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ABSTRACT. We investigate the temperature dependence of
the thermal resistance. We extract the thermal resistance as
function of ambient temperature. The increase of thermal re-
sistance due to self-heating leads to a non-linear relation be-
tween temperature and power dissipation. We show how to
implement this in a compact model and what its effect is on
simulations at high power dissipation.

I Introduction
For several modern processes self-heating becomes increasingly
important. For III-V HBT’s (e.g., GaAs based) and SOI processes
this has always been so, because of the low thermal conductivity
of GaAs and silicon-oxide. For modern high-performance SiGe
processes the oxide in the deep trenches also increases the self-
heating: the heat-flow is in practice confined to the restricted
silicon region. For designs in these processes it is therefore
paramount to take self-heating into account. Modern compact
models are capable of doing this. It is rather surprising, however,
that the temperature dependence of the thermal resistance has not
yet being taken into account.

It is well-known that the thermal conductivity changes with
temperature [1]. For many of the materials used in semiconduc-
tor devices the thermal conductivity κ(T ) as function of tempera-
ture T is approximately given as

κ(T ) = κref

(
T

Tref

)−α

, (1)

in the relevant temperature range (e.g., between −50◦C and
200◦C). Here κref is the thermal conductivity at the reference tem-
perature Tref. The values of κref and α for different materials can
for instance be found in Ref. [2]. For Si one often sees α = 4/3
being used. This means that the thermal conductivity at 125◦C is
about a factor 1.5 lower than at 25◦C. This is quite significant.
For GaAs the value is α = 1.25. So although the thermal con-
ductivity of Si is much higher than that of GaAs, its temperature
dependence is very similar. If, therefore, for a specific device it
has been found that self-heating is relevant, then it is also relevant
to take the temperature dependence of κ into account.

The thermal resistance is inversely proportional to the thermal
conductivity. This means that the temperature behaviour of the
thermal resistance can be given as

RTH(T ) = RTH,ref

(
T

Tref

)α

. (2)

Marsh [3] already showed an increase in thermal impedance with
temperature, based on device simulations. Other authors [4, 5, 6]
show the increase of the thermal resistance as function of power
dissipation at constant ambient, but increasing device temperature.
In section II we will present extracted thermal resistances as func-
tion of temperature, at such low dissipation that the junction tem-
perature is (almost) equal to the ambient. This enables us to verify
Eq. (2) directly.

We then discuss the effect that the temperature increase due
to self-heating also increases the thermal resistance. The relation
between temperature and power dissipation is then no longer lin-
ear, but it becomes non-linear. Expressions to describe this effect
have been given in Refs. [7, 8, 9], but no verification versus mea-
surements was performed. This non-linear relation is independent
of the precise geometry between the heat source and the heat sink.
It is important to realise that this non-linear relation is device in-
dependent and therefore valid not only for bipolar transistors, but
also for other devices like LDMOS transistors. In Section III we
show how to implement this relation in a compact model. We then
verify the model against measurements, and show the difference
between taking this non-linear dependence into account or not.

II Extraction of thermal resistance
For the extraction of the thermal resistance various methods have
been published. Not all of these methods can be used for our work.
The method of Ref. [10] is limited to transistors that have such a
large thermal resistance that self-heating is already present before
high-current effects play a role. It is especially sensitive to emitter
resistance if the voltage drop over the emitter resistance becomes
comparable to the thermal voltage. The method of Refs [11, 12]
combines measurements over a large temperature range to extract
a thermal resistance averaged over temperature. This method is
therefore not suited for extracting the thermal resistance as func-
tion of temperature.

For our work we use the method of Ref. [13]. This method
also has the advantage that no fitting to a model is needed, but that
the thermal resistance can be determined directly from measure-
ments. We measured the base and collector current as function of
collector voltage at a fixed base-emitter voltage for three closely
spaced temperatures, Tamb − �T , Tamb, and Tamb + �T . During
these three measurements we kept the probes on the pads while
changing the temperature, to keep the contact resistance as con-
stant as possible. The thermal resistance for a reference point at
collector voltage VCE and ambient temperature Tamb is then calcu-
lated using [13]

RTH = �T

IC�VCE

IB(VCE+�VCE, Tamb) − IB(VCE−�VCE, Tamb)

IB(VCE, Tamb+�T ) − IB(VCE, Tamb−�T )
.

(3)
The assumption here is that the early voltage VA is large enough
such that (1 + VCE/VA) � 1. Note that in the derivation of Eq. (3)
it has been taken into account that the temperature of the tran-
sistor is larger than that of the ambient temperature due to self-
heating. To reduce the effect of non-linearities in the temperature
and collector-voltage dependence of the base and collector cur-
rents, we used measurements symmetrically around the reference
point (VCE, Tamb) in Eq. (3). For the temperature difference we
used �T = 10◦C , which is small enough to prevent large non-
linearities and large enough to reduce the effects of the inaccura-
cies of the thermo-chuck. Furthermore, we used VCE = 2 V and
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Figure 1: Extracted thermal resistance RTH for a GaAs transistor
as function of ambient temperature. Both the values extracted from
collector current measurements and base current measurements
are shown. The line is according to Eq. (2) with RTH = 490◦C/W
for Tamb = 25◦C and with α = 1.25.

�VCE = 0.2 V. We found that the results are not sensitive to either
VCE or �VCE (outside the hard-saturation and avalanche regions).
A similar expression as Eq. (3) can be used to calculate the thermal
resistance from the collector current only, although the influence
of the Early voltage is larger.

We repeated the procedure for different ambient temperatures.
To keep the current level approximately constant for the different
ambient temperatures we decreased VBE by 25 mV for every 20◦C
temperature increase. The collector current is then around 2 mA.
Given the extracted thermal resistance, the increase in temperature
due to self-heating is only a few degrees, which means that the
extracted thermal resistance equals that at the temperature Tamb.

In Fig. 1 we show the extracted thermal resistance. We used
a GaAs-based HBT, with an emitter area of 4 times 2 × 20 µm2.
We both show the result extracted from the base current, as well
as that extracted from the collector current. The reason for the
slight difference between the two methods is unclear. The line is
the result based on Eq. (2) with the GaAs value α = 1.25. As one
can see, the thermal resistance increase is predicted quite nicely.

We have repeated the same kind of measurements for a SiGe
device. The results are more noisy. Nevertheless, the increase in
thermal resistance can also be clearly seen. The relative increase
in thermal resistance in SiGe is of the same order as that of GaAs.

III Self-heating of thermal resistance
We showed that the increase in thermal resistance due to the in-
crease in ambient temperature Tamb is quite large. Due to self-
heating, the transistor itself has an even higher temperature T than
the ambient temperature. This increases the thermal resistance
even more. We now discuss this effect in detail.

III.1 Theory
We define the thermal resistance as the ratio between temperature
increase and dissipation, writing

�T = Pdiss RTH. (4)

As mentioned above, the thermal resistance RTH is larger than the
thermal resistance at ambient temperature RTH,amb, defined as the
low-dissipation limit of �T/Pdiss. (For the temperature depen-

dence of RTH,amb one can use Eq. (2).) To find the resulting tem-
perature increase it is incorrect to solve the self-consistent relation

�T = PdissRTH,amb

(
Tamb + �T

Tamb

)α

, (5)

found from Eqs (2) and (4). Whereas the behaviour of the transis-
tor is determined by the temperature T at the junction, the thermal
resistance is determined by the distribution of the thermal con-
ductance in the whole heat-flow region between junction and the
heat-sink (which is at ambient temperature). Since the average
temperature in the heat-flow region is somewhere in-between Tamb
and T the thermal conductance is position dependent (via the po-
sition dependence of the temperature) and the increase in thermal
resistance is less than what can be found from Eq. (5).

In practice it is impossible to calculate the heat flow in the
device and therefore the precise temperature distribution is also
not known. Fortunately, it is possible to calculate the increase in
temperature at the junction at high dissipation if the increase at low
dissipation is known, as was shown in Refs. [7, 8]. Whereas the
differential equations that describe the heat flow are non-linear in
terms of T , they become linear in terms of a pseudo-temperature τ ,
defined as

τ = Tamb + 1

κ(Tamb)

∫ T

Tamb

κ(T ′)dT ′. (6)

Due to the linearity of the equations, the increase in pseudo-
temperature �τ is proportional to the dissipated power. It can
therefore be given in terms of the low-dissipation thermal re-
sistance as: �τ = PdissRTH,amb. The real temperature in-
crease �T can then be calculated from the increase in pseudo-
temperature �τ . The result is

�T = Tamb

[(
1 + (1 − α)Pdiss RTH,amb

Tamb

) 1
1−α − 1

]
, (7)

as given in Refs [8, 14]. In Ref. [9] a generalisation of Eq. (7) was
given that takes the thermal resistance of the package into account.
The expression (7) is valid for all geometries. Similar equations
for specific geometries where already given in Ref. [15]. Below
we will show how to implement Eq. (7) in a circuit simulator and
compare simulation results with measurements.

The thermal resistance can be found from Eq. (7) as RTH =
�T/Pdiss. Note that indeed, for low dissipation, RTH → RTH,amb.

An assumption of the derivation of Eq. (7) is that the temper-
ature dependence of the thermal conductivity is uniform. This re-
striction is not very severe. In modern SiGe processes the thermal
resistance is increased due to the use of shallow and deep trenches
filled with silicon-oxide, but the heat-flow is still dominantly in
silicon. It is therefore the temperature dependence of the thermal
conductivity of silicon that is relevant. In contrast, for many SOI
processes the transistor is completely surrounded by oxide. In that
case the thermal resistance is dominated by the heat-flow through
the oxide and hence the temperature dependence of the thermal
conductivity of the oxide, which is smaller than that of Si [1].

III.2 Implementation into a circuit simulator
For the implementation of the increase of the thermal resistance
due to self-heating, we first must make a distinction between the
power Pdiss that is dissipated by the transistor and the power Pflow
that flows to the heat-sink driven by a temperature difference. In
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Figure 2: Equivalent circuit used for simulating self-heating. On
the left the standard circuit with constant thermal resistance RTH
(although the thermal resistance can depend on the ambient tem-
perature). On the right the circuit where the thermal resistance is
replaced by the power in the heat-flow Pflow which is implemented
as a non-linear resistor. The controlling ‘voltage’ is �T , the ‘cur-
rent’ is given by Eq. (9).

a static situation both are equal when no external power—e.g. due
to the dissipation in other transistors—is being supplied. For dy-
namic situations the Pdiss can change very rapidly, whereas the
Pflow follows the slower change in �T . In general situations,
therefore, the expressions for �T given above should be in terms
of Pflow, instead of Pdiss.

Consider Fig. 2. On the left we show the situation for small
dissipation, or rather small temperature increase. The power be-
ing removed by the heat-flow is modelled with a constant thermal
resistance:

Pflow = �T

RTH
. (8)

For larger temperature increase we must take the increase in ther-
mal resistance into account. The expression for Pflow can then be
found as the inverse of Eq. (7):

Pflow = Tamb

RTH,amb(1 − α)

[(
Tamb + �T

Tamb

)1−α

− 1

]
. (9)

Since now the power Pflow is a non-linear function of the tempera-
ture increase, we implement it as a non-linear resistance, as shown
in the right of Fig. 2. Note that we regain Eq. (8) in the limit
�T → 0.

In existing compact models the left circuit in Fig. 2 is hard-
coded, and can not be changed by the user. Nevertheless, it is
possible to simulate the effects by using a self-defined external
thermal circuit, as shown in in Fig. 3. The power Pflow is then
implemented in a sub-circuit and connected to the thermal node of
the hard coded model (here the node �T ).
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Figure 3: Equivalent circuit used for simulating the right circuit in
Fig. 2 when using a hard-coded existing compact model (internal
part). Pflow (external part) is added in a sub-circuit.
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Figure 4: Gummel plot for a GaAs transistor at 8 different
collector-emitter voltages from 1 to 8 V (right to left) at Tamb =
21◦C. Markers are measurements. Dashed lines are without in-
creased thermal resistance (α = 0). Solid lines are with increased
thermal resistance according to Eq. (7) with α = 1.25.

III.3 Experimental results

In Fig. 4 we show the IC -VBE characteristic of the GaAs transistor
used also in Section II. In these measurements the base current
was swept at different values of VCE. We also show simulations.
The dashed lines show the simulation result found for constant
thermal resistance, as in the left circuit of Fig. 2. The solid lines
use the non-linear relation between dissipation and temperature
increase. We simulated this as in Fig. 3 with Pflow from Eq. (9).
The thermal resistance at low dissipation was the same for both
simulations. Note that the extraction of the thermal resistance as
presented in Section II was done at collector current levels around
2 mA (VBE = 1.25 V), where there is still no significant difference
between the two simulation results.

We have also measured output characteristics. In Fig. 5 we
show the base-emitter voltage at constant base current. In Fig. 6 we
show the corresponding collector current. It is well-known that for
GaAs devices the collector current decreases with collector voltage
due to self-heating. Here we show that for larger currents and
voltages one needs to take into account the increase of the thermal
resistance with power dissipation for a correct description of the
collector current and base-emitter voltage.
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Figure 5: VBE versus VCE for IB = 100, 300, and 500 µA. Sym-
bols and lines are as in Fig. 4. For the lowest I B the solid and
dashed lines are almost on top of each other for all values of VCE.
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Figure 6: IC versus VCE for IB = 100, 200, 300, 400 and 500 µA.
Symbols and lines are as in Fig. 4.

III.4 Thermal runaway
In Eq. (9) we have given the power that is being removed to the
heat-sink. This power increases with temperature difference �T .
When α > 1, as in many semiconductor materials, the amount of
power that can be removed has a maximum for �T → ∞:

Pflow,max = Tamb

RTH,amb(α − 1)
. (10)

This means that if the dissipated power is larger than this maxi-
mum removable power, the device will keep on increasing in tem-
perature. The result is thermal runaway and burnout of the device
[15, 16]. This can also be observed in the temperature increase
found in Eq. (7), which becomes meaningless if the term between
brackets becomes negative, i.e. when Pdiss > Pflow,max.

In practice this kind of thermal runaway will not happen by
itself. The dissipation has to be so large that even with a constant
thermal conductivity the temperature would already reach

RTH,amb Pflow,max = Tamb

(α − 1)
. (11)

For Si α = 4/3, which means that at an ambient temperature of
Tamb = 300 K this temperature increase would be 900 K. For
GaAs, where α = 1.25, it would even reach Tjunc = 1200 K.
These large increases in temperature normally do not occur.

Although the effect described here is in practice not large
enough to cause thermal runaway by itself, it does increase the
thermal runaway one has due to other effects, like the increase
of current with temperature [16]. This can, for instance, be ob-
served in Fig. 4, where the snap-back point moves to lower values
of VBE and IC . In Fig. 7 we give both the collector current and
base-emitter voltage at those snapback points. The collector cur-
rent shown is often taken as the maximal allowable current. We
show that it decreases due to the increase in thermal resistance
with self-heating. The difference is especially large at low VCE.

IV Conclusions
We have reported for the first time the extraction of the thermal
resistance as function of the ambient temperature. The change
of thermal resistance with temperature is quite large, changing
by more than a factor of 2 over the temperature range −50◦C to
200◦C, as is expected from the change in thermal conductivity
with temperature. For circuits containing devices with consider-
able self-heating this can have a large effect on circuit simulations
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Figure 7: Collector current and base-emitter voltage at the snap-
back point, as function of collector voltage. Markers are from mea-
surements, see Fig. 4. Solid lines take increased self-heating into
account. Dotted (for VBE) and dashed (for IC ) lines do not.

that are regularly done at elevated or decreased temperatures. This
important effect has not yet been implemented in compact models.

The increase of thermal resistance is not only due to the in-
crease of the ambient temperature, but also due to self-heating.
This leads to a non-linear relation between temperature increase
and dissipation, in terms of the low-dissipation thermal resistance
at the ambient temperature. This non-linear relation is independent
of the device or technology and can therefore also be used for LD-
MOS transistors, etc. We have shown how to simulate this effect
using existing compact model implementations. We then showed
that for a correct description of the measurements at high dissipa-
tion one needs to take the effect into account in the simulations.
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