
AWS Libraries for S32K3
AWS Libraries for S32K3 User Manual
Rev. 0 — 3 October 2023 User manual

1 Introduction

This User Manual describes AWS Libraries for S32K3.

This package provides support for secure connection for S32K3 devices to AWS Cloud services like AWS IoT
Core or to more powerful devices running AWS IoT Greengrass.

The AWS Libraries for S32K3 product integrates the following open-source FreeRTOS LTS libraries:

• coreMQTT
• coreMQTT Agent
• coreJSON
• corePKCS11
• Backoff Algorithm
• OTA Agent
• Device Shadow
• Device Defender

This release is compatible with S32K3 RTD AUTOSAR 4.4 Version 2.0.1, FreeRTOS for S32K3 2.0.1 HF01,
and TCPIP_STACK for S32K3 version 1.0.1 HF1.

1.1 Overview
With the automotive industry heading towards software defined vehicles, OEMs are seeking ways to integrate
cloud connectivity with edge devices in vehicles, aiming to enhance both vehicle performance and customer
experience utilizing the advancements in IoT, AI and data analytics.

However, this shift to connectivity has its own challenges:

• Secure Connectivity: Challenges in securely connecting and managing a multitude of devices. Due to the
sensitive nature of the data, the data is prone to cyber threats comprising driver safety.

• Data Management: Handling a vast amount of data generated by IoT devices can be daunting.

Prebuilt integrations like AWS Libraries for S32K3 (hardware and the cloud providers) address the problem of
connectivity and security challenges that automakers face when building applications, thereby accelerating their
digital transformation initiatives by unlocking the value of vehicle data and leveraging edge-to-cloud services.

AWS Libraries for S32K3:

The AWS Libraries for S32K3 product provides support for secure connection of the S32K3 family of devices to
AWS Cloud services or to more powerful edge devices running AWS IoT Greengrass.

S32K3:

The 32-bit S32K3 AEC-Q100 qualified MCUs are a scalable family of Arm® Cortex®-M7-based microcontrollers
in single, dual, and lockstep core configurations, supporting up to ASIL D functional safety for automotive and
industrial applications.

S32K3 MCUs feature hardware security engine (HSE) with NXP firmware, support for firmware over-the-air
(FOTA) updates and free ISO 26262 compliant Real-Time Drivers (RTD) for AUTOSAR® and non-AUTOSAR.

NXP Semiconductors AWS Libraries for S32K3
AWS Libraries for S32K3 User Manual

1.2 High level architecture
The AWS Libraries for S32K3 product and its surroundings are depicted in Figure 1.

Figure 1. NXP software ecosystem

In terms of software ecosystem, the AWS Libraries for S32K3 product is running on top of other existing NXP
software:

• Real-Time Drivers
• TCP/IP stack
• FreeRTOS
• Mbed TLS (delivered as part of AWS Libraries for S32K3)

By using AWS Libraries for S32K3 and its dependencies, integrated with NXP's IDE S32 Design Studio, users
can build applications connecting to AWS Cloud services.

The internal architecture of AWS Libraries for S32K3 is presented in Figure 2.

UM11974 All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User manual Rev. 0 — 3 October 2023
2 / 23

NXP Semiconductors AWS Libraries for S32K3
AWS Libraries for S32K3 User Manual

Figure 2. AWS libraries for S32K3 architecture

The most important functionalities provided by individual AWS Libraries for S32K3 components are:

coreMQTT

• Implements the client side of the MQTT protocol.
• Provides a high-level API to connect to an MQTT broker, subscribe or unsubscribe to a topic, publish a

message to a topic and receive incoming messages.
• Fully synchronous API, to allow applications to completely manage their concurrency and multi-threading

method.
• Exposes a low-level serializer/de-serializer API.

coreMQTT Agent

• High level API that adds thread safety to the coreMQTT library.
• Allows the user to create a dedicated MQTT agent task that manages an MQTT connection in the background

and doesn't need any intervention from other tasks.

coreJSON

• Parser that supports key lookups while also strictly enforcing the ECMA-404 JSON standard.

corePKCS11

• Implements a subset of the PKCS #11 API required to establish a secure connection to AWS IoT.
• Verification of the contents of a message.
• Signing messages.
• Management of certificates and keys.
• Generation of random numbers.

Backoff Algorithm

• Utility library to space out repeated retransmissions of the same block of data, to avoid network congestion.
UM11974 All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User manual Rev. 0 — 3 October 2023
3 / 23

http://docs.oasis-open.org/pkcs11/pkcs11-base/v2.40/os/pkcs11-base-v2.40-os.html

NXP Semiconductors AWS Libraries for S32K3
AWS Libraries for S32K3 User Manual

• Calculates backoff period for retrying network operations (like failed network connection with server) using an
exponential backoff with jitter algorithm.

OTA Agent

• Update device firmware.
• Register for notifications or poll for new update requests that are available.
• Receive, parse and validate the update request.
• Download and verify the file according to the information in the update request.
• Run a self-test before activating the received update to ensure the functional validity of the update.
• Update the status of the device.

