
 

  

 

 

 

 

S32G PKCS Compile and Test Procedure 

 

by: NXP Semiconductors 

1.  Introduction 

The HSE support for PKCS#11 provides a user-space 

module that integrates with libp11 to enable 

communication with HSE when using command line 

tools, such as OpenSSL and pkcs11-tool. Moreover, the 

communication is also supported by directly calling 

libp11 functions. 

This application note is developed with reference to the 

BSP31 Release, so steps may differ for other releases. 

NXP Semiconductors Document Number: AN13495  

Application Notes Rev. 0 ,  03/2022 

Contents 

1. Introduction .................................................................... 1 
2. NXP Linux crypto architecture .......................................... 2 
3. Prerequisites ................................................................... 2 
4. Compilation of required modules for PKCS on Linux host .. 3 

4.1. U-boot .................................................................. 3 
4.2. Linux Kernel .......................................................... 4 
4.3. Cross-compiling HSE PKCS11 module ..................... 5 

5. Modules compiled for running PKCS example  in Linux ..... 6 
5.1. Cross-compiling OpenSSL 1.1.1 for aarch64 ........... 6 
5.2. Cross-compiling LIBP11 for aarch64..................... 6 
5.3. Cross-compiling OpenSC’s pkcs11-tool .................. 7 
5.4. Example from HSE PKCS11 Module........................ 7 

6. Prepare a secure u-boot image ........................................ 7 
7. Boot secure image from SD or eMMC .............................. 8 
8. PKCS test setup on target ................................................ 9 
9. PKCS test execution on target ........................................ 10 



Prerequisites 

S32G PKCS Compile and Test Procedure, Rev. 0, 03/2022 

2  NXP Semiconductors 

  

2. NXP Linux crypto architecture 

 

 
Figure 1. Linux crypto architecture 

3. Prerequisites 

Below Modules needs to be compiled for executing PKCS example in BSP31 

1. BSP u-boot 

2. BSP Linux kernel 

3. pkcs11-hse 

4. libp11 0.4.11 (2020-Oct-11) 

5. OpenSSL 1.1.1 (2018-Sep-11) 

6. OpenSC 0.21.0 (2020-Nov-24) 

7. HSE_FW_S32G2_0_1_0_0 

8. Install packages 

• sudo apt-get install pcscd libccid libpcsclite-dev libssl-dev libreadline-dev autoconf 

automake build-essential docbook-xsl xsltproc libtool pkg-config 

All the modules are required to be compiled using aarch64 cross compiler and not Yocto based. PKCS11 
is not automated as part of Yocto distribution in BSP 31 release. 

Cross compiler can be downloaded from the following location. 

https://developer.arm.com/-/media/Files/downloads/gnu-a/10.2-2020.11/binrel/gcc-arm-10.2-2020.11-x86_64-aarch64-none-linux-gnu.tar.xz?revision=972019b5-912f-4ae6-864a-f61f570e2e7e&la=en&hash=B8618949E6095C87E4C9FFA1648CAA67D4997D88


Compilation of required modules for PKCS on Linux host 

S32G PKCS Compile and Test Procedure, Rev. 0, 03/2022 

NXP Semiconductors  3 

4. Compilation of required modules for PKCS on Linux host 

NOTE 

Set the CROSS COMPILE. This is required for cross compiling all the 

modules going forward  

#export CROSS_COMPILE= path/to/your/toolchain/dir/bin/aarch64-none-linux-

gnu-#export ARCH=arm64 

4.1. U-boot 

The following sub sections describes the steps required to setup and build u-boot bootloader  

4.1.1. Downloading the u-boot bootloader source code 

There are two ways of obtaining the source for this component, each described below. Choose the one 

which is appropriate for your situation. 

1. Cloning the GIT repository: In a Linux terminal window, type in the following commands 

#git clone https://source.codeaurora.org/external/autobsps32/u-boot 

#cd u-boot 

#git checkout -b <branch_name> bsp31.0-2020.04 

#ls 

The contents of the u-boot source code should appear. 

