume any liability arising out of the application or use of any
product or circuit, and specifically disclaims any liability, including without limitation
consequential or incidental damages. "Typical" parameters that may be provided in
Freescale Semiconductor data sheets and/or specifications can and do vary in different
applications and actual performance may vary over time. All operating parameters,
including "Typicals", must be validated for each customer application by customer's
technical experts. Freescale Semiconductor does not convey any license under its patent
rights nor the rights of others. Freescale Semiconductor products are not designed,
intended, or authorized for use as components in systems intended for surgical implant
into the body, or other applications intended to support or sustain life, or for any other
application in which failure of the Freescale Semiconductor product could create a
situation where personal injury or death may occur. Should Buyer purchase or use
Freescale Semiconductor products for any such unintended or unauthorized application,
Buyer shall indemnify Freescale Semiconductor and its officers, employees, subsidiaries,
affiliates, and distributors harmless against all claims, costs, damages, and expenses, and
reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury
or death associated with such unintended or unauthorized use, even if such claims alleges
that Freescale Semiconductor was negligent regarding the design or manufacture of

the part.

RoHS-compliant and/or Pb-free versions of Freescale products have the functionality and
electrical characteristics as their non-RoHS-complaint and/or non-Pb-free counterparts.
For further information, see http://www .freescale.com or contact your Freescale

sales representative.

For information on Freescale's Environmental Products program, go to
http://www freescale.com/epp.

Freescale™ and the Freescale logo are trademarks of Freescale Semiconductor, Inc.
All other product or service names are the property of their respective owners.

© 2012 Freescale Semiconductor, Inc.

R/

>~ freescale

semiconductor

	Introduction
	Overview
	Startup code
	Reset configuration and watchdog
	Programming the PLL
	Memory management unit (MMU)
	Enable caches
	SRAM initialization
	C runtime register setup
	Copy initialized data
	Start core 1

	MCU optimization
	Flash optimization
	Branch target buffer
	Crossbar switch

	Conclusion
	Appendix A: Code
	init.s file
	main.c file
	Linker definition file

