
LPCXpresso IDE Instruction
Trace Guide
Rev. 8.1 — 3 June, 2016 User guide

NXP Semiconductors LPCXpresso IDE Instruction Trace Guide

LPCXpresso IDE Instruction Trace Guide -

User Guide
All information provided in this document is subject to legal disclaimers

Rev. 8.1 — 3 June, 2016
© 2013-2016 NXP Semiconductors. All rights reserved.

ii

3 June, 2016

Copyright © 2013-2016 NXP Semiconductors

All rights reserved.

NXP Semiconductors LPCXpresso IDE Instruction Trace Guide

LPCXpresso IDE Instruction Trace Guide -

User Guide
All information provided in this document is subject to legal disclaimers

Rev. 8.1 — 3 June, 2016
© 2013-2016 NXP Semiconductors. All rights reserved.

iii

1. Trace Overview ... 1
1.1. Instruction Trace Overview .. 1

1.1.1. Supported targets ... 1
2. Getting Started .. 2

2.1. Configuring the Cortex-M0+ for Instruction Trace .. 2
2.2. Trace the most recently executed instructions ... 2
2.3. Stop trace when a variable is set (Cortex M3 or M4 using ETB) 4

3. Concepts ... 7
3.1. Micro Trace Buffer (MTB) .. 7

3.1.1. Enabling the MTB .. 7
3.1.2. MTB memory configuration ... 7
3.1.3. MTB Watermarking .. 8
3.1.4. MTB Auto-resume .. 8
3.1.5. MTB Downloading Trace .. 8

3.2. Embedded Trace Macrocell (ETM) ... 8
3.2.1. Stalling .. 9
3.2.2. ETM events ... 9
3.2.3. Event Resources .. 9
3.2.4. Watchpoint comparator event resource .. 9
3.2.5. Counter event resource .. 10
3.2.6. Trace start/stop unit event resource ... 10
3.2.7. External event resource .. 10
3.2.8. Hard wired event resource .. 10

3.3. Embedded Trace Buffer (ETB) ... 10
3.3.1. Triggers ... 11
3.3.2. Timestamps ... 12
3.3.3. Debug Request .. 12
3.3.4. Output all branches .. 12

3.4. Data Watchpoint and Trace ... 12
3.4.1. Instruction address Comparator ... 13
3.4.2. Data Value comparator ... 13
3.4.3. Cycle Count ... 14

4. Reference ... 15
4.1. Instruction Trace view ... 15

4.1.1. Instruction Trace view Toolbar buttons ... 15

4.1.2. Record trace continuously .. 16

4.1.3. Download trace buffer ... 16

4.1.4. Link to source ... 17

4.1.5. Link to disassembly ... 17

4.1.6. Toggle profile information .. 17

4.1.7. Save trace .. 17

4.1.8. Jump to trigger ... 17

4.1.9. Stop auto-resume .. 18

4.1.10. Select columns .. 18
4.2. Instruction Trace Config view for the MTB .. 18

4.2.1. Configuring the buffer ... 19
4.2.2. Enabling .. 19
4.2.3. Buffer .. 19
4.2.4. Watermark ... 19
4.2.5. Viewing the state of the MTB .. 20
4.2.6. Instruction Trace Config view for the ETB 20
4.2.7. ETM Event configuration ... 21

5. Troubleshooting ... 23

NXP Semiconductors LPCXpresso IDE Instruction Trace Guide

LPCXpresso IDE Instruction Trace Guide -

User Guide
All information provided in this document is subject to legal disclaimers

Rev. 8.1 — 3 June, 2016
© 2013-2016 NXP Semiconductors. All rights reserved.

iv

5.1. General .. 23
5.1.1. Instruction Trace claims target not supported when it should be 23

5.2. MTB ... 23
5.2.1. Target crashes when MTB is enabled .. 23

5.3. Target keeps resuming itself and I cannot stop it 23
5.4. ETB ... 23

5.4.1. Trigger Packet missing from trace even though trigger occurred 23
5.5. Comparator sharing .. 23

5.5.1. Watchpoints – requesting and releasing comparators 24
5.5.2. SWO Data Watch comparators ... 24
5.5.3. Instruction Trace .. 25

NXP Semiconductors LPCXpresso IDE Instruction Trace Guide

LPCXpresso IDE Instruction Trace Guide -

User Guide
All information provided in this document is subject to legal disclaimers

Rev. 8.1 — 3 June, 2016
© 2013-2016 NXP Semiconductors. All rights reserved.

1

1. Trace Overview
There are two different kinds of tracing technologies used within the LPCXpresso IDE.
The trace functionality available depends on the features supported by your target and the
features supported by your debug probe.

The forms of trace functionality supported by LPCXpresso IDE are:

• Instruction Trace - using on chip trace buffers

• SWO Trace - SWO using LPC-Link2 debug probe

The latest information on trace and details about supported targets can be found at https://
community.nxp.com/message/630730

The rest of this guide looks at Instruction Trace, for information regarding SWO Trace, see
the SWO Trace guide.

1.1 Instruction Trace Overview

Instruction trace provides the ability to record and review the sequence of instructions
executed on a target. The LPCXpresso IDE provides support for instruction trace via on chip
trace buffers. Instruction trace makes use of the Embedded Trace Buffer (ETB) on Cortex
M3 and M4 parts and the Micro Trace Buffer (MTB) on the Cortex-M0+. The instruction
trace information which is generated at high speed within the CPU can be captured in real
time and stored in these on-chip buffers, so that they can be downloaded at lower speeds
without the need for an expensive external trace capture box.

The LPCXpresso IDE exposes the powerful Embedded Trace Macrocell (ETM) on Cortex
M3 and M4 to focus the generated trace stored in the ETB. Trace can be focused on specific
areas of code or triggered by complex events for example. On the Cortex M0+, the MTB
provides simple instruction trace using shared SRAM.

This documentation is divided into four parts.

• Getting Started [2] - Tutorials to help you learn how to use instruction trace

• Concepts [7] - Technical background of instruction tracing

• Reference [15] - Details of the interface and operation of instruction trace

• Troubleshooting [23] - solutions to common challenges you may face

1.1.1 Supported targets

Instruction Trace is not supported on all targets. It only works on targets which have the
necessary hardware. Instruction trace is currently supported on the following targets from
NXP:

• LPC8xx (Cortex-M0+ with MTB)

• LPC11U6x / LPC11UE6x (Cortex-M0+ with MTB)

• LPC18xx (Cortex-M3 with ETM+ETB)

• LPC43xx (Cortex-M4 with ETM+ETB)

Note that instruction trace is not supported with LPC17xx MCUs (which do not implement
an ETB) or LPC13xx/LPC15xx MCUs (which do not implement ETM or ETB).

https://community.nxp.com/message/630730
https://community.nxp.com/message/630730

NXP Semiconductors LPCXpresso IDE Instruction Trace Guide

LPCXpresso IDE Instruction Trace Guide -

User Guide
All information provided in this document is subject to legal disclaimers

Rev. 8.1 — 3 June, 2016
© 2013-2016 NXP Semiconductors. All rights reserved.

2

2. Getting Started
The following tutorials guide you through the process of using instruction trace.

2.1 Configuring the Cortex-M0+ for Instruction Trace

Instruction trace on Cortex-M0+ targets requires that some SRAM need to be reserved.
The Micro Trace Buffer (MTB) that provides the Instruction Trace capabilities stores the
execution trace to SRAM. It is therefore necessary to reserve some SRAM to ensure that
user data is not overwritten by trace data.

Note:
This configuration is not required for instruction trace on Cortex-M3 and
Cortex-M4 MCU parts.

LPCXpresso’s new project wizard will automatically includes a file called mtb.c for parts
which support MTB trace. This file places an array called __mtb_buffer__ into memory at the
required alignment. The MTB will then be configured to use this space as its buffer allowing
it to record execution trace without overwriting user code or data. The array __mtb_buffer__
should not be used within your code since the MTB will overwrite any data entered into it.

The enablement and size of the __mtb_buffer__ is controlled by three symbols:

• __MTB_DISABLE - If this symbol is defined, then the buffer array for the MTB will not be
created.

• __MTB_BUFFER_SIZE - Symbol specifying the size of the buffer array for the MTB. This must
be a power of 2 in size, and fit into the available RAM. The MTB buffer will also be aligned
to its ‘size’ boundary and be placed at the start of a RAM bank (which should ensure
minimal or zero padding due to alignment).

• __MTB_RAM_BANK - Allows MTB Buffer to be placed into specific RAM bank. When this is
not defined, the “default” (first if there are several) RAM bank is used.

To change or add these symbols click on Quickstart Panel->Quick Settings->Defined
Symbols.

If you have a project for an MTB supported part which does not have the mtb.c file in it
already you simply need to copy the mtb.c file from existing project or create a new project
and copy the file from there.

Warning
Enabling the MTB manually without properly configuring the target’s memory
usage will result in unpredictable behavior. The MTB can overwrite user code
or data which is likely to result in a hard fault.

2.2 Trace the most recently executed instructions

This tutorial will get you started using the Instruction Trace capabilities of LPCXpresso IDE.
You will configure the target’s trace buffer as a circular buffer, let your program run on your
target, suspend it and download the list of executed instructions.

Note:
Instruction Trace depends on optional components in the target. These
components may or may not be available on the LPC device you are working
with. See the Instruction Trace Overview [1] for more information.

NXP Semiconductors LPCXpresso IDE Instruction Trace Guide

LPCXpresso IDE Instruction Trace Guide -

User Guide
All information provided in this document is subject to legal disclaimers

Rev. 8.1 — 3 June, 2016
© 2013-2016 NXP Semiconductors. All rights reserved.

3

First, you will debug code on your target. You can import an example project or use one
of your own.

Step 0: Configure memory if using a Cortex-M0+ parts If you are using a Cortex-M0+
part with an MTB you must first configure the memory usage of your code to avoid conflicts.
See the Configuring the Cortex-M0+ for instruction trace [2] for instructions on how
to do this.

Step 1: Start the target and show the Instruction Trace view

1. Build and execute your code on the target.

2. Suspend the execution of your target by selecting Run -> Suspend

3. Display the Instruction Trace view by clicking Window -> Show View -> Instruction
Trace

Step 2: Configure the trace buffer

1. Press the Record Trace Continuously button in Instruction Trace

2. Resume execution of your target by selecting Run -> Resume

The trace buffer should now be configured as a circular buffer and your target should be
running your code. Once the trace buffer is filled up, older trace data is overwritten by the
newer trace data. Configuring the trace buffer as a circular buffer ensures that the most
recently executed code is always stored in the buffer.

If the Record Trace Continuously button was grayed out, or you encountered error
when trying to set check out the troubleshooting guide [23] .

Step 3: Download the content of the buffer

1. Suspend the execution of your target by selecting Run -> Suspend

2. Press Download trace in the Instruction Trace view.

There may be a short delay as the trace is downloaded from target and decompressed.
Once the trace has been decompressed, it is displayed as a list of executed instructions
in the Instruction Trace view.

Step 4: Review the captured trace

In this step we will explore the captured trace by stepping through it in the instruction view
and linking the currently selected instruction to the source code which generated it as well
as seeing it in context in the disassembly view.

1. Toggle the Link to source button so that it is selected

2. Toggle the link to disassembly so that it is selected too

3. Select a row in the Instruction Trace view

4. Use the up and down cursor keys to scroll through the rows in the Instruction Trace
view.

As a row becomes selected the source code corresponding to the instruction in that row
should be highlighted in the source code editor. The disassembly view should also update

javascript:executeCommand("org.eclipse.ui.views.showView(org.eclipse.ui.views.showView.viewId=com.crt.etmetb.views.EtbView,org.eclipse.ui.views.showView.makeFast=false)")
javascript:executeCommand("org.eclipse.ui.views.showView(org.eclipse.ui.views.showView.viewId=com.crt.etmetb.views.EtbView,org.eclipse.ui.views.showView.makeFast=false)")

NXP Semiconductors LPCXpresso IDE Instruction Trace Guide

LPCXpresso IDE Instruction Trace Guide -

User Guide
All information provided in this document is subject to legal disclaimers

Rev. 8.1 — 3 June, 2016
© 2013-2016 NXP Semiconductors. All rights reserved.

4

with the current instruction selected. There can be a slight lag in the disassembly view as
the instructions are downloaded from the target and disassembled.

Step 5: Highlight the captured instructions

In this step we will turn on the profile view. In the source code editor the instruction which
were traced will be highlighted. This highlighting can be useful for seeing code coverage.
In the disassembly view each instruction is labeled with the number of times each it was
executed.

• Toggle the Profile information button

2.3 Stop trace when a variable is set (Cortex M3 or M4 using
ETB)

In this next tutorial you will configure instruction trace to stop when the value of a variable
is set to a specific value.

This tracing could be useful for figuring out why a variable is being set to a garbage value.
Suppose we have a variable that is mysteriously being set to 0xff when we expect it to
always be between 0x0 and 0xA for example.

Note – For Cortex-M0+ based systems, this functionality requires additional hardware to
be implemented alongside the MTB. LPC8xx does not provide this.

To trace the instructions that resulted in the write of the unexpected value we are going to
have trace continuously enabled with the ETB acting as a circular buffer. Next we will set up
a trigger [11] to stop trace being written to the ETB after the value 0xff gets written to the
variable we are interested in. The trigger event requires two DWT comparators. One of the
comparators watches for any write to the address of the variable and the other watches for
the value 0xff being written to any address. The position of the trigger in the trace is set to
capture a small amount of data after the trigger and then to stop putting data into the ETB.

Step 1: Start the target and show the Instruction Trace config view

1. Build and execute your code on the target.

2. Suspend the execution of your target by selecting Run -> Suspend

3. Display the Instruction Trace Config view by clicking Window -> Show View ->
Instruction Trace Config

4. Press the refresh button in the Instruction Trace config view

Step 2: Find the address of the variable

1. Display the Disassembly view by clicking Window -> Show View -> Disassembly

2. Enter the variable name into the location search box and hit enter.

3. Copy the address of the variable to clipboard.

Note:
We are assuming that the variable is a global variable.

Step 3: Enable trace

javascript:executeCommand("org.eclipse.ui.views.showView(org.eclipse.ui.views.showView.viewId=com.crt.etmetb.views.ConfigFormView,org.eclipse.ui.views.showView.makeFast=false)")
javascript:executeCommand("org.eclipse.ui.views.showView(org.eclipse.ui.views.showView.viewId=com.crt.etmetb.views.ConfigFormView,org.eclipse.ui.views.showView.makeFast=false)")
javascript:executeCommand("org.eclipse.ui.views.showView(org.eclipse.ui.views.showView.viewId=org.eclipse.cdt.dsf.debug.ui.disassembly.view,org.eclipse.ui.views.showView.makeFast=false)")

NXP Semiconductors LPCXpresso IDE Instruction Trace Guide

LPCXpresso IDE Instruction Trace Guide -

User Guide
All information provided in this document is subject to legal disclaimers

Rev. 8.1 — 3 June, 2016
© 2013-2016 NXP Semiconductors. All rights reserved.