2. If you already have a clone of the repository, you can run the following commands in the root 

directory of the existing repository: 

#git fetch origin bsp31.0-2020.04 

#git checkout -b <branch_name> bsp31.0-2020.04 

#ls 

The contents of the u-boot source code should appear. 

<branch_name> is a new branch to be created from the specified tag and can have any value 

(user choice) 

4.1.2. Building the u-boot bootloader 

1. In the same Linux terminal window as above, type the following commands 

#make CROSS_COMPILE=/path/to/your/toolchain/dir/bin/ aarch64-none-linux-gnu-

<board>_defconfig 

NOTE 

If targeting the s32g274ardb, s32g274ardb2 board replace <board> with 

the board name in the first command above. Use s32g274ardb2_defconfig 



Compilation of required modules for PKCS on Linux host 

S32G PKCS Compile and Test Procedure, Rev. 0, 03/2022 

4  NXP Semiconductors 

  

for RDB boards and  s32g2xxaevb_defconfig for s32g274aevb, 

s32g254aevb and s32g233aevb boards.  

2. Enable secure boot from menuconfig 

#make menuconfig  

Search for hse flag and make sure it is enabled. Set to Y as below 

 

3. Compile u-boot image 

#make CROSS_COMPILE=/path/to/your/toolchain/dir/bin/aarch64-none-linux-gnu- 

This command generates the u-boot image with IVT header and Program data (u-boot.s32) 

that can be written onto the SD. Also, the layout should have sufficient space to store HSE 

and required associated data on it. The following layout is used 

 

4.2. Linux kernel 

The following sub sections shows the steps to set up and build Linux kernel 

4.2.1. Downloading the Linux kernel source code 

There are two ways of obtaining the source for this component, both of the ways are described below. 

Choose the one which is appropriate for your situation 

1. Cloning the GIT repository: In a Linux terminal window, type in the following commands 

#git clone https://source.codeaurora.org/external/autobsps32/linux 

#cd linux 

#git checkout -b <branch_name> bsp31.0-5.4-rt 

#ls 

The contents of the linux kernel source code should appear here. 



Compilation of required modules for PKCS on Linux host 

S32G PKCS Compile and Test Procedure, Rev. 0, 03/2022 

NXP Semiconductors  5 

2. If you already have a clone of the repository, you can run the following commands in the root 

directory of the existing repository: 

# git fetch origin bsp31.0-5.4-rt  

# git checkout -b <branch_name> bsp31.0-5.4-rt 

# ls 

The contents of the Linux kernel source code appears here. <branch_name> is a new branch to 

be created from the specified tag and can have any value (user choice) 

4.2.2. Building the Linux Kernel 

1. In the same linux terminal window as above, type in the following commands. 

#make ARCH=arm64 CROSS_COMPILE=/path/to/your/toolchain/dir/bin/ aarch64-none-linux-

gnu- <soc_name>_defconfig 

For s32g274aevb, s32g254aevb, s32g233aevb, s32g274ardb and s32g274ardb2, the defconfig is 

s32gen1_defconfig. 

2. Linux must be compiled with CONFIG_UIO_NXP_HSE flag enabled. Also, MU can be set to 

user’s choice through CONFIG_UIO_NXP_HSE_MU_ID. The option set can be enabled by 

running: 

#make ARCH=arm64 CROSS_COMPILE=/path/to/your/toolchain/dir/bin/ aarch64-none-linux-

gnu- menuconfig 

# make ARCH=arm64 CROSS_COMPILE=/path/to/your/toolchain/dir/bin/ aarch64-none-linux-

gnu- 

4.3. Cross-compiling HSE PKCS11 module 

1. Download HSE Firmware from Flexera, and unzip it on a known path, for example: 

=$HOME/ HSE_FW_S32G2_0_1_0_0 

#git clone https://source.codeaurora.org/external/autobsps32/pkcs11-hse 

#cd pkcs11-hse/  

#git checkout release/bsp31.0 

#export HSE_FWDIR=/path/to/HSE FW (i.e. HSE_FW_S32G274_0_0_9_0) 

#make 

NOTE 

If the compilation fails, open a new terminal, and run the below export 

commands 

#export CROSS_COMPILE= path/to/your/toolchain/dir/bin/aarch64-

none-linux-gnu- 



Modules compiled for running PKCS example  in Linux 

S32G PKCS Compile and Test Procedure, Rev. 0, 03/2022 

6  NXP Semiconductors 

  

#export ARCH=arm64 

#make 

5. Modules compiled for running PKCS example  in Linux 

5.1. Cross-compiling OpenSSL 1.1.1 for aarch64 

5.1.1. Download and cross compile Open SSL 

# wget https://www.openssl.org/source/old/1.1.1/openssl-1.1.1k.tar.gz  

# tar -xvzf openssl-1.1.1k.tar.gz 

#cd openssl-1.1.1k 

#./Configure linux-aarch64 --prefix=$HOME/openssl-aarch64 

-prefix indicates a directory separate from your host’s file system in which the crosscompiled files are 

placed. The path provided is an example. 

5.1.2. Build Open SSL 

#make  

#sudo make install 

You can find the compiled files under $HOME/openssl-aarch64 

5.2. Cross-compiling LIBP11 for aarch64 

5.2.1. Download and cross compile Libp11 

# wget https://github.com/OpenSC/libp11/releases/download/libp11-0.4.11/libp11-0.4.11.zip  

# unzip libp11-0.4.11.zip 

# cd libp11-0.4.11 

#export CFLAGS="-g -O2 -I $HOME/openssl-aarch64/include" 

#./configure --host=aarch64-linux-gnu --prefix=$HOME/libp11-aarch64/ --with-

enginesdir=$HOME/libp11-aarch64/ OPENSSL_LIBS="-lcrypto -L$HOME/openssl-aarch64/lib" 

-prefix indicates a directory separate from your host’s file system in which the crosscompiled files are 

placed. The path provided is an example. 

5.2.2. Build Libp11 

#make 

https://www.openssl.org/source/old/1.1.1/openssl-1.1.1k.tar.gz
https://github.com/OpenSC/libp11/releases/download/libp11-0.4.11/libp11-0.4.11.zip


Prepare a secure u-boot image 

S32G PKCS Compile and Test Procedure, Rev. 0, 03/2022 

NXP Semiconductors  7 

#sudo make install 

5.3. Cross-compiling OpenSC’s pkcs11-tool  

5.3.1. Download and cross compile OpenSC 

# wget https://github.com/OpenSC/OpenSC/releases/download/0.21.0/opensc-0.21.0.tar.gz  

# tar -xvzf opensc-0.21.0.tar.gz 

# ./bootstrap 

#./configure --host=aarch64-linux --prefix="$HOME/opensc-aarch64-test" --enable-openssl 

CC=aarch64-linux-gnu-gcc LDFLAGS="-g -Wl,-rpath,$HOME/openssl-aarch64/lib" 

OPENSSL_LIBS="-lcrypto -L$HOME/openssl-aarch64/lib" OPENSSL_CFLAGS="-I$HOME/openssl-

aarch64/include" 

-prefix indicates a directory separate from your host’s file system in which the crosscompiled files are 

placed. The path provided is an example. 

5.3.2. Build OpenSC 

#make CFLAGS="-Wno-error=format-truncation" 

#make 

#sudo make install 

5.4. Example from HSE PKCS11 Module  

Compile the included example as part of HSE PKCS11 Module (Cross-compiling HSE PKCS11 

module) to verify HSE functionality. 

#cd examples  

#make OPENSSL_DIR=$HOME/openssl-aarch64 LIBP11_DIR=$HOME/libp11-aarch64 

Since the application is dynamically linked, both libcrypto and libp11 must be present in the target’s file 

system, (usually) under /usr/lib/. In this case, you can use the files under openssl-aarch64/lib/ and 

libp11-aarch64/lib/, and copy the libp11.so* and libcrypto.so* files to the target’s /usr/lib/ directory.  

Afterwards, you can run the example on the target system  

#./pkcs-keyop /path/to/libpkcs-hse.so 

6. Prepare a secure u-boot image 
Now that all the required images are compiled, make a secure u-boot image. For ease-of-use, the script 

tools/s32gen1_secboot.sh is provided as part of u-boot to automate the process of signing and writing 

the signed image to the SD Card 

https://github.com/OpenSC/OpenSC/releases/download/0.21.0/opensc-0.21.0.tar.gz


Boot secure image from SD or eMMC 

S32G PKCS Compile and Test Procedure, Rev. 0, 03/2022 

8  NXP Semiconductors 

  

The following steps are required for users executing from windows PC using Cygwin. 

Create a folder <example pkcs> 

#mkdir pkcs 

#cd pkcs 

#mkdir tools 

#cp u-boot/tools/s32gen1_secboot.sh to tools /*The folders can be created at any path*/ 

#cp u-boot/u-boot.s32 to pkcs folder created above 

Download hse pink binary from Flexera and copy to pkcs folder. Make sure you are in pkcs folder and 

run the below command 

# ./tools/s32gen1_secboot.sh -k keys -d /dev/sdb --hse 32g2xx_hse_fw_0.1.0_0.9.0_pb210331.rev2.pink 

Usage: s32gen1_secboot.sh -k <key_path> -d <device> --hse <hse_pink_binary> 

-k|--key Full path to key pair directory 

NOTE: A new key pair will be created in the specified directory 

-d|--dev Full path to device (i.e. /dev/sdb) 

--hse Full path to HSE Firmware 

-h|--help Display this help section 

If running on a Linux machine, the s32gen1_secboot.sh script can be used directly from the u-boot repo, 

if the HSE pink binary is also on the Linux machine 

After the secure boot image is written into the SD or eMMC, copy the files compiled above from the 

directories pointed as part of prefix option (--prefix=$HOME/) under examples Modules compiled for 

running PKCS example  in Linux. These are the directories where the cross compiled files are created 

1. openssl-aarch64/lib/libcrypto.so.1.1 

2. opensc-aarch64-test/lib/libopensc.so.7.0.0  

3. opensc-aarch64-test/bin/pkcs11-tool 

4. libp11-aarch64/lib/libp11.so.3.4.3 

Below files are created as part of pkcs11-hse folder 

5. pkcs11-hse/libpkcs-hse.so  

6. pkcs11-hse/examples/pkcs-keyop 

7. kcs11-hse/libhse.so.1.0 

7. Boot secure image from SD or eMMC  

To use the HSE PKCS driver, the HSE Key Catalog must be formatted before use by using the 

following U-Boot command: 

#hse_keystore_format 



PKCS test setup on target 

S32G PKCS Compile and Test Procedure, Rev. 0, 03/2022 

NXP Semiconductors  9 

#reset 

After completing the boot, to ensure that HSE is running type the following command: 

# dmesg | grep hse 

Expected output: 

[    0.911425] uio_hse 40211000.mu1b: successfully registered device 

8. PKCS test setup on target 

NOTE 

Below steps needs be executed when the host is a Windows machine. If 

the user is writing these files to the sdcard from a Linux machine, they can 

write them directly to the rootfs and follow from step 7 

1. Boot S32G device 

2. Make a directory under root 

#mkdir <directory name, For example, created pkcs> 

3. Mount SD or eMMC 

#mount /dev/mmcblk0p1 pkcs/ 

4. cd to mount directory 

#cd pkcs 

5. Copy the libraries from SD or eMMC into /usr/lib 

# cp libcrypto.so.1.1 /usr/lib 

# cp libopensc.so.7.0.0 /usr/lib 

# cp libp11.so.3.4.3 /usr/lib 

#cp libhse.so.1.0 /usr/lib 

# cp pkcs11-hse.so ~/ 

# cp pkcs-keyop ~/ 

# cp pkcs11-tool ~/ 

6. Unmount the mounted directory  

#umount pkcs 

7. Configure dynamic linker at run-time 

#ldconfig -l /usr/lib/libp11.so.3.4.3 

#ldconfig -l /usr/lib/libcrypto.so.1.1 

#ldconfig -l /usr/lib/libopensc.so.7.0.0 

#ldconfig -l /usr/lib/libhse.so.1.0 



PKCS test execution on target 

S32G PKCS Compile and Test Procedure, Rev. 0, 03/2022 

10  NXP Semiconductors 

  

9. PKCS test execution on target 

1. Run the application pkcs-keyop 

# ./pkcs-keyop /home/root/pkcs11-hse.so 

Pkcs-keyop application demonstrates the creating and removal of the keys using the PKCS API’s 

called from the library libpkcs-hse. 

hse: device initialized, status 0x6b20 

[  932.669666] uio_hse 40211000.mu1b: device hse-uio open 

1 slots available 

Using token: 

Manufacturer......: NXP-Semiconductors 

Description.......: NXP-HSE-Slot 

Token label.......: NXP-HSE-Token 

Key pair[  933.305201] uio_hse 40211000.mu1b: device hse-uio released 

 stored 

Keys available: 1 

Enumerated key label: HSE Key Pair 

Key removed 

2. Run pkcs11-tool to load RSA keys (public/pair), EC keys (public) and AES keys. The -id switch 

corresponds to the key’s number (00), slot (06) and catalog (01), in hexadecimal, from the HSE 

Key Catalog. Some examples.  

NOTE  

To run this example. You need RSA Key pair, ec Key pair and aes and can 

be generated using openSSL.  

#./pkcs11-tool --module ~/libpkcs-hse.so --write-object /<path>/rsa_keypair.der \ 

--type privkey --id 000601 --label "HSE-RSAPRIV-KEY" 

#./pkcs11-tool --module ~/libpkcs-hse.so --write-object /<path>/rsa_keypub.der \ 

--type pubkey --id 000701 --label "HSE-RSAPUB-KEY" 

#./pkcs11-tool --module ~/libpkcs-hse.so --write-object /<path>/ec_keypub.der \ 

--type pubkey --id 000401 --label "HSE-ECPUB-prime256v1-KEY" 

#./pkcs11-tool --module ~/libpkcs-hse.so --write-object /<path>/aes.key \ 

--type secrkey --key-type AES:256 --id 000101 --label "HSE-AES-256-KEY" 

Below is the displayed message if the key import operation is successful 

hse: device initialize[ 1293.011266] uio_hse 40211000.mu1b: device hse-uio open 



PKCS test execution on target 

S32G PKCS Compile and Test Procedure, Rev. 0, 03/2022 

NXP Semiconductors  11 

d, status 0x6b20 

Using slot 0 with a present token (0x0) 

Created private key: 

[ 1293.061793] uio_hse 40211000.mu1b: device hse-uio released 

  label:      HSE-RSAPRIV-KEY 

  ID:         000601 

  Usage:      none 

  Access:     none 

 

 

 

 

 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 



 
 
 

 
 
 

Document Number: AN13495 
Rev. 0 

03/2022 

   

 

How to Reach Us: 

Home Page: 

nxp.com 

Web Support: 

nxp.com/support 

Information in this document is provided solely to enable system and software 

implementers to use NXP products. There are no express or implied copyright licenses 

granted hereunder to design or fabricate any integrated circuits based on the 

information in this document. NXP reserves the right to make changes without further 

notice to any products herein. 

NXP makes no warranty, representation, or guarantee regarding the suitability of its 

products for any particular purpose, nor does NXP assume any liability arising out of 

the application or use of any product or circuit, and specifically disclaims any and all 

liability, including without limitation consequential or incidental damages. “Typical” 

parameters that may be provided in NXP data sheets and/or specifications can and do 

vary in different applications, and actual performance may vary over time. All operating 

parameters, including “typicals,” must be validated for each customer application by 

customer’s technical experts. NXP does not convey any license under its patent rights 

nor the rights of others. NXP sells products pursuant to standard terms and conditions 

of sale, which can be found at the following address: nxp.com/SalesTermsandConditions. 

