h o
g |

MNSC100ABI/D
Rev. 2.0, 06/2002

STAR CORE

SC100 Application Binary Interface

systems

\

@ MOTOROLA digitaldn a 086 re

intelligence everywhere”

MNSC100ABI/D
Rev. 2.0, 06/2002

SC100 Application Binary Interface

s‘rAﬂZ i?com.'-'

BRIGHTER" DSP TECHNOLOGY!

systems

digitaldna” a 86 re

Q) mororoLa
intelligence everywhere™

This document contains information on a new product. Specifications and information herein are subject to change
without notice.

© Copyright Agere Systems Inc., 2002. All rights reserved.

© Copyright Motorola Inc., 2002. All rights reserved.

LICENSOR is defined as either Motorola, Inc. or Agere Systems Inc., whichever company distributed this document to
LICENSEE. LICENSOR reserves the right to make changes without further notice to any products included and
covered hereby. LICENSOR makes no warranty, representation or guarantee regarding the suitability of its products
for any particular purpose, nor does LICENSOR assume any liability arising out of the application or use of any product
or circuit, and specifically disclaims any and all liability, including without limitation incidental, consequential, reliance,
exemplary, or any other similar such damages, by way of illustration but not limitation, such as, loss of profits and loss
of business opportunity. “Typical” parameters which may be provided in LICENSOR data sheets and/or specifications
can and do vary in different applications and actual performance may vary over time. All operating parameters,
including “Typicals” must be validated for each customer application by customer's technical experts. LICENSOR does
not convey any license under its patent rights nor the rights of others. LICENSOR products are not designed, intended,
or authorized for use as components in systems intended for surgical implant into the body, or other applications
intended to support life, or for any other application in which the failure of the LICENSOR product could create a
situation where personal injury or death may occur. Should Buyer purchase or use LICENSOR products for any such
unintended or unauthorized application, Buyer shall indemnify and hold LICENSOR and its officers, employees,
subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable
attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended
or unauthorized use, even if such claim alleges that LICENSOR was negligent regarding the design or manufacture of
the part.

Motorola and the Motorola DigitalDNA insignia are registered trademarks of Motorola, Inc. Motorola, Inc. is an Equal
Opportunity/Affirmative Action Employer. Agere, Agere Systems, and the Agere Systems insignia are trademarks of
Agere Systems Inc. Agere Systems Inc. is an Equal Opportunity/Affirmative Action Employer.

StarCore is a registered trademark of Motorola, Inc. It is used by Agere Systems with the authorization of Motorola.

All other trade names, trademarks, and registered trademarks are the property of their respective owners.

Table of Contents

Chapter 1
Introduction

L1 OVEIVI B, .ottt e e e e e 1-1
1.2 ConfOrmanCe.o. it e 1-2
13 ReEfEENCeS. .. .o 1-2
14 ReVISONHISIONYo e 1-3
15 Acknowledgements.ot e 1-4

Chapter 2

Low-Level Binary Interface

21 Core Architecture 2-1
2.2 Endian SUPPOIT . . . o 2-2
2.3 Fundamental Data TyPeSo ittt e 2-2
24 Aggregatesand UniONS.ottt e 2-6
25 BItFEdS. ..o 2-8
26 FunctionCaling Sequence.ooi i 2-10
2.6.1 Argument Passingand ReturnValues 2-10
2.6.2 Variable Argument ListS.o e 2-12
2.6.3 ACK . e 2-12
2.6.4 Stack FramelLayout e 2-13
2.6.5 Stack Unwinding. 2-14
2.6.6 Register Saving and Restoring Functions. 2-16
2.6.7 setimpandlongimplLayout i 2-17
2.6.8 Frameand Global Pointers. oo 2-17
2.6.9 Dynamic Memory Allocation. 2-17
2.6.10 Hardware LOOpS oo 2-17
27 FunctionCall MOdeS. 2-18
28 AddressModifier MOOESot 2-18
29 SaAuration Mode 2-18
210 DataAddressingModels. e 2-18

Chapter 3

High-Level Languages Issues

31 CPreprocessor Predefines ... 31
32 CNamMeMaPPING . . oot e e 31
33 CSystemM CalS . ..o 3-2
34 Fractional Arithmetic SUPPOIto vt e et e 3-2

SC100 Application Binary Interface iii

35 LiDraries 34

351 Compiler Assist Libraries. i 34
35.2 Floating-Point ROULINES i 34
35.3 INteger ROULINESot e e e e et e 3-10
354 Optional Integer ROULINES.ot e e 311
3.6 Function Argument and Return Type CheckinginC...................... 312
3.6.1 Signature SYmbolSo e 312
3.6.2 ReturnValue. 3-13
3.6.3 Using Signature Symbols. o 3-13
3.7 Accessto Architectural Features 3-14
Chapter 4
Object File Format
4.1 Interface DesCriplions.ot e 4-1
42 TheELFHeader e 4-2
A3 SECHIONS. . .ottt 4-3
44 SpeCia SECliONS . ..ot e 4-5
45 RElOCAION. . ..o 4-6
45.1 ReElOCaioN TYPES . ..ot e e 4-7
45.2 Relocation Stacko 4-17
453 Instruction Addressvs. VLESAddress ..., 4-18
4.6 NOTE SECHON. . ..ottt e e s 4-19
A7 ProgramHeaders. e 4-21
4.8 Debugging Information.t e 4-22
48.1 DWARF Register Number Mappingcovivinniiiannnns 4-22
Chapter 5
Assembler Syntax and Directives
51 Assembler Significant Characters. i 5-1
52 Assembler DIreCtiVeso 5-2
53 Assembler SyntaX e 5-3
531 Symbol Names 5-3
532 SINGS . . v ottt e 5-3
533 Source Statement Format e 5-4
5331 INSLrUCtioN GroUPS . . . o . oottt e et et 5-5
5332 LabelS . . 55
5.3.3.3 Operation Field. ... e e e 5-5
5334 Operand Field e e 5-6
5335 CommentField. ... 5-6
54 RUIEChECKING. . ..ot 5-6

iv SC100 Application Binary Interface

List of Tables

Mapping of C Data Typesto SC100.oo i e 2-4
Mapping of C Fractional TypestoSC100, 2-5
CBItHEd TYPES . .ot e e e 2-8
Register Usageinthe CallingConvention 2-11
Predefined Macroso 31
Required Intrinsicsfor Fractional Types, 3-2
Floating-POINt ROULINESot e 3-5
Integer ROULINES i e e e e e 3-10
Optional Integer ROULINES.ot e e e 311
Italicized Fieldsinthe Symbol Names. 312
BasetypeValues 3-13
Intrinsics for Accessto Architectural Features. 3-14
SCI00 ELF SEClioNS. . . .ottt e e 4-4
Relocation Type Definitions. e 4-8
Relocation Stack Operations. 4-17
SC100 Register Number Mapping oo e 4-22
Assembler Significant Characters.t 5-1
Assembler DIreCliVESot 5-2

SC100 Application Binary Interface \

Vi

SC100 Application Binary Interface

2-1
4-1
4-2

5-1

List of Figures

Stack FrameLayoutt e 2-13
Object FileFormat e e 4-1
Vendor Identification NoteFormat. 4-20
User (Application-Specific) NoteFormat. 4-20
BasicSource Statement 5-4

SC100 Application Binary Interface vii

viii SC100 Application Binary Interface

2-1
2-2

2-4
2-5

2-7
2-8

2-10
2-11
2-12
4-1
4-2

4-4
4-5

4-7
4-8

5-2

List of Examples

Word Bitand Byte Numbering. 2-2
Long Word Bitand ByteNumberingoiiiiiiinnenan.. 2-3
Double-Long Word Bit and Byte Numbering 2-3
Structure With Internal and Tail Padding. 2-6
union AllOCatioN. 2-7
Bit Field AlignmentandPadding 2-9
Unnamed and Zero-WidthBitFields. o it 2-9
Function Callsand Allocation of Arguments. 2-11
Generating Stack Unwinding Symbolsin Assembly Code 2-15
Saving and Restoring FunctionsUsage Example. 2-16
Memory ModelS 2-19
Small and Tiny Memory Mode Instruction 2-19
ELF Header Structure. 4-2
SC100 SPECITICS . v vttt e 4-2
Definition of Macrosfor Accessinge_flagParts....................... 4-3
Section Header SIFUCIUreot e 4-3
Definitionof OpcodeIDS.t 4-5
Definition of Macrosfor Accessing OpcodeParts. 4-5
Relocation Entry Defined WithEIf32 Rela 4-6
ProgramHeader 4-21
Single-Line INStruction Groupo oo e 5-5
Multiple-Line Instruction Group (SC140) 5-5

SC100 Application Binary Interface iX

SC100 Application Binary Interface

Chapter 1
Introduction

The SC100 application binary interface (ABI) defines a set of standardsintended to ensure interoperability
between conforming software components, such as, compilers, assemblers, linkers, debuggers, and
assembly language code. These standards cover run-time aspects as well as object formats to be used by
compatible tool chains from the StarCore Technology Center, Agere Systems, Motorola, and third party
tools developers.

A benefit of this standard definition is interoperability of conforming tools. This allows usersto select the
best tool for each phase of the application development cycle, rather than being constrained to using an
entiretool chain. Another benefit is compatibility of conforming libraries. Programmers can build
compatible binary libraries and assembly code libraries, and be assured of their continued compatibility
over time.

1.1 Overview
This ABI addresses the following types of standards:

e Low level run-time binary interface standards
— Processor-specific binary interface (the instruction set and representation of fundamental data
types)
— Function calling conventions (how arguments are passed and results are returned, how registers
are assighed, and how the calling stack is organized)
» Source-level standards
— Clanguage (preprocessor predefines, name mapping, and intrinsics)
— Assembler syntax and directives
« Object-file binary interface standards
— Header convention
— Section layout
— Relocation information format
— Debugging information format

e Library standards
— Compiler run-time libraries (integer routines and floating-point routines)

SC100 Application Binary Interface 1-1

ntroduction

1.2 Conformance

Features defined in this ABI are mandatory unless specifically stated otherwise. Optional features, if
implemented, must conform to the ABI.

1.3 References

The following standards provide useful reference information:
« Tool Interface Sandard (T1S) Executable and Linking Format (ELF) Soecification, Version 1.1,
UNIX Systems Laboratories, Portable Formats Specification, 1995

« DWARF Debugging Information Format, Revision: Version 2.0.0, Industry Review Draft, UNIX
International, Program Languages SIG, July 27, 1993

« ANSI/IEEE Sd 754-1985, | EEE standard for binary floating-point arithmetic data types

e ISO/IEC 9899:1999(E), International Sandard - Programming Languages—C, 2nd Edition,
International Organization for Standardization, December 1, 1999

The following StarCore documents are included by reference into this ABI. With the exception of the
design specification listed bel ow, these documents are available through the StarCore web site at
http://www.starcore-dsp.com.
e SC100 Assembly Language Tools User’s Manual (MNSC100ALT/D)
Describes the SC100 assembler syntax and directives listed in Chapter 5 of this ABI.

e SC110 DSP Core Reference Manual (MNSC110CORE/D)
Describes the SC110 core architecture and programming model, including the SC110 instruction set.

e SC140 DSP Core Reference Manual (MNSC140CORE/D)
Describes the SC140 core architecture and programming model, including the SC140 instruction set.

« Support in the Assembler and Smulator Required for Correct Reporting of SC100 Restrictions
(design specification)
Defines which instruction set programming rules must be validated by the assembler and simulator,
and specifiesthe identifier that must be included in the error or warning message that is generated
when agiven ruleisviolated. This document is an internal design specification that is available to
third parties under a non-disclosure agreement with the StarCore Technology Center.

The SC100 generation of core architectures currently includes two cores: the StarCore SC110 and the
StarCore SC140. As future cores become available, their respective core reference manuals should also be
considered part of this ABI.

1-2 SC100 Application Binary Interface

Revision History

1.4 Revision History

ThisRev. 2.0 of the ABI supersedes the previous edition, Rev. 1.8, dated 04/2000. Major changes from the
previous edition include:

Chapter 2, “Low-Level Binary Interface.”

Updated discussion of fundamental datatypes, aggregates, and bit fields, with little-endian and
big-endian differences noted.

Added sections on stack unwinding, register saving and restoring functions, function call modes,
address modifier modes, saturation mode, and data addressing models.

Removed the section, “Interrupt Handlers.”
Updated the calling conventions with these notable changes:

— If thefirst argument isal ong | ong (where implemented), doubl e, or | ong doubl e, itis
passed in DO and D1, asif it were first stored in an 8-byte aligned memory area and then the
low-addressed word were loaded into DO and the high-addressed word into D1.

— Each argument on the stack is passed in the byte order appropriate for the endian mode.

— A function with avariable number of arguments passesthelast fixed argument and all subsequent
variable arguments on the stack.

— Anargument that is 8-byte aligned is passed 8-byte aligned on the stack. All other arguments are
passed 4-byte aligned on the stack.

— Arguments are passed on the stack, in order, from higher addresses to lower addresses. Each
argument on the stack is passed in the byte order appropriate for the endian mode.

— Al onglong,doubl e,orl ong doubl e returnvalueisreturned in DOand D1, asif it werefirst
stored in an 8-byte aligned memory area and then the low-addressed word were loaded into DO
and the high-addressed word into D1.

— A function returning a structure or union of any sizereceivesin R2 the address of space in which
to return the structure or union. The function does not return that address in R2.

— Theextension registers, D6.e and D7.e, are callee saved; the remaining extension registers are
caller saved.

— The MCTL register is caller saved.

— A compiler assumes the rounding mode default is two’'s complement rounding, and the scaling
mode default is no scaling.

Chapter 3, “High-Leve Languages |ssues.”

Added new C preprocessor predefines; _ SC110__, SC140__, LI TTLE ENDI AN__, and
__BIG ENDIAN__.

Removed requirement for support of C in-line assembly syntax.

Changed names of existing floating-point routines and integer routines, and added doubl e and | ong
| ong routines. Also added descriptions of all routines.

Added new section on intrinsics for accessing architectural features.

Chapter 4, “Object File Format.”

Updated the list of SC100 ELF sections.
Added sections on SC100 special sections and debugging information.
Replaced the rel ocation section with a new rel ocation scheme.

SC100 Application Binary Interface 1-3

ntroduction

Removed original Chapter 5, “Endian Support.” Thisrevision of the ABI incorporates endian information
in individual sections, as appropriate, throughout the document.

Chapter 5, “Assembler Syntax and Directives’ (originally Chapter 6 in Rev 1.8).

» Removed requirement for support of object file control directives, in addition to the individual
directives MODE, DUPA, DUPC, DUPF, EXITM, MACLIB, MACRO, and PMACRO.

e Added requirement for support of EL SE and FALIGN directives.
« Added requirements for checking SC100 programming rules.

1.5 Acknowledgements

The SC100 Application Binary Interface team included representatives from the following companies:

Agere Systems Inc. Metrowerks, Inc.

Altium Limited Motorola, Inc.

Green Hills Software, Inc. WindRiver Systems, Inc.
Lineo, Inc.

We gratefully thank all participants for devoting their time and effort to create this standard.

