AN12948

Using LIN or CAN Bus to Upgrade Image on KW36/38

Rev. 0.8 — 16 July, 2020

1 Introduction

Both LIN and CAN bus are international standard serial communication
protocols and used widely in the automotive, industry, medical fields and so
on. As a wireless microcontroller with Bluetooth LE 5.0 and Generic FSK
support, KW36/38 family of devices have rich peripheral resources including
2 Low Power UART (LPUART) modules with LIN support and 1 FlexCAN

module with CAN FD support.

One LIN or CAN bus always carries several nodes. Forimage upgrading, some
nodes have the OTAP (Over-the-Air Programming) capability to get the new

image from the OTAP server. But the other nodes without OTAP capability may
only obtain the image through LIN or CAN serial communication method from

the OTAP capable nodes.

This document describes how to use the LIN or CAN nodes, which have OTAP
capability to upgrade the nodes, which have no OTAP capability, by LIN or

CAN bus.

2 Driver enablement

2.1 Run the driver codes

With KW36 as an example, follow the steps below to run the driver code:

1. Download the latest SDK of KW36 from https://mcuxpresso.nxp.com/.

Application Note

Contents
1 Introduction........ccceveeeieieieree e 1
2 Driver enablement..............ccocvveneimennns 1

2.1 Run the driver codes.... 1
2.2 Port the driver codes
to Bluetooth LE

application...........cccc...... 2
3 Image obtaining...........cccccvniinreicnnieneenn. 3
4 Image Storage...........ccevreierersereeenssrensnnnns 8
5 Image transfer.........c..cccoreeviiieccenniceennnns 9

5.1 Transfer via LIN bus.....9
5.2 Transfer via CAN bus. 14

6 Image switching......c.cc.cccevceveericicnnenn. 19
A 1= Lo T 20
7.1 Hardware setup.......... 20
7.2 APPtest....ccccoeeiinnns 20
8 Revision history...........cccvveviiiieenenns 23

2. Prepare 2 FRDM-KW36 DK boards to act as LIN/CAN nodes. 12 V DC source and some electric wires are needed for

the power supply and LIN/CAN communication.

3. Go to the path, SDKlboards|frdmkw36|driver_examplesliin, to find the driver examples of LIN master and LIN slave, and
program the generated firmware to the 2 boards to demonstrate how to use LIN bus to transfer the data between master

and slave node.

4. Go to the path, SDKlboards|frdmkw36|driver_examples|flexcanlinterrupt_transfer, to find the driver example of FlexCAN
non-blocking interrupt transfer to demonstrate how CAN nodes communicate.

h
P


https://mcuxpresso.nxp.com/

NXP Semiconductors

Driver enablement

Figure 1. Using FRDM-KW36 DK boards to debug LIN/CAN communication

2.2 Port the driver codes to Bluetooth LE application

As mentioned above, some nodes having the OTAP capability get the image from the remote server and then transfer the image
to the nodes without OTAP capability via LIN or CAN bus. NXP has one Bluetooth LE OTAP solution to perform image
transmission from Bluetooth LE OTAP server to OTAP client via OTAP profile. For more details about Bluetooth LE OTAP solution,
refer to chapter “OTAP” of the BLE Application Developer’s Guide.

NOTE
Bluetooth LE OTAP is just one solution to get the new image from remote server; the developer can select other
available solutions of wireless or serial protocol.

On current NXP Bluetooth LE OTAP solution, when the Bluetooth LE OTAP client application finishes downloading the firmware
from the Bluetooth LE OTAP server, it sets the value, indicating new image available, to BootFlags in flash and resets. The
bootloader copies the new image data from selected storage area to internal flash when it identifies a new image. The client runs
the new image at next reset once data copy finishes

One LIN network includes one master and one or multiple slaves. The KW36 LIN master should have the Bluetooth LE OTAP
capability working as client and get the new image from the Bluetooth LE OTAP server for the LIN slave or itself. The LIN slaves
might not have the Bluetooth LE OTAP feature to load the image from OTAP server directly. So, they can only be upgraded by
LIN master through LIN bus.

One CAN network includes several nodes without the master-slave distinction. One KW36 CAN node has the Bluetooth LE OTAP
capability to get the image from the OTAP server. Suppose this is Node A. And the others can only be upgraded by Node A
through CAN bus. These nodes are called Node B (1, 2...N). The figure below shows the data flow of the whole image upgrading
system.

Using LIN or CAN Bus to Upgrade Image on KW36/38, Rev. 0.8, 16 July, 2020
Application Note 2/25




NXP Semiconductors

Image obtaining

Exed brans

hatiarad]

BLE JTAP Server

LIN srve ar

= CAN Made B

OTAP Profile

[ |
LIN master or e | |M-:nr IJhId.uw-:u'D’nhll
CAM Hode A - | MedeBintweius |

[

.'r LI siave or
E—r— CAN Made B
Borags Medm

foctardl} A

Exemd brans
Sivas Medim
hotiorad]

Figure 2. Data flow of image upgrading system

To enable the Bluetooth LE OTAP feature, copy the LIN master driver example code to the location, SDK |boards
Ifrdmkw36\wireless_examples|bluetoothlotac_att, and name it as /in_masterproject. LIN slave does not need Bluetooth LE OTAP
capability, but it needs the EEPROM operating and image switching features. For convenience, copy the LIN slave driver example
code to the SDKlboards|frdmkw36|\wireless_examples|bluefoothlotac_att project and name it as /in_s/ave project but only use
the necessary features.

Similarly, you can port the CAN driver codes to the SDKlboards|frdmkw36\wireless_examples|bluetoothlotac_attproject to enable
the Bluetooth LE OTAP capability or the necessary EEPROM operating and image switching features. Name the projects as
can_aand can_b.

NOTE
If you want to use other wireless examples available in the SDKlboards|frdmkw36lwireless_examples|bluetooth
directory, for example, w_uart, you can add the Bluetooth LE OTAP profile and functions in this example. And then
copy the LIN/CAN driver example code to this selected project. The released examples are based on the w_vart
project.

To integrate the CAN and LIN driver examples into Bluetooth LE projects, you can follow the Chapter 5 Adding FlexCAN and LIN
demo examples into a Bluefooth LE project of AN12273 Using MCUXpresso SDK CAN and LIN Drivers fo Create a Bluetooth
LE-CAN and Bluetooth LE-LIN Bridges on KW36/KW35.