Device Shadow

• Send commands to the AWS IoT Device Shadow service over MQTT to query the latest known device state,
or to change the state

Device Defender

• Send security metrics from the device to AWS IoT Device Defender.
• API to compose and recognize the MQTT topic strings used by AWS IoT Device Defender.

From the libraries presented above, the corePKCS11, coreMQTT and OTA Agent libraries require porting for the
NXP microcontrollers. Details on how this porting is implemented can be found in Section 4.

These libraries can be configured by using the S32 Configuration Tool embedded in S32 Design Studio.

For easy development startup, several S32 Design Studio examples are provided, presented in Section 6.

UM11974 All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User manual Rev. 0 — 3 October 2023
4 / 23

NXP Semiconductors AWS Libraries for S32K3
AWS Libraries for S32K3 User Manual

2 Hardware and software prerequisites

2.1 Hardware prerequisites
This guide and software examples assume using S32K3X4EVB-T172 Evaluation and Development Board
(EVB) for general purpose industrial and automotive applications. In the case of the usage of a different EVB,
compare the hardware differences and modify the configuration appropriately.

Based on the 32-bit Arm Cortex-M7 S32K3 MCU in a 172 HDQFP package, the S32K3X4EVB-T172 offers
dual cores configured in lockstep mode, ASIL D safety capable hardware, HSE security engine, OTA support,
advanced connectivity and low power.

The S32K3X4EVB-T172 offers a standard-based form factor compatible with the Arduino® UNO pin layout,
providing a broad range of expansion board options for quick application prototyping and demonstration.

Figure 3. S32K3X4EVB-T172

Additional information about the EVB can be found in the HW User Manual (sign in on the NXP website
required).

Visit S32K3X4EVB-T172 web page for general information including features, block diagrams and design
resources and consult the Getting Started with the S32K3X4EVB-T172 Evaluation Board.

The +12 V power supply and micro USB cable are not part of the package, so they must be provided by the
user. The +12 V connector is a center-positive barrel type with outer 5.5 mm and inner 2.1 mm diameter.

Additionally, all demos require internet connection and in order to test them, an Ethernet Media Converter is
required since S32K3X4EVB-T172 board contains automotive 100BaseT1 Ethernet Physical Layer (PHY). For
example, the NXP RDDRONE-T1ADAPT can be used to convert to the standard 100BASE-TX interface.

2.2 Software prerequisites
The following NXP Software products must be installed.

UM11974 All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User manual Rev. 0 — 3 October 2023
5 / 23

https://www.nxp.com/webapp/Download?colCode=S32K3X4EVB-T172-PACKREVB-UM
https://www.nxp.com/design/development-boards/automotive-development-platforms/s32k-mcu-platforms/s32k3x4evb-t172-evaluation-board-for-automotive-general-purpose:S32K3X4EVB-T172
https://www.nxp.com/document/guide/getting-started-with-the-s32k3x4evb-t172-evaluation-board-for-automotive-general-purpose:GS-S32K3X4EVB-T172
https://www.nxp.com/products/interfaces/ethernet-/automotive-ethernet-phys/ethernet-media-converter-for-drones-rovers-mobile-robotics-and-automotive:RDDRONE-T1ADAPT

NXP Semiconductors AWS Libraries for S32K3
AWS Libraries for S32K3 User Manual

Name Version Description

S32 Design Studio for S32
Platform

3.4
Update 3

Complimentary integrated development environment (IDE) for automotive and
ultra-reliable Arm-based microcontrollers and processors that enable editing,
compiling and debugging of designs

S32K3 Real-Time Drivers 2.0.1 Drivers set supporting real-time software on AUTOSAR and non-AUTOSAR
applications targeting Arm Cortex-M cores and ISO 26262 compliance for all
software layers

FreeRTOS for S32K3 2.0.1
HF01

The implementation of the FreeRTOS v10.4.6 kernel version for the S32K3
microcontrollers family

SW32K3 TCPIP Stack 1.0.1
HF01

Software library that implements a port of the lwIP stack for the S32K3
microcontrollers family

S32K3 AWS IoT Core 1.0.0 The FreeRTOS LTS libraries port for S32K3, adding AWS Cloud connectivity to
the S32K344 platform (the current product)

Table 1. Software prerequisites

UM11974 All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User manual Rev. 0 — 3 October 2023
6 / 23

https://www.freertos.org
https://savannah.nongnu.org/projects/lwip/
https://www.freertos.org/lts-libraries.html

NXP Semiconductors AWS Libraries for S32K3
AWS Libraries for S32K3 User Manual

3 Download and install software

Information on how to get started with using AWS Libraries for S32K3 on the S32K3X4EVB-T172 Evaluation
and Development Board (EVB), including download locations, installation steps and running of the examples,
can be found here.

