
1 Introduction
Both LIN and CAN bus are international standard serial communication
protocols and used widely in the automotive, industry, medical fields and so
on. As a wireless microcontroller with Bluetooth LE 5.0 and Generic FSK
support, KW36/38 family of devices have rich peripheral resources including
2 Low Power UART (LPUART) modules with LIN support and 1 FlexCAN
module with CAN FD support.

One LIN or CAN bus always carries several nodes. For image upgrading, some
nodes have the OTAP (Over-the-Air Programming) capability to get the new
image from the OTAP server. But the other nodes without OTAP capability may
only obtain the image through LIN or CAN serial communication method from
the OTAP capable nodes.

This document describes how to use the LIN or CAN nodes, which have OTAP
capability to upgrade the nodes, which have no OTAP capability, by LIN or
CAN bus.

2 Driver enablement

2.1 Run the driver codes
With KW36 as an example, follow the steps below to run the driver code:

1. Download the latest SDK of KW36 from https://mcuxpresso.nxp.com/.

2. Prepare 2 FRDM-KW36 DK boards to act as LIN/CAN nodes. 12 V DC source and some electric wires are needed for
the power supply and LIN/CAN communication.

3. Go to the path, SDK\boards\frdmkw36\driver_examples\lin, to find the driver examples of LIN master and LIN slave, and
program the generated firmware to the 2 boards to demonstrate how to use LIN bus to transfer the data between master
and slave node.

4. Go to the path, SDK\boards\frdmkw36\driver_examples\flexcan\interrupt_transfer, to find the driver example of FlexCAN
non-blocking interrupt transfer to demonstrate how CAN nodes communicate.

Contents

1 Introduction.. 1

2 Driver enablement................................. 1
2.1 Run the driver codes.... 1
2.2 Port the driver codes

to Bluetooth LE
application......................2

3 Image obtaining..................................... 3

4 Image storage..8

5 Image transfer..9
5.1 Transfer via LIN bus..... 9
5.2 Transfer via CAN bus. 14

6 Image switching................................... 19

7 Testing... 20
7.1 Hardware setup.......... 20
7.2 APP test......................20

8 Revision history................................... 23

AN12948
Using LIN or CAN Bus to Upgrade Image on KW36/38
Rev. 0.8 — 16 July, 2020 Application Note

https://mcuxpresso.nxp.com/

Figure 1. Using FRDM-KW36 DK boards to debug LIN/CAN communication

2.2 Port the driver codes to Bluetooth LE application
As mentioned above, some nodes having the OTAP capability get the image from the remote server and then transfer the image
to the nodes without OTAP capability via LIN or CAN bus. NXP has one Bluetooth LE OTAP solution to perform image
transmission from Bluetooth LE OTAP server to OTAP client via OTAP profile. For more details about Bluetooth LE OTAP solution,
refer to chapter “OTAP” of the BLE Application Developer’s Guide.

Bluetooth LE OTAP is just one solution to get the new image from remote server; the developer can select other
available solutions of wireless or serial protocol.

 NOTE

On current NXP Bluetooth LE OTAP solution, when the Bluetooth LE OTAP client application finishes downloading the firmware
from the Bluetooth LE OTAP server, it sets the value, indicating new image available, to BootFlags in flash and resets. The
bootloader copies the new image data from selected storage area to internal flash when it identifies a new image. The client runs
the new image at next reset once data copy finishes

One LIN network includes one master and one or multiple slaves. The KW36 LIN master should have the Bluetooth LE OTAP
capability working as client and get the new image from the Bluetooth LE OTAP server for the LIN slave or itself. The LIN slaves
might not have the Bluetooth LE OTAP feature to load the image from OTAP server directly. So, they can only be upgraded by
LIN master through LIN bus.

One CAN network includes several nodes without the master-slave distinction. One KW36 CAN node has the Bluetooth LE OTAP
capability to get the image from the OTAP server. Suppose this is Node A. And the others can only be upgraded by Node A
through CAN bus. These nodes are called Node B (1, 2...N). The figure below shows the data flow of the whole image upgrading
system.