1-4 SC100 Application Binary Interface

Chapter 2
Low-Level Binary Interface

This chapter defines low-level system standards for the SC100 generation of DSP cores, including:

» Processor-specific binary interface (the instruction set and representation of fundamental data types)

» Function calling conventions (how arguments are passed and results are returned, how registers are
assigned, and how the calling stack is organized)

2.1 Core Architecture

The SC100 generation of core architectures currently includes three cores: the StarCore SC110, the
StarCore SC140, and the StarCore SC140E. The architecture and instruction set for each coreisdefined in
that core’s respective reference manual, aslisted in Section 1.3, “References.” Programs written for these
cores use their instruction sets, as well as the instruction encodings and semantics of their architecture.
Programmers may assume that the instructions for these cores work as documented. Note that while an
ABI-conforming SC110 program will run on an ABI-conforming SC140 processor, the reverseis not
aways true.

To conform to the ABI, the processor must execute the architecture’ s instructions and produce the
expected results. This ABI does not define requirements for the services provided by an operating system,
nor does it specify what instructions must be implemented in hardware. A software emulation of the
architecture could conform to the ABI.

Programs that use non-SC100 instructions or capabilities do not conform to the SC100 ABI. Such
programs may produce unexpected results when run on machines lacking the non-SC100 capability.

SC100 Application Binary Interface 2-1

P

.ow-Level Binary Interface

2.2 Endian Support

The SC100 architecture supports both big-endian and little-endian implementations. This standard defines
abinary interface for each. Note that program binaries that run on a big-endian implementation are not
portable to a little-endian implementation, and vice versa. The same applies to the data generated by these
programs, as well as to the layout of data used by these programs (such as the layout of data generated by
compilation tools).

The bytes that form the supported data types are ordered in memory according to the following:

* Inabig-endian implementation, the most significant byte (MSB) islocated in the lowest address
(byte 0).

< Inalittle-endian implementation, the least significant byte (LSB) islocated in the lowest address
(byte 0).

2.3 Fundamental Data Types

The SC100 architecture defines the following data types:
e An 8-hit byte
e A 16-bit word
e A 32-bit long word
e A 64-bit double-long word

The following examples illustrate the bit and byte numbering for these data types.

Example 2-1. Word Bit and Byte Numbering

bit 15 8 7 0
MSB ‘ LSB

Little-Endian

byte 1 ‘ ‘ byte 0

bit 15 8 7 0
MSB ‘ LSB

Big-Endian

byte 0 ‘ ‘ byte 1

2-2 SC100 Application Binary Interface

b -

Fundamental Data Types

Example 2-2. Long Word Bit and Byte Numbering

bit 31 24 23 16 15 8 7 0
byte 3 ‘ MSB ‘ ‘ ‘ LSB ‘ byte 0 Little-Endian
bit 31 24 23 16 15 8 7 0
byte 0 ‘ MSB ‘ ‘ ‘ LSB ‘ byte 3 Big-Endian
Example 2-3. Double-Long Word Bit and Byte Numbering
bit 31 24 23 16 15 8 7 0
byte 3 LSB byte 0
Little-Endian
bit 63 56 55 48 47 40 39 32
byte 7 MSB byte 4
bit 63 56 55 48 47 40 39 32
byte 0 MSB byte 3
Big-Endian
bit 31 24 23 16 15 8 7 0
byte 4 LSB byte 7

SC100 Application Binary Interface

2-3

P

.ow-Level Binary Interface

Table 2-1 shows the mapping between these fundamental data types and the C language data types. Note
that fundamental datais always naturally aligned; that is, a double-long word is 8-byte aligned, along
word is 4-byte aligned, and aword is 2-byte aligned.

Table 2-1. Mapping of C Data Types to SC100
Size Align -
Type C Type (bits) (bits) Limits SC100
Bool 1 8 8 0.1 signed byte
Character | char
_ 8 8 |-27.2"-1 signed byte
si gned char
unsi gned char 8 8 0. 28-1 unsigned byte
short
16 16 | -215. 2151 signed word
si gned short
unsi gned short 16 16 |0. 2%-1 unsigned word
Integral i nt
si gned int
enum 32 32 |28 231 signed long word
| ong
si gned | ong
unsi gned int
32 32 |0. 2% unsigned long word
unsi gned | ong
long | ong?
64 64 | -28% . 2631 signed double-long word
si gned | ong | ong?
unsi gned 1 ong | ong? 64 64 |0. 264-1 unsigned double-long word
Pointer pointer to data)
32 32 |0. 2% unsigned long word
pointer to function
Floating? -3.402¢%8 | -1.175¢738 _
, fl oat 32 32 38 38 unsigned long word
Point 1.175e™°° .. 3.402e
doubl e -1.797e308 | .2.225¢308
64 64 -308 308 | unsigned double-long word
|0ng doubl e 2.225e .. 1.797e
Notes:

1. This data type is specified in the latest ISO C definition (ISO/IEC 9899:1999). Support of this data type is
optional. If used, this data type must be implemented with the size and alignment shown.

2. Floating point types conform to the IEEE 754 format.

2-4

SC100 Application Binary Interface

Fundamental Data Types

Fractional types are supported in C using intrinsic functions; Table 2-2 shows the fractiona types that are
supported.

Table 2-2. Mapping of C Fractional Types to SC100

C Type C Type Definition (ts)iltzse) '&I:?Sr; Limits
21
fractional short 16 16 -1 g—lg)
2
2%t 1
long fractional | ong or int 32 32 -1 KTI)
2
Little-Endian:
_ _ typedef struct {
long frr?\ctlor)al with unsi gned int body:
extension bits .
signed char ext;
} wor d40;
39
o 64 32 |-256 .. (2 1)
Big-Endian: 231
typedef struct {
char pad[3];
signed char ext;
unsi gned i nt body;
} wor d40;
typedef struct {
double precision int |sb; 64 2 1 :263_11
fractional int nsb; T 0%
} wor d64;

SC100 Application Binary Interface 2-5

P

.ow-Level Binary Interface

2.4 Aggregates and Unions

Aggregates (structures and arrays) and unions assume the alignment of their most strictly aligned member
(that is, the member with the largest alignment). For example, a structure containing achar , ashort, and
ani nt must have a4-byte alignment to match the alignment of thei nt . Arrays have the same alignment
astheir individual elements.

The size of any structure, array, or union must be an integral multiple of its alignment. Structure and
unions may require padding to meet size and alignment constraints:

« Anentire structure or union is aligned on the same boundary as its most strictly aligned member.

» Each member is allocated starting at the next byte that satisfies the alignment requirement for that
member. This may require internal padding.

» |f necessary, astructure’ ssizeisincreased to makeit amultiple of the structure’salignment. Thismay
require tail padding, depending on the last member.

In both endian modes, members are allocated starting with the low order (lowest addressed) byte of the
structure or union, as shown in the following examples. In Example 2-4, thereisinternal padding so that
thefirst short (s1) startsat aword boundary. Tail padding makes the structure size a multiple of thei nt
member’s 4-byte alignment.

Example 2-4. Structure With Internal and Tail Padding

struct { /* 12 bytes, 4-byte aligned */
char c;
short s1;
i nt i
short s2;
}
bit 31 16 15 8 7 0
byte 3 sl pad c byte 0
bit 63 32
i Little-Endian
byte 7 byte 4
bit 95 80 79 64
byte 11 pad s2 byte 8
bit 95 88 87 80 79 64
byte 0 c pad sl byte 3
bit 63 32
i Big-Endian
byte 4 byte 7
bit 31 16 15 0
byte 8 s2 pad byte 11

2-6 SC100 Application Binary Interface

Aggregates and Unions

Example 2-5. uni on Allocation

uni on { /* 4 bytes, 4-byte aligned */
short s;
char ¢;
long |I;
}
bit 31 16 15 8 7
byte 3 pad 5 byte 0))
pad Little-Endian
bit 31 24 23 16 15
byte 0 S pad byte 3))
c pad Big-Endian

SC100 Application Binary Interface

A 4
4\

.ow-Level Binary Interface

2.5 Bit Fields

Structure and union definitions may have bit fields as listed in Table 2-3.

Table 2-3. C Bit Field Types

C Type

Maximum Width (bits)

_Bool 1

char 2

si gned char 2
unsi gned char 2

1to8

short 2
si gned short 2
unsi gned short 2

1to 16

i nt

signed int

enun?

| ong? 1to 32

si gned | ong?
unsi gned int
unsi gned | ong?

Notes:

1. Support of _Bool is optional. Ifimplemented, it must be implemented with the width and range shown.
2. This bit field type is not required for ISO C conformance, but is required for ABI conformance.

Support of _Bool isoptional, but all other types shown in Table 2-3 must be supported. This ABI does not
have requirementsfor | ong | ong bit fields.

Unsigned bit-field values range from 0 to 2%, where w is the bit field’ swidth in bits. Signed bit-field
values range from -2% 1 to 2% 11,

A “plain” bit field (one that is not explicitly declared signed or unsigned) is signed. Although they may
havetypechar, short,int, orl ong (which can have negative values), bit fields of these types have the
same range as hit fields of the same size with the corresponding signed type. The same size and alignment
rules that apply to other structure and union members also apply to bit fields. The following rules
additionally apply to bit fields:

In little-endian implementations, bit fields are allocated right to left. The first bit field occupies the
least significant bits while subsequent bit fields occupy more significant bits.

In big-endian implementations, bit fields are allocated left to right. The first bit field occupies the
most significant bits while subsequent bit fields occupy less significant bits.

A bit field may not cross a boundary for itstype. For example, asigned char bit field cannot exceed
eight bitsin width, and it cannot cross a byte boundary.

Bit fields must share a storage unit with other structure and union members (either bit field or non-bit
field) if and only if there is sufficient space within the storage unit.

An unnamed bit field does not affect the alignment of its enclosing structure or union, although an
individual bit field's member offsets obey the alignment constraints. An unnamed, zero-width bit
field prevents any further member (either bit field or non-bit field) from residing in the storage unit
corresponding to the type of the zero-width bit field.

2-8

SC100 Application Binary Interface

g |

Bit Fields

Note in the following examples that alignments are driven not by the widths of the bit fields but by the

underlying types. Example 2-6 shows a structure that is 4-byte aligned and has a 4-byte size because of the
i nt bit fields. There isinternal padding so that the char bit field does not cross a byte boundary, and so

that the short member starts at aword boundary. All members share along word.

Example 2-6. Bit Field Alignment and Padding

struct { /* 4 bytes, 4-byte aligned */
i nt a : 3
i nt b : 4
char c : 5
short d;
s
bit 31 16 15 13 12 8 7 6 3 2 0
byte 3 d pad c b a byte 0 Little-Endian
t pad
bit31 28 252423 19 18 16 15 0
byte 0 a b c pad d byte 3 Big-Endian
1 pad

In Example 2-7, the structure is 2-byte aligned because the unnamed | ong bit field does not affect
structure alignment. The zero-width shor t bit field pads to the next word boundary.

Example 2-7. Unnamed and Zero-Width Bit Fields

struct { /* 8 bytes, 2-byte aligned */
short a 9;
short .0
char b 5;
| ong 15;
}s
bit 31 21 20 16 15 9 8 0
byte 3 pad b pad a byte 0
Little-Endian
bit 63 32
byte 7 pad byte 4
bit 63 55 54 48 47 43 42 32
byte 0 a pad b pad byte 3
Big-Endian
bit 31 0
byte 4 pad byte 7

SC100 Application Binary Interface

2-9

P

.ow-Level Binary Interface

2.6 Function Calling Sequence

Compilers must support the conventions described in this section.

2.6.1 Argument Passing and Return Values

The following calling conventions must be supported.

If the first function argument is 4 or fewer bytes and is an integral type, floating type, structure, or
union, the argument is passed in DO. If it isa pointer, it is passed in RO.

If the second argument is 4 or fewer bytes and is an integral type, floating type, structure, or union,
the argument is passed in D1. If it isa pointer, it is passed in R1.

When an argument is passed in DO or D1, only the lower order register bytes that constitute the
argument are defined. For example, afirst argument of type short is passed in DO[15:0], and the
contents of DO[31:16] and DO0.e are undefined.

If thefirst argument isal ong | ong (whereimplemented), doubl e, or | ong doubl e, itispassedin
D0 and D1, asif it werefirst stored in an 8-byte aligned memory area and then the low-addressed
word were loaded into DO and the high-addressed word into D1. This means that DO contains the
most significant long word in big-endian and the least significant long word in little-endian.

Functions with avariable number of arguments pass the last fixed argument and all subsequent
variable arguments on the stack. The rules above apply to arguments before the last fixed argument.

All other arguments are passed on the stack. Note that the first argument may be passed on the stack,
followed by the second argument being passed in D1 or R1.

Argumentsare passed on the stack, in order, from higher addressesto lower addresses. Each argument
on the stack is passed in the byte order appropriate for the endian mode.

Anargument that is 8-byte aligned according to Section 2.3, “Fundamental Data Types,” Section 2.4
“Aggregates and Unions,” and Section 2.5, “Bit Fields,” is passed 8-byte aligned on the stack. All
other arguments are passed 4-byte aligned on the stack.

The congtituent bytes of an integral argument of fewer than 4 bytes are located on the stack asiif the
argument had been promoted to 32 bits, although the caller might not sign or zero extend the
argument. Thus, in little-endian, those arguments are placed in the lower addressed byteswithin their
4-byte memory blocks, and in big-endian they are placed in the higher addressed bytes.

Anintegral return value, other than al ong | ong, issign or zero extended to 40 bits and returned in
DO. A float valueisreturnedin DO. A | ong | ong, doubl e, or | ong doubl e return valueisreturned
inD0and D1, asif it werefirst stored in an 8-byte aligned memory area and then the low-addressed
word were loaded into DO and the high-addressed word into D1.

A pointer return valueis returned in RO.

A function returning astructure or union receivesin R2 the address of the returned structure or union.
The caller allocates space for the returned object.

Registers will be saved as shown in Table 2-4.

Compilers will make the following assumptions about operating control bits:

— Rounding mode default is 1 (SR[3]=1), which means two's complement rounding.
— Scaling mode bits default is 0 (SR[4,5] =[00]), which means no scaling.

Setting these mode bits is the application’s responsibility.

2-10

SC100 Application Binary Interface

Function Calling Sequence

Example 2-8 shows two function calls and the arguments that are allocated for each call.

Example 2-8. Function Calls and Allocation of Arguments

Function Call 1:
foo(int al, struct fourbytes a2, struct eightbytes a3, short a4)

Arguments:
al - in register dO
a2 - in register dl

a3 - on the stack at SP (stack pointer address)
a4 - on the stack at SP- 8 (little-endian) or
SP - 10 (bi g-endian)

Function Call 2:
bar (1l ong *bl, int b2, char b3, int b4[])

Arguments:
bl - inrO
b2 - in dl

b3 - on stack at SP (little-endian) or
SP - 3 (bi g-endi an)
b4 — on stack at SP - 4

Table 2-4 summarizes register usage in the calling convention.