UM11974 All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User manual Rev. 0 — 3 October 2023
7 / 23

http://nxp.com/GS-AWS-LIBRARIES-S32K3

NXP Semiconductors AWS Libraries for S32K3
AWS Libraries for S32K3 User Manual

4 AWS libraries integration

4.1 coreMQTT
The coreMQTT library is a client implementation of the MQTT standard. The MQTT standard provides a
lightweight publish/subscribe messaging protocol that runs on top of TCP/IP and is often used in Machine to
Machine (M2M) and Internet of Things (IoT) use cases.

The library provides a high-level API to connect to an MQTT broker, subscribe or unsubscribe to a topic,
publish a message to a topic and receive incoming messages. The library also exposes a low-level serializer/
deserializer API. This low-level API handles formatting and parsing messages, leaving the application full, zero-
overhead control over the network connection to the MQTT broker.

The library is decoupled from the underlying network drivers through a two-function send and receive transport
interface. The application writer can select an existing transport interface or implement their own, as appropriate
for their application. NXP reuses the FreeRTOS-Plus network transport implementation based on Mbed TLS
from here.

This layering can be observed in the picture below:

Figure 4. coreMQTT layering

• coreMQTT - client implementation of the MQTT standard.
• Transport Interface - coreMQTT has no dependency on any particular TCP/IP stack. Therefore, in order to

use it, a Transport Interface structure containing function pointers and context data is required to send and
receive data on a single network connection.

• Mbed TLS - TLS library used for creating and exchanging data via a secure connection.
• TCP/IP - light-weight implementation of the TCP/IP protocol suite.
• corePKCS11 - PKCS11 implementation used for handling and using the device certificate and private key

during the TLS connection (used only for the Mbed TLS + PKCS11 transport interface).

NXP provides two transport interfaces, from which only one can be selected at a time and where the transport
interface selection depends on application requirements.

• Mbed TLS – uses Mbed TLS for the transport protocol and device certificate and key as plaintext buffers;
• Mbed TLS + PKCS11 – uses Mbed TLS for the transport protocol and device certificate and key as PKCS11

objects.

4.2 corePKCS11
The Public Key Cryptography Standard #11 defines a platform-independent API to manage and use
cryptographic tokens. PKCS #11 refers to the API defined by the standard and to the standard itself. The
PKCS #11 cryptographic API abstracts key storage, get/set properties for cryptographic objects, and session
semantics. It's widely used for manipulating common cryptographic objects, and it's important because the

UM11974 All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User manual Rev. 0 — 3 October 2023
8 / 23

https://github.com/FreeRTOS/FreeRTOS/tree/main/FreeRTOS-Plus/Source/Application-Protocols/network_transport

NXP Semiconductors AWS Libraries for S32K3
AWS Libraries for S32K3 User Manual

functions it specifies allow application software to use, create, modify, and delete cryptographic objects, without
ever exposing those objects to the application's memory. For example, FreeRTOS AWS reference integrations
use a small subset of the PKCS #11 API to access the secret (private) key necessary to create a network
connection that is authenticated and secured by the Transport Layer Security (TLS) protocol without the
application ever 'seeing' the key.

The corePKCS11 library contains a software-based mock implementation of the PKCS #11 interface (API) that
uses the cryptographic functionality provided by Mbed TLS. This software mock was replaced by NXP with a
port over the NXP Mbed TLS library integrated with NXP (core_pkcs11_mbedtls_hse.c).

This layer further calls either Mbed TLS APIs (when the required functionality is already implemented) or
functions from the extended corePKCS11 PAL (a Peripheral Abstraction Layer provided by AWS to help the
vendors port the corePKCS11 Mbed TLS mock implementation - and extended by NXP to allow integration with
HSE features).

The extended corePKCS11 PAL makes use of:

• Mbed TLS API: for key management, sign/verify operations and random number generation
• Flash file system: for certificate management.

This layering can be observed in the picture below:

Figure 5. corePKCS11 layering

4.2.1 Device provisioning

Provisioning the device with credentials is showcased in the aws_pkcs11_mqtt_s32k344 demo. In addition to
the standard MQTT example, this example uses the corePKCS11 library to provision the device with the client
certificate and private key. The corePKCS11 library is integrated with the S32K3 hardware security engine
(HSE), as shown in Section Section 4.2.

An additional macro was added to the configuration in demo_config.h:

#define democonfigPROVISION_DEVICE

This macro must be defined to enable provisioning of the device with the client certificate and private key
defined below. After running the example once, the macro can be undefined, as the certificate will be stored in
FLASH and the private key in the HSE.

The provisioning is implemented in the vDevModeKeyProvisioning() function implemented in src/
aws_dev_mode_key_provisioning.c. This function is invoked by the InitTask() located in src/
main.c, if the democonfigPROVISION_DEVICE macro is defined.

UM11974 All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User manual Rev. 0 — 3 October 2023
9 / 23

NXP Semiconductors AWS Libraries for S32K3
AWS Libraries for S32K3 User Manual

4.2.1.1 Provisioning private key

This is an overview of the steps done in the example for provisioning the device with a private key using the
corePKCS11 library:

1. Initialize the PKCS11 module - xInitializePkcs11Token()
2. Initialize a PKCS11 session - xInitializePkcs11Session()
3. Get PKCS11 function list - C_GetFunctionList()
4. Fill in private key template (CK_ATTRIBUTE). Important elements in the template:

• Key class (CKA_CLASS) - must be CKO_PRIVATE_KEY
• Key type (CKA_KEY_TYPE) - supported CKK_EC/CKK_RSA
• Key label (CKA_LABEL) - string helping with key identification
• Token (CKA_TOKEN) - must be xTrue
• Sign (CKA_SIGN) - must be xTrue
• (only for EC type of keys) EC parameters (CKA_EC_PARAMS), Value (CKA_VALUE)

– If the key is provided in PEM/DER format, the parameters can be obtained using Mbed TLS by parsing
the key using mbedtls_pk_parse_key() and:
– using mbedtls_mpi_write_binary() for obtaining the d parameter (for CKA_VALUE)
– prepending \x06\x08 to the Mbed TLS curve macro - e.g. MBEDTLS_OID_EC_GRP_SECP256R1

(for CKA_EC_PARAMS)
• (only for RSA type of keys) Modulus (CKA_MODULUS), private exponent (CKA_PRIVATE_EXPONENT),

public exponent (CKA_PUBLIC_EXPONENT)
– If the key is provided in PK format, the parameters can be obtained using Mbed TLS by parsing the key

using mbedtls_pk_parse_key() and:
– using mbedtls_rsa_export_raw() for obtaining the modulus, d and e (for CKA_MODULUS,

CKA_PRIVATE_EXPONENT, CKA_PUBLIC_EXPONENT)
5. Create the PKCS11 object - C_CreateObject()

• This call will lead to the PKCS11_NXP_PAL_SaveKey() function being invoked, which will call
KeyStoreMgmt_ImportKey(). The latter function is implemented as part of the Mbed TLS integration
with HSE and will lead to the key being loaded inside the HSE, with a handle being retured for further
usage.

A reference implementation of these steps can be found in the xProvisionPrivateKey() function.

4.2.1.2 Provisioning certificate

This is an overview of the steps done in the example for provisioning the device with a private key using the
corePKCS11 library:

1. Initialize the PKCS11 module - xInitializePkcs11Token()
2. Initialize a PKCS11 session - xInitializePkcs11Session()
3. Get PKCS11 function list - C_GetFunctionList()
4. Fill in client certificate key template (CK_ATTRIBUTE). Important elements in the template:

• Object class (CKA_CLASS) - must be CKO_CERTIFICATE
• Certificate type (CKA_CERTIFICATE_TYPE) - must be CKC_X_509
• Certificate label (CKA_LABEL) - string helping with certificate identification
• Token (CKA_TOKEN) - must be xTrue
• Sign (CKA_SIGN) - must be xTrue

UM11974 All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User manual Rev. 0 — 3 October 2023
10 / 23

NXP Semiconductors AWS Libraries for S32K3
AWS Libraries for S32K3 User Manual

• Subject (CKA_SUBJECT) - string used as certificate subject, currently not used
• Value (CKA_VALUE) - certificate in DER format

– If the certificate is provided in PEM format, it can be converted using the convert_pem_to_der()
function implemented in <AWS Libraries source code location>\libraries\FreeRTOS\co
rePKCS11\source\dependency\3rdparty\mbedtls_utils\mbedtls_utils.c.

5. Create the PKCS11 object - C_CreateObject()
• This call will lead to the PKCS11_PAL_SaveObject() function being invoked. This function will call the

flash file wrapper function flash_SaveFile() to further store the certificate in flash.

A reference implementation of these steps can be found in the xProvisionCertificate() function.

4.3 Over the air (OTA) updates
The AWS IoT Over-the-air (OTA) update library enables you to manage the notification, download, and
verification of firmware updates for FreeRTOS devices using HTTP or MQTT as the protocol. By using the OTA
Agent library, you can logically separate firmware updates and the application running on your devices. The
OTA Agent can share a network connection with the application. By sharing a network connection, you can
potentially save a significant amount of RAM.

In addition, the OTA Agent library lets you define application-specific logic for testing, committing, or rolling back
a firmware update.

This library's APIs provide these major functions:

• Register for notifications or poll for new update requests that are available.
• Receive, parse and validate the update request.
• Download and verify the file according to the information in the update request.
• Run a self-test before activating the received update to ensure the functional validity of the update.
• Update the status of the device.

Porting of the OTA Agent library is done by implementing a set of platform abstraction layer (PAL) functions
(aws_iot_ota_pal.c).

The current NXP OTA PAL implementation is using the flash file system for storing the new image in the inactive
partition, Mbed TLS for verifying the signed image, the HSE IP driver for switching the active partition and the
Power IP driver for triggering the reset.

The layering can be observed in the picture below:

Figure 6. OTA layering

• OTA Agent - library enabling management of notifications of newly available updates, downloading of the
updates, and performing cryptographic verification of the firmware updates.

• OTA PAL - peripheral abstraction layer defined by AWS and implemented by NXP to store incoming blocks of
a new image in flash, verify it and switch execution to the new image.

• HSE IP - RTD driver used for switching execution to passive partition in the OTA PAL implementation.
UM11974 All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User manual Rev. 0 — 3 October 2023
11 / 23

NXP Semiconductors AWS Libraries for S32K3
AWS Libraries for S32K3 User Manual

• Power IP - RTD driver used for resetting the device in the OTA PAL implementation.
• Mbed TLS - TLS library used for verifying the signed image.
• Flash file system - simple flash file system used for storing the new image and reading the code signing

certificate.

The process of an OTA update is the following and is depicted below.

1. The OTA Agent requests a job document
2. The OTA Update Manager sends a job document containing information regarding the update job
3. The OTA Agent parses the job document and further invokes prvPAL_CreateFileForRx()(OTA PAL)
4. The OTA PAL uses the flash file system to erase the passive blocks
5. The OTA Agent requests a file block
6. The OTA Update Manager sends the first file block
7. The OTA Agent receives the file block and invokes prvPAL_WriteBlock()(OTA PAL)
8. The OTA PAL uses the flash file system write the file block in the passive blocks area

Figure 7. OTA update flow 1-8
Steps 5-8 are repeated until the full image is downloaded to the passive partition.

9. The OTA Agent invokes the OTA PAL to verify the signature of the downloaded image (via Mbed TLS)
10. The OTA Agent invokes the OTA complete callback, which by default invokes

prvPAL_ActivateNewImage(OTA PAL)
11. The OTA PAL uses the HSE IP to invoke the Activate Passive Block service
12. The OTA PAL uses the Power IP to trigger reset

UM11974 All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User manual Rev. 0 — 3 October 2023
12 / 23

NXP Semiconductors AWS Libraries for S32K3
AWS Libraries for S32K3 User Manual

Figure 8. OTA update flow 9-13

After successful boot, the status will be sent to the OTA Update Manager

The current implementation of OTA requires the image to be signed. In order to achieve this, a code signing
certificate must be generated.

For obtaining the code signing certificate, the following steps can be followed (commands can be run in
Windows command line or any other command line with openssl installed):

1. Generate a private key

openssl ecparam -name prime256v1 -genkey -noout -out private-key.pem

2. Generate the corresponding public key

openssl ec -in private-key.pem -pubout -out public-key.pem

3. Create a self-signed certificate

openssl req -new -x509 -key private-key.pem -out cert.pem -days 360

For the configuration of the OTA Job in the IoT Console, the necessary steps can be found here.

For the code signing profile you will need to create a profile (one time only); you can select Windows Simulator
as Device hardware platform. You will need to upload the previously generated private key and certificate for
the Certificate body and Certificate private key. For the Path name of code signing certificate on device, you can
input Code_Sign_Certificate.dat - this will only be used if you select the code signing certificate input
type as From file in S32CT.

UM11974 All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User manual Rev. 0 — 3 October 2023
13 / 23

https://docs.aws.amazon.com/freertos/latest/userguide/ota-console-workflow.html

NXP Semiconductors AWS Libraries for S32K3
AWS Libraries for S32K3 User Manual

Figure 9. Creating code signing profile

Figure 10. Code signing certificate path

The Path to firmware image on device should match the file name of the file from the file system table
(configured in the S32CT AWS IoT Core component).

Please note that if you select in S32CT for Code signing certificate input type the From file option, you will have
to extend the demo to handle the Code_Sign_Certificate.dat file (it will not be initialized by default). The
easier way is to use the Static (C macro) option, for which you will need to paste in the Code signing certificate
value field the contents of the certificate file generated above. This input must be in PEM format - it should
match the regular expression:

 -----BEGIN CERTIFICATE-----(\n|\r|\r\n)([0-9a-zA-Z\+\/=]{64}(\n|\r|\r
\n))*([0-9a-zA-Z\+\/=]{1,63}(\n|\r|\r\n))?
 -----END CERTIFICATE-----

UM11974 All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User manual Rev. 0 — 3 October 2023
14 / 23

NXP Semiconductors AWS Libraries for S32K3
AWS Libraries for S32K3 User Manual

5 Configuration

For easy configuration of the AWS Libraries for S32K3, an S32CT configuration component is provided. This
component allows enabling/disabling of the libraries (to enable the user to select only the ones needed by the
application), configuring of logging options and adding files to the file system.

The first two tabs (FreeRTOS Core Libraries and AWS IoT specific Libraries) allow enabling and disabling of
specific libraries.

Figure 11. FreeRTOS core libraries

Figure 12. AWS IoT specific libraries

The Logging tab allows the user to choose only the necessary logs for the application.

UM11974 All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User manual Rev. 0 — 3 October 2023
15 / 23

NXP Semiconductors AWS Libraries for S32K3
AWS Libraries for S32K3 User Manual

Figure 13. Logging

The File system tab allows configuration of the files implemented in the file system. Some files will be added
automatically based on the libraries enabled (e.g. device certificate, flash_image.bin if OTA is enabled). The
user can also include additional files required by the application.