NXP Semiconductors
Driver enablement

Using LIN or CAN Bus to Upgrade Image on KW36/38, Rev. 0.8, 16 July, 2020
Application Note 2 / 25

Figure 2. Data flow of image upgrading system

To enable the Bluetooth LE OTAP feature, copy the LIN master driver example code to the location, SDK \boards
\frdmkw36\wireless_examples\bluetooth\otac_att, and name it as lin_master project. LIN slave does not need Bluetooth LE OTAP
capability, but it needs the EEPROM operating and image switching features. For convenience, copy the LIN slave driver example
code to the SDK\boards\frdmkw36\wireless_examples\bluetooth\otac_att project and name it as lin_slave project but only use
the necessary features.

Similarly, you can port the CAN driver codes to the SDK\boards\frdmkw36\wireless_examples\bluetooth\otac_att project to enable
the Bluetooth LE OTAP capability or the necessary EEPROM operating and image switching features. Name the projects as
can_a and can_b.

If you want to use other wireless examples available in the SDK\boards\frdmkw36\wireless_examples\bluetooth
directory, for example, w_uart, you can add the Bluetooth LE OTAP profile and functions in this example. And then
copy the LIN/CAN driver example code to this selected project. The released examples are based on the w_uart
project.

 NOTE

To integrate the CAN and LIN driver examples into Bluetooth LE projects, you can follow the Chapter 5 Adding FlexCAN and LIN
demo examples into a Bluetooth LE project of AN12273 Using MCUXpresso SDK CAN and LIN Drivers to Create a Bluetooth
LE-CAN and Bluetooth LE-LIN Bridges on KW36/KW35.

The example projects released with this application note are built in IAR IDE. The MCUXpresso IDE examples are
planned to be released in a later version.

 NOTE

3 Image obtaining
When the LIN master/CAN Node A enables the Bluetooth LE OTAP capability, it can get the image from the Bluetooth LE OTAP
server through Bluetooth LE OTAP profile. The OTA file needs to add OTA header and some tail information to include its OTA
File Identifier, Image Version, Image Identifier, Image Size and so on. The Image Identifier field can be used to indicate if the
OTA file is for LIN slave/CAN Node B or LIN master/CAN Node A itself.

By default, the Image Identifier is 0x0001 for the LIN master/CAN Node A itself. You can define another value for LIN slave/CAN
Node B in otap_interface.h, for example, 0x000A:

#define gBleOtaImageIdForLinCanNode_c (0x000AU)

The NXP Connectivity Test Tool can generate the Bluetooth LE OTA file by following the below steps:

NXP Semiconductors
Image obtaining

Using LIN or CAN Bus to Upgrade Image on KW36/38, Rev. 0.8, 16 July, 2020
Application Note 3 / 25

1. Click OTA Updates>OTAP Bluetooth LE in the top menu.

2. Set the custom value, 0x000A, in the Image Id of OTA header.

3. Click Browse to load the binary that need to be upgraded.

4. Select the chip model, KW36/KW38 and click OK.

5. Click Save to get the generated OTA file.

Figure 3. Using NXP Connectivity Test Tool to generate OTA file

If the LIN master/CAN Node A detects that the OTA file is for itself, it sets the value of available new image to TRUE to BootFlags
in the specific position of internal flash in OTA_SetNewImageFlag() when data downloading completes. After reset, the bootloader
finds a new available image and copies the data from selected storage area to internal flash. The LIN master/CAN Node A runs
new image when bootloader finishes copying and resets again.

If the LIN master/CAN Node A detects that the OTA file is for LIN slave/CAN Node B, it sets another available new image flag in
OtaSupport.h, for example, 0xAA, to BootFlags. This is required to indicate there is a new image for LIN slave/CAN Node B and
to prevent the bootloader to copy the LIN slave/CAN Node B image to itself if the device resets unexpectedly.

#define gBootValueForLinCanNode_c (0xAA)

You need to define a bool variable, g_ota_for_lin_or_can_node in OtaSupport.h, for OtapClient_IsImageFileHeaderValid() to
identify if the new image from Bluetooth LE OTAP server is for LIN slave/CAN Node B or not. If yes, set g_ota_for_lin_or_can_node
to TRUE.

NXP Semiconductors
Image obtaining

Using LIN or CAN Bus to Upgrade Image on KW36/38, Rev. 0.8, 16 July, 2020
Application Note 4 / 25

Figure 4. Code for identifying node for the image

NXP Semiconductors
Image obtaining

Using LIN or CAN Bus to Upgrade Image on KW36/38, Rev. 0.8, 16 July, 2020
Application Note 5 / 25

Figure 5. Code for setting new image flag

By default, the application calls ResetMCU() to reset the device after setting the new image flags to make the bootloader copy
image data. But instead is reset, it should start the LIN/CAN transfer if the image is for LIN slave/CAN Node B. For this, add the
following code after OTA_SetNewImageFlag() and before ResetMCU() every time these two functions are called one after
another.

NXP Semiconductors
Image obtaining

Using LIN or CAN Bus to Upgrade Image on KW36/38, Rev. 0.8, 16 July, 2020
Application Note 6 / 25

Figure 6. Code for starting LIN/CAN upgrading process

Generally, LIN upgrading and CAN upgrading are mutually exclusive. Define one macro gOtaUseBusSelection_d in
app_preinclude.h to select LIN or CAN for the image upgrading; gOtaUseBus_LIN_c is used for LIN option while
gOtaUseBus_CAN_c is used for CAN option.

Figure 7. Code for selecting the bus to do image upgrading

Include an additional condition in the OtapBootloader.c of SDK\boards\frdmkw36\wireless_examples\framework|bootloader_otap
project to prevent incorrect loading and switching; follow the code below.

Figure 8. Code for identifying if bootloader needs to load the new image

NXP Semiconductors
Image obtaining

Using LIN or CAN Bus to Upgrade Image on KW36/38, Rev. 0.8, 16 July, 2020
Application Note 7 / 25

4 Image storage
The image received from Bluetooth LE OTAP server can be saved in the internal flash or external EEPROM in the LIN
master/CAN Node A site. Similarly, the image received from LIN master/CAN Node A can be saved in the internal flash or external
EEPROM in LIN slave/CAN Node B. The storage area selection of LIN master/CAN Node A and LIN slave/CAN Node B is
independent.

To select internal flash, set the configurations as below:

• In the app_preinclude.h of the application project:

#define gEepromType_d gEepromDevice_InternalFlash_c

• In the Options > Linker of the application project:

gUseInternalStorageLink_d=1

• In the Options > C/C++ Compiler of the bootloader project:

gEepromType_d=gEepromDevice_InternalFlash_c

The image is saved in defined OTAP internal storage space as shown in figure below.

Figure 9. Memory layout of internal flash

To select external EEPROM, for example, AT45DB041E, as designed in the DK board, set the configurations as below:

• In the app_preinclude.h of the application project:

NXP Semiconductors
Image storage

Using LIN or CAN Bus to Upgrade Image on KW36/38, Rev. 0.8, 16 July, 2020
Application Note 8 / 25

#define gEepromType_d gEepromDevice_AT45DB041E_c

• In the Options > Linker of the application project:

gUseInternalStorageLink_d=0

• In the Options > C/C++ Compiler of the bootloader project:

gEepromType_d=gEepromDevice_AT45DB041E_c

The image is saved in the AT45DB041E from 0 offset via SPI communication.

5 Image transfer
When the image loading from the OTAP server finishes, the LIN master/CAN Node A calls LinCanOtaStartCallback() to start the
LIN/CAN transfer.

5.1 Transfer via LIN bus
To define 3 identifiers of LIN unconditional frame type in the LIN task schedule table, write the following code in lin_cfg.h:

Figure 10. Code for defining LIN frame identifiers and sizes

Also, include the following code in lin_cfg.c:

Figure 11. Code for defining LIN frame schedule table

NXP Semiconductors
Image transfer

Using LIN or CAN Bus to Upgrade Image on KW36/38, Rev. 0.8, 16 July, 2020
Application Note 9 / 25

• gID_OtapCmd_c: notifies LIN slave to start or end the image data transfer, carrying the lin_ota_cmd_c variable defined in
lin_cfg.h in Byte0 as the payload.

Figure 12. Code for defining lin_ota_cmd_c enumeration

• gID_OtapGetStatus_c: gets the status of LIN slave, carrying the lin_ota_status_t variable defined in lin_cfg.h in Byte0 and
sequence number (0~255) in Byte1 as the payload.

Figure 13. Code for defining lin_ota_status_c enumeration

• gID_OtapData_c: sends the data by frame to LIN slave, carrying maximum 8-byte image data as the payload.

To consider the payload size and data rate limitation of LIN bus, you may not get the status of LIN slave by each data frame since
it will cause lower upgrading speed. LIN master reads one block data, for example, 1 KB, from the selected storage area and
saves to RAM buffer. It then sends them via gID_OtapData_c frames to the LIN slave continuously. Define the sizes in lin_cfg.h
and related reading variables in lin_cfg.c of the lin_master project:

Figure 14. Code for defining LIN transmission sizes and reading variables

LIN slave saves the received data to RAM buffer. When one block transfer finishes, the LIN slave writes the received block to
the specific offset of image storage area. It then responds the status and next block sequence number via gID_OtapGetStatus_c
to the LIN master. The LIN master continues the reading and transfer of next block. Define the sizes in lin_cfg.h and related
writing variables in lin_cfg.c of the lin_slave project:

NXP Semiconductors
Image transfer

Using LIN or CAN Bus to Upgrade Image on KW36/38, Rev. 0.8, 16 July, 2020
Application Note 10 / 25

Figure 15. Code for defining LIN reception sizes and writing variables

To construct the state machine of upgrading, define the lin_ota_stage_t enumeration in lin_cfg.h and variables in lin_cfg.c:

Figure 16. Code for defining lin_ota_stage_t enumeration and variables

It is possible to support multiple slave nodes upgrading at the same time, if the nodes have the same function and no bad
communication in the bus. The image upgrading flow diagrams of LIN master and LIN slave are shown in Figure 17 and Figure 18.

NXP Semiconductors
Image transfer

Using LIN or CAN Bus to Upgrade Image on KW36/38, Rev. 0.8, 16 July, 2020
Application Note 11 / 25

Figure 17. Image upgrading flow diagram of LIN master

NXP Semiconductors
Image transfer

Using LIN or CAN Bus to Upgrade Image on KW36/38, Rev. 0.8, 16 July, 2020
Application Note 12 / 25

Figure 18. Image upgrading flow diagram of LIN slave

NXP Semiconductors
Image transfer

Using LIN or CAN Bus to Upgrade Image on KW36/38, Rev. 0.8, 16 July, 2020
Application Note 13 / 25

5.2 Transfer via CAN bus
You need to define 11-bit standard CAN identifiers for TX and RX identification in flexcan_cfg.h. CAN Node B should have the
same RX identifier as the TX identifier of Node A and have the same TX identifier as the RX identifier of Node A.

Node A:

#define CAN_TX_IDENTIFIER (0x123)

#define CAN_RX_IDENTIFIER (0x321)

Node B:

Both CAN Node A and CAN Node B should be set to RX mode to listen the data of bus when idle.

#define CAN_TX_IDENTIFIER (0x321)

#define CAN_RX_IDENTIFIER (0x123)

Generally, CAN nodes broadcast data to other nodes on the bus, such as periodic sensor data. But for the image data, the
transmitter should know the status of each frame/block sent, since any missed or incorrect data may cause the receiver upgrading
failure. Considering the reliability and fast CAN baud rate, expect to receive a response of each frame transmitted from the receiver
to confirm that the data was received correctly.

Define the commands in flexcan_cfg.h for the image upgrading as below:

Figure 19. Code for defining can_general_cmd_t enumeration

• CAN_GEN_CMD_OTA_CMD: notifies Node B to start or end the image data transfer. CAN_GEN_CMD_OTA_CMD is put
in Byte0, followed by can_ota_cmd_c in Byte1 in the data payload.

Figure 20. Code for defining can_ota_cmd_c enumeration

• CAN_GEN_CMD_OTA_DATA: carries the image data for Node A and the received status of each frame for Node B. CAN
supports maximum 8-byte data payload, while CAN FD supports maximum 64 bytes. Byte0 is used to carry the
CAN_GEN_CMD_OTA_DATA value. For Node A, Byte1 is used for frame sequence number (0~255). You can transfer a
frame by 8 bytes image data for EEPROM alignment. So, CAN FD mode should be enabled to support (1+1+8=)10-byte
length.

#define USE_CANFD (1)

You can carry more image data each frame, for example, 16 bytes, 32 bytes, to speed up the upgrading process.

NXP Semiconductors
Image transfer

Using LIN or CAN Bus to Upgrade Image on KW36/38, Rev. 0.8, 16 July, 2020
Application Note 14 / 25

For Node B, Byte1 is used to put the ACK/NAK of the received frame.

• CAN_GEN_CMD_OTA_STATUS: lets Node A know the current status of Node B. Byte0 carries the can_ota_status_t byte
defined in flexcan_cfg.h.