5

In this step we configure trace to be generated unconditionally in the Instruction Trace
config view.

1. In the Trace enable section:

a. Select the Simple tab

b. Select enable

Step 4: Enable stalling

To make sure that no packets get lost if the ETM becomes overwhelmed we enable stalling.
Setting the stall level to 14 bytes mean that the processor will stall when there are only
14 bytes left in the formatting buffer. This setting ensures that we do not miss any data,
however, it comes at the cost of pausing the CPU when the ETM cannot keep up with it.
See stalling [9] in the Concepts section for more information.

1. Check the Stall processor check box

2. Drag the slider to set the Stall level to 14 bytes

Step 5: Configure watchpoint comparator

In the first watchpoint comparator choose data write in the comparator drop-down box and
then enter the address of the variable that you obtained earlier. This event resource will be
true whenever there is a write to that address, regardless of the value written.

Step 6: Configure the value written

Select Data Value Write from the drop-down, note that data comparators are not
implemented in all watch point comparators. Enter the value we want to match, 0xff, in the
text box. Next we link the data comparator to the comparator we configured in step 5 by
selecting 1 in both the link 0 and link 1 fields. Select the Data size to word.

The event resource Comparator 2 will now be true when Comparator 1 is true and the
word 0x000000ff is written.

Step 7: Configure the trigger condition

In the trigger condition section select the One Input tab. Set the resource to be
Watchpoint Comparator 2 and ensure that the Invert resource option is not checked.
These setting ensure that a trigger is asserted when the Watchpoint Comparator 2 is true
— i.e. when 0xff is written to our focal variable.

Step 8: Prevent trace from being recorded after the trigger

Slide the Trigger position slider over to the right, so that only 56 words are written to the
buffer after the trigger fires. This setting will provide some context for the trigger and allows
up to 4040 words of trace to be stored from before the trigger, which will help us see how
the target ended up writing 0xff to our variable.

The configured view should look like Figure 4.3.

Step 9: Configure and resume the target

Now press the green check button to apply the configuration to the ETM and ETB.
Resume the target after the configuration has been applied. Once the target resumes,
the buffer will start filling with instructions. Once the buffer is filled the newest instructions
will overwrite the oldest. When the value 0xff is written to the focal variable, the trigger

NXP Semiconductors LPCXpresso IDE Instruction Trace Guide

LPCXpresso IDE Instruction Trace Guide -

User Guide
All information provided in this document is subject to legal disclaimers

Rev. 8.1 — 3 June, 2016
© 2013-2016 NXP Semiconductors. All rights reserved.

6

counter will start to count down on every word written to the buffer. Once the trigger
counter reaches zero, no further trace will be recorded, preserving earlier trace.

Step 10: Pause target and download the buffer

After some time view the captured trace by pausing the target and downloading the content
of the buffer:

1. Suspend the execution of your target by selecting Run -> Suspend

2. Display the Instruction Trace view by clicking Window -> Show View -> Instruction
Trace

3. Download the content of the ETB by pressing in the Instruction Trace view.

4. Check that the trigger event occurred and was captured by the trace by clicking on

javascript:executeCommand("org.eclipse.ui.views.showView(org.eclipse.ui.views.showView.viewId=com.crt.etmetb.views.EtbView,org.eclipse.ui.views.showView.makeFast=false)")
javascript:executeCommand("org.eclipse.ui.views.showView(org.eclipse.ui.views.showView.viewId=com.crt.etmetb.views.EtbView,org.eclipse.ui.views.showView.makeFast=false)")

NXP Semiconductors LPCXpresso IDE Instruction Trace Guide

LPCXpresso IDE Instruction Trace Guide -

User Guide
All information provided in this document is subject to legal disclaimers

Rev. 8.1 — 3 June, 2016
© 2013-2016 NXP Semiconductors. All rights reserved.

7

3. Concepts

3.1 Micro Trace Buffer (MTB)

The CoreSight Micro Trace Buffer for the M0+ (MTB) provides simple execution trace
capabilities to the Cortex-M0+ processor. It is an optional component which may or may
not be provided in a particular MCU. See Supported Targets [1]

The MTB captures instruction trace by detecting non-sequentially executed instructions
and recording where the program counter (PC) originated and where it branched to. Given
the code image and a this information about non-sequential instructions, the instruction
trace component of LPCXpesso Trace is able to reconstruct the executed code.

The huge number of instructions executed per second on a target generate large volumes
of trace data. Since the MTB only has access to a relatively small amount of memory, it
gets filled very quickly. To obtain useful trace a developer can configure the MTB to only
focus on a small area of code, to act as a circular buffer or download the content of the
buffer when it fills up. Additionally, all three of these techniques may be combined.

The following sections contain detailed information about the MTB’s operation and use.

• Enabling the MTB [7] - options for controlling the MTB

• MTB memory configuration [7] - how the MTB uses memory

• MTB Watermarking [8] - reacting to the buffer filling up

• MTB Auto-resume [8] - combining multiple trace buffer captures

Warning
The MTB does not have its own dedicated memory. The memory map used
by the target must be configured so that some RAM is reserved for the MTB.
The MTB must then be configured to use that reserved space as described in
the Configuring the Cortex-M0+ for instruction trace [2] in the Getting Started
section.

3.1.1 Enabling the MTB

The Micro Trace Buffer (MTB) can be enabled by pressing the Continuous Recording

button or checking enable MTB in the Instruction Trace Config view. Trace will only
be recorded by the MTB when it is enabled.

The MTB can also be enabled and disabled by two external signals TSTART and TSTOP. On
the LPC8xx parts, these are driven by the “External trace buffer command” register:

 // Disable trace in "External trace buffer command" register

 LPC_SYSCON->EXTTRACECMD = 2;

 :

 :

 // Renable trace in "External trace buffer command" register

 LPC_SYSCON->EXTTRACECMD = 1;

Note that if TSTART and TSTOP are asserted at the same time TSTART takes priority.

3.1.2 MTB memory configuration

Both the size and the position in memory of the MTB’s buffer are user configurable. This
flexibility allows the developer to balance the trade off between the amount of memory

NXP Semiconductors LPCXpresso IDE Instruction Trace Guide

LPCXpresso IDE Instruction Trace Guide -

User Guide
All information provided in this document is subject to legal disclaimers

Rev. 8.1 — 3 June, 2016
© 2013-2016 NXP Semiconductors. All rights reserved.

8

required by their code and the length of instruction trace that the MTB is able to capture
before getting overwritten or needing to be drained.

Since the MTB uses the same SRAM used by global variables, the heap and stack, care
must be taken to ensure that the target is configured so that the MTB’s memory and the
memory used by your code do not overlap. For more information see Configuring the
Cortex-M0+ for instruction trace [2] in the Getting Started Guide.

3.1.3 MTB Watermarking

The MTB watermarking functionality allows the MTB to respond to the buffer filling to a
given level by stopping further trace generation or halting the execution of the target. The
watermark level and the actions to perform can be set in the Instruction Trace Config view
 [18]. The defined action is performed when the Watermark level matches the MTB’s
write pointer value. The halt action can be augmented with the auto-resume behavior.

3.1.4 MTB Auto-resume

LPCXpresso Trace provides the option to automatically download the content of the buffer
and resume execution when the target is paused by the watermarking mechanism. This
auto-resume functionality allows extended trace runs to be performed without being
constrained by the size of the on chip buffer.

There is a significant performance cost associated with using auto-resume since the time
taken to pause the target, download the buffer content and resume it again is much greater
than the time the MTB takes to fill the buffer.

The data is not decompressed during the auto-resume cycles and so it is still necessary

to press Download trace buffer in the instruction trace toolbar to view the captured
trace.

Tip:
To suspend the target once auto-resume is set press the Cancel button in the
downloading trace progress dialog box. If the downloading trace progress
dialog box is not displayed long enough to click Cancel use the Stop auto-

resume button in the instruction trace view toolbar. This disables auto-
resume so that the target will remain halted the next time the MTB suspends it.

3.1.5 MTB Downloading Trace

To obtain the instruction trace from the MTB once it has captured trace into it buffer, the
content of the buffer needs to be downloaded and decompressed. There must be an active
debug session for the trace to be downloaded. It can be downloaded using the Download

trace buffer button in the Instruction Trace view.

The trace recorded by the MTB is compressed. The code image is required to decompress
the trace. This image must be identical to the image running on the target when the trace
was captured. It is possible to download and decompress a trace from a previous session
if the same code image is running on the target. However, if the trace buffer contains old
trace data, and a different code image is downloaded to the target, downloading the buffer
may result in invalid trace being displayed.

3.2 Embedded Trace Macrocell (ETM)

The Embedded Trace Macrocell (ETM) provides real-time tracing of instructions and data.
By combining the ETM with an ETB, some features of this powerful debugging tool are
accessible using a low cost debug probe.

NXP Semiconductors LPCXpresso IDE Instruction Trace Guide

LPCXpresso IDE Instruction Trace Guide -

User Guide
All information provided in this document is subject to legal disclaimers

Rev. 8.1 — 3 June, 2016
© 2013-2016 NXP Semiconductors. All rights reserved.

9

This section describes some of the key components and features of the ETM.

3.2.1 Stalling

The ETM uses as relatively small FIFO buffer to store formatted packets, which are then
copied to the ETB. This FIFO buffer can overflow when the rate of packets being written
into it exceed the rate at which they can be copied out to the ETB.

If stalling is supported on the target the ETM can be set to stall the processor when an
FIFO overflow is imminent. The stall level sets the threshold number of free bytes in the
FIFO at which the processor should be stalled. The stall does not take effect instantly and
so the level should be set such that there is space for further packets to be added to the
buffer after the stall level is reached. Overflows can still occur even with stalling enabled.

The maximum value is the total number of bytes in the FIFO buffer. Setting the stall level
to this will stall the processor whenever anything is entered into the FIFO. For example if a
stall level of 14 bytes was chosen, the processor would be instructed to stall any time there
were fewer than 14 bytes left in the in the buffer. If the target had a 24 byte FIFO buffer,
this level would allow a 10 byte safety buffer for packets generated between the stall level
being detected and the processor actually stalling.

Stalling is enabled from the Instruction Trace Config view [20]. Check the Stall
processor box and select a stall level with the slider.

3.2.2 ETM events

Events are boolean combinations of two event resources [9]. These events can be
used to control when tracing is enabled or to decide when the trigger will occur for example.
The available event resources are dependent on the chip vendor’s implementation.

Events can be specified in the Instruction Trace Config view [20]. For details on how
to build these events see ETM event configuration [21] .

3.2.3 Event Resources

Event resources are used by the ETM to control the ETM’s operation. They can be
combined to form ETM events.

Different sets of event resources are implemented by different silicon vendors. The
following event resources are supported by LPCXpresso Trace:

• Watchpoint comparators [9] — match on addresses and data values

• Counters [10] — match when they reach zero

• Trace start/stop unit [10] — combine multiple input

• External [10] — match on external signals

• Hard wired [10] — always match

3.2.4 Watchpoint comparator event resource

Watchpoint comparators are event resources that facilitate the matching of addresses for
the PC and the data access as well as matching data values. They are implemented by the
Data Watchpoint and Trace [12] (DWT) component.

NXP Semiconductors LPCXpresso IDE Instruction Trace Guide

LPCXpresso IDE Instruction Trace Guide -

User Guide
All information provided in this document is subject to legal disclaimers

Rev. 8.1 — 3 June, 2016
© 2013-2016 NXP Semiconductors. All rights reserved.

10

3.2.5 Counter event resource

A target may support a single reduced counter on counter 1. The reduced counter
decrements on every cycle. This event resource is true when the counter equals zero, it then
reloads and continues counting down. The reload value can be set in the ETM Instruction
Trace config view.

3.2.6 Trace start/stop unit event resource

The trace start / stop block is an event resource that can combine all of the Watchpoint
comparators. For example you could have trace start when the target enters a function call
and stop when it exits that function, or use it to generate complex trigger events.

When a start comparator becomes true, the start / stop block asserts its output to high and
stays high until a stop comparator becomes true. The start / stop block logic is reset to low
when the ETM is reset.

Note that checking both start and stop for the same comparator will be treated as just
checking start.

To use this method

• Set the trace enable to use the start stop block

• Find the entry and exit addresses for the focal function (in the disassembly view)

• Create instruction match conditions in the DWT comparators for those addresses

• Check the start box for the entry address and stop boxes for the exit address

3.2.7 External event resource

External input may be connected to the ETM by the silicon vendor. Please see their
documentation for more information about these vendor configurable elements.

3.2.8 Hard wired event resource

This resource will always be observed to be true. It can be useful for enabling something
constantly when used with an A function, or to disable something when used with a NOT
A function.

3.3 Embedded Trace Buffer (ETB)

The Embedded Trace Buffer (ETB) makes it possible to capture the data that is being
generated at high speed in real-time and to download that data at lower speeds without the
need for an expensive debug probe. LPCXpresso IDE Instruction trace on Cortex-M3 and
Cortex-M4 targets is facilitated by the ETB in conjunction with the ETM.

The ETB and ETM are optional components in the Cortex-M3 and Cortex-M4 targets. Their
implementation is vendor specific. When they are implemented the vendors may implement
different subsets of the ETM’s and ETB’s features. Instruction trace will automatically detect
which features are implemented for your target; however, note that not all of the features
listed in this guide may be available on your target.

The ETM compresses the sequence of executed instruction into packets. The ETB is an
on chip buffer that stores these packets. This tool downloads the stored packets from the
ETB and decompresses them back into a stream of instructions.

This feature is useful for finding out how your target reached a specific state. It allows you
to visualize the flow of instructions stored in the buffer for example.

NXP Semiconductors LPCXpresso IDE Instruction Trace Guide

LPCXpresso IDE Instruction Trace Guide -

User Guide
All information provided in this document is subject to legal disclaimers

Rev. 8.1 — 3 June, 2016
© 2013-2016 NXP Semiconductors. All rights reserved.

11

There are multiple ways to use the ETB. The simplest is continuous recording, where the
ETB is treated as a circular buffer, overwriting the oldest information when it is full. There
are also more advanced options that allow the trace to be focused on code that is of interest
to make the most of the ETB’s memory. This focusing is achieved by stopping tracing after
some trigger or by excluding regions of code. These modes of operation are described in
this document.

3.3.1 Triggers

The trigger mechanism of using instruction trace works by constantly recording trace to the
ETB until some fixed period after a specified event. This method allows the program flow
up to, around or after some event to be investigated.

There are two components that need to be configured to use triggers. These are the trigger
condition and the trigger counter. The trigger condition is an event (a Boolean combination
of event resources). When the trigger condition event becomes true, the trigger counter
counts down every time a word is written to the ETB. When the trigger counter reaches
zero no further packets are written to the ETB.

To use the ETB in this way the Trace Enable event is set to be always on (hard wired).
The ETB is constantly being filled, overflowing and looping round, overwriting old data.
The trigger counter is set using the trigger position slider. The counter’s value is set to the
words after trigger value. You can think of the position of the slider as being the position
of the trigger in the resulting trace that will be captured by the ETB.

There are three main ways of using the trigger: trace after – when that the data from the
trigger onwards is the interesting information; trace about — the data either side of the
trigger is of interest; and trace before — data before the trigger is the key information.

Trace after

When the slider is at the far left, the words before trigger will be zero and the words
after trigger will be equal to the number of words which can be stored in the ETB. This
corresponds to the situation where the region of interest occurs after the trigger condition.
Once the ETB receives the trigger packet the trigger counter, which was equal to words
after trigger will count down with every subsequent word written to the ETB, until it reaches
zero. The trigger packet will be early in the trace and the instruction trace will include all
instructions from when the trigger event occurred, until the ETB buffer filled up.

Note that in order to facilitate decoding of the trace the ETM periodically emits
synchronization information. On some systems the frequency that these are generated
can be set. Otherwise, by default, they are generated every 0x400 cycles. It is therefore
necessary to make sure that you allow some trace data to be collected before your specific
area of interest when using the trigger mechanism so that this synchronization information
is included.

Trace around

As the trigger position slider is moved to the right, the words after trigger value decreases.
This means that the data will stop getting written to the ETB sooner. Since the Trace Enable
event was set to true, there will be older packets, from before the trigger event, still stored in
the ETB. The resulting instruction trace will include some instruction from before the trigger
and some from after the trigger. Use the slider to balance the amount of trace before and
after the trigger.

Trace before

With the trigger position slider towards the far right, the instruction trace will focus on the
trace before the trigger event. Note that only trace captured after the instruction trace has

NXP Semiconductors LPCXpresso IDE Instruction Trace Guide

LPCXpresso IDE Instruction Trace Guide -

User Guide
All information provided in this document is subject to legal disclaimers

Rev. 8.1 — 3 June, 2016
© 2013-2016 NXP Semiconductors. All rights reserved.

12

been configured will be captured. For example pausing the target and setting a trigger
condition for the next instruction, with the trace position set to the far right would not be
able to include instruction trace from before the trace was configured, but rather it would
stop after words after trigger number of words was written to the ETB, leaving most of
the ETB unused.

Note that setting the trigger position all the way to the right, such that words after trigger
is zero will disable the trigger mechanism.

3.3.2 Timestamps

When the timestamps check-box is selected and implemented, a time stamp packet will
be put into the packet stream. The interval between packets may be configurable if the
target allows it, or may be generated at a fixed rate.

If supported, there is a Timestamp event. Timestamps are generated when the event fires.
A counter resource could be used to periodically enter timestamps into the trace stream
for example.

Note:
ARM recommends against using the always true condition as it is likely to
insert a large number of packets into the trace stream and make the FIFO
buffer overflow.

Note that a time of zero in the time stamp indicates that time stamping is not fully supported

3.3.3 Debug Request

The ETB can initiate a debug request when a trigger condition is met. This setting causes
the target to be suspended when a trigger packet is created.

Note
There may be a lag of several instructions between the trigger condition being
met and the target being suspended

3.3.4 Output all branches

One of the techniques used by the ETM to compress the trace is to output information only
about indirect branches. Indirect branches occur when the PC (program counter) jumps to
an address that cannot be inferred directly from the source code.

The ETM provides the option to output packets for all branch instructions — both indirect
and direct. Checking this option will output a branch packet for every branch encountered.
These branch packets enable the reconstruction of the program flow without requiring
access to the memory image of the code being executed.

This option is not usually required as the Instruction trace tool is able to reconstruct the
program flow using just the indirect branches and the memory image of the executed code.
This option dramatically increases the number of packets that are output and can result in
FIFO overflows, resulting in data loss or reduced performance if stalling [9] is enabled.
It can also make synchronization harder (e.g. in triggered traces) as you can end up with
fewer I-Sync packets in the ETB.

3.4 Data Watchpoint and Trace

The data watchpoint and trace (DWT) unit is an optional debug component. Instruction
trace uses its watchpoint to control trace generation. The LPCXpresso IDE Data Watch
view uses it to monitor memory locations in real-time, without stopping the processor.