While NXP has implemented advanced security features, all products may be subject to 

unidentified vulnerabilities. Customers are responsible for the design and operation of 

their applications and products to reduce the effect of these vulnerabilities on 

customer’s applications and products, and NXP accepts no liability for any vulnerability 

that is discovered. Customers should implement appropriate design and operating 

safeguards to minimize the risks associated with their applications and products. 

NXP, the NXP logo, NXP SECURE CONNECTIONS FOR A SMARTER WORLD, 

COOLFLUX, EMBRACE, GREENCHIP, HITAG, I2C BUS, ICODE, JCOP, LIFE VIBES, 

MIFARE, MIFARE CLASSIC, MIFARE DESFire, MIFARE PLUS, MIFARE FLEX, 

MANTIS, MIFARE ULTRALIGHT, MIFARE4MOBILE, MIGLO, NTAG, ROADLINK, 

SMARTLX, SMARTMX, STARPLUG, TOPFET, TRENCHMOS, UCODE, Freescale, the 

Freescale logo, AltiVec, C 5, CodeTEST, CodeWarrior, ColdFire, ColdFire+, C Ware, 

the Energy Efficient Solutions logo, Kinetis, Layerscape, MagniV, mobileGT, PEG, 

PowerQUICC, Processor Expert, QorIQ, QorIQ Qonverge, Ready Play, SafeAssure, the 

SafeAssure logo, StarCore, Symphony, VortiQa, Vybrid, Airfast, BeeKit, BeeStack, 

CoreNet, Flexis, MXC, Platform in a Package, QUICC Engine, SMARTMOS, Tower, 

TurboLink, and UMEMS are trademarks of NXP B.V. All other product or service names 

are the property of their respective owners. Arm, AMBA, Arm Powered, Artisan, Cortex, 

Jazelle, Keil, SecurCore, Thumb, TrustZone, and μVision are registered trademarks of 

Arm Limited (or its subsidiaries) in the EU and/or elsewhere. Arm7, Arm9, Arm11, 

big.LITTLE, CoreLink, CoreSight, DesignStart, Mali, Mbed, NEON, POP, Sensinode, 

Socrates, ULINK and Versatile are trademarks of Arm Limited (or its subsidiaries) in the 

EU and/or elsewhere. All rights reserved. Oracle and Java are registered trademarks of 

Oracle and/or its affiliates. The Power Architecture and Power.org word marks and the 

Power and Power.org logos and related marks are trademarks and service marks 

licensed by Power.org. 

© 2021 NXP B.V. 

 

 

 

 

 

 

 
 

 
 
 

 
 
 

 
 
 
 
 
 
 
 
 
 
 

   

http://www.freescale.com/
http://www.freescale.com/support
http://www.freescale.com/SalesTermsandConditions
http://www.freescale.com/SalesTermsandConditions

	1.  Introduction
	2.  NXP Linux crypto architecture
	3. Prerequisites
	4. Compilation of required modules for PKCS on Linux host
	4.1. U-boot
	4.1.1. Downloading the u-boot bootloader source code
	4.1.2. Building the u-boot bootloader

	4.2. Linux kernel
	4.2.1. Downloading the Linux kernel source code
	4.2.2. Building the Linux Kernel

	4.3. Cross-compiling HSE PKCS11 module

	5. Modules compiled for running PKCS example  in Linux
	5.1. Cross-compiling OpenSSL 1.1.1 for aarch64
	5.1.1. Download and cross compile Open SSL
	5.1.2. Build Open SSL

	5.2. Cross-compiling LIBP11 for aarch64
	5.2.1. Download and cross compile Libp11
	5.2.2. Build Libp11

	5.3. Cross-compiling OpenSC’s pkcs11-tool
	5.3.1. Download and cross compile OpenSC
	5.3.2. Build OpenSC

	5.4. Example from HSE PKCS11 Module

	6. Prepare a secure u-boot image
	7. Boot secure image from SD or eMMC
	8. PKCS test setup on target
	9. PKCS test execution on target