Figure 21. Code for defining can_ota_status_c enumeration

When upgrading starts, the Node A reads one block data from EEPROM and saves to RAM buffer firstly. It then sends them to
Node B by frames. Define the sizes in flexcan_cfg.h and related reading variables in flexcan_interrupt_transfer.c in can_a project:

Figure 22. Code for defining CAN transmission sizes and reading variables

Node B keeps waiting for the data continuously. It sends response to Node A after receiving a frame of data and then saves them
to the RAM buffer. It writes the data of RAM buffer to EEPROM when it receives a complete block. Define the sizes in flexcan_cfg.h
and related writing variables in flexcan_interrupt_transfer.c in the can_b project:

Figure 23. Code for defining CAN reception sizes and writing variables

To construct the state machine of upgrading, define the can_ota_stage_t enumeration in flexcan_cfg.h and variables in
flexcan_interrupt_transfer.c as follows:

NXP Semiconductors
Image transfer

Using LIN or CAN Bus to Upgrade Image on KW36/38, Rev. 0.8, 16 July, 2020
Application Note 15 / 25

Figure 24. Code for defining can_ota_stage_t enumeration and variables

The image upgrading flow diagrams of CAN Node A and CAN Node B are shown in Figure 25 and Figure 26.

NXP Semiconductors
Image transfer

Using LIN or CAN Bus to Upgrade Image on KW36/38, Rev. 0.8, 16 July, 2020
Application Note 16 / 25

Figure 25. Image upgrading flow diagram of CAN Node A

NXP Semiconductors
Image transfer

Using LIN or CAN Bus to Upgrade Image on KW36/38, Rev. 0.8, 16 July, 2020
Application Note 17 / 25

Figure 26. Image upgrading flow diagram of CAN Node B

The CAN baud rate is up to 1 Mbps. To consider the stability of upgrading process and support multi-nodes upgrading, you need
to upgrade the nodes one by one if there are multiple identical Node B in the same bus. All Node B have different device identifiers.

NXP Semiconductors
Image transfer

Using LIN or CAN Bus to Upgrade Image on KW36/38, Rev. 0.8, 16 July, 2020
Application Note 18 / 25

CAN Node A requests the device identifiers of all Node B firstly, if it has new available image for them. Then it upgrades them
serially according to the device identifiers.

Add one specific command CAN_GEN_CMD_GET_DEV_ID to get device identifiers of Node B for Node A, as shown below.

Figure 27. Code for adding CAN_GEN_CMD_GET_DEV_ID in can_general_cmd_t enumeration

Define the low 16 bits of Bluetooth LE MAC address as the device identifier of Node B.

Figure 28. Code for getting device identifier in CAN Node B

CAN Node A requests the device identifiers of CAN Node B via CAN_GEN_CMD_GET_DEV_ID and opens the waiting window
of 2 seconds. CAN Node B responds with its device identifier after a delay of random (0~1020) milliseconds on receiving the
CAN_GEN_CMD_GET_DEV_ID request. CAN Node A saves the received identifiers to the buffer and starts upgrading them one
by one after the waiting window closes.

6 Image switching
Once LIN slave/CAN Node B receives End command from LIN master/ CAN Node A, it indicates that the image data transfer
has been finished. After writing the Image Length and Sector Bitmap to the header of selected storage area, LIN slave/CAN Node
B should set the new image available value, gBootValueForTRUE_c, to the BootFlags of internal flash to let bootloader know
that image switching is required.

NXP Semiconductors
Image switching

Using LIN or CAN Bus to Upgrade Image on KW36/38, Rev. 0.8, 16 July, 2020
Application Note 19 / 25

Note: The Start Marker (0xDE, 0xAD, 0xAC, 0xE5) needs to be written before the Image Length field if the application selects
the internal flash as the image storage area.

Figure 29. Code for adding Start Marker if internal flash is selected for storage

7 Testing

7.1 Hardware setup
1. Prepare two FRDM-KW36/38 DK boards, where one acts as LIN master/CAN Node A and the other one acts as LIN

slave/CAN Node B. You also need two mini/micro USB cables, five Dupont female-to-female wires, and 12 V power.

2. For LIN testing, unmount R34 and R27 resistors of the LIN slave board.

3. Connect the pins between two FRDM-KW46/38 DK boards.

• LIN connector: J13: pin 1 (LIN)

• CAN connector: J23: pin 1, 2 (CAN_H, CAN_L)

• Power: J13: pin 2, 4 (12V, GND)

4. Plug 12 V power adapter to J32 of one of the boards.

See Figure 1 for the connections between boards.

5. Use USB cables to connect J11 of boards with your personal computer. Download the generated bootloader first and
then download the LIN/CAN OTAP application firmware to the boards. Open the serial terminal (115200 bps, 8 data
bits, no parity, 1 stop bit, no flow control) on your PC to watch the testing process.

6. Press SW1 to reset the boards. You can see the initial serial log on the PC terminal.

7.2 APP test
The NXP APP IoT Toolbox can be used to test the LIN/CAN image upgrading. Install it to your smart phone and switch on the
Bluetooth of the handset. Test procedures are shown as below:

1. Click the “OTAP” icon in the IoT Toolbox main page, and start the scanning mode.

2. Put your LIN master/CAN Node A into advertising mode. Ensure to select the Bluetooth LE Peripheral GAP role using
SW3 on the DK board if you use w_uart based examples. Press SW2 to start advertising and connect it with the APP.

3. Open the OTA file you have already generated and loaded into your phone. The file size and valid file status displays if
the file is available.

4. Click Upload to start the Bluetooth LE OTAP transfer from the APP to the LIN master/CAN Node A. The LIN
master/CAN Node A starts the LIN/CAN transfer automatically after receiving the whole image.

Figure 30 shows the transmission of “LIN Slave v2” image to the LIN slave from the LIN master. Once completed, the LIN slave
switches to v2 from v1. At 19200 bps baud rate that set by calling LIN_GetMasterDefaultConfig()/LIN_GetSlaveDefaultConfig(),
it will take about 6.5 minutes to complete the LIN upgrading for ~200 kB image. When external flash is selected, the reboot will
add approximately 20 seconds more to the upgrading process.

Figure 31 shows the transmission of “CAN Node B v2” image to the CAN Node B from CAN Node A. Once completed, the CAN
Node B switches to v2 from v1. At 1 Mbps baud rate that set by calling FLEXCAN_GetDefaultConfig(), it will take about 13 seconds

NXP Semiconductors
Testing

Using LIN or CAN Bus to Upgrade Image on KW36/38, Rev. 0.8, 16 July, 2020
Application Note 20 / 25

to complete the CAN upgrading for ~200 kB image. When external flash is selected, the reboot will add approximately 20 seconds
more to the upgrading process.

Table 1 shows the image transfer performance of LIN and CAN buses.

Table 1. Image Transfer Performance of LIN and CAN

Bus type Baud Rate setting Transfer time for ~200 kB image

LIN 19200 bps 6.5 minutes

CAN 1 Mbps 13 seconds

NXP Semiconductors
Testing

Using LIN or CAN Bus to Upgrade Image on KW36/38, Rev. 0.8, 16 July, 2020
Application Note 21 / 25

Figure 30. Using IoT Toolbox to test LIN image upgrading

NXP Semiconductors
Testing

Using LIN or CAN Bus to Upgrade Image on KW36/38, Rev. 0.8, 16 July, 2020
Application Note 22 / 25

Figure 31. Using IoT Toolbox to test CAN image upgrading

8 Revision history
Table 2. Revision history

Rev Date Description

0.1 25 May 2020 Initial draft

Table continues on the next page...

NXP Semiconductors
Revision history

Using LIN or CAN Bus to Upgrade Image on KW36/38, Rev. 0.8, 16 July, 2020
Application Note 23 / 25

Table 2. Revision history (continued)

Rev Date Description

0.2 27 May 2020 Add chapter “Image Storage” and Tab 1 - Image Transfer Performance of LIN and CAN.

0.3 2 June 2020 Add Figure - Data Flow of Image Upgrading System.

0.4 4 June 2020 Add KW38 support.

0.5 5 June 2020 Replace NXP Connectivity Test Tool capture to latest version.

0.6 7 July 2020 1. Reformat all the codes in this document

2. Add “Hardware setup” in “Testing” chapter

3. Mention the specific project files that add the codes

0.7 8 July 2020 Add captions for the figures displaying long code and change single/double line code to
text form

0.8 16 July 2020 1. Updates in the description of topics, such as code porting procedure, hardware
setup and so on, for clarity.

2. Add LIN/CAN OTA bus selection macro description.

NXP Semiconductors
Revision history

Using LIN or CAN Bus to Upgrade Image on KW36/38, Rev. 0.8, 16 July, 2020
Application Note 24 / 25

How To Reach Us

Home Page:

nxp.com

Web Support:

nxp.com/support

Information in this document is provided solely to enable system and software implementers to
use NXP products. There are no express or implied copyright licenses granted hereunder to
design or fabricate any integrated circuits based on the information in this document. NXP
reserves the right to make changes without further notice to any products herein.

NXP makes no warranty, representation, or guarantee regarding the suitability of its products for
any particular purpose, nor does NXP assume any liability arising out of the application or use
of any product or circuit, and specifically disclaims any and all liability, including without limitation
consequential or incidental damages. “Typical” parameters that may be provided in NXP data
sheets and/or specifications can and do vary in different applications, and actual performance
may vary over time. All operating parameters, including “typicals,” must be validated for each
customer application by customer's technical experts. NXP does not convey any license under
its patent rights nor the rights of others. NXP sells products pursuant to standard terms and
conditions of sale, which can be found at the following address: nxp.com/
SalesTermsandConditions.

While NXP has implemented advanced security features, all products may be subject to
unidentified vulnerabilities. Customers are responsible for the design and operation of their
applications and products to reduce the effect of these vulnerabilities on customer’s applications
and products, and NXP accepts no liability for any vulnerability that is discovered. Customers
should implement appropriate design and operating safeguards to minimize the risks associated
with their applications and products.

NXP, the NXP logo, NXP SECURE CONNECTIONS FOR A SMARTER WORLD, COOLFLUX,
EMBRACE, GREENCHIP, HITAG, ICODE, JCOP, LIFE VIBES, MIFARE, MIFARE CLASSIC,
MIFARE DESFire, MIFARE PLUS, MIFARE FLEX, MANTIS, MIFARE ULTRALIGHT,
MIFARE4MOBILE, MIGLO, NTAG, ROADLINK, SMARTLX, SMARTMX, STARPLUG, TOPFET,
TRENCHMOS, UCODE, Freescale, the Freescale logo, AltiVec, CodeWarrior, ColdFire,
ColdFire+, the Energy Efficient Solutions logo, Kinetis, Layerscape, MagniV, mobileGT, PEG,
PowerQUICC, Processor Expert, QorIQ, QorIQ Qonverge, SafeAssure, the SafeAssure logo,
StarCore, Symphony, VortiQa, Vybrid, Airfast, BeeKit, BeeStack, CoreNet, Flexis, MXC, Platform
in a Package, QUICC Engine, Tower, TurboLink, EdgeScale, EdgeLock, eIQ, and Immersive3D
are trademarks of NXP B.V. All other product or service names are the property of their respective
owners. AMBA, Arm, Arm7, Arm7TDMI, Arm9, Arm11, Artisan, big.LITTLE, Cordio, CoreLink,
CoreSight, Cortex, DesignStart, DynamIQ, Jazelle, Keil, Mali, Mbed, Mbed Enabled, NEON,
POP, RealView, SecurCore, Socrates, Thumb, TrustZone, ULINK, ULINK2, ULINK-ME, ULINK-
PLUS, ULINKpro, µVision, Versatile are trademarks or registered trademarks of Arm Limited (or
its subsidiaries) in the US and/or elsewhere. The related technology may be protected by any or
all of patents, copyrights, designs and trade secrets. All rights reserved. Oracle and Java are
registered trademarks of Oracle and/or its affiliates. The Power Architecture and Power.org word
marks and the Power and Power.org logos and related marks are trademarks and service marks
licensed by Power.org.

© NXP B.V. 2020. All rights reserved.

For more information, please visit: http://www.nxp.com
For sales office addresses, please send an email to: salesaddresses@nxp.com

Date of release: 16 July, 2020
Document identifier: AN12948

http://www.nxp.com
http://www.nxp.com/support
http://www.nxp.com/SalesTermsandConditions
http://www.nxp.com/SalesTermsandConditions

	Contents
	1 Introduction
	2 Driver enablement
	2.1 Run the driver codes
	2.2 Port the driver codes to Bluetooth LE application

	3 Image obtaining
	4 Image storage
	5 Image transfer
	5.1 Transfer via LIN bus
	5.2 Transfer via CAN bus

	6 Image switching
	7 Testing
	7.1 Hardware setup
	7.2 APP test

	8 Revision history