Table 2-4. Register Usage in the Calling Convention

. Caller Callee
Register Saved Saved Used As

DO + First numeric argument
Return numeric value

D1 + Second numeric argument

D2-D5 +

D6-D7 +

D8-D15 +

DO0.e-D5.e +

D6.e-D7.e +

D8.e-D15.e +

RO + First pointer argument
Return pointer value

R1 + Second pointer argument

R2 + Structure or union return address

SC100 Application Binary Interface 2-11

V¥ ¢
i

.ow-Level Binary Interface

Table 2-4. Register Usage in the Calling Convention (Continued)

Register gg\llls(rj (S:;lllgg Used As

R3-R5 +

R6 + Global offset pointer, used for PIC and PID
R7 + Optional frame pointer

R8-R15, BO-B7 +

NO-N3, M0-M3 +

MCTL +

SP (NSP, ESP) +

SAO0-SA3 +

LCO-LC3 +

2.6.2 Variable Argument Lists

In some cases, C programs intended to be portable rely on argument passing schemes that assume the
following:

e All arguments are passed on the stack
« Arguments appear on the stack in increasing order

In reality, programs that make these assumptions are not portable, but still work on many implementations.
They do not work with this standard, however, because some arguments are passed in registers. On the
SC100 and other architectures, C programs intended to be portable use the header files <st dar g. h> or
<var ar gs. h> to deal with variable argument lists.

ANSI C requiresthat before afunction with avariable argument list is called, it must be declared with a
prototype containing atrailing ellipsis mark (...). However, compiler vendors are expected to provide
optionsfor non-ANSI programsto allow them to declare variable argument functions in the command line
or to treat al non-prototyped functions as (potentially) having variable argument lists.

2.6.3 Stack

The SP register serves as the stack pointer. SP will point to the first available location, with the stack
direction being towards higher addresses (i.e., a push will be implemented as “(sp)+”). Initially along
word with value -1 is pushed at offset 0 on the stack to serve as atop-of-stack marker. The stack pointer
must be 8-byte aligned.

2-12 SC100 Application Binary Interface

Function Calling Sequence

2.6.4 Stack Frame Layout

The stack pointer points to the top (high address) of the stack frame. Space at higher addresses than the
stack pointer is considered invalid and may actually be unaddressable. The stack pointer value must always
be a multiple of eight.

Figure 2-1 shows typical stack frames for a function and indicates the relative position of local variables,
arguments, and return addresses. The stack grows upward from low addresses.

The outgoing arguments areais located at the top (higher addresses) of the frame.

The caller puts argument variables that do not fit in registers into the outgoing arguments area. If all
argumentsfit in registers, this areais not required. A caller may allocate outgoing arguments space
sufficient for the worst-case call, use portions of it as necessary, and not change the stack pointer between
calls.

Local variables that do not fit into the local registers are allocated space in the local variables area of the
stack. If there are no such variables, thisareais not required.

The caller must reserve stack space for return variables that do not fit in registers. Thisreturn buffer areais
typically located with the local variables. This space istypically allocated only in functions that make calls
returning structures.

A “return address’ vaue of Oxffffffff (-1) is used to denote the current frame as the outermost (ol dest)
frame on the current call stack. This convention requires that the outermost frame be manually constructed
and that sufficient object file details are availabl e to determine the sizes of all frames on the current call
stack. The sole purpose of this convention isto stop stack unwinding while debugging.

Beyond these requirements, afunction is free to manage its stack frame in any way desired.

High Addresses

Local Variables
and
Saved Registers

Incoming Arguments

Low Addresses

Figure 2-1. Stack Frame Layout

SC100 Application Binary Interface 2-13

P

.ow-Level Binary Interface

2.6.5 Stack Unwinding

The compiler will create special symbolswhen a module is compiled without debug enabled (e.g., the- g
compiler option is not used). These symbolswill appear aslocal symbolsinthe. synt ab ELF section and
will have the following syntax:

Text St art _nodul e_nane : nodule’s | ow PC

Text End_nodul e_narne : modul e’ s high PC

St ackOf f set _| abel . size of stack at | abel
FuncEnd_functi on_nane : function’s high PC
Where:

* nodul e_nane isthe base name of the sourcefile. The base name must follow the same conventions
as assembly language labels. These conventions are outlined in Section 5.3.1, “ Symbol Names.”

e | abel isaprogram label within the function. The value of St ackCf f set _| abel isthe size of the
stack frame at the label. The size isin 2-byte words and does not include an implied JSR/BSR
two-word stack push.

e functi on_nane isthe function name, without aleading underscore.

For example, ahel | 0. ¢ program might generate the EL F symbol sequence shown below.

Value Size Binding Type Section Nane

0x10120 0 LOCAL NOTYPE .text TextStart _hello
0x0 0 LOCAL NOTYPE ABS StackOffset _nmmin
0x2 0 LOCAL NOTYPE ABS StackOf fset _DW 2
0x0 0 LOCAL NOTYPE ABS StackOf fset DW5
0x1012a 0 LOCAL NOTYPE .text DW 2

0x10136 0 LOCAL NOTYPE .text DW 5

0x10138 0 LOCAL NOTYPE .text FuncEnd_nmai n
0x10138 0 LOCAL NOTYPE .text TextEnd_hel l o

In this example, the Binding LOCAL means an ELF symbol binding of STB_LOCAL, the Type NOTYPE
means a symbol type of STT_NOTYPE, and the Section ABS means a symbol table entry of SHN_ABS.

Example 2-9 illustrates how these symbols might be defined in an assembly language program.

2-14 SC100 Application Binary Interface

g |

Function Calling Sequence

Example 2-9. Generating Stack Unwinding Symbols in Assembly Code

section .text |oca

TextStart _hello

R R R R R R I I O I I R R I T R R R R R
)

Exanpl e function _nmain

R R R R O R R I I O R I R R T I R R R S R

gl obal _main
mai n type func
[

push r6

push r7

]

DW 2

[
pop r6
pop r7

rts

FuncEnd__nmin

StackOf fset _main equ 0 ; at _main sp = 0 words
StackOf fset DW 2 equ 2 ; at DW2 sp = 2 words
StackOf fset DW5 equ 0 ; at DW5 sp = 0 words

Text End_hel | o

endsec

SC100 Application Binary Interface 2-15

P

.ow-Level Binary Interface

2.6.6 Register Saving and Restoring Functions

The register saving and restoring functions described in this section save and restore the callee-saved
registers defined by Table 2-4 and the SR. These functions are provided to save and restore these registers
with aminimal increase in static code size. The functions use nonstandard calling conventions which
reguire them to be statically linked into any executable or shared object modulesin which they are used.

Thus their interfaces are private, within module interfaces, and therefore are not part of the ABI. They are
defined here only to encourage uniformity among compilersin the code used to save and restore registers.

After calling the saving function __ Qabi _cal | ee_save, the stack frame values relative to the address
in the stack pointer (SP) will be:

~SP ~SP
R7 R7
Little-Endian -4 Big-Endian -4
R6 R6
-8 -8
D7 12 D7 12
D6 16 D6 16
Reserved 20 Reserved 20
D7.e D6.e
-22 -22
D6.e 24 D7.e 24
SR SR
-28 -28
Return Address Return Address
-32 -32

Therestoring function ____Qabi _cal | ee_r est or e assumes the stack frame layout above. It restores the
callee-saved registers and returns through the caller return address stored at SP-32. Thereisno need for an
RTS after calling the restoring function, since it returns automatically for the caller.

Example 2-10 shows an exampl e use of the saving and restoring functions. The functions do not modify
any caller-saved registers.

Example 2-10. Saving and Restoring Functions Usage Example

f oo:
bsr __ Qabi _cal |l ee_save ; save callee-saved registers
adda #franme_size foo,sp ; adjust SP by frane size
_foo_body:
_foo_body_end:
suba #frame_size foo,sp ; adjust SP by frane size
bra ___Qabi_callee_restore ; restore callee-saved registers

and return to caller of foo

2-16 SC100 Application Binary Interface

Function Calling Sequence

2.6.7 setjimp and longjmp Layout

The layout for thej np_buf used by setjmp and longjmp follows. This layout preserves the callee-saved
registers, which is needed to restore the state when longjmp is called.

typedef int jnp_buf[7];

Offset Saved Register Offset Saved Register
Little-Endian +0 D6 Big-Endian +0 D6
+4 D7 +4 D7
+8 R6 +8 R6
+12 R7 +12 R7
+16 D6.e + 16 D7.e
+18 D7.e +18 D6.e
+20 SP + 20 SP
+24 Return Address +24 Return Address

2.6.8 Frame and Global Pointers

This ABI standard does not require the use of aframe pointer or aglobal pointer. If, however, the use of a
frame pointer or aglobal pointer is necessary, acompiler may alocate R7 as aframe pointer and R6 asa
global pointer. When these registers are allocated for this purpose, they should be saved and restored as
part of the function prologue/epilog code.

2.6.9 Dynamic Memory Allocation

Dynamic allocations are implemented using a heap structure managed by the standard library functions
mal | oc() andfree() . The heap shall be allocated statically by the linker. All addresses returned by
mal | oc() shall be at least 8-byte aligned.

2.6.10 Hardware Loops

All hardware loop resources are available for the compiler’ suse. Asit is assumed that no nesting occurs
when entering afunction, a function may use all four nesting levels for its own use.

SC100 Application Binary Interface 2-17

P

.ow-Level Binary Interface

2.7 Function Call Modes

Compilers must support the following pragma directives to control how external functions are called. The
directives affect all functions declared after the pragma. If the compiler encounters inconsistent pragma
directives for a given function, it will generate a warning and use the information from the original
directive.

#pragma starcore cal | node=near
#pragma starcore cal |l node=far
#pragma starcore cal |l node=def aul t

If the callmodeisfar, the compiler will generate a 32-hit absolute call. If the callmode is near, the compiler
will generate a 20-bit PC-relative call. If afunction is out of range at link time, the linker will generate an
error. The default callmode is determined by compiler options.

2.8 Address Modifier Modes

Compilers will make the following assumptions about address modifier modes:

e Thedefault C runtime state of the MCTL register is 0, which identifies the memory address
calculation methods for RO-R7 aslinear.

« Ifthe MCTL register ischanged local to afunction, then MCTL must berestored to O prior to calling
any other function or returning from the original function.

2.9 Saturation Mode

Compilers shall be able to set arithmetic saturation mode on or off using a compiler command line option,
and they shall document their default saturation mode settings. Compilers need not emit the same code
when saturation mode is off as they emit when the modeis on.

Compilers must support the saturation mode intrinsics as described in Table 3-8.

2.10 Data Addressing Models

A Zero Data Area (ZDA) has special data sections located near zero, allowing the compiler to more
effectively use the 16-hit absolute addressing mode. The sections, . zdat a and . zbss, need to be located
in the low 16-bits of address space. The compiler supports directivesto place datain the zero dataarea, and
knows to use the more efficient addressing modes to accessiit. If more datais placed in ZDA than can fit,
the linker will generate errors.

By default, datais placed in the standard data areas. Compilers will support an option that allows a coarse
level of control, in which the user has the option of allocating all datato ZDA or alocating only those data
items of a specified size.

2-18 SC100 Application Binary Interface

Data Addressing Models

The following pragma directives allow afiner level of control:

#pragnma starcore startzda
#pragma starcore endzda
#pragnma starcore startdata
#pragma starcore enddata

Any data declared between the st ar t zda and endzda directives will be placed in ZDA. The
corresponding st ar t dat a and enddat a directives force datainto the standard data section even if the
zero data compiler option is specified.

Compilers must support both unsigned 16-bit, signed 16-bit, and signed 32-bit addresses. If the application
issmall enough to allow all static datato fit into the lower 64K or 32K of the address space, then more
efficient code can be generated. The big memory model does not restrict the amount of space allocated to
addresses; this model is the default. The small memory model assumes that all addresses are within the
address range of an unsigned 16-bit immediate. The tiny memory model assumes that all addresses are
within the range of asigned 16-bit immediate (effectively an unsigned 15-bit range).

These three compilation models are provided to allow the compiler to generate references to global and
static data without global knowledge as to the variables’ final allocation address in memory. For each
model, the compiler will assume that referencesto global and static data fit within the corresponding size
implied by the model. The expectation isthat the linker will generate errors whenever a symbolic reference
isresolved to not fit within the range defined by the memory modd.

When the compiler uses the big memory model to access a data object, whether static or global, it must use
alonger instruction that includes a 32-bit address. This operation requires an additional word, and asa
result it produces code that is larger, and in some cases, slower, than asimilar operation using the small or
tiny memory models.

Example 2-11 illustrates the code sequence to generate the address of a globa symbol in memory and the
sequence to reference the memory contents of a global symbol for each memory model.

Example 2-11. Memory Models

;; Big Menory Mbdel
nmove. | address, d0 (3 16-bit words)
nmoveu. | #address,d0 (3 16-bit words)

;; Smal | Menory Model

nove. | <address, dO (2 16-bit words)
noveu. | #address,d0 (3 16-bit words)

;; Tiny Menory Model
nmove. | <address, dO (2 16-bit words)
nove. w #addr ess, dO (2 16-bit words)

Certain instructions can be used only in small and tiny memory models. If < is omitted in conjunction with
these instructions, an error results. Example 2-12 shows the instruction BMSET.W, which sets bit 0 in the
specified address, and is valid only in small and tiny memory models.

Example 2-12. Small and Tiny Memory Mode Instruction

bnset . w #0001, <addr ess

SC100 Application Binary Interface 2-19

x .ow-Level Binary Interface

2-20 SC100 Application Binary Interface

Chapter 3
High-Level Languages Issues

3.1 C Preprocessor Predefines

All C/C++ language compilers must have the predefined macros asin Table 3-1, in addition to the
predefined macros required by the C and C++ language standards.

As future cores become available, their predefined macros will be noted in the document, SC100
Application Binary Interface Supplement. This supplement will be available through the StarCore web site
at http://www.starcore-dsp.com.

Table 3-1. Predefined Macros

Macro Description

__SC100__ Defined for use with all compilers based on the SC100 architecture

__SC110__ The architecture variant which specifies that one MAC unit is to be used by the compiler
__SC140__ The architecture variant which specifies that four MAC units are to be used by the compiler

__LITTLE_ENDIAN__ Defined for use in little-endian mode
__BIG_ENDIAN__ Defined for use in big-endian mode

3.2 C Name Mapping

Externally visible namesin the C language are prefixed by an underscore (_) when generating assembly
language symbol names. For example, the following:

voi d testfunc()

{
}

generates assembly code similar to the following fragment:

return;

_testfunc:
rts

SC100 Application Binary Interface 3-1

digh-Level Languages Issues

3.3 C System Calls

There are several typedefs specified in POSIX.1 which are required for system call wrappers. These types
are defined as follows for the SC100 architecture:

typedef unsigned int node_t;
typedef long int off _t;
typedef unsigned int size_t;
typedef int ssize_t;

typedef long int clock_t;
typedef long int tine_t;

The following system calls must also be supported:

int open(const char *, int, ...); /* Third arg is node_t if present */
int close(int);

ssize_t read(int, void *, size_t);

ssize_t wite(int, const void *, size_ t);

off _t Iseek(int, off_t, int);

i nt unlink(const char *);

i nt rename(const char *, const char *);

i nt access(const char *, int);

clock_t clock(void);

time_t time(tinme_t *);

3.4 Fractional Arithmetic Support

Fractional arithmetic is supported through the intrinsic functions listed in Table 3-2. Compilers must
recognize the function names as shown with the double underscore (__) prefix. A header file may be
provided that maps the unprefixed function names to the prefixed names.

Thefileabi _i ntri nsi cs. c contains areference implementation in C of theintrinsicslisted in

Table 3-2. Thisreference implementation isin accordance with the ITU/ETSI definition of these functions.
Theabi _intrinsics. c filewill be available through StarCore’ s documentation web site at
http://www.starcore-dsp.com.

Table 3-2. Required Intrinsics for Fractional Types

Intrinsic Function Description

Fractional Arithmetic:

short __add(short, short) Short add
short __ sub(short, short) Short sub
short __mult(short, short) Short multiplication
short __div_s(short, short) Short div
short __mult_r(short, short) Multiply with round

3-2 SC100 Application Binary Interface

Fractional Arithmetic Support

Table 3-2. Required Intrinsics for Fractional Types (Continued)

Intrinsic Function

Description

Fractional Arithmetic (continued):

long __L_mac(long, short, short)
long __L_macNs(Iong, short, short)
short __mac_r (Il ong, short, short)
long __L_msu(long, short, short)
long __L_msuNs(long, short, short)

short __msu_r (I ong, short, short)

short __abs_s(short)

short _ _negate(short)
short __round(l ong)

short __shl (short, short)
short __shr(short, short)
short __shr_r(short, short)

short _ _norm.s(short)

Multiply accumulate

Multiply accumulate with no saturation

Multiply accumulate with round
Multiply subtract
Multiply subtract with no saturation

Multiply subtract with round

Short abs

Short negate

Round

Short shift left

Short shift right

Short shift right with round

Normalize any fractional value

Long Fractional Arithmetic:

long __L_add(l ong, | ong)
long __L_sub(long, Il ong)
long __L_mult(short, short)

short __extract_h(l ong)
short __extract_| (Il ong)
long __L_deposit_h(short)
long __L_deposit_I (short)

long __L_abs(long)

long __L_negate(long)
short __norml (1 ong)

long __L_shl(long, short)
long __L_shr(long, short)
long __L_shr_r(long,short)
long __L_sat(long)

Long add
Long subtract

Long multiplication

Extract high

Extract low

Deposit short in MSB
Deposit short in LSB

Long abs

Long negate

Normalize any long fractional value
Long shift left

Long shift right

Long shift right with round

Long saturation

SC100 Application Binary Interface

digh-Level Languages Issues

3.5 Libraries

The following sections provide details on support libraries.

3.5.1 Compiler Assist Libraries

The SC100 architecture does not provide hardware support for floating-point data types, nor for divide
functionality for integer types. Compilers should provide the functionality for some of these operations
through the use of support library routines.

The functions to be provided through support library routines include the following:
* Floating-point math routines
« Integer divide routines
« Integer modulo routines
Compilersthat generate in-line code to provide these functions must make no reference to the library

functions. Compilersthat provide these functions by generating function callsto the support libraries must
use the calling convention when calling them.

To ensure the ability to link code produced by different compilersinto a single executable, it is required
that names of compiler support library functions match those listed in Table 3-3, Table 3-4, and Table 3-5.

Routines in support libraries must satisfy the following constraints:

« Theonly externa state information used is floating-point operation mode (rounding mode, flush to
zero, €tc.).

* No other global state can be modified.
« Identical results must be returned when a routine is reinvoked with the same input arguments.
e Multiple calls with the same input arguments can be collapsed into a single call with a cached result.

These properties permit a compiler to make assumptions about variable lifetimes across library function
calls: values in memory will not change, previously dereferenced pointers need not be referenced again.

3.5.2 Floating-Point Routines

Conformant library support must include the floating point routines listed in Table 3-3 (the routine
interfaces are shown as C function prototypes). These floating point routines must comply with the calling
conventions described in Section 2.6, “Function Calling Sequence.”

The data formats are as specified in |IEEE-754. The math routines are not required to compute results as
specified in IEEE-754. Implementation of these routines must document the degree to which operations
conform to the |EEE standard. Not all users of floating point require |EEE-754 precision and exception
handling, and may not want to incur the overhead that complete conformance requires.

3-4 SC100 Application Binary Interface

Libraries

Table 3-3. Floating-Point Routines

_fp_round

_d_add _d_fogt _f _add _f ftod _Qg_add _qg_fne _g_utoq
_d_cnp _d fle _f_cnp _f _ftoi _g_cnp _g_itog
_d_cmpe _d flt _f_cnpe _f_ftog _g_cnpe _q_mul
_d div _d_fne _f div _f _ftou _g_div _g_neg
_d_dtof ~ditod _f _feq _f_itof _g_dtoq _g_qtod
_d_dtoi ~d_mul _f _fge _f_mul _g_feq _qg_qto
_d_dtog _d_neg _f _fgt _f_neg _g_fge _g_qtos
_d_dtou _d_qtod f fle _f_qtof _q_fat _g_qtou
_d_feq _d_sub _f flt _f _sub _g_fle _g_stoqg
_d_fge _d_utod _f _fne _f _utof _q_fIlt _qg_sub

int fp_round(int rounding_node)
Sets the rounding mode for floating point library routines. If rounding modeis:

— -1, then return the current rounding mode without setting it (thisis required for
conformance)

— 0, then request round to nearest (thisis required for conformance)
— 1, then request round toward O (optional)

— 2, then request round toward positive infinity (optional)

— 3, then request round toward negative infinity (optional)

This function returns the resulting rounding mode (0-3), which will ber oundi ng_node
if that rounding mode is supported by the floating point routines.

doubl e _d_add(doubl e a, double b)
Returns a+b, computed to double precision.

int _d_cnp(double a, double b)
Performs an unordered comparison of the double precision values of a and b, and returns
an integer value, as follows, that indicates their relative ordering:

Relation Value
aequatob 0
alessthanb 1
a greater than b 2
a unordered with respect to b 3

int _d cnpe(double a, double b)
Performs an ordered comparison of the double precision values of a and b, and returns an
integer value, as follows, that indicates their relative ordering:

Relation Value
aequaltob 0
alessthanb 1
a greater than b 2

SC100 Application Binary Interface 3-5

h -

digh-Level Languages Issues

doubl e _d_di v(doubl e a, double b)
Returns a/ b, computed to double precision.

float _d_dtof(double a)
Converts the double precision value of a to single precision, and returns the single
precision value.

int _d_dtoi(double a)
Converts the double precision value of a to asigned integer by truncating any fractional
part, and returns the signed integer value.

| ong double _d_dtoq(double a)
Converts the double precision value of a to extended precision, and returns the extended
precision value.

unsi gned int _d_dtou(double a)
Converts the double precision value of a to an unsigned integer by truncating any
fractiona part, and returns the unsigned integer value.

int _d_feq(double a, double b)
Performs an unordered comparison of the double precision values of a and b. Returnsa 1
if they are equal, and a 0 otherwise.

int _d fge(double a, double b)
Performs an ordered comparison of the double precision values of a and b. Returnsalif a
is greater than or equal to b, and a 0 otherwise.

int _d_fgt(double a, double b)
Performs an ordered comparison of the double precision values of a and b. Returnsalif a
is greater than b, and a 0 otherwise.

int d fle(double a, double b)
Performs an ordered comparison of the double precision values of a and b. Returnsalif a
islessthan or equal to b, and a0 otherwise.

int d flt(double a, double b)
Performs an ordered comparison of the double precision values of a and b. Returnsalif a
islessthan b, and a 0 otherwise.

int _d_fne(double a, double b)
Performs an unordered comparison of the double precision values of a and b. Returnsa 1
if they are unordered or not equal; returns a 0 otherwise.

double _d_itod(int a)
Convertsthe signed integer value of a to double precision, and returns the double
precision value.

doubl e _d_mul (doubl e a, double b)
Returns a* b, computed to double precision.

doubl e _d_neg(doubl e a)
Returns - a.

double _d_qtod(const |ong double *a)
Converts the extended precision value of a to double precision, and returns the double
precision value.

doubl e _d_sub(doubl e a, double b)
Returns a- b, computed to double precision.

3-6 SC100 Application Binary Interface

Libraries

doubl e _d_utod(unsigned int a)
Converts the unsigned integer value of a to double precision, and returns the double
precision value.

float f _add(float a, float b)
Returns a+b, computed to single precision.

int f _cnmp(float a, float b)
Performs an unordered comparison of the single precision values of a and b, and returns
an integer value, as follows, that indicates their relative ordering:

Relation Value
aequaltob 0
a lessthan b 1
a greater than b 2
a unordered with respect to b 3

int _f _cnpe(float a, float b)
Performs an ordered comparison of the single precision values of a and b, and returns an
integer value, as follows, that indicates their relative ordering:

Relation Value
aequatob 0
alessthanb 1
a greater than b 2

float _f_div(float a, float b)
Returns a/ b, computed to single precision.

int f feq(float a, float b)
Performs an unordered comparison of the single precision values of a and b. Returnsa 1 if
they are equal, and a 0 otherwise.

int f fge(float a, float b)
Performs an ordered comparison of the single precision values of a and b. Returnsa lif a
is greater than or equal to b, and a 0 otherwise.

int f fgt(float a, float b)
Performs an ordered comparison of the single precision values of a and b. Returnsa lif a
is greater than b, and a 0 otherwise.

int f fle(float a, float b)
Performs an ordered comparison of the single precision values of a and b. Returnsa lif a
islessthan or equal to b, and a0 otherwise.

int f flt(float a, float b)
Performs an ordered comparison of the single precision values of a and b. Returnsa lif a
islessthan b, and a0 otherwise.

int f fne(float a, float b)
Performs an unordered comparison of the single precision values of a and b. Returnsa 1 if
they are unordered or not equal; returns a 0 otherwise.

SC100 Application Binary Interface 3-7

3
4

'
A

digh-Level Languages Issues

double f _ftod(float a)
Converts the single precision value of a to double precision, and returns the double
precision value.

int f ftoi(float a)
Convertsthe single precision value of a to asigned integer by truncating any fractional
part, and returns the signed integer value.

I ong double _f ftoq(float a)
Convertsthe single precision value of a to extended precision, and returns the extended
precision value.

unsigned int f ftou(float a)
Convertsthe single precision value of a to an unsigned integer by truncating any fractional
part, and returns the unsigned integer value.

float f itof(int a)
Converts the signed integer value of a to single precision, and returns the single precision
value.

float _f_mul (float a, float b)
Returns a* b, computed to single precision.

float f _neg(float a)
Returns - a.

float _f_sub(float a, float b)
Returns a- b, computed to single precision.

float _f_utof(unsigned int a)
Converts the unsigned integer value of a to single precision, and returns the single

precision value.

| ong double g add (const |ong double *a, const |ong double *h)
Returns a+b, computed to extended precision.

int _g_cnp(const |ong double *a, const |ong double *b)
Performs an unordered comparison of the extended precision values of a and b, and
returns an integer value, as follows, that indicates their relative ordering:

Relation Value
aequaltob 0
a lessthan b 1
a greater than b 2
a unordered with respect to b 3

int _g _cnpe(const |ong double *a, const |ong double *b)
Performs an ordered comparison of the extended precision values of a and b, and returns
an integer value, as follows, that indicates their relative ordering:

Relation Value
aequatob 0
alessthanb 1
a greater than b 2

3-8 SC100 Application Binary Interface

Libraries

| ong double _g_div(const |ong double *a, const |ong double *b)
Returns a/ b, computed to extended precision.

| ong double g dtoq(double a)
Converts the double precision value of a to quadruple precision, and returns the extended
precision value.

nt _q_feqg(const | ong double *a, const |ong double *b)
Performs an unordered comparison of the extended precision values of a and b. Returns a
nonzero value if they are equal, and a 0 otherwise.

int _g_fge(const |ong double *a, const |ong double *b)
Performs an ordered comparison of the extended precision values of a and b. Returns a
nonzero value if a is greater than or equal to b, and a 0 ctherwise.

int g fgt(const |ong double *a, const |ong double *b)
Performs an ordered comparison of the extended precision values of a and b. Returns a
nonzero valueif a isgreater than b, and a 0 otherwise.

int _g_fle(const |Iong double *a, const |ong double *b)
Performs an ordered comparison of the extended precision values of a and b. Returns a
nonzero valueif a islessthan or equal to b, and a 0 otherwise.

int g flt(const |long double *a, const |ong double *b)
Performs an ordered comparison of the extended precision values of a and b. Returns a
nonzero value if a islessthan b, and a 0 otherwise.

int _g_fne(const |ong double *a, const |ong double *b)
Performs an unordered comparison of the extended precision values of a and b. Returns a
nonzero value if they are unordered or not equal; returns a 0 otherwise.

I ong double g itoq(int a)
Convertsthe integer value of a to extended precision, and returns the extended precision
value.

| ong double g nmul (const |ong double *a, const |ong double *b)
Returns a* b, computed to extended precision.

| ong double _g _neg(const |ong double *a)
Returns - a without raising any exceptions.

double _qg_qtod(const |ong double *a)
Converts the extended precision value of a to double precision, and returns the double
precision value.

int _g_qtoi(const |ong double *a)
Convertsthe extended precision value of a to asigned integer by truncating any fractional
part, and returns the signed integer value.

float _g_qtos(const |ong double *a)
Converts the extended precision value of a to single precision, and returns the single
precision value.

unsigned int _g _qtou(const |ong double *a)
Converts the extended precision value of a to an unsigned integer by truncating any
fractiona part, and returns the unsigned integer value.

SC100 Application Binary Interface 3-9

h -

digh-Level Languages Issues

I ong double _g_stoq(float a)
Convertsthe single precision value of a to extended precision, and returns the extended
precision value.

| ong double g sub(const |ong double *a, const |ong double *b)
Returns a- b, computed to extended precision.

| ong double _g_utoq(unsigned int a)
Converts the unsigned integer value of a to extended precision, and returns the extended
precision value.

3.5.3 Integer Routines

Conformant library support must include the integer routines listed in Table 3-4 (the routine interfaces are
shown as C function prototypes). These integer routines must comply with the calling conventions
described in Section 2.6, “Function Calling Sequence.” These routines have no side effects.

Table 3-4. Integer Routines

__divle _div32 __reml6 __renmB2
__udivle __udiv32 __urenil6 __urenB2

int _ divl6(short a, short b)
Returns the value of a/ b. If the divisor has the value zero, the behavior is undefined.

int _ udivl16(unsigned short a, unsigned short b)
Returns the unsigned value of a/ b. If the divisor has the value zero, the behavior is
undefined.

int _ div32(long a, |long b)
Returns the value of a/ b. If the divisor has the value zero, the behavior is undefined.

int _ udiv32(unsigned long a, unsigned | ong b)
Returns the unsigned value of a/ b. If the divisor has the value zero, the behavior is
undefined.

int __reml6(short a, short b)
Returns the remainder upon dividing a by b. If the divisor has the value zero, the behavior
is undefined.

int __ureml6(unsigned short a, unsigned short b);
Returns the unsigned remainder upon dividing a by b. If the divisor has the value zero, the
behavior is undefined.

int __renB2(long a, |long b)
Returns the remainder upon dividing a by b. If the divisor has the value zero, the behavior
is undefined.

int __urenmB2(unsigned long a, unsigned | ong b)
Returns the unsigned remainder upon dividing a by b. If the divisor has the value zero, the
behavior is undefined.