Figure 14. File system

UM11974 All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User manual Rev. 0 — 3 October 2023
16 / 23

NXP Semiconductors AWS Libraries for S32K3
AWS Libraries for S32K3 User Manual

6 Software examples

The AWS Libraries for S32K3 product offers the following S32 Design Studio projects as examples:

1. aws_mqtt_s32k344
This example is used to create an MQTT connection to your AWS IoT account. The device will publish
MQTT topic messages to the AWS endpoint and is able to receive publish messages from the server to
which will reply with acknowledgement messages.
This example project was created based on the MQTT_Mutual_Auth demo which is part of FreeRTOS-Plus.

2. aws_pkcs11_mqtt_s32k344
In addition to the standard MQTT example, this example uses corePKCS11 to provision the device with the
client certificate and private key.
This example project was created based on the corePKCS11_MQTT_Mutual_Auth demo which is part of
FreeRTOS-Plus.

3. aws_ota_s32k344
This example is used to showcase the capabilities of over-the-air update in AWS IoT Core.
The example starts the OTA Agent and listens for incoming updates requests from the AWS server. Once
the update starts, a new firmware image will be downloaded to flash and the device will restart, loading the
new image.
This example project was created based on the Ota demo which is part of FreeRTOS-Plus.

4. aws_defender_s32k344
This demo creates a single application task that demonstrates how to collect metrics, construct a device
defender report in JSON format, and submit it to the AWS IoT Device Defender service through a secure
MQTT connection to the AWS IoT MQTT Broker. The demo includes the standard networking metrics as
well as custom metrics. For custom metrics, the demo includes:
• A metric named task_numbers which is a list of FreeRTOS task IDs. The type of this metric is list of

numbers.
• A metric named stack_high_water_mark which is the stack high watermark for the demo application task.

The type of this metric is number.
This example project was created based on the Device_Defender demo which is part of FreeRTOS-Plus.

5. aws_shadow_s32k344
This demo shows how to use the AWS IoT Device Shadow library to connect to the AWS Device Shadow
service. It uses the coreMQTT library to establish an MQTT connection with TLS (Mutual Authentication)
to the AWS IoT MQTT Broker and the coreJSON library parser to parse shadow documents received from
the AWS Shadow service. The demo shows basic shadow operations, such as how to update a shadow
document and how to delete a shadow document. The demo also shows how to register a callback function
with the coreMQTT library to handle messages like the shadow /update and /update/delta messages that
are sent from the AWS IoT Device Shadow service.
This example project was created based on the Device_Shadow demo which is part of FreeRTOS-Plus.

6. aws_gg_demo_s32k344
This project is showcasing the Greengrass capability by connecting S32K344 running AWS Libraries for
S32K3 (representing a Greengrass device) to S32G2 RDB2 running GoldVIP (representing the Greengrass
core) and publishing diagnostics to a SiteWise dashboard. It requires extra prerequisites, which are
mentioned in the description.txt file.

For details regarding running the demos please consult the description.txt file located in the root of each
of the examples.

UM11974 All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User manual Rev. 0 — 3 October 2023
17 / 23

https://github.com/FreeRTOS/FreeRTOS/tree/main/FreeRTOS-Plus/Demo/coreMQTT_Windows_Simulator/MQTT_Mutual_Auth
https://github.com/FreeRTOS/FreeRTOS/tree/main/FreeRTOS-Plus/Demo/corePKCS11_MQTT_Mutual_Auth_Windows_Simulator
https://github.com/FreeRTOS/FreeRTOS/tree/main/FreeRTOS-Plus/Demo/AWS/Ota_Windows_Simulator
https://github.com/FreeRTOS/FreeRTOS/tree/main/FreeRTOS-Plus/Demo/AWS/Device_Defender_Windows_Simulator/Device_Defender_Demo
https://github.com/FreeRTOS/FreeRTOS/tree/main/FreeRTOS-Plus/Demo/AWS/Device_Shadow_Windows_Simulator/Device_Shadow_Demo

NXP Semiconductors AWS Libraries for S32K3
AWS Libraries for S32K3 User Manual

7 Cloud applications

7.1 Capabilities
By extending the S32K3 family features with the AWS Cloud services, the following capabilities are enabled:
Cloud Services - Secure data communication

• Send messages to AWS cloud via MQTT
• S32K3 specific vehicle data such as battery parameters, sensor details, motor conditions, diagnostic data,

external acoustic sound and network performance details
• Leverage use cases such as Predictive Maintenance, Advanced Vehicle Diagnostics, Fleet Management,

etc…

Firmware Over-the-Air (FOTA) update

• Receive firmware update for S32K3 via MQTT by using AWS OTA agent
• Upgrade vehicle SW with S32K3 A/B firmware swap

Enhance security

• Ensure secure cloud communication by suing AWS secure sockets
• Additionally, collect connection metrics from devices and report data to AWS cloud to identify anomalies using

AWS Device Defender

Remote ECU state monitoring (Digital Twin)

• Save device/application state in AWS device shadow, so that it can be retrieved/updated by cloud applications
while the device is offline, mirroring ECU state in the cloud with latest device information

Gateway Communication

• Communication with gateway/edge ECU (S32G) using AWS Greengrass

7.2 Applications
Based on the capabilities metioned above, different cloud applications can be enabled:

Cloud processing

Leveraging existing AWS cloud services, part of the processing can be offloaded in the cloud.

As an example, an Alexa in the Cloud application could be enabled - obtaining audio input from the S32K3 and
sending it in the Cloud to be processed by AVS (Alexa Voice Services Integration for IoT Core). This way, the
compute and memory intensive audio workloads could be offloaded.

UM11974 All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User manual Rev. 0 — 3 October 2023
18 / 23

NXP Semiconductors AWS Libraries for S32K3
AWS Libraries for S32K3 User Manual

Figure 15. Alexa in the cloud

AI/ML

AWS includes also Machine Learning enabling services, like Amazon SageMaker. It enables building and
training machine learning models, as well as running inference in the Cloud.

By using this type of services, an application like user profile detection based on speed with Machine Learning
in the Cloud could be enabled.

Figure 16. Machine learning in the cloud

UM11974 All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User manual Rev. 0 — 3 October 2023
19 / 23

NXP Semiconductors AWS Libraries for S32K3
AWS Libraries for S32K3 User Manual

8 Abbreviations

Acronym Description

AEC Automotive Electronics Council

AI Artificial Intelligence

API Application Programming Interface

ASIL Automotive Safety Integrity Level

AWS Amazon Web Services

ECMA European Computer Manufacturers Association

ECU Electronic Control Unit

EVB Evaluation Board

GG Greengrass

HDQFP High Density Quad Flat Package

HSE Hardware Security Engine

HTTP Hypertext Transfer Protocol

HW Hardware

IDE Integrated development environment

IoT Internet of Things

ISO International Organization for Standardization

JSON JavaScript Object Notation

JTAG Joint Test Access Group

LTS Long Term Support

MCU Microcontroller Unit

MQTT Message Queuing Telemetry Transport

OEM Original Equipment Manufacturer

OTA Over-the-air

PEM Privacy-Enhanced Mail

PKCS Public-Key Cryptography Standards

RAM Random Access Memory

RTD Real-Time Drivers

S32CT S32 Configuration Tool

S32DS S32 Design Studio

SW Software

TCP/IP Transmission Control Protocol/Internet Protocol

TLS Transport Layer Security

USB Universal Serial Bus

Table 2. Abbreviations

UM11974 All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User manual Rev. 0 — 3 October 2023
20 / 23

NXP Semiconductors AWS Libraries for S32K3
AWS Libraries for S32K3 User Manual

9 Revision history

This table summarizes the revisions to this document.

Revision Date Description

0 10/2023 Initial release

Table 3. Revision history

UM11974 All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User manual Rev. 0 — 3 October 2023
21 / 23

NXP Semiconductors AWS Libraries for S32K3
AWS Libraries for S32K3 User Manual

10 Legal information

10.1 Definitions
Draft — A draft status on a document indicates that the content is still
under internal review and subject to formal approval, which may result
in modifications or additions. NXP Semiconductors does not give any
representations or warranties as to the accuracy or completeness of
information included in a draft version of a document and shall have no
liability for the consequences of use of such information.

10.2 Disclaimers
Limited warranty and liability — Information in this document is believed
to be accurate and reliable. However, NXP Semiconductors does not give
any representations or warranties, expressed or implied, as to the accuracy
or completeness of such information and shall have no liability for the
consequences of use of such information. NXP Semiconductors takes no
responsibility for the content in this document if provided by an information
source outside of NXP Semiconductors.
In no event shall NXP Semiconductors be liable for any indirect, incidental,
punitive, special or consequential damages (including - without limitation -
lost profits, lost savings, business interruption, costs related to the removal
or replacement of any products or rework charges) whether or not such
damages are based on tort (including negligence), warranty, breach of
contract or any other legal theory.
Notwithstanding any damages that customer might incur for any reason
whatsoever, NXP Semiconductors’ aggregate and cumulative liability
towards customer for the products described herein shall be limited in
accordance with the Terms and conditions of commercial sale of NXP
Semiconductors.

Right to make changes — NXP Semiconductors reserves the right to
make changes to information published in this document, including without
limitation specifications and product descriptions, at any time and without
notice. This document supersedes and replaces all information supplied prior
to the publication hereof.

Applications — Applications that are described herein for any of these
products are for illustrative purposes only. NXP Semiconductors makes no
representation or warranty that such applications will be suitable for the
specified use without further testing or modification.
Customers are responsible for the design and operation of their
applications and products using NXP Semiconductors products, and NXP
Semiconductors accepts no liability for any assistance with applications or
customer product design. It is customer’s sole responsibility to determine
whether the NXP Semiconductors product is suitable and fit for the
customer’s applications and products planned, as well as for the planned
application and use of customer’s third party customer(s). Customers should
provide appropriate design and operating safeguards to minimize the risks
associated with their applications and products.
NXP Semiconductors does not accept any liability related to any default,
damage, costs or problem which is based on any weakness or default
in the customer’s applications or products, or the application or use by
customer’s third party customer(s). Customer is responsible for doing all
necessary testing for the customer’s applications and products using NXP
Semiconductors products in order to avoid a default of the applications
and the products or of the application or use by customer’s third party
customer(s). NXP does not accept any liability in this respect.

Terms and conditions of commercial sale — NXP Semiconductors
products are sold subject to the general terms and conditions of commercial
sale, as published at http://www.nxp.com/profile/terms, unless otherwise
agreed in a valid written individual agreement. In case an individual
agreement is concluded only the terms and conditions of the respective
agreement shall apply. NXP Semiconductors hereby expressly objects to
applying the customer’s general terms and conditions with regard to the
purchase of NXP Semiconductors products by customer.

Suitability for use in automotive applications — This NXP product has
been qualified for use in automotive applications. If this product is used
by customer in the development of, or for incorporation into, products or
services (a) used in safety critical applications or (b) in which failure could
lead to death, personal injury, or severe physical or environmental damage
(such products and services hereinafter referred to as “Critical Applications”),
then customer makes the ultimate design decisions regarding its products
and is solely responsible for compliance with all legal, regulatory, safety,
and security related requirements concerning its products, regardless of
any information or support that may be provided by NXP. As such, customer
assumes all risk related to use of any products in Critical Applications and
NXP and its suppliers shall not be liable for any such use by customer.
Accordingly, customer will indemnify and hold NXP harmless from any
claims, liabilities, damages and associated costs and expenses (including
attorneys’ fees) that NXP may incur related to customer’s incorporation of
any product in a Critical Application.

Export control — This document as well as the item(s) described herein
may be subject to export control regulations. Export might require a prior
authorization from competent authorities.

Translations — A non-English (translated) version of a document, including
the legal information in that document, is for reference only. The English
version shall prevail in case of any discrepancy between the translated and
English versions.

Security — Customer understands that all NXP products may be subject to
unidentified vulnerabilities or may support established security standards or
specifications with known limitations. Customer is responsible for the design
and operation of its applications and products throughout their lifecycles
to reduce the effect of these vulnerabilities on customer’s applications
and products. Customer’s responsibility also extends to other open and/or
proprietary technologies supported by NXP products for use in customer’s
applications. NXP accepts no liability for any vulnerability. Customer should
regularly check security updates from NXP and follow up appropriately.
Customer shall select products with security features that best meet rules,
regulations, and standards of the intended application and make the
ultimate design decisions regarding its products and is solely responsible
for compliance with all legal, regulatory, and security related requirements
concerning its products, regardless of any information or support that may be
provided by NXP.
NXP has a Product Security Incident Response Team (PSIRT) (reachable
at PSIRT@nxp.com) that manages the investigation, reporting, and solution
release to security vulnerabilities of NXP products.

NXP B.V. - NXP B.V. is not an operating company and it does not distribute
or sell products.

10.3 Trademarks
Notice: All referenced brands, product names, service names, and
trademarks are the property of their respective owners.
NXP — wordmark and logo are trademarks of NXP B.V.

UM11974 All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User manual Rev. 0 — 3 October 2023
22 / 23

mailto:PSIRT@nxp.com

NXP Semiconductors AWS Libraries for S32K3
AWS Libraries for S32K3 User Manual

Contents
1 Introduction ... 1
1.1 Overview ..1
1.2 High level architecture2
2 Hardware and software prerequisites 5
2.1 Hardware prerequisites5
2.2 Software prerequisites 5
3 Download and install software 7
4 AWS libraries integration 8
4.1 coreMQTT ..8
4.2 corePKCS11 .. 8
4.2.1 Device provisioning ..9
4.2.1.1 Provisioning private key10
4.2.1.2 Provisioning certificate10
4.3 Over the air (OTA) updates 11
5 Configuration ...15
6 Software examples ..17
7 Cloud applications .. 18
7.1 Capabilities .. 18
7.2 Applications ..18
8 Abbreviations .. 20
9 Revision history .. 21
10 Legal information ..22

Please be aware that important notices concerning this document and the product(s)
described herein, have been included in section 'Legal information'.

© 2023 NXP B.V. All rights reserved.
For more information, please visit: http://www.nxp.com

Date of release: 3 October 2023
Document identifier: UM11974

	1 Introduction
	1.1 Overview
	1.2 High level architecture

	2 Hardware and software prerequisites
	2.1 Hardware prerequisites
	2.2 Software prerequisites

	3 Download and install software
	4 AWS libraries integration
	4.1 coreMQTT
	4.2 corePKCS11
	4.2.1 Device provisioning
	4.2.1.1 Provisioning private key
	4.2.1.2 Provisioning certificate

	4.3 Over the air (OTA) updates

	5 Configuration
	6 Software examples
	7 Cloud applications
	7.1 Capabilities
	7.2 Applications

	8 Abbreviations
	9 Revision history
	10 Legal information
	Contents