NOTE
The example projects released with this application note are built in IAR IDE. The MCUXpresso IDE examples are
planned to be released in a later version.

3 Image obtaining

When the LIN master/CAN Node A enables the Bluetooth LE OTAP capability, it can get the image from the Bluetooth LE OTAP
server through Bluetooth LE OTAP profile. The OTA file needs to add OTA header and some tail information to include its OTA
File Identifier, Image Version, Image Identifier, Image Size and so on. The Image Identifier field can be used to indicate if the
OTA file is for LIN slave/CAN Node B or LIN master/CAN Node A itself.

By default, the Image Identifier is 0x0001 for the LIN master/CAN Node A itself. You can define another value for LIN slave/CAN
Node B in ofap_interface.h, for example, 0x000A:

#define gBleOtalmageldForlLinCanNode_c (Ox000AU)
The NXP Connectivity Test Tool can generate the Bluetooth LE OTA file by following the below steps:

Using LIN or CAN Bus to Upgrade Image on KW36/38, Rev. 0.8, 16 July, 2020
Application Note 3/25




NXP Semiconductors

Image obtaining

1. Click OTA Updates>OTAP Bluetooth LE in the top menu.

Set the custom value, 0x000A, in the Image Id of OTA header.
Click Browse to load the binary that need to be upgraded.
Select the chip model, KW36/KW38 and click OK.

o > w0 DN

Click Save to get the generated OTA file.

&8 Command Console % Firmware Loaler ;’" OTA Updates ~ ZGWUI 5 Settings & Help \2)

# Start Page ¢® OTAPBLE %
Image File Information OTA Server Image Loading
Image File: Server Device Serial Port:
C:Wsers'\nxf46959\Desktop\otap_dient_att_freertos.bin Port:
COM14 ~
OTA Header:
File Identifier [ox0B 1EF 11E
Header Version: onn 100 OTAP Actions:
Header Length: |ox003a
Header Field Control: |ox0000
Image download progress 0%
Company Id [oxo 7 I
Image Id 2 [ |axuuun ]
An S-Record or Binary firmware file has been selected. To ensure correct OTA file
I Vi 0x0111111141000005
—bebesd | configuration select the development board processor and NVM options on the OTA
Header String: [NXP BLE OTAP Demo Image File | Options:
Total Image File Size |0xuuu:iJEs-1 | O KW41Z (O QN90S0/K32W061 (O QNI080| (@ KW36/KW38 |K32w032
NXP Specific Sector Copy Sub-element: [0 image contains bootioader

DOuemdemctnrhm'nap: _'\'_\lll\\lll\\lll\\lll\\lll;

OK Cancel
Image Signature Max data rate:

Max ATT data rate (kbps) |3000

Max L2CAP data rate (kbps) |24000

Figure 3. Using NXP Connectivity Test Tool to generate OTA file

If the LIN master/CAN Node A detects that the OTA file is for itself, it sets the value of available new image to TRUE to BootFlags
in the specific position of internal flash in OTA_SefNewlmageFlag()when data downloading completes. After reset, the bootloader
finds a new available image and copies the data from selected storage area to internal flash. The LIN master/CAN Node A runs
new image when bootloader finishes copying and resets again.

If the LIN master/CAN Node A detects that the OTA file is for LIN slave/CAN Node B, it sets another available new image flag in
OtaSupport.h, for example, 0xAA, to BootFlags. This is required to indicate there is a new image for LIN slave/CAN Node B and
to prevent the bootloader to copy the LIN slave/CAN Node B image to itself if the device resets unexpectedly.

#define gBootValueForlLinCanNode_c (0xAA)

You need to define a bool variable, g_ofa_for_lin_or_can_node in OtaSupport.h, for OtapClient_IsImageFileHeaderValid() to
identify if the new image from Bluetooth LE OTAP server is for LIN slave/CAN Node B or not. If yes, set g_ota_for_lin_or_can_node
to TRUE.

Using LIN or CAN Bus to Upgrade Image on KW36/38, Rev. 0.8, 16 July, 2020
Application Note 4/25




NXP Semiconductors

Image obtaining

bool £t g ota for lin or can node = FALSE;

static otapStatus t OtapClient IsImageFileHeaderValid (bleOtaImageFileHeader t* imgFileHeader)
{

otapStatus t headerStatus;

if (gOtapStatusSuccess c == headerStatus)
{

if (gBleOtalImageIdForLinCanNode c == ((otapClientData.imgId[!] << &)
+ otapClientData.imgId[C0]))

g ota for lin or can node = TRUE;
}

else
{

g ota for lin or can node = FALSE;

}
return headerStatus;

}

Figure 4. Code for identifying node for the image

Using LIN or CAN Bus to Upgrade Image on KW36/38, Rev. 0.8, 16 July, 2020

Application Note 5/25



NXP Semiconductors

Image obtaining

void OTA SetNewImageFlag(void)
{
unionf{
uint32 t value;
uint8 t aValue[FSL FEATURE FLASH PFLASH BLOCK WRITE UNIT SIZE];
}bootFlag;
uint32 t status;
if( mNewImageReady )
{
NV_Init():
if (gOtaForLinOrCanNode)
{
bootFlag.value = gBootValueForLinCanNode c;
}
else
{
bootFlag.value = gBootValueForTRUE c;
}
status = NV_FlashProgramUnaligned((uint32Z t)&gBootFlags.newBootImageAvailable,
sizeof (bootFlag),
bootFlag.aValue) ;
}
}
Figure 5. Code for setting new image flag

By default, the application calls ResefMCU() to reset the device after setting the new image flags to make the bootloader copy
image data. But instead is reset, it should start the LIN/CAN transfer if the image is for LIN slave/CAN Node B. For this, add the

following code after OTA_SetNewl/mageFlag() and before ResetMCU() every time these two functions are called one after
another.

Using LIN or CAN Bus to Upgrade Image on KW36/38, Rev. 0.8, 16 July, 2020
Application Note 6/25




NXP Semiconductors

Image obtaining

OTA SetNewImageFlag() ;

if (gOtaForLinOrCanNode)

{
gOtaForLinOrCanNode = FALSE;
/* start to LIN or CAN upgrade transfer */
LinCanOtaStartCallback() :

}

else

{
ResetMCU() »

}

Figure 6. Code for starting LIN/CAN upgrading process

Generally, LIN upgrading and CAN upgrading are mutually exclusive. Define one macro gOfaUseBusSelection_din
app_preinclude.h to select LIN or CAN for the image upgrading; gOfaUseBus_LIN_cis used for LIN option while
gOfaUseBus_CAN_cis used for CAN option.

#define gOtaUseBus LIN c 1

#define gOtaUseBus CAN c 2

fdefine gOtaUseBusSelection_d gOtaUseBus CAN c
#ifndef gOtaUseBusSelection d

fdefine gOtaUseBusSelection_d gOtaUseBus LIN c
#endif

Figure 7. Code for selecting the bus to do image upgrading

Include an additional condition in the OfapBootloader.c of SDKlboards|frdmkw36lwireless_examples|framework/bootloader_otap
project to prevent incorrect loading and switching; follow the code below.

void Boot CheckOtapFlags (void)

{
gpBootInfo = (bootFlags t*)gBootImageFlagsAddress c;

if (( 'FLib MemCmpToVal ((const volid*)gpBootInfo->ul.aNewBootImageAvailable, O0xFF,
sizeof (gpBootInfo->ul.aNewBootImageAvailable))
&& (gpBootInfo->ul.aNewBootImageAvailable[0] = 0xzAR)) ||
FLib MemCmpToVal ((const void¥*)gpBootInfo->ul.aBootProcessCompleted, OxFE,
sizeof (gpBootInfo->ul.aBootProcessCompleted)))

/* Write the new image */
Boot LoadImage() ;

}

Figure 8. Code for identifying if bootloader needs to load the new image

Using LIN or CAN Bus to Upgrade Image on KW36/38, Rev. 0.8, 16 July, 2020
Application Note 7/25




NXP Semiconductors

4 |mage storage

Image storage

The image received from Bluetooth LE OTAP server can be saved in the internal flash or external EEPROM in the LIN
master/CAN Node A site. Similarly, the image received from LIN master/CAN Node A can be saved in the internal flash or external
EEPROM in LIN slave/CAN Node B. The storage area selection of LIN master/CAN Node A and LIN slave/CAN Node B is

independent.

To select internal flash, set the configurations as below:

* In the app_preinclude.h of the application project:

#define gEepromType_d gEepromDevice_InternalFlash_c

* In the Options > Linker of the application project:

gUselnternalStorageLink_d=1

* In the Options > C/C++ Compiler of the bootloader project:

gEepromType_d=gEepromDevice_InternalFlash_c

The image is saved in defined OTAP internal storage space as shown in figure below.

2K

8K

248K

~246K

32
192

8K

Figure 9. Memory layout of internal flash

Product Info

NV_STORAGE

OTAP Internal
Storage

Application

Boot Flags

Interrupt Vectors

Bootloader

0x80000
Ox7F800

0x7D800

Ox3F800

0x020EO
0x020CO0
0x02000

0x00000

To select external EEPROM, for example, AT45DB041E, as designed in the DK board, set the configurations as below:

* In the app_preinclude.h of the application project:

Using LIN or CAN Bus to Upgrade Image on KW36/38, Rev. 0.8, 16 July, 2020

Application Note

8/25



NXP Semiconductors

Image transfer

#define gEepromType_d gEepromDevice AT45DBO41E_c
* In the Options > Linker of the application project:
gUselnternalStorageLink_d=0
* In the Options > C/C++ Compiler of the bootloader project:
gEepromType_d=gEepromDevice AT45DB041E_c

The image is saved in the AT45DB041E from 0 offset via SPI communication.

5 Image transfer
When the image loading from the OTAP server finishes, the LIN master/CAN Node A calls LinCanOtaStartCallback()to start the
LIN/CAN transfer.

5.1 Transfer via LIN bus

To define 3 identifiers of LIN unconditional frame type in the LIN task schedule table, write the following code in /in_cfg.h:

typedef enum

{
gID OtapCmd c = 0xz31,
gID OtapGetStatus c,
gID OtapData c

} lin id t;

$define LIN FRAME BUF_SIZE (111)
$define LIN NUM OF FRMS (3U)

Figure 10. Code for defining LIN frame identifiers and sizes

Also, include the following code in /in_cfg.c

uint8 t g lin frame data buffer[LIN FRAME BUF SIZE] = {U};

static const lin frame struct lin frame tbl[LIN NUM OF FRMS] = {

{ LIN FRM UNCD, 1U, LIN RES PUB, 0U, 0U, lU, 10U, 0U }
,{ LIN FRM UNCD, 2U, LIN RES SUB, U, 10U, 1U, 4U, 0U }
,{ LIN FRM UNCD, €U, LIN RES PUB, 35U, 2U, 1U, 20U, 0U }};

static uint8 t LIO lin configuration RAM[LIO LIN SIZE OF CEG]= {
)0, gID OtapCmd c, gID OtapGetStatus c, gID OtapData c};
const uintlé t ©LIO lin configuration ROM[LIO LIN SIZE OF CEG]= {
: )0, gID OtapCmd c, gID OtapGetStatus c, gID OtapData c};

Figure 11. Code for defining LIN frame schedule table

Using LIN or CAN Bus to Upgrade Image on KW36/38, Rev. 0.8, 16 July, 2020
Application Note 9/25




NXP Semiconductors

Image transfer

» g/D_OtfapCmd_c:. notifies LIN slave to start or end the image data transfer, carrying the /in_ota_cmd_c variable defined in
lin_cfg.h in ByteO as the payload.

typedef enum
{
LIN OTA CMD NONE = 0x=00,
LIN OTA CMD START,
LIN OTA CMD END,
LIN OTA CMD CONTINUE
} 1lin ota cmd c;

Figure 12. Code for defining lin_ota_cmd_c enumeration

« g/D OfapGetStatus c. gets the status of LIN slave, carrying the /in_ota_status tvariable defined in /in_cfg.hin ByteO and
sequence number (0~255) in Byte1 as the payload.

typedef =num
{
LIN OTA STATUS IDLE = 0x=00,
LIN OTA STATUS READY,
LIN OTA STATUS RUNNING,
LIN OTA STATUS FINISH,
LIN OTA STATUS ABORT
} 1lin ota status t;

Figure 13. Code for defining lin_ota_status_c enumeration

» g/D_OfapData_c. sends the data by frame to LIN slave, carrying maximum 8-byte image data as the payload.

To consider the payload size and data rate limitation of LIN bus, you may not get the status of LIN slave by each data frame since
it will cause lower upgrading speed. LIN master reads one block data, for example, 1 KB, from the selected storage area and
saves to RAM buffer. It then sends them via g/D_OtapData_c frames to the LIN slave continuously. Define the sizes in /in_cfg.h
and related reading variables in /in_cfg.c of the lin_master project:

#define LIN OTA BLOCK SIZE (10241)
#$define LIN OTA FRAME SIZE (8U)
#define LIN OTA FRAMES OF BLOCK (LIN OTA BLOCK SIZE / LIN OTA FRAME SIZE)

static uint8 t eeprom read buffer[LIN OTA BLOCK SIZE] = {0};
uint32 t g lin read flash offset = gBootData ImagelLength Offset c;

Figure 14. Code for defining LIN transmission sizes and reading variables

LIN slave saves the received data to RAM buffer. When one block transfer finishes, the LIN slave writes the received block to
the specific offset of image storage area. It then responds the status and next block sequence number via g/D_OfapGetStatus_c
to the LIN master. The LIN master continues the reading and transfer of next block. Define the sizes in /in_cfg.h and related
writing variables in /in_cfg.c of the /in_slave project:

Using LIN or CAN Bus to Upgrade Image on KW36/38, Rev. 0.8, 16 July, 2020
Application Note 10/25




NXP Semiconductors

Image transfer

#define LIN OTA BLOCK_ SIZE (10240)
#define LIN OTA FRAME SIZE (8U)
#define LIN OTA FRAMES OF BLOCK (LIN_OTA BLOCK SIZE / LIN_OTA FRAME SIZE)

static uint8 t eeprom write buffer[LIN OTA BLOCK SIZE] = {0};
uint32 t g lin write flash offset = gBootData Imagelength Offset c:

Figure 15. Code for defining LIN reception sizes and writing variables

To construct the state machine of upgrading, define the /in_ofa_stage_t enumeration in /in_cfg.h and variables in /in_cfg.c.

typedef enum

{
LIN OTA STAGE IDLE = 0x00,
LIN OTA STAGE TX DATA,
LIN OTA STAGE END

} 1lin ota stage t;

lin ota status t g lin ota status = LIN OTA STATUS IDLE;
lin ota stage t g lin ota stage = LIN OTA STAGE IDLE;

Figure 16. Code for defining lin_ota_stage_t enumeration and variables

It is possible to support multiple slave nodes upgrading at the same time, if the nodes have the same function and no bad
communication in the bus. The image upgrading flow diagrams of LIN master and LIN slave are shown in Figure 17 and Figure 18.

Using LIN or CAN Bus to Upgrade Image on KW36/38, Rev. 0.8, 16 July, 2020
Application Note 11/25




NXP Semiconductors

Image transfer

LIN OTA Start

I Get g _lin_ota_image_length |
¥

| Send Start Command by g10_OtapCmd_c |
¥

[ Get LN dave status by giD_OtapStatus_c |

#_lin_ota_status ==
LIN_OT&_STATUS_READY?

Read LIN_OTA_BLOCK_SIZE data from "
EEFROM and = ave to RAM buffer

¥

read_offset+= LIN_OTA_BELOCK_SEZE
tx offset=0

| Send mult-rames data by glD_OtapData_c |
4
| tu_offset+= LIN_OTa_FRAME_SIZE |

="TE3d offset »=g_lin_ota_Image_lengffi—

| Send Continue Command by gI0_OtapCmd ¢ |

¥

| Getstatus & block_sgn by gID_DtapStatus_c |

g lin_ota_status =

total Hock numbers?

¥

—bl g_lin_ota_stage = LIN_OTa_STASE_END |

v

| Send End Command by glD_OtapCmd_c |

v

| g_lin_cta_stage = LIN_OTA_STASE_IDLE |

Bl
L |

3
LIN OTA End

Figure 17. Image upgrading flow diagram of LIN master

Using LIN or CAN Bus to Upgrade Image on KW36/38, Rev. 0.8, 16 July, 2020

Application Note 12/25



NXP Semiconductors

Image transfer

LINDTA Start

Recelved Start command by giD_ OtapCmd

& lin_ota_statie =
LIN_OTa_STATUS_|IDLE?

& lin_ota_statis = LIN_OTA_STATUS_READY
and responze by gID_OtapGetStatie_c

Getg_lin_ota_image_length and calculate the
total block numbers

"

Walt fordata camied by glD_OtapData_c and
zave to RAM buffer when recelved

!

r_offset += LIN_OT&_FRAME_SIZE

Cont inue command recehed ?

f_offset == LIN_OTS_BLOCK_SIZE

write the one block recetved data tothe
EEFROM Inwrite _offset position

v

write_offzet += LIN_OTA_BLOCK_SIZE
rx_offset = 0, block_sgn++

|

g_lin_ota_status = LIN_OTA_STATUS_RUNNING

and responze by gID_OtapGetstatie_c

End command receled?

write_offeet =— g_lin_ot_Iimage_length?

| 5Set new Image avallable walue to BootFlags |

v

| Reset and switch to new Image |

L 4

g lin_ota_status = LIN_OTA_STATUS_ABORT
and response by glD_OtapSetStatus_c

et

L]

LIN OTa& End

Figure 18. Image upgrading flow diagram of LIN slave

Using LIN or CAN Bus to Upgrade Image on KW36/38, Rev. 0.8, 16 July, 2020

Application Note

13/25



NXP Semiconductors

Image transfer

5.2 Transfer via CAN bus

You need to define 11-bit standard CAN identifiers for TX and RX identification in flexcan_cfg.h. CAN Node B should have the
same RX identifier as the TX identifier of Node A and have the same TX identifier as the RX identifier of Node A.

Node A:

#define CAN_TX IDENTIFIER (0x123)

#define CAN_RX_IDENTIFIER (0x321)

Node B:

Both CAN Node A and CAN Node B should be set to RX mode to listen the data of bus when idle.
#define CAN_TX IDENTIFIER (0x321)

#define CAN_RX_IDENTIFIER (0x123)

Generally, CAN nodes broadcast data to other nodes on the bus, such as periodic sensor data. But for the image data, the
transmitter should know the status of each frame/block sent, since any missed or incorrect data may cause the receiver upgrading
failure. Considering the reliability and fast CAN baud rate, expect to receive a response of each frame transmitted from the receiver
to confirm that the data was received correctly.

Define the commands in flexcan_cfg.h for the image upgrading as below:

typedef enum

{
CAN_ GEN_CMD NONE = ‘
CAN GEN CMD OTA CMD,
CAN GEN_CMD OTA DATA,
CAN GEN CMD OTA STATUS

} can general cmd t;

Figure 19. Code for defining can_general_cmd_t enumeration

» CAN_GEN_CMD_OTA_CMBD: notifies Node B to start or end the image data transfer. CAN_GEN_CMD_OTA_CMD s put
in ByteO, followed by can_ofa_cmd_cin Byte1 in the data payload.

typedef enum

{
CAN OTA CMD NONE = ,
CAN OTA CMD START,
CAN OTA CMD END

} can ota cmd c;

Figure 20. Code for defining can_ota_cmd_c enumeration

* CAN_GEN_CMD_OTA _DATA: carries the image data for Node A and the received status of each frame for Node B. CAN
supports maximum 8-byte data payload, while CAN FD supports maximum 64 bytes. ByteO is used to carry the
CAN_GEN_CMD_OTA_DATA value. For Node A, Byte1 is used for frame sequence number (0~255). You can transfer a
frame by 8 bytes image data for EEPROM alignment. So, CAN FD mode should be enabled to support (1+1+8=)10-byte
length.

#define USE_CANFD (1)

You can carry more image data each frame, for example, 16 bytes, 32 bytes, to speed up the upgrading process.

Using LIN or CAN Bus to Upgrade Image on KW36/38, Rev. 0.8, 16 July, 2020
Application Note 14/25




NXP Semiconductors

Image transfer

For Node B, Byte1 is used to put the ACK/NAK of the received frame.

* CAN_GEN_CMD_OTA_STATUS: lets Node A know the current status of Node B. ByteO carries the can_ota_stafus tbyte
defined in flexcan_cfg.h.

typedef enum
{
CAN OTA STATUS IDLE = 0x00,
CAN OTA STATUS READY,
CAN OTA STATUS RUNNING,
CAN OTA STATUS FINISH,
CAN OTA STATUS ABORT
} can ota status t;

Figure 21. Code for defining can_ota_status_c enumeration

When upgrading starts, the Node A reads one block data from EEPROM and saves to RAM buffer firstly. It then sends them to
Node B by frames. Define the sizes in flexcan_cfg.h and related reading variables in flexcan_interrupt_transfer.cin can_a project:

#define CAN OTA BLOCK SIZE (10240)
#define CAN OTA FRAME SIZE (8U)
#define CAN OTA FRAMES OF BLOCK (CAN_ OTA BLOCK SIZE / CAN_OTA FRAME SIZE)

static uint8 t eeprom read buffer[CAN OTA BLOCK SIZE] = {0};
uint32 t g can read flash offset = gBeootData Imagelength Offset c;

Figure 22. Code for defining CAN transmission sizes and reading variables

Node B keeps waiting for the data continuously. It sends response to Node A after receiving a frame of data and then saves them
to the RAM bulffer. It writes the data of RAM buffer to EEPROM when it receives a complete block. Define the sizes in flexcan_cfg.h
and related writing variables in flexcan_interrupt_transfer.cin the can_b project:

#define CAN OTA BLOCK STZE (10240)
#define CAN OTA FRAME STZE (8U)
#define CAN OTA FRAMES OF BLOCK (CAN OTA BLOCK SIZE / CAN OTA FRAME SIZE)

statlc uint8 t eeprom write buffer[CAN OTA BLOCK SIZE] = {(U}:
uint32 t g can write flash offset = gBootData ImagelLength Offset c;

Figure 23. Code for defining CAN reception sizes and writing variables

To construct the state machine of upgrading, define the can_ota_stage tenumeration in flexcan_cfg.h and variables in
flexcan_interrupt_transfer.c as follows:

Using LIN or CAN Bus to Upgrade Image on KW36/38, Rev. 0.8, 16 July, 2020
Application Note 15/25




NXP Semiconductors

Image transfer

typedef enum

{
CAN OTA STAGE IDLE = 0=00,
CAN OTA STAGE TX DATA,
CAN OTA STAGE END

} can ota stage t;

can ota status t g can ota status = CAN OTA 5TATUS IDLE;
can ota stage t g can ota stage = CAN OTA STAGE TIDLE;

Figure 24. Code for defining can_ota_stage_t enumeration and variables

The image upgrading flow diagrams of CAN Node A and CAN Node B are shown in Figure 25 and Figure 26.

Using LIN or CAN Bus to Upgrade Image on KW36/38, Rev. 0.8, 16 July, 2020

Application Note

16/25



NXP Semiconductors

Image transfer

CANOTA Start

| Get g can_ota_image_length I

v

| Send Start Command by CAN_GEN_CMD _OTA_CMD |

¥

| Get Node Bstatus by CAN_GEN CMD_OTA STATUS |

@ can_ota_status =

F 3

M OTA_STATUS_REA

*y Y
Read CaM_OTA_BLOCK_SIZEdata from
EEFROM and zave to RAM buffer
read offset+= CAN_OTA BLOCK_SIZE
tx offset=0

L i
| Send data by CAN_GEN_CMD OTA_DATA |

¥

| et response & frame_sqn |

Recelwe ACK?

M

mies limit?

¥

| & can_ota_stge- CAN_DTA_STASE_END |

| Sand End Command by CAN_GEN_CMD_OTA_CWMD ]

| £ can_ota_stage = CAN_OTA_STAGE_IDLE ]

Ll
4
CANOTA End

Figure 25. Image upgrading flow diagram of CAN Node A

Using LIN or CAN Bus to Upgrade Image on KW36/38, Rev. 0.8, 16 July, 2020

Application Note

171725



NXP Semiconductors

Image transfer

CAMNDTA Start

Recelved Start command by CAN_SEN_CMD_OTA CMD I

g_can_ota_status ==
AN_OTa_STATUS_IDLE?

g_can_ota_statis = CAN_OTA&_STATUS READY
and response by CAN_GEN_CMD_OTA_STATLS

v

Get g can_ota_image_length and calculate the
total block numbers.

::F

Waltfordata camed by CAN_EEN_CMD_OTA_DATA
and save 1o RaM buffer when rece ved

;

| Send responze of recetved data |

.

| ri_offset += CAN_OTA_FRAME SIZE |

¢ _offzet = CAN_OTS_BLOCK _SIFEZ

wirite the one block recetved data tothe
EEPROM Inwrite_offset position

'

write_offset += CAN_OTa_BLOCK_SIZE
n_offet=0

End command recetved?

rite_offset =— g can_ota_image length

| Set new Image avallable value to BootFlags |

'

| g_can_ota_statie = CAN_OTA STATUS_FINISH |

'

| Reset and switch to naw Image | | g_can_ota_status = CAM_OTA_STATUS_ABORT

L
|: CAN OT& End

Figure 26. Image upgrading flow diagram of CAN Node B

The CAN baud rate is up to 1 Mbps. To consider the stability of upgrading process and support multi-nodes upgrading, you need
to upgrade the nodes one by one if there are multiple identical Node B in the same bus. All Node B have different device identifiers.

Using LIN or CAN Bus to Upgrade Image on KW36/38, Rev. 0.8, 16 July, 2020

Application Note

18/25



NXP Semiconductors

Image switching

CAN Node A requests the device identifiers of all Node B firstly, if it has new available image for them. Then it upgrades them
serially according to the device identifiers.

Add one specific command CAN_GEN_CMD_GET_DEV _ID to get device identifiers of Node B for Node A, as shown below.

typedef =num

{
CAN GEN CMD NONE = ,
CAN GEN CMD OTA CMD,
CAN GEN CMD OTA DATA,
CAN GEN CMD OTA STATUS,
CAN GEN CMD GET DEV_ID

} can general cmd t;

Figure 27. Code for adding CAN_GEN_CMD_GET_DEV_ID in can_general_cmd_t enumeration

Define the low 16 bits of Bluetooth LE MAC address as the device identifier of Node B.

uintlé t g can device id;

void BleApp GenericCallback(gapGenericEvent t *pGenericEvent)

{
switch (pGenericEvent->eventType)
{
case gPublicAddressRead c:
{
uint8 t addr[Z]:
FLib MemCpy(addr, pGenericEvent->eventData.aAddress, sizeof(uint8 t) * 2);
g_can device id = addr[0] + (addr[l] << 2);
}
break;
}
}

Figure 28. Code for getting device identifier in CAN Node B

CAN Node A requests the device identifiers of CAN Node B via CAN_GEN_CMD_GET_DEV _[ID and opens the waiting window
of 2 seconds. CAN Node B responds with its device identifier after a delay of random (0~1020) milliseconds on receiving the
CAN_GEN_CMD_GET_DEV _IDrequest. CAN Node A saves the received identifiers to the buffer and starts upgrading them one
by one after the waiting window closes.

6 Image switching

Once LIN slave/CAN Node B receives End command from LIN master/ CAN Node A, it indicates that the image data transfer
has been finished. After writing the Image Length and Sector Bitmap to the header of selected storage area, LIN slave/CAN Node
B should set the new image available value, gBootValueForTRUE._c, to the BootFlags of internal flash to let bootloader know
that image switching is required.

Using LIN or CAN Bus to Upgrade Image on KW36/38, Rev. 0.8, 16 July, 2020
Application Note 19/25




NXP Semiconductors

Testing

Note: The Start Marker (OxDE, 0xAD, OxAC, 0xE5) needs to be written before the Image Length field if the application selects
the internal flash as the image storage area.

#if (gEepromType d == gEepromDevice InternalFlash c)

uint8 t start marker[gBootData Marker Size c] = {gBootData StartMarker Value c};

/* Write the Start marker at the beginning of the internal storage. */

EEPROM WriteData(gBootData Marker Size c, gBootData StartMarker Offset c, start marker);
#endif

Figure 29. Code for adding Start Marker if internal flash is selected for storage

7 Testing

7.1 Hardware setup

1. Prepare two FRDM-KW36/38 DK boards, where one acts as LIN master/CAN Node A and the other one acts as LIN
slave/CAN Node B. You also need two mini/micro USB cables, five Dupont female-to-female wires, and 12 V power.

2. For LIN testing, unmount R34 and R27 resistors of the LIN slave board.
3. Connect the pins between two FRDM-KW46/38 DK boards.
* LIN connector: J13: pin 1 (LIN)
» CAN connector: J23: pin 1, 2 (CAN_H, CAN_L)
» Power: J13: pin 2, 4 (12V, GND)
4. Plug 12 V power adapter to J32 of one of the boards.
See Figure 1 for the connections between boards.

5. Use USB cables to connect J11 of boards with your personal computer. Download the generated bootloader first and
then download the LIN/CAN OTAP application firmware to the boards. Open the serial terminal (115200 bps, 8 data
bits, no parity, 1 stop bit, no flow control) on your PC to watch the testing process.

6. Press SW1 to reset the boards. You can see the initial serial log on the PC terminal.

7.2 APP test

The NXP APP loT Toolbox can be used to test the LIN/CAN image upgrading. Install it to your smart phone and switch on the
Bluetooth of the handset. Test procedures are shown as below:

1. Click the “OTAP” icon in the lIoT Toolbox main page, and start the scanning mode.

2. Put your LIN master/CAN Node A into advertising mode. Ensure to select the Bluetooth LE Peripheral GAP role using
SW3 on the DK board if you use w_uartbased examples. Press SW2 to start advertising and connect it with the APP.

3. Open the OTA file you have already generated and loaded into your phone. The file size and valid file status displays if
the file is available.

4. Click Upload to start the Bluetooth LE OTAP transfer from the APP to the LIN master/CAN Node A. The LIN
master/CAN Node A starts the LIN/CAN transfer automatically after receiving the whole image.

Figure 30 shows the transmission of “LIN Slave v2” image to the LIN slave from the LIN master. Once completed, the LIN slave
switches to v2 from v1. At 19200 bps baud rate that set by calling L/N_GetMasterDefaultConfig()| LIN_GetSlaveDefaultConfig(),
it will take about 6.5 minutes to complete the LIN upgrading for ~200 kB image. When external flash is selected, the reboot will
add approximately 20 seconds more to the upgrading process.

Figure 31 shows the transmission of “CAN Node B v2” image to the CAN Node B from CAN Node A. Once completed, the CAN
Node B switches to v2 from v1. At 1 Mbps baud rate that set by calling FLEXCAN_GetDefaultConfig(), it will take about 13 seconds

Using LIN or CAN Bus to Upgrade Image on KW36/38, Rev. 0.8, 16 July, 2020
Application Note 20/25




NXP Semiconductors

Testing

to complete the CAN upgrading for ~200 kB image. When external flash is selected, the reboot will add approximately 20 seconds
more to the upgrading process.

Table 1 shows the image transfer performance of LIN and CAN buses.

Table 1. Image Transfer Performance of LIN and CAN

Bus type Baud Rate setting Transfer time for ~200 kB image
LIN 19200 bps 6.5 minutes
CAN 1 Mbps 13 seconds

Using LIN or CAN Bus to Upgrade Image on KW36/38, Rev. 0.8, 16 July, 2020

Application Note

21/25



NXP Semiconductors
Testing
LIN Master v1
Aduertising
loT Toolbox DISCONNECT Connected
Loading image from OTAP Server...
Load finished
lin ota init, image length: 215189
TAP read block @ from eeprom
read block 1 from eeprom
read block 2 From eepron
= = read block 3 from eepron
File Infomation read block 4 from eeprom
o read block 5 from eeprom
File Name NXP BLE OTAP Demo Imag... read block 6 Fron eepron
read block 7 from eeprom
File Version 5.0.0 read block 8 Fron eepron
. read block 9 From eepron
File Size 215 KB read block 18 from eeprom
3.128 read block 11 from eeprom
Status Valid File 5.141 read block 12 from eepron
read block 13 from eepron
read block 1% from eepron
read block 15 from eepron
read block 16 from eeprom
read block 17 from eeprom
N read block 18 from eeprom
Firmware Update read block 19 from eepron
read block 20 from eepron
= = read block 21 from eepron
0% 100% read block 22 from eepron
read block 23 from eepron
read block 24 from eeprom
read block 25 from eepromn
read block 26 from eepron
read block 27 from eepron
read block 28 from eepron
read block 29 from eepron
read block 38 from eepron
read block 31 from eeprom
read block 32 from eepron
11:36:54.120JLIN Slave ui A 11:44:37.613 block 176 written finished
8 Hm Ota start... 11:44:39.612 block 177 written Finished
length: 215169 bytes, total 211 11:44:41.643 block 178 written finished
OCRS 11:44:43.643 block 179 written finished
11:38:42.952 block @ written Finished 11:44:45 674 block 188 written Finished
11:38:44.934 block 1 written Finished 11:44:47 674 block 181 written finished
11:38:46.965 block 2 written Finished 11:44:49.706 block 182 written finished
11:38:48.964 block 3 written Finished 41:44:51.766 block 183 written finished
11:38:50.995 block 4 written Finished 11:44:53.737 block 184 written finished
11:38:52.993 block 5 written Finished 11:44:55.736 block 185 written finished
11:38:55.825 block 6 written Finished 11:44:57.768 block 186 written finished
11:38:57_823 block 7 written Finished 11:44:59.767 block 187 written finished
41:38:59.856 block 8 written Finished 11:45:01.798 block 188 written finished
11:39:81.854 block 9 written Finished 11:45:03.798 block 189 written finished
11:39:03.085 block 18 written finished 11:45:085.829 block 198 uritten finished
41:39:85.883 block 11 written finished 11:45:07.828 block 191 written finished
11:39:87.114% block 12 written finished 11:45:09.860 block 192 written finished
11:39:89.114 block 13 written finished 11:45:11.868 block 193 uritten finished
11:39:11.14% block 1% written finished 11:45:13.892 block 194 written finished
11:39:13.143 block 15 written finished 11:45:15.891 block 195 uritten finished
14:39:15.473 block 16 written finished 11:45:17.921 block 196 written finished
11:29:17.173 block 17 written finished 11:45:19.921 block 197 written finished
11:89:19.205 block 18 written finished 11:45:21.953 block 198 written Finished
141:39:21.203 block 19 written finished 11:45:23.952 block 199 written finished
11:39:23.234 block 20 written finished 11:45:25.983 block 200 written finished
11:39:25.233 block 21 written Finished 11:45:27.983 block 261 written Finished
11:89:27.263 block 22 written finished 11:45:30.014 block 262 uritten finished
11:89:29.262 block 23 written finished 11:45:32.0815 block 263 written Finished
11:89:31.294 block 24 written finished 11:45:34.047 Dlock 264 uritten finished
11:29:33.292 block 25 written finished 11:45:36.646 block 285 written finished
11:39:35.324 block 26 written finished 11:45:38.076 block 286 written Finished
11:89:87.323 block 27 written finished 11:45:40.077 block 267 uritten finished
11:39:39.355 block 28 written finished 11:45:42.118 block 208 written finished
11:29:41.953 block 29 written finished T1:45:44.168 block 289 written finished
11:39:41.365 block 38 uritten finished urite the last block, 218
11:39:45.383 block 31 written finished Llin ota end
11:39:47.413 block 32 written finished v -
11:30:49.413 block 33 written finished 11:46:03.288[LIN Slave v2 |
11:39:51.444 block 3% written finished v
Figure 30. Using loT Toolbox to test LIN image upgrading
Using LIN or CAN Bus to Upgrade Image on KW36/38, Rev. 0.8, 16 July, 2020
Application Note 22/25



NXP Semiconductors

Revision history

loT Toolbox DISCONNECT

OTAP

File Infomation
File Name NXP BLE OTAP Demo Imag...

File Version 5.0.0
File Size 215 KB
Status Valid File

Firmware Update
0% 100%

Status: Connected --% O

14:37:34.852 CAN Node A vl
14:37:41.482 Advertising
14:37:43.818 Connected

14:37:51.184 Loading image from OTAP Server...

14:39:20.204 Load finished

can ota initialize, image length: 214942
14:39:28.582 Got dev id 8: BxB7CA
14:39:21.4086 device id collection finished
14:39:34.662 dev BxB7CA can ota finish

14:37:36.825  CAH_Node B_u1
14:39:20.287 Randonm delay 292 ms (range:@8™1828)
20.501 Response dev id: BxB7CA

:122.415 6 percent finished
:23.410 14 percent finished
:24.411 21 percent finished
:25.412 29 percent finished
226 .418 37 percent finished
227 .427 4y percent finished
:28.434 52 percent finished
:29.443 60 percent finished
:30.452 67 percent finished
:31.714 77 percent finished
:32.721 84 percent finished
33.731 92 percent finished
[:an ota end

ready to reset and switch

14:39:53.562| CAH Node B u2

Figure 31. Using loT Toolbox to test CAN image upgrading

8 Revision history

Table 2. Revision history

Rev

Date Description

0.1

25 May 2020 Initial draft

Table continues on the next page...

Using LIN or CAN Bus to Upgrade Image on KW36/38, Rev. 0.8, 16 July, 2020

Application Note

23/25



NXP Semiconductors

Revision history

Table 2. Revision history (continued)

Rev Date Description

0.2 27 May 2020 Add chapter “Image Storage” and Tab 1 - Image Transfer Performance of LIN and CAN.
0.3 2 June 2020 Add Figure - Data Flow of Image Upgrading System.

0.4 4 June 2020 Add KW38 support.

0.5 5 June 2020 Replace NXP Connectivity Test Tool capture to latest version.

0.6 7 July 2020 1. Reformat all the codes in this document

2. Add “Hardware setup” in “Testing” chapter

3. Mention the specific project files that add the codes

0.7 8 July 2020 Add captions for the figures displaying long code and change single/double line code to
text form
0.8 16 July 2020 1. Updates in the description of topics, such as code porting procedure, hardware

setup and so on, for clarity.

2. Add LIN/CAN OTA bus selection macro description.

Using LIN or CAN Bus to Upgrade Image on KW36/38, Rev. 0.8, 16 July, 2020
Application Note 24 /25




How To Reach Us
Home Page:
nxp.com

Web Support:

nxp.com/support

Information in this document is provided solely to enable system and software implementers to
use NXP products. There are no express or implied copyright licenses granted hereunder to
design or fabricate any integrated circuits based on the information in this document. NXP
reserves the right to make changes without further notice to any products herein.

NXP makes no warranty, representation, or guarantee regarding the suitability of its products for
any particular purpose, nor does NXP assume any liability arising out of the application or use
of any product or circuit, and specifically disclaims any and all liability, including without limitation
consequential or incidental damages. “Typical” parameters that may be provided in NXP data
sheets and/or specifications can and do vary in different applications, and actual performance
may vary over time. All operating parameters, including “typicals,” must be validated for each
customer application by customer's technical experts. NXP does not convey any license under
its patent rights nor the rights of others. NXP sells products pursuant to standard terms and
conditions of sale, which can be found at the following address: nxp.com/
SalesTermsandConditions.

While NXP has implemented advanced security features, all products may be subject to
unidentified vulnerabilities. Customers are responsible for the design and operation of their
applications and products to reduce the effect of these vulnerabilities on customer’s applications
and products, and NXP accepts no liability for any vulnerability that is discovered. Customers
should implement appropriate design and operating safeguards to minimize the risks associated
with their applications and products.

NXP, the NXP logo, NXP SECURE CONNECTIONS FOR A SMARTER WORLD, COOLFLUX,
EMBRACE, GREENCHIP, HITAG, ICODE, JCOP, LIFE VIBES, MIFARE, MIFARE CLASSIC,
MIFARE DESFire, MIFARE PLUS, MIFARE FLEX, MANTIS, MIFARE ULTRALIGHT,
MIFARE4MOBILE, MIGLO, NTAG, ROADLINK, SMARTLX, SMARTMX, STARPLUG, TOPFET,
TRENCHMOS, UCODE, Freescale, the Freescale logo, AltiVec, CodeWarrior, ColdFire,
ColdFire+, the Energy Efficient Solutions logo, Kinetis, Layerscape, MagniV, mobileGT, PEG,
PowerQUICC, Processor Expert, QorlQ, QorlQ Qonverge, SafeAssure, the SafeAssure logo,
StarCore, Symphony, VortiQa, Vybrid, Airfast, BeeKit, BeeStack, CoreNet, Flexis, MXC, Platform
in a Package, QUICC Engine, Tower, TurboLink, EdgeScale, EdgeLock, elQ, and Immersive3D
are trademarks of NXP B.V. All other product or service names are the property of their respective
owners. AMBA, Arm, Arm7, Arm7TDMI, Arm9, Arm11, Artisan, big.LITTLE, Cordio, CoreLink,
CoreSight, Cortex, DesignStart, Dynaml|Q, Jazelle, Keil, Mali, Mbed, Mbed Enabled, NEON,
POP, RealView, SecurCore, Socrates, Thumb, TrustZone, ULINK, ULINK2, ULINK-ME, ULINK-
PLUS, ULINKpro, pVision, Versatile are trademarks or registered trademarks of Arm Limited (or
its subsidiaries) in the US and/or elsewhere. The related technology may be protected by any or
all of patents, copyrights, designs and trade secrets. All rights reserved. Oracle and Java are
registered trademarks of Oracle and/or its affiliates. The Power Architecture and Power.org word
marks and the Power and Power.org logos and related marks are trademarks and service marks
licensed by Power.org.

© NXP B.V. 2020. All rights reserved.

For more information, please visit: http://www.nxp.com

For sales office addresses, please send an email to: salesaddresses@nxp.com
Date of release: 16 July, 2020
Document identifier: AN12948


http://www.nxp.com
http://www.nxp.com/support
http://www.nxp.com/SalesTermsandConditions
http://www.nxp.com/SalesTermsandConditions

	Contents
	1 Introduction
	2 Driver enablement
	2.1 Run the driver codes
	2.2 Port the driver codes to Bluetooth LE application

	3 Image obtaining
	4 Image storage
	5 Image transfer
	5.1 Transfer via LIN bus
	5.2 Transfer via CAN bus

	6 Image switching
	7 Testing
	7.1 Hardware setup
	7.2 APP test

	8 Revision history