3-10 SC100 Application Binary Interface

Libraries

3.5.4 Optional Integer Routines

If the optional C | ong | ong datatype is supported, then library support must also include the following
| ong | ong integer routines. These routines must comply with the calling conventions described in
Section 2.6, “Function Calling Sequence.”

Table 3-5. Optional Integer Routines

__dive4 _d_dtoll _f _ftoll _qg_lltoq
__udive4 _d_dtoull _f _ftoull _g_qtol
__renb4 ~d Iltod f I'ltof _qg_qtoul
__urenb4 ~dulltod _f ulltof _q_ulltoqg

long long _ div6e4(long long a, long | ong b)
Computes the quotient a/ b, truncating any fractional part, and returns the signed | ong
| ong result. If the divisor has the value zero, the behavior is undefined.

unsi gned long |long _ udiv64(unsigned |Iong | ong a, unsigned long |long b)
Computes the quotient a/ b, truncating any fractional part, and returns the unsigned | ong
| ong result. If the divisor has the value zero, the behavior is undefined.

long long __renb64(long long a, long long b)
Computes the remainder upon dividing a by b, and returnsthe signed | ong | ong result. If
the divisor has the value zero, the behavior is undefined.

unsi gned long long _ uremb4(unsigned | ong | ong a, unsigned long |long b)
Computes the remainder upon dividing a by b, and returns the unsigned | ong | ong
result. If the divisor has the value zero, the behavior is undefined.

long long _d dtoll(double a)
Converts the double precision value of a to asigned | ong | ong by truncating any
fractional part, and returnsthe signed | ong | ong value.

unsigned long long _d_dtoull (double a)
Converts the double precision value of a to an unsigned | ong | ong by truncating any
fractional part, and returns the unsigned | ong | ong value.

double d Iltod(long |Iong a)
Convertsthe signed | ong | ong value of a to a double precision value, and returns the
double precision value.

double _d_ulltod(unsigned |Iong | ong a)
Convertsthe unsigned | ong | ong value of a to a double precision value, and returns the
double precision value.

long long _f ftoll(float a)
Convertsthe single precision value of a to asigned | ong | ong by truncating any
fractional part, and returnsthe signed | ong | ong value.

unsigned long long f ftoull (float a)
Convertsthe single precision value of a to an unsigned | ong | ong by truncating any
fractional part, and returns the unsigned | ong | ong value.

float f _Iltof(long |Iong a)
Convertsthe signed | ong | ong value of a to asingle precision value, and returns the
single precision value.

SC100 Application Binary Interface 3-11

digh-Level Languages Issues

float _f_ulltof(unsigned Iong | ong a)
Convertsthe unsigned | ong | ong value of a to asingle precision value, and returns the
single precision value.

I ong double g |ltog(long |ong a)
Convertsthel ong | ong value of a to an extended precision value, and returns the
extended precision value.

long long _g_qtoll(const |ong double *a)
Converts the extended precision value of a to asigned | ong | ong by truncating any
fractional part, and returnsthe signed | ong | ong value.

unsigned long long _q _qtoull(const |ong double *a)
Converts the extended precision value of a to an unsigned | ong | ong by truncating any
fractional part, and returns the unsigned | ong | ong value.

| ong double g ulltoq(unsigned |ong |ong a)
Convertsthe unsigned | ong | ong value of a to an extended precision value, and returns
the extended precision value.

3.6 Function Argument and Return Type Checking
in C

ABI-conforming implementations support the following mechanism for checking that arguments and
return types of function calls match the called functions' signatures.

3.6.1 Signature Symbols

For every direct call to anon-static function in asource file (that is, a call using the function name as
opposed to acall through afunction pointer), the compiler system producesin the ELF object file asymbol
of the following convention:

__caller.nane.return_type. argunent _types

For every non-static function definition, the compiler system produces a symbol of the following
convention:

__cal l ee. name. return_type. paranmet er _t ypes

Table 3-6 explains the construction of the italicized fields in the symbol names:

Table 3-6. Italicized Fields in the Symbol Names

Field Value Meaning

name ASCII string The name of the called function
return_type baset ype

argument _t ypes baset ype[basetype[...]]

par amet er _types baset ype[basetype[...]]

3-12 SC100 Application Binary Interface

Function Argument and Return Type Checking in C

Table 3-7 explains the possible values for baset ype.

Table 3-7. Basetype Values

Code Meaning

i Scalar type (e.g., char, short, i nt) of size <= 32 bits, passed in register

I Scalar type of size = 64 bits, passed in register

p Pointer, passed in a register
f Float, passed in a register
d Double float, passed in a register
snum Struct, passed in a data register
anum Struct, passed in an address register
n An argument or parameter passed on the stack
v Void
X Start of a variable argument list (...)
Example:
Definition:

int foo(struct { int a,b; } parnl, double parn?);

Call:

struct { int a,b; } tnp;
foo(tnmp, 1.0);

Special Symbols:

__callee.foo.i.s2f
__caller.foo.v.s2f

3.6.2 Return Value

In generating a signature symbol for acall to afunction defined as returning a (non-void) value, if the
return value isignored by the caller, then the compiler may specify i asthe return value type for the
function.

3.6.3 Using Signature Symbols

The caller/callee match verification using signature symbols is implementation-dependent. The
implementation must accept object modules that do not contain signature symbols.

SC100 Application Binary Interface 3-13

digh-Level Languages Issues

3.7 Access to Architectural Features

Thefollowing set of intrinsics must be supported. Theseintrinsics allow accessto hardware resources from
a C application without using assembly inserts.

Table 3-8. Intrinsics for Access to Architectural Features

Feature

Intrinsic Function

Description

Saturation Mode

__setnosat ()

__setsat ()

Sets saturation mode off.

Sets saturation mode on.

Rounding Mode

__set2crm()

__setcnvrm)

Sets rounding mode to two’s complement rounding mode.

Sets rounding mode to convergent rounding mode.

voi d __setnoscal e(voi d) Sets scaling mode off.
Scaling Mode voi d __setdownscal e(voi d) Scales down.
voi d __setupscal e(voi d) Scales up.
void __trap_r(void *) Executes TRAP exception. Argument is passed in RO.
) Calling convention register usage is assumed.
Trapping
int _ _trap_d(int) Executes TRAP exception. Argument is passed in DO.
Calling convention register usage is assumed.
Reading:
Registers unsigned int _ read SR(); These functions set the values of their related registers.
unsigned int _ _read_PCTLO();
unsigned int _ read PCTL1();
unsigned int _ read_ MCTL();
short * _ read_VBA();
unsigned int _ _read_SP();
unsigned int _ _read_OSP();
int _ read_EMR();
Writing:
void _ wite_SR(int); These functions set the values of their related registers.
void __wite PCTLO(int); Care is required when writing the EMR register. Bits
) .) . cannot be set by the user, and clearing a given bit is done
void __write PCTLI(int); by writing a 1 to it using the BMCLR instruction.
void __wite MCTL(int);
void __wite_ VBA(short *);
void __bit_clr_EMR(int);
3-14 SC100 Application Binary Interface

Access to Architectural Features

Table 3-8. Intrinsics for Access to Architectural Features (Continued)
Feature Intrinsic Function Description
SR Masks:
Registers _SR1I2 (0x1 << 23) These masks provide access to individual SR bits or
(continued) _ SR I1 (0x1 << 22) fields.
__SR10 (0x1 << 21)
SR | _NMASK (0x7 << 21)
__SR OVE (0x1 << 20)
__SR DI (0x1 << 19)
SR EXP (0x1 << 18)
_SRS (0x1 << 6)
SR S1 (0x1 << 5)
__SR SO (0x1 << 4)
__SR S MASK (0x3 << 4)
__ SR R™M (0x1 << 3)
__ SR SM (0x1 << 2)
_SRT (0x1 << 1)
_SRC (0x1 << 0)
PCTL1 Masks:
__PCTL1_CCE (0x1 << 16) These masks provide access to individual PCTL1 bits or
__PCTL1_PCDF2 (0x1 << 2) fields.
__PCTL1_PCDF1 (0x1 << 1)
__PCTL1_PCDFO (0x1 << 0)
__PCTL1_PCDF_MASK(0x7 << 0)
MCTL Masks:
__R7_AMB (0x1 << 31) These masks provide access to individual MCTL bits or
__R7T_AWR (0x1 << 30) fields.
_R7_AML (0x1 << 29)
__R7_AWMD (0x1 << 28)
__R7_AM MASK (OXF << 28)
__R6_AMB (0x1 << 27)
__R6_AWR (0x1 << 26)
__R6_AML (0x1 << 25)
__R6_AMD (0x1 << 24)
__R6_AM MASK (OXF << 24)
__R5_AMB (0x1 << 23)
__R5_AWw (0x1 << 22)
_ R _AML (0x1 << 21)
__R5_AMD (0x1 << 20)
__R5_AM MASK (OxF << 20)

SC100 Application Binary Interface

3-15

h -

digh-Level Languages Issues

Table 3-8. Intrinsics for Access to Architectural Features (Continued)

Feature Intrinsic Function Description
MCTL Masks (continued):

Registers _ R4_AMB (0x1 << 19)

(continued) _ R4_AWR (0x1 << 18)
__RA_AML (0x1 << 17)
__R4A_AMD (0x1 << 16)
__R4_AM MASK (OxF << 16)
__R3_AMB (0x1 << 15)
__R3_AWR (0x1 << 14)
__R3_AML (0x1 << 13)
__R3_AMD (0x1 << 12)
_ R3_AM MASK (OxF << 12)
__R2_AMB (0x1 << 11)
__RR_AWR (0x1 << 10)
_RR_AML (0x1 << 9)
__RR_AWMD (0x1 << 8)
_ R2_AM MASK (OxF << 8)
__R1_AWB (0x1 << 7)
R1 AW (0x1 << 6)
_ Rl AML (0x1 << b)
__R1L_AMD (0x1 << 4)
__R1_AM MASK (OxF << 4)
__RO_AMB (0x1 << 3)
__RO_AWR (0x1 << 2)
__RO_AML (0x1 << 1)
__RO_AMD (0x1 << 0)
__RO_AM MASK (OxF << 0)
EMR Masks:
__EMR _GP6 (0x1 << 23) These masks provide access to individual EMR bits or
__EMR_GP5 (0x1 << 22) fields. Note that some of these bits are read only.
__EMR GP4 (0x1 << 21)
__EMR GP3 (0x1 << 20)
__EMR GP2 (0x1 << 19)
__EMR GP1 (0x1 << 18)
__EMR _GPO (0x1 << 17)
__EMR GP_MASK (Ox7F << 17)
__EMR _BEM (0x1 << 16)
__EMR NMD (0x1 << 3)
__EMR DOVF (0x1 << 2)
__EMRILST (0x1 << 1)
__EMRILIN (0x1 << 0)

3-16

SC100 Application Binary Interface

Chapter 4
Object File Format

The executable and linking format (ELF) is used for representing the binary application to the system. For
a complete description of ELF, refer to the Tools Interface Sandards (TI1S) Executable and Linking
Format (ELF) Specification, Version 1.1. This chapter highlights differences between the ELF version 1.1
definition and the SC100 implementation.

This chapter focuses on the interface for rel ocatable and executable programs. A relocatable program
contains code suitable for linking to create another rel ocatable program or executable program. An
executable program contains binary information suitable for loading and execution on atarget processor.

4.1 Interface Descriptions

ELF presents two views of binary data, as shown in Figure 4-1:

» Thelinking view provides datain aformat suitable for incremental linking into arelocatable file or
fina linking to an executable file.

» The execution view provides binary datain aformat suitable for loading and execution.

An ELF header is aways present in either view of the ELF file. For the linking view, sections are the main
entity inwhich information is presented. A section header table provides information for interpretation and
navigation for each section. For the execution view, segments are the primary sources of information.
Sections may be present but are not required. A program header table provides information for
interpretation and navigation through each segment. For exact details, seethe ELF version 1.1
specification.

Linking View Execution View
Elf Header Elf Header
Optional Program Header Program Header
Sections Segments
Section Header Table Opt Section Header Table

Figure 4-1. Object File Format

SC100 Application Binary Interface 4-1

P

Object File Format

4.2 The ELF Header

The ELF header structure is shown in Example 4-1. This structure and its fields are defined by the ELF

version 1.1 specification. SC100-specific code is shown in Example 4-2.

Example 4-1. ELF Header Structure

typedef struct {

unsi gned char e_i dent[El _NI DENT];

El f 32_Hal f
El f 32_Hal f
El f32 Wrd
El f 32_Addr
El f32_Of f

El f32_Of f

El f32_Wrd
El f 32_Hal f
El f 32_Hal f
El f 32_Hal f
El f 32_Hal f
El f 32_Hal f
El f 32_Hal f

} El f32_Ehdr;

e_type;
e_machi ne;
e_version;
e entry;
e_phoff;
e _shoff;
e flags;
e_ehsi ze;

e_phentsi ze;

e_phnum

e_shentsi ze;

e_shnum
e_shst rndx;

Example 4-2. SC100 Specifics

e_ident[El _
e ident[El _
e ident[El _

e_machi ne:

CLASS] = ELFCLASS32
DATA] = ELFDATA2LSB (littl e-endi an menory node)

DATA] = ELFDATA2MSB (bi g- endi an menory node)

0x3a (EM_STARCORE)

Thee_f1 ags fieldis used to distinguish object filestrand ated for different cores, different core revisions,

and different ABI versions. Thee_f | ags field is split into three parts:

« Bits0-5: The coretype. The defined core types are:

#def i ne EF_STARCORE_CORE_SC140
#def i ne EF_STARCORE_CORE_SC110

0
1

Mixing object fileswith EF_STARCORE_CORE_SC110 and EF_STARCORE_CORE_SC140 will result

in an object file with EF_STARCORE_CORE_SC140.

4-2

SC100 Application Binary Interface

Sections

« Bits6-11: Therevision of the used core type. The defined core revisions are:

#def i ne EF_STARCORE_CORE_REV_UNKNOWN 0
#defi ne EF_STARCORE_CORE_REV_SC140 V1 1
#defi ne EF_STARCORE_CORE_REV_SC140_V2 2
#defi ne EF_STARCORE_CORE_REV_SC140_ E 3

e Bits12-17: The ABI version. The defined ABI versions are:

#def i ne EF_STARCORE_AB| _PREABI 0
#defi ne EF_STARCORE_ABI _NONCONFORM NG 1
#defi ne EF_STARCORE_ABI 2 0 2

ABI versions newer than 2.0 will be backward compatible. The result of linking object files with
mixed ABI versions of 2.0 or higher will result in an object file with the lowest ABI version number.
Linking with Pre-ABI or with non-conforming object filesmay result in linker errors or undetermined
output.

* Bits18-31: Zero. Reserved for future use.

Asfuture cores become available, their respective core types and core revisions will be noted in the
document, SC100 Application Binary Interface Supplement. This supplement will be available through the
StarCore web site at http://www.starcore-dsp.com.

Example 4-3. Definition of Macros for Accessing e_f | ag Parts

#defi ne ELF32_EF _STARCORE CORE(e flags) ((e_flags) & 0x3f)
#define ELF32_EF _STARCORE REV(e fl ags) (((e_flags) >> 6) & 0x3f))
#define ELF32_EF _STARCORE _ABI (e_fl ags) (((e_flags) >> 12) & 0x3f))
#def i ne ELF32_EF_STARCORE(core, rev, abi) \
(((core) & Ox3f) | (((rev) & Ox3f) << 6) | (((abi) & 0x3f) << 12))

4.3 Sections

Sections are the main components of the ELF file. Section headers define all the information about a
section. A section header is shown in Example 4-4. It isidentical to the ELF version 1.1 definition.

Example 4-4. Section Header Structure

typedef struct {
El f32_Word sh_nane;
El f32_Word sh_type;
El f32_Word sh_fl ags;
El f 32_Addr sh_addr;
Elf32_ Of sh_offset;
El f32_Word sh_si ze;
El f32_Word sh_Iink;
El f32_Word sh_info;
El f32_Word sh_addralign;
El f32_Word sh_entsi ze;
} El f32_Shdr;

SC100 Application Binary Interface 4-3

Object File Format

Sections used in SC100 ELF binaries are listed in Table 4-1. The section names listed in this table are case
sensitive and are reserved for the system.

Table 4-1. SC100 ELF Sections

Name (sh_nane)

Type (sh_t ype)

Flags (sh_f | ags)

Purpose

.text SHT _PROGBI TS SHF _ALLCC, SHF EXECI NSTR Executable instructions

.data SHT_PROGBI TS SHF_ALLCC, SHF_VWRI TE Initialized data

.rodat a SHT _PROGBI TS SHF_ALLCC Read-only, initialized data
.zdata SHT_PROGBI TS SHF_ALLOC, SHF WRI TE Zero Data Area initialized data
. bss SHT_NOBI TS SHF_ALLOC, SHF WRI TE Uninitialized data!

. zbss SHT_NOBI TS SHF_ALLOC, SHF WRI TE Zero Data Area uninitialized data®
.relasection SHT _RELA None Relocation info for sect i on 2
.synt ab SHT_SYMTAB None Symbol table

.shstrtab SHT_STRTAB None Section name string table
.strtab SHT_STRTAB None General purpose string table
.note SHT_NOTE None File identification

. debug_abbrev SHT_PROGBI TS None Abbreviation tables*

. debug_ar anges SHT_PROGBI TS None Address range tables*

. debug_frane SHT _PROGBI TS None call frame information
.debug_i nfo SHT_PROGBI TS None Debugging information entries 4
.debug_line SHT_PROGBI TS None Line number information *

. debug_I oc SHT_PROGBI TS None Location lists 4

. debug_nmaci nfo SHT_PROGBI TS None Macro information 4

. debug_pubnanes SHT_PROGBI TS None Global name tables

. SC100. del ay_sl ots SHT_PROGBI TS None Static delay slot information °

Notes:

1. Contents of . bss and . zbss sections are zeroed when loaded.

a s> wbd

See Section 4.5, “Relocation.”

See Section 4.6, “NOTE Section.”
This information in DWARF2 format.
See Section 4.4, “Special Sections.”

SC100 Application Binary Interface

Special Sections

4.4 Special Sections

A debug section called . SC100. del ay_sl ot s isused to hold all static delay slot information for each
SC100 executable file. Assemblers must identify and generate sufficient relocatabl e file information
(sections and rel ocation entries) to support this feature; linkers should need no special knowledge of this
feature when creating executabl e files. Assemblers must also popul ate this section when creating
executabl e files in absolute mode.

The. SC100. del ay_sl ot s section uses DWARF2 definitions like those used inthe . debug_I i ne
section, and consists of an unpadded sequence of opcodes with zero or more operands. No special headers,
padding, alignment, or sequence terminators are required.

Opcodes are represented by a single unsigned byte (8 bit) value. To accommodate future expansion
without breaking existing readers, 4 bits are used for aunique ID (provides 16 opcodes) and 4 bits are used
to indicate the size in bytes for the operands (provides up to 15 bytes of operands).

Three opcode IDs are initially required; additional 1Ds may be added later to support such features as
overlays and position independent code. The required opcode IDs are:
e SDS _EXPLI CI T_OP (explicit “delayed” instructions, for example, JSRD).
Acceptstwo unsigned word (32 bits) operands. Thefirst isthe address of the explicit Variable Length
Execution Set (VLES), and the second is the address of the delay dot VLES.
e SDS_LONGLOOP_OP (last two VLESes of along loop).
Accepts three unsigned word (32 bits) operands. The first is the address of the Ipmark VLES, the
second is the address of the next VLES, and the third is the address of the last VLES in the loop.
e SDS_SHORTLOOP_OP (last VLES of ashort loop).
Accepts two unsigned word (32 bits) operands. The first is the address of the first VLES, and the
second is the address of the last (second) VLES in the loop.

Each opcode with operands is intended to completely describe all information potentially needed to
implement features or checks that any debugger may reasonably expect to perform. Thisincludesthe static
delay slot type, the addresses of the VLES immediately before the delay slot, and the address of each
VLESin astatic delay dlot.

Debuggers need simply walk the byte stream (opcode then operands) of the . SC100. del ay_sl ot s
section until all data is exhausted.

Example 4-5 and Example 4-6 define the opcode | Ds and the macros for accessing opcode parts.

Example 4-5. Definition of Opcode IDs

#define SDS_EXPLICIT_OP 0
#define SDS_LONGLOOP_OP 1
#define SDS_SHORTLOOP_OP 2

Example 4-6. Definition of Macros for Accessing Opcode Parts

#def i ne SDS | D(opcode) (((opcode) >> 4) & 0xf)
#def i ne SDS_SI ZE(opcode) ((opcode) & 0Oxf)
#def i ne SDS OPCODE(i d, size) (((size) & Oxf) | (((id) & Oxf) << 4))

SC100 Application Binary Interface 4-5

P

Object File Format

4.5 Relocation

Each section which contains relocatabl e data has a corresponding rel ocation section of type SHT_RELA.
Thesh_i nf o field of the relocation section defines the section header index of the section (henceforth
referred to as the “data section”) to which the relocations apply. Thesh_I i nk field of the relocation
section defines the section header index of the associated symbol table. If section hames are used, the name
of the relocation section is. r el a prepended to the name of the data section.

A relocation entry is defined by the El f 32_Rel a structure and associated macros as shown in

Example 4-7. Ther _of f set field defines an offset into the data section to which the individual relocation
applies. Ther _i nf o field specifies both the type of the relocation and the symbol used in computation of
the relocation data.

The relocation typeis extracted from ther _i nf o field using the ELF32_R_TYPE macro and the symbol
number is extracted using the ELF32_R _SYMmacro. Ther _i nf o field is synthesized from the relocation
type and symbol number using the ELF32_R_| NFOmacro.

In the remainder of this section, the “relocation value” is the value to be stored at the location defined by
ther _of f set field (in the format specified by the relocation type). For arelocation typein Table 4-2, the
relocation value is computed by adding the signed value of ther _addend field to the value of the symbol
indicated by the symbol number. Symbol number zero is treated as absolute zero, in which case the
relocation value is simply the value of ther _addend field. This degenerate case is also often used by the
extended rel ocation types defined in Section 4.5.2, “Relocation Stack,” particularly R_STARCORE _COPER
and R_STARCORE_PCP, for which asymbol valueis rarely useful.

Example 4-7. Relocation Entry Defined with EIf32_Rela

typedef struct

{
El f 32_Addr r _offset;
El f32_Word r_info;
El f32_ Sword r_addend;
} Elf32_Rel g

#define ELF32_R SYMi) ((i)>>8)
#define ELF32_R TYPE(i) ((i)&Oxff)
#define ELF32_R INFQ(s,t) (((s)<<8)|((t)&0xff))

4-6 SC100 Application Binary Interface

Relocation

4.5.1 Relocation Types

Device-specific relocations describe how a memory location should be patched by the linker. An ordinary
relocation encodes exactly one instruction operand (or, in the case of data relocations, exactly one data
value). It isthe responsibility of the linker to ensure that the operand meets the range and alignment
requirement specified by the relocation.

For each relocation type in Table 4-2, the Type field indicates the value extracted using ELF32_R _TYPE,
both as a number and as a standard C preprocessor symbol. A brief abstract of the relocation follows in
parentheses.

The Size field indicates the number of bits used to represent the relocation value. If the operand rangeisa
subset of the values which can be represented in these bits, that restriction is indicated in parentheses.

The Signedness field indicates whether the relocation value is treated as signed, unsigned, or either.

The Alignment field indicates the alignment requirement in bits of the relocation value. Thisisthe number
of least significant bitsin the relocation value which must be zero.

The Shift field indicates the number of bits the relocation value is right-shifted before it is encoded. The
shift count subtracted from the size is the number of bits used to encode the relocation value.

The Special field indicates any other special processing performed during relocation. For instructions
which compute the PC, the value of the PC is the address of the instruction to which the relocation applies
(computed by adding the relocation’sr _of f set field and the data section’ssh_addr field), not the
machine’s runtime PC value (see Section 4.5.3, “Instruction Addressvs. VLES Address’).

The Encoding field indicates the way the relocation value is encoded in the target memory locations. The
order of the bits in the instruction operand or data val ue encoding does not necessarily match the order of
the bitsin the relocation value. Upper case letters are used to indicate relocation value bits which are more
significant than bitsindicated by lower case letters. s and S denote bits of a signed relocation value, u and
U denote hits of an unsigned relocation value, and x denotes a bit of arelocation value that is either signed
or unsigned. Dashes indicate bits not changed by the relocation. All encodings for instructions are shown
in groups of 16 hits; the bits within each group are subject to byte-swapping depending on target
endianness. Relocation types 2 and 3 (16-bit and 32-bit direct) are also endianness-sensitive.

The Applies To field indicates which instructions or directives generate this relocation.

Example:
----5---5855--S5SS ---555555555SSSS
1 111 111 1198765432101
9 432 876 10 5

Left toright, the “S” s represent bits 19-15 and the “s” s represent bits 14-0 of the relocation value. For a
big-endian target, this corresponds to a byte representation of:

byte 0 byte 1 byte 2 byte 3

----S-- 58S5--SSS ---S5SSSS SSSSSSSS
1 111 111 11987 65432101
9 432 876 10 5

For alittle-endian target, this corresponds to a byte representation of:

byte 0 byte 1 byte 2 byte 3

$SS--SSS ----S--- $5555SSS ---SSSSS
111 111 1 65432101 11987
432 876 9 5 10

SC100 Application Binary Interface 4-7

A 4
4\

Object File Format

Table 4-2. Relocation Type Definitions

Type: 1, R_STARCORE_DI RECT_8 (8-bit direct)
Size: 8

Signedness: either

Alignment: 0

Shift: 0
Encoding: XXXXXXXX
76543210

Applies To: DCB

Type: 2, R_STARCORE_DI RECT_16 (16-bit direct)
Size: 16

Signedness: either

Alignment: 0

Shift: 0

Encoding: XX XXX XXX XXX XX XXX
1111119876543210
543210

Applies To: DCW

Type: 3, R_STARCORE_DI RECT_32 (32-bit direct)
Size: 32

Signedness: either

Alignment: 0

Shift: 0

Encoding: XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

33222222222211111111119876543210
1098765432109876543210

Applies To: DCL

Type: 4, R_STARCORE_R9_1_1 (9-bit PC-relative)
Size: 9

Signedness: signed

Alignment: 1

Shift: 1
Encoding: ------- SSSSSSSS-
87654321
Special: The PC is subtracted from the relocation value before any range checking or alignment

checking is performed.
Applies To: BF, BFD, BSR, BSRD, BT, BTD

4-8 SC100 Application Binary Interface

Relocation

Table 4-2. Relocation Type Definitions (Continued)

Type: 5, R_STARCORE_R11 1_1 (11-bit PC-relative)
Size: 11
Signedness: signed
Alignment: 1
Shift: 1
Encoding: ----- SSSSSSSSSS-
1987654321
0

Special: The PC is subtracted from the relocation value before any range checking or alignment

checking is performed.
Applies To: BRA, BRAD
Type: 6, R _STARCORE_R17_1_1 (17-bit PC-relative)
Size: 17
Signedness: signed
Alignment: 1
Shift: 1
Encoding: -------- SSS----- ---S55SSSSSSSSSSSS

111 1119876543211
543 210 6

Special: The PC is subtracted from the relocation value before any range checking or alignment

checking is performed.
Applies To: BREAK, CONT, CONTD, DOSETUPO, DOSETUP1, DOSETUP2, DOSETUP3,

SKIPLS
Type: 7, R _STARCORE_R21_1_1 (21-bit PC-relative)
Size: 21
Signedness: signed
Alignment: 1
Shift: 1
Encoding: ----S5--555--SSS ---55555555555SS

2 111 111 1119876543211
0 543 987 210 6

Special: The PC is subtracted from the relocation value before any range checking or alignment

checking is performed.
Applies To: BF, BFD, BRA, BRAD, BSD, BSRD, BT, BTD

SC100 Application Binary Interface

3
4

y
A

Object File Format

Table 4-2. Relocation Type Definitions (Continued)

Type: 8, R_STARCORE_S7_0_0 (7-bit signed)

Size: 7

Signedness: signed

Alignment: 0

Shift: 0

Encoding: --------- SSSSSSS

6543210

Applies To: MOVE.W

Type: 9, R _STARCORE_S15_0_0 (15-bit signed)

Size: 15

Signedness: signed

Alignment: 0

Shift: 0

Encoding: --------- SS----- ---S55SSSSSSSSSSSS
11 1119876543210
43 210

Applies To: MOVE.B, MOVE.F, MOVE.L, MOVE.W, MOVES.F, MOVEU.B, MOVEU.W

Type: 10, R _STARCORE_S15_1_0 (15-hit signed)

Size: 15

Signedness: signed

Alignment: 1

Shift: 0

Encoding: --------- SS----- ---SSSSSSSSSSSSS
11 1119876543210
43 210

Applies To: MOVE.F, MOVE.W, MOVES.F, MOVEU.W

Type: 11, R _STARCORE_S15_2_0 (15-bit signed)

Size: 15

Signedness: signed

Alignment: 2

Shift: 0

Encoding: --------- SS----- ---S5SSSSSSSSSSSS
11 1119876543210
43 210

Applies To: MOVE.L

4-10 SC100 Application Binary Interface

Relocation

Table 4-2. Relocation Type Definitions (Continued)

Type: 12, R _STARCORE_S16_0_0 (16-bit signed)
Size: 16

Signedness: signed

Alignment: 0

Shift: 0

Encoding: -------- SSS----- ---S55SSSSSSSSSSSS
111 1119876543210
543 210

Applies To: ADDA, ADDNC.W, CMPEQ.W, CMPGT.W, IMPY.W, MAC, MOVE.F, MOVE.W,

SUBNC.W

Type: 13, R _STARCORE_S16_1_ 0 (16-bit signed)

Size: 16

Signedness: signed

Alignment: 1

Shift: 0

Encoding: -------- SSS----- ---S5SSSSSSSSSSSS
111 1119876543210
543 210

Applies To: AND.W, BMCHG.W, BMCLR.W, BMSET.W, BMTSET.W, BMTSTC.W, BMTSTS.W,
EOR.W, MOVE.W, NOT.W, OR.W

Type: 14, R _STARCORE_T16_0_0 (16-hit signed)
Size: 16

Signedness: signed

Alignment: 0

Shift: 0
Encoding: = ----------- SS--- mmmem—a-ao-- - - SSSSSSSSSSSSSS
11 11119876543210
54 3210
Applies To: MOVE.W
Type: 15, R _STARCORE_S32_0_0 (32-hit signed)
Size: 32
Signedness: signed
Alignment: 0
Shift: 0
Encoding: -------- SSSSS--- ---SSSSSSSSSSSSS - - SSSSSSSSSSSSSS
11133 1119876543210 22222222221111
54310 210 98765432109876

Applies To: MOVE.L

SC100 Application Binary Interface 4-11

A 4
4\

Object File Format

Table 4-2. Relocation Type Definitions (Continued)

Type: 16, R _STARCORE_W4_ 1 1 (4-bit unsigned)
Size: 4

Signedness: unsigned

Alignment: 1

Shift: 1
Encoding: ------------- uuu

321
Applies To: MOVE.W
Type: 17, R _STARCORE_U5_2_2 (5-bit unsigned)
Size: 5
Signedness: unsigned
Alignment: 2
Shift: 2
Encoding: ------------- uuu

432
Applies To: MOVE.L
Type: 18, R_STARCORE_U5_0_0 (5-hit unsigned)
Size: 5
Signedness: unsigned
Alignment: 0
Shift: 0
Encoding: ----------- uuuuu

43210

Applies To: ADD, ADDA, ASLL, ASRR, CMPEQ.W, CMPGT.W, DECA, INCA, LSRR, SUBA

Type: 19, R _STARCORE_U6_1 1 (6-bit unsigned)
Size: 6

Signedness: unsigned

Alignment: 1

Shift: 1

Encoding: ----------- uuuuu

Applies To: AND.W, BMCHG.W, BMCLR.W, BMSET.W, BMTSET.W, BMTSTC.W, BMTSTS.W,
EOR.W, MOVE.W, NOT.W, OR.W

4-12 SC100 Application Binary Interface

Relocation

Table 4-2. Relocation Type Definitions (Continued)

Type: 20, R_STARCORE_U6_0_0 (6-bit unsigned)
Size: 6
Signedness: unsigned
Alignment: 0
Shift: 0
Encoding: ---------- uuuuuu
543210
Applies To: DOENO, DOEN1, DOEN2, DOEN3, DOENSHO, DOENSH1, DOENSH2, DOENSH3

Type: 21, R_STARCORE_U7_1_1 (7-bit unsigned)
Size: 7

Signedness: unsigned

Alignment: 1

Shift: 1
Encoding: ---------- uuuuuu
654321
Applies To: MOVE.W
Type: 22, R_STARCORE_U8_2 2 (8-bit unsigned)
Size: 8
Signedness: unsigned
Alignment: 2
Shift: 2
Encoding: ---------- uuuuuu
765432
Applies To: MOVE.L
Type: 23, R_STARCORE_V6_0_0 (6-bit unsigned)
Size: 6 (range 0..39)
Signedness: unsigned
Alignment: 0
Shift: 0
Encoding: = ---------------- ----uuuuuu- - - - - -

543210
Applies To: EXTRACT, EXTRACTU, INSERT

SC100 Application Binary Interface 4-13

A 4
4\

Object File Format

Table 4-2. Relocation Type Definitions (Continued)

Type: 24, R_STARCORE_W_0_0 (6-bit unsigned)
Size: 6 (range 0..39)

Signedness: unsigned

Alignment: 0

Shift: 0
Encoding: = ---------------- oooooooo-- uuuuuu
543210

Applies To: EXTRACT, EXTRACTU, INSERT

Type: 25, R_STARCORE_U16_0_0 (16-bit unsigned)

Size: 16

Signedness: unsigned

Alignment: 0

Shift: 0

Encoding: -------- uuu- - - - - - - - uuuuuuuuuuuuu
111 1119876543210

543 210

Applies To: AND, BMCHG, BMCHG.W, BMCLR, BMCLR.W, BMSET, BMSET.W, BMTSET,
BMTEST.W, BMTSTC, BMTSTC.W, BMTSTS, BMTSTS.W, DOENO, DOEN1,
DOEN2, DOEN3, DOENSHO, DOENSH1, DOENSH2, DOENSH3, EOR, EOR.W,
MOVE.B, MOVEU.B, MOVEU.W, OR, OR.W

Type: 26, R_STARCORE_U16_1_0 (16-bit unsigned)
Size: 16

Signedness: unsigned

Alignment: 1

Shift: 0

Encoding: -------- uuu- - - - - - - - uuuuuuuuuuuuu
111 1119876543210
543 210

Applies To: AND.W, BMCHG.W, BMCLR.W, BMSET.W, BMTSET.W, BMTSTC.W, BMTSTS.W,
EOR.W, MOVE.F, MOVE.W, MOVES.F, MOVEU.W, NOT.W, OR.W

Type: 27, R_STARCORE_U16_2_0 (16-bit unsigned)
Size: 16

Signedness: unsigned

Alignment: 2

Shift: 0

Encoding: -------- uuu- - - - - - - - uuuuuuuuuuuuu
111 1119876543210
543 210

Applies To: MOVE.L

4-14 SC100 Application Binary Interface

Relocation

Table 4-2. Relocation Type Definitions (Continued)

Type: 28, R_STARCORE_V16_0_0 (16-bit unsigned)
Size: 16
Signedness: unsigned
Alignment: 0
Shift: 0
Encoding: ----------- UU--- ------------o- - - - uuuuuuuuuuluuuu
11 11119876543210
54 3210
Applies To: BMCHG.W, BMCLR.W, BMSET.W, BMTSET.W, BMTSTC.W, BMTSTS.W, EOR.W,
OR.W
Type: 29, R_STARCORE_N16_0_0 (16-bit unsigned)
Size: 16
Signedness: unsigned
Alignment: 0
Shift: 0
Encoding: -------- uuu- - - - - - - - uuuuuuuuuuuuu
111 1119876543210
543 210
Special: The relocation value is exclusive-ORed with OXFFFF before any range checking or
alignment checking is performed.
Applies To: AND, AND.W
Type: 30, R_STARCORE _O16_0_0 (16-bit unsigned)
Size: 16
Signedness: unsigned
Alignment: 0
Shift: 0
Encoding: ----------- UU--- ------mmmmmmm - - - uuuuuuuuuuuuuu
Special: The relocation value is exclusive-ORed with OXFFFF before any range checking or
alignment checking is performed.
Applies To: AND.W
Type: 31, R_STARCORE _U32_0_0 (32-bit unsigned)
Size: 32
Signedness: unsigned
Alignment: 0
Shift: 0
Encoding: -------- uuuUU- - - - --uuuuuuuuuuuuu - - YUUUUUUUUUUUUU
Applies To: MOVE.B, MOVE.L, MOVEU.B, MOVEU.L

SC100 Application Binary Interface

4-15

A 4
4\

Object File Format

Table 4-2. Relocation Type Definitions (Continued)

Type: 32, R_STARCORE U32_1 0 (32-bit unsigned)

Size: 32

Signedness: unsigned

Alignment: 1

Shift: 0

Encoding: -------- uuuUU- - - - - - uuuuuuuuuuuul - - YUWUUUUUUUUULU
11133 1119876543210 22222222221111
54310 210 98765432109876

Applies To: JF, JED, JMP, JMPD, JSR, JSRD, JT, JTD, MOVE.F, MOVE.W, MOVES.F,

MOVEU.W

Type: 33, R_STARCORE _U32_2_ 0 (32-bit unsigned)

Size: 32

Signedness: unsigned

Alignment: 2

Shift: 0

Encoding: -------- uuuUU- - - - --uuuuuuuuuuuuu - - YUUUUUUUUUUUUU
11133 1119876543210 22222222221111
54310 210 98765432109876

Applies To: MOVE.L

Type: 34, R_STARCORE_U32_16_16 (32-bit unsigned)

Size: 32

Signedness: unsigned

Alignment: 16

Shift: 16

Encoding: -------- uuu- - - - - - - - uuuuuuuuuuuuu
332 2222222221111
109 8765432109876

Applies To: AND

4-16 SC100 Application Binary Interface

Relocation

4.5.2 Relocation Stack

For those situations in which the relocation value cannot be expressed as a simple symbol value plus an
addend, there are three specia relocation types used to evaluate an arbitrary expression on arelocation
stack. These relocation types are referred to as extended rel ocations. Other relocation types are ordinary
relocations.

A relocation stack is a standard last-in-first-out data structure containing 32-bit values. A hosted
environment must not place any arbitrary limit on the depth of the stack. An embedded environment may
impose any limit on stack depth or omit the relocation stack entirely (effectively, a maximum stack depth
of zero).

A relocation type of 253 (R_STARCORE_PUSH) indicates that the sum of the symbol value (the value of
symbol number zero is zero) plusthe signed r _addend value should be pushed onto the relocation stack.

A relocation type of 254 (R_STARCORE_CPER) defines an operation to be performed on one or more stack
values. The operation is specified by the sum of the symbol vaue (the value of symbol number zerois
zero) plusthe signed r _addend value. Operations are shown in Table 4-3. In the table, StackO indicates
the value on the top of the stack, and Stack1 indicates the value one level beneath the top of the stack.

Table 4-3. Relocation Stack Operations

Relocation Before After .
Value StackO0 Stackl | Stack0 Operation
0 X X No operation
1 X -X Negation (2s complement)
2 X ~X Bitwise NOT (1s complement)
3 X IX Boolean NOT (zero -> 1, nonzero -> 0)
4 Y X X*Y Multiplication
5 Y X X1y Division
6 Y X X%Y Remainder
7 Y X X+Y Addition
8 Y X X-Y Subtraction
9 Y X X<<<Y Logical shift left
10 Y X X>>>Y Logical shift right
11 Y X X<<yY Arithmetic shift left
12 Y X X>>Y Arithmetic shift right
13 Y X X<y 1if X <Y, otherwise 0
14 Y X X<=Y 1if X <=Y, otherwise 0
15 Y X X>Y 1if X>Y, otherwise 0
16 Y X X>=Y 1if X >=Y, otherwise 0
17 Y X X == 1if X equals Y, otherwise 0
18 Y X X!=Y 1if X does not equal, otherwise 0
19 Y X X&Y Bitwise AND
20 Y X XNY Bitwise OR
21 Y X XY Bitwise XOR
22 Y X X&&'Y 1if X and Y both nonzero, otherwise 0
23 Y X XY 1if X or Y or both nonzero, otherwise 0

SC100 Application Binary Interface 4-17

Object File Format

Note that in most cases, the stack values are treated as unsigned. However, arithmetic shifts and logical
shifts are treated differently:

Logical shift left: Zeroes are shifted in on the right.

Logical shift right: Zeroes are shifted in on the | eft.

Arithmetic shift left: Zeroes are shifted in on the right, and the most significant bit is always unaffected.
Arithmetic shift right: Copies of the most significant bit are shifted in on the left.

A relocation type of 255 (R_STARCORE_POP) indicates the end of arelocation expression, to be relocated
using an ordinary relocation type from Table 4-2. Therelocation type is specified by the sum of the symbol
value (the value of symbol number zero is zero) plusthe signed r _addend value.

When the R_STARCORE_POP operation is encountered, there should be exactly one value on the stack.
Thisvalue, which is consumed by this operation, becomes the new relocation value for the ordinary
relocation type specified in the R_STARCORE_PCOP rel ocation.

It isthe responsibility of the relocation engine to ensure that the stack isempty after an R_STARCORE_POP,
before an ordinary relocation, and after linking is complete. A sequence of relocations which causes a stack
underflow does not conform to the ABI.

4.5.3 Instruction Address vs. VLES Address

Within aVariable Length Execution Set (VLES) all instructions share acommon value of the PC register,
specifically the starting address of the VLES itself. Ther _of f set field of arelocation pointsto the
instruction address, not the VLES address. To compensate for this, a PC-relative instruction must have the
instruction offset subtracted from the PC-relative operand as follows:

1. Inanordinary relocation, the offset should be subtracted from thevalueinther _addend field.

Example:

VLES Offset Instruction

0 (1w prefix) [

2 tsteq d2

4 doen3 d4

6 dosetup3 | ptab+32

]

The “dosetup3” instruction would generate an ordinary relocation with the following field values:

r_info: ELF32_R I NFQ(<synbol nunber of |ptab> R STARCORE R17_1 1)
r _addend: 26 (32 - 6)

2. In an extended relocation, the subtraction of the offset should be inserted at the end of
relocation expression, just before the R_STARCORE_POP operation. Example:

VLES Offset Instruction

0 (1w prefix) [

2 tsteq d2

4 doen3 d4

6 doset up3 | pt ab+4* ndx

4-18 SC100 Application Binary Interface

NOTE Section

The “dosetup3” instruction would generate a sequence of extended relocations with the following
field values:

r _i nfo (type shown first, then symbol) r _addend

R_STARCORE_PUSH <synbol nunber of | ptab>

R STARCORE PUSH 0

R_STARCORE_PUSH <synbol nunber of ndx>

R_STARCORE_OPER 0

R _STARCORE OPER
* R_STARCORE_PUSH
* R_STARCORE_OPER

R _STARCORE_POP

0
4
0
4 (*)
7 (+)
6
8 (-)
R_

0
0
0
0 STARCORE_R17_1_1

The relocations marked with asterisks implement the offset subtraction.

4.6 NOTE Section

The note section isoptional. It contains object file vendor identification and application-specific object file
comments. If included, it follows the described format.

Vendor identification format is shown in Figure 4-2. It consists of the following:

namesz Thestring length (not counting null terminator) of the name. It isa4-byte unsigned
integer.

descz The size of the description entries. Thisis 12 bytes for the vendor id note. The
description fields contain the version, revision, minor revision numbers of the
producing entity (assembler or linker). Datais an unsigned 4-byte integer.

type Type equals 2 for the vendor identification note. It is a 4-byte unsigned integer in
little-endian order.
name Null terminated string and padded, if necessary, to achieve a 4-byte boundary

alignment which represents the vendor’ s identification.

SC100 Application Binary Interface 4-19

Object File Format

namesz

descsz

type| 2 (Vendor ID note)

name W ‘e’ ‘n’ o’

‘0’ 0P it o’

0" | pad pad’ pad

Version number

Revision number

Minor rev number

Figure 4-2. Vendor Identification Note Format

Object file comments generated by the user through an assembler directive are placed in the note section.
Thisistypically for usersto identify their object code. The same string termination and padding
restrictions apply to object file comments as apply to vendor identification notes. The field contains a
user-specified comment. A null comment (\0) isnot avalid comment.

The abject file comment format is shown in Figure 4-3.

namesz
descsz | O
type 1
name | ‘¢’ ‘o’ ‘m’ m’
e n ‘t \0

Figure 4-3. User (Application-Specific) Note Format

4-20 SC100 Application Binary Interface

Program Headers

4.7 Program Headers

Program headers are used to build an executable image in memory and are only useful for executable files.
While section headers may or may not be included in executabl e files, program headers are always present.
See Example 4-8 for a sample program header.

Example 4-8. Program Header

typedef struct {
El f32_Word p_type;
Elf32_Of p_offset;
El f 32_Addr p_vaddr;
El f 32_Addr p_paddr;
El f32_Word p filesz;
El f32_Word p_nensz;
El f32_Word p_fl ags;
El f32_Word p_align;

} El f32_Phdr;

The program header members are described below.

p_type Describes the type of program header. Only PT_LQOAD and PT_NOTE are recognized as
types.

p_offset Offset from beginning of fileto first byte of segment.

p_vaddr Virtua address in memory of the first byte of the segment.

p_paddr Physical addressin memory of the first byte of the segment.

p_filesz Givesthe number of bytesin segment’sfileimage. (May be zero.)

p_Mensz Gives the number of bytesin segment’s memory image. (May be zero.)

p_flags Gives flags relevant to the segment. Defined flags are PF_R, PF_W and PF_X.

p_align Segment alignment requirements in file and memory.

SC100 Application Binary Interface 4-21

P

Object File Format

4.8 Debugging Information

SC100 tools must use the Debug With Arbitrary Record Format (DWARF) debugging format, as defined
in the Tooal Interface Standard (TIS) DWARF Debugging Information Format Specification, Version 2.0.

4.8.1 DWARF Register Number Mapping
Table 4-4 outlines the register number mapping for the SC100 generation of DSP cores.

Table 4-4. SC100 Register Number Mapping

Register Name Number Abbreviation
Stack Pointer 0 SP

General Data Registers 1-16 DO0-D15
Address Registers 17-32 RO-R15
Data Registers—extension portion 33-48 DO_e-D15 e
Data Registers—high portion 49-64 DO_h-D15_h
Data Registers—low portion 65-80 DO_I-D15 |
Loop Counter Registers 81-84 LCO-LC3
Modulo Registers 85-88 MO-M3
Offset Registers 89-92 NO-N3
Program Counter 93 PC

Clock Control Registers 94-97 PCTLO-PCTL3
Start Address Registers 98-101 SA0-SA3
Vector Base Address Register 102 VBA
Exception and Mode Register 103 EMR
Modifier Control Register 104 MCTL

4-22

SC100 Application Binary Interface

Chapter 5
Assembler Syntax and Directives

Assemblers must support the directives, special characters, and syntax identified in this section. Details on
these topics can be found in the SC100 Assembly Language Tools User’s Manual, Rev 2.0.

5.1 Assembler Significant Characters

Several one- and two-character sequences are significant to the assembler and must be supported. Some
have multiple meanings depending on the context in which they are used. These characters arelisted in
Table5-1.

Table 5-1. Assembler Significant Characters

Character Meaning

; Comment delimiter
Unreported comment delimiter

\ Line continuation character or macro dummy argument concatenation
operator

Quoted string DEFINE expansion character
@ Function delimiter

*

Location counter substitution

++ String concatenation operator

[1 Substring delimiter or instruction grouping delimiter
<< I/O short addressing mode force operator

< Short addressing mode force operator

> Long addressing mode force operator

Immediate addressing mode operator
#< Immediate short addressing mode force operator
#> Immediate long addressing mode force operator

SC100 Application Binary Interface 5-1

\ssembler Syntax and Directives

5.2 Assembler Directives

The assembler directives listed in Table 5-2 must be supported.

Table 5-2. Assembler Directives

Type Directive Description
Assembly Control COMMENT Start comment lines

DEFINE Define substitution string

END End of source program

FAIL Programmer generated error message

HIMEM Set high memory bounds

INCLUDE Include secondary file

LOMEM Set low memory bounds

MSG Programmer generated message

ORG Initialize memory space and location counters

RADIX Change input radix for constants

UNDEF Undefine DEFINE symbol

WARN Programmer generated warning
Symbol Definition ENDSEC End section

EQU Equate symbol to a value

GLOBAL Global section symbol declaration

GSET Set global symbol to a value

SECFLAGS Set ELF section flags

SECTION Start section

SECTYPE Set ELF section type

SET Set symbol to a value

SIZE Set size of symbol in the ELF symbol table

TYPE Set symbol type in the ELF symbol table
Data Definition / ALIGN Set address to modulo boundary
Storage Allocation BADDR Set buffer address

BSB Block storage bit-reverse

BSC Block storage of constant

BUFFER Start buffer

DC, DCW Define constant (16-bits)

DCB Define constant byte (8-bits)

DCL Define constant long word (32-hits)

DS Define storage

DSR Define reverse carry storage

ENDBUF End buffer

FALIGN Align hardware loop

5-2 SC100 Application Binary Interface

Assembler Syntax

Table 5-2. Assembler Directives

Type Directive Description

Conditional Assembly | DUP Duplicate sequence of source lines
ENDIF End of conditional assembly
ENDM End of duplicate sequence
ELSE Conditional assembly directive
IF Conditional assembly directive

5.3 Assembler Syntax

The following sections provide details on assembler syntax.

5.3.1 Symbol Names

Symbol names follow these conventions:

« Symbol names can be from one to 4000 characters long.

« Symbol names cannot begin with a number (0-9). Symbol names can otherwise be any combination
of alphanumeric characters (A-Z, a-z, 0-9) and the underscore character ().

« Symbol names and other identifiers containing aperiod (.) are legal but are reserved for the system.
e Upper and lower case letters in symbols are considered distinct.

e Theupper or lower case names of SC100 core registers are reserved by the assembler and cannot be

used.

Examples of symbol names are shown below.

Valid Names Invalid Names Reserved Names
loop_1 1 loop loop.e
ENTRY .loop
~_aBc
5.3.2 Strings

One or more ASCII characters enclosed by single quotes (') constitute aliteral ASCII string. In order to
specify an apostrophe within aliteral string, two consecutive apostrophes must appear where the single
apostrophe is intended. Strings are used as operands for some assembler directives and also can be used to
alimited extent in expressions.

A string may also be enclosed in double quotes (") in which case any DEFINE directive symbols contained
in the string would be expanded.

SC100 Application Binary Interface

5-3

\ssembler Syntax and Directives

Two strings separated by the string concatenation operator (++) will be recognized by the assembler as
eguivalent to the concatenation of the two strings. For example, the following two strings are equival ent:

'ABC'++'DEF = 'ABCDEF
The assembler has a substring extraction capability using brackets ([]). Refer to the following example:
['abcdefg,1,3] = 'bed’

Substrings may be used wherever strings are valid and can be nested. There are also functions for
determining the length of a string and the position of one string within another.

5.3.3 Source Statement Format

As shown in Figure 5-1, an assembly language source statement may include four fieldsin its most basic
form: label, operation, operand, and comment.

TABLE DC 1426, 253 ; This is a directive
Label” T T
Operation
Operand
Comment

*Begins in column 1

Figure 5-1. Basic Source Statement

Fields must be separated by one or more spaces or tabs. Fields other than the comment field cannot contain
embedded whitespace characters, since these characters are used asfield delimiters. An exception is spaces
and tabs in quoted strings.

Only fields preceding the comment field are considered significant to the assembler; the comment field is
ignored. Anything beginning in column 1 is considered alabel.

A source statement can be extended to multiple lines by including the line continuation character (\) asthe
last character on the line to be continued. An exception to thisisinstruction groups, which can span
multiple lines as long as the instruction group is surrounded by brackets ([]). (See Section 5.3.3.1
“Instruction Groups.”)

A source statement (first line and any continuation lines) can be a maximum of 4000 characters long.
Upper and lower case |etters are equivalent for assembler mnemonics and directives, but are distinct for
labels, symbols, directive arguments, and literal strings.

5-4 SC100 Application Binary Interface

Assembler Syntax

5.3.3.1 Instruction Groups

The SC100 architecture supportsinstruction groups, which allow multiple instructions to be executed in
parallel. Rules governing how instructions may be grouped are discussed in each core’ s respective
reference manual.

The assembler interprets each line containing instructions as an instruction group. Instructions must be
separated by tabs or spaces, as shown in Example 5-1.

Example 5-1. Single-Line Instruction Group

move. f (r2)+,dO nmove.f (r2)+, d8 clr d5 ; Instruction group with 3 instructions

When delimited with brackets ([]), an instruction group may span multiple lines, as shown in
Example 5-2.

Example 5-2. Multiple-Line Instruction Group (SC140)
[

nac do, di, d2 nmac d3, d4, d5 ; multiply operands
add do, d1, d3 add d3, d4, d6 ; add oper ands
nove. f (r0)+ doO nove. w (rl)+ dl ; 1 oad new oper ands
]
5.3.3.2 Labels

Labels begin in column 1 of a source statement. A space or tab as the first character on aline ordinarily
indicates that the label field is empty. Labels are subject to the following rules:

« Label names must follow the same conventions as symbol names.

« A label may beindented if it isimmediately followed by a colon (:) with no intervening spaces. In
thiscase, all characters preceding thelabel on the line must be whitespace characters—spaces or tabs.

» A label may occur only oncein thelabel field of an individual source file unlessit is used as alocal
label, alabel local to asection, or isused withthe SET directive. If anon-local abel occurs morethan
oncein alabel field, each reference to that label after the first will be flagged as an error.

« Alineconsisting of alabel only isvalid and has the effect of assigning the value of the location
counter tothelabel. With the exception of somedirectives, alabel isassigned the value of thelocation
counter of the first word of the instruction or data being assembled.

5.3.3.3 Operation Field

The operation field appears after the label field, and must be preceded by at least one space or tab. Entries
in the operation field may be one of three types.

Opcode Mnemonics that correspond directly to DSP machine instructions.

Directive Specia operation codes known to the assembler which control the assembly process.

Macro call Invocation of apreviously defined macro which isto be inserted in place of the macro call.

SC100 Application Binary Interface 5-5

\ssembler Syntax and Directives

5.3.3.4 Operand Field

The interpretation of the operand field is dependent on the contents of the operation field. The operand
fied, if present, must follow the operation field, and must be preceded by at least one space or tab. The
operand field may contain asymbol, an expression, or acombination of symbolsand expressions separated
by commas with no intervening spaces.

5.3.3.5 Comment Field

Comments areignored by the assembler, but can beincluded in the sourcefile for documentation purposes.
A comment field is composed of any characters (not part of aliteral string) that are preceded by a
semicolon (;).

5.4 Rule Checking

Every core architecture has a set of programming rules that must be adhered to, in order to ensure correct
code execution. Each core’s reference manual defines the instructions that an assembly programmer or
compiler will use. It isthe role of the assembler and simulator to ensure that the instructions are legally
used.

To ensure ABI conformance, it is required that third party assemblers and simulators follow the
requirements defined in the design specification, “ Support in the Assembler and Smulator Required for
Correct Reporting of SC100 Restrictions.” This specification defines which rules must be validated
statically by the assembler. In some cases, it is only possible to validate a rule dynamically through the
simulator. These cases are a so documented.

For each rule violation, the specification defines an error or warning message. Each message contains an
identifier (for example, A1, GG4, or LCY). Third party assemblers must include thisidentifier as part of the
error or warning message. Beyond this requirement, the message may be formatted or worded as desired.

A set of programming rule test cases will be made available to third parties to validate conformance to the
specification. The test suite and the design specification will be provided to third parties under a
non-disclosure agreement with the StarCore Technology Center.

5-6 SC100 Application Binary Interface

STAR/ .(CORE

BRIGHTER" DSP TECHNOLOGY!

How to reach us:

USA/Europe/Locations Not Listed:
Motorola Literature Distribution
P.O. Box 5405

Denver, Colorado 80217
1-303-675-2140 or 1-800-441-2447

Japan

Motorola Japan Ltd.

SPS, Technical Information Center

3-20-1, Minami-Azabu. Minato-ku, Tokyo 106-8573 Japan
81-3-3440-3569

Asia/Pacific

Motorola Semiconductors H.K. Ltd.

Silicon Harbour Centre, 2 Dai King Street, Tai Po Industrial
Estate, Tai Po, N.T., Hong Kong. 852-26668334

Technical Information Center
1(800) 521-6274

Home Page
http://www.motorola.com/sps/dsp

digitaldna

MOTOROLA

intelligence everywhere”

Agere Systems Internet
http://www.agere.com

Email
docmaster@agere.com

N. America

Agere Systems Inc.

1-800-372-2447, FAX 610-712-4106

In CANADA: 1-800-553-2448, FAX 610-712-4106

Asia/Pacific
Agere Systems Singapore Pte. Ltd., Singapore
Tel. (65) 778 8833, FAX (65) 777 7495

China
Agere Systems (Shanghai) Co., Ltd., Shanghai
Tel. (86) 21 5047 1212, Fax (86) 21 5047 2266

Japan
Agere Systems Japan Ltd., Shinagawa-ku, Japan
Tel. (81) 35421 1600, FAX (81) 3 5421 1700

Europe Dataline
Tel. (44) 7000 582 368, FAX (44) 1189 328 148

systems

agere

	SC100 Application Binary Interface
	Title Page
	Copyright Information
	Table of Contents
	List of Tables
	List of Figures
	List of Examples
	Chapter�1 Introduction
	1.1 Overview
	1.2 Conformance
	1.3 References
	1.4 Revision History
	1.5 Acknowledgements

	Chapter�2 Low-Level Binary Interface
	2.1 Core Architecture
	2.2 Endian Support
	2.3 Fundamental Data Types
	2.4 Aggregates and Unions
	2.5 Bit Fields
	2.6 Function Calling Sequence
	2.6.1 Argument Passing and Return Values
	2.6.2 Variable Argument Lists
	2.6.3 Stack
	2.6.4 Stack Frame Layout
	2.6.5 Stack Unwinding
	2.6.6 Register Saving and Restoring Functions
	2.6.7 setjmp and longjmp Layout
	2.6.8 Frame and Global Pointers
	2.6.9 Dynamic Memory Allocation
	2.6.10 Hardware Loops

	2.7 Function Call Modes
	2.8 Address Modifier Modes
	2.9 Saturation Mode
	2.10 Data Addressing Models

	Chapter�3 High-Level Languages Issues
	3.1 C Preprocessor Predefines
	3.2 C Name Mapping
	3.3 C System Calls
	3.4 Fractional Arithmetic Support
	3.5 Libraries
	3.5.1 Compiler Assist Libraries
	3.5.2 Floating-Point Routines
	3.5.3 Integer Routines
	3.5.4 Optional Integer Routines

	3.6 Function Argument and Return Type Checking in C
	3.6.1 Signature Symbols
	3.6.2 Return Value
	3.6.3 Using Signature Symbols

	3.7 Access to Architectural Features

	Chapter�4 Object File Format
	4.1 Interface Descriptions
	4.2 The ELF Header
	4.3 Sections
	4.4 Special Sections
	4.5 Relocation
	4.5.1 Relocation Types
	4.5.2 Relocation Stack
	4.5.3 Instruction Address vs. VLES Address

	4.6 NOTE Section
	4.7 Program Headers
	4.8 Debugging Information
	4.8.1 DWARF Register Number Mapping

	Chapter�5 Assembler Syntax and Directives
	5.1 Assembler Significant Characters
	5.2 Assembler Directives
	5.3 Assembler Syntax
	5.3.1 Symbol Names
	5.3.2 Strings
	5.3.3 Source Statement Format
	5.3.3.1 Instruction Groups
	5.3.3.2 Labels
	5.3.3.3 Operation Field
	5.3.3.4 Operand Field
	5.3.3.5 Comment Field

	5.4 Rule Checking

	How to Reach Us