NXP Semiconductors LPCXpresso IDE Instruction Trace Guide

LPCXpresso IDE Instruction Trace Guide -

User Guide
All information provided in this document is subject to legal disclaimers

Rev. 8.1 — 3 June, 2016
© 2013-2016 NXP Semiconductors. All rights reserved.

13

Warning:
Instruction Trace and SWO Data Watch Trace cannot be used simultaneously
as they both require use of the DWT unit.

3.4.1 Instruction address Comparator

Use the program counter (PC) value to set a watchpoint comparator resource true when
the PC matches a certain instruction. Choose Instruction from the comparator drop-down
and enter the PC to match in the match value field. Use the Disassembly view to find the
address of the instruction that you are interested in. When the PC is equal to the entered
match value, the watchpoint comparator will be true; otherwise it is false.

Setting a mask enables a range of addresses to be matched by a single comparator. Set
the Mask size to be the number of low order bytes to be masked. The range generated by
the mask is displayed next to the Mask size box. The comparator event resource will be
true whenever the PC is within the range defined by the mask.

Note:
Instruction addresses must be half-word aligned

Warning
Instruction address comparators should not be applied to match a NOP or an IT
instruction, as the result is unpredictable.

 Data access address Comparators

Data access address Comparators are event resources that watch for reads or writes to
specific addresses in memory. As with the instruction comparator, the address is entered
as the match value. There are three different data access comparators:

• Data R/W — true when a value is read from or written to the matched address

• Data Read — only true if a value is read from the matched address.

• Data Write — only true if a value is written to the matched address.

Like instruction address comparators, data access address comparators can operate on
a range of addresses.

Note:
These comparators do not consider the value being written or read — they
only consider the address that is being read from or written to.

3.4.2 Data Value comparator

Data value comparators are triggered when a specified value is written or read, regardless
of the address of the access. This comparator is typically implemented on one of the
Watchpoint comparators on Cortex chips. There are three types of this comparator:

• Data Value R/W — true when a value is read or written that is equal to the Match Value

• Data Value Read — only true if a value is read that is equal to the Match Value

• Data Value Write — only true if a value is written that is equal to the Match Value

The size of the value to be match must be configured as either a word, half word or byte in
the Data size drop-down. Only the lowest order bits up to the request size will be matched.

NXP Semiconductors LPCXpresso IDE Instruction Trace Guide

LPCXpresso IDE Instruction Trace Guide -

User Guide
All information provided in this document is subject to legal disclaimers

Rev. 8.1 — 3 June, 2016
© 2013-2016 NXP Semiconductors. All rights reserved.

14

For example, if the Data size is set to byte, only the lowest order byte of the match value
will be used in the comparisons.

Typically, you might want to match only a specific value written to a specific variable.
Data value comparators provide this facility by linking to up to two data access address
comparators:

• Access to any address

• set link 0 and link 1 to the data value comparator number

• Access to one address specified in another DWT comparator

• Set both link 0 and link 1 to the address match comparator number

• Access to either of two addresses specified in two separate DWT comparators

• Set link0 to the first address comparator id

• Set link1 to the second address comparator id

Tip:
When there are only two DWT comparators the option to link the two
comparators is given as a check-box.

3.4.3 Cycle Count

If supported by the chip vendor, the first comparator can implement comparison to the
Cycle Counter. The Cycle Counter is a 32-bit counter which increments on every cycle
and overflows silently. This event resource is true when the cycle counter is equal to the
match value.

To use this feature, choose Cycle Counter from the comparator drop-down and enter the
match value into the Match Value field.

NXP Semiconductors LPCXpresso IDE Instruction Trace Guide

LPCXpresso IDE Instruction Trace Guide -

User Guide
All information provided in this document is subject to legal disclaimers

Rev. 8.1 — 3 June, 2016
© 2013-2016 NXP Semiconductors. All rights reserved.

15

4. Reference

4.1 Instruction Trace view

From the Instruction Trace view you can configure trace for your target, and download
and view the captured trace. Open the Instruction Trace view by clicking Window ->
Show View -> Instruction Trace.

It should look like Figure 4.1.

For trace generated by the ETM, the color of the text in the instruction list provides
information about the traced instruction. Grayed-out text indicates that the instruction did
not pass it condition. A red background indicates a break in the trace due an ETM FIFO
buffer overflow. Instructions may be missing between red highlighted instruction and the
proceeding entry in the trace view. If the Stall option is available it can be used to help
ensure this does not occur in subsequent traces.

A break in the trace may occur due to trace becoming disabled and then renabled (for
example to exclude the tracing of a delay function). Breaks in the trace are indicated by
a line drawn across the row.

A green background highlights the trigger packet that is generated after the trigger condition
is met. Press the trigger button to jump to this instruction in the instruction list.

Figure 4.1. The instruction trace view

4.1.1 Instruction Trace view Toolbar buttons

There are several buttons in the toolbar of the Instruction Trace View that allow you to
use Instruction Trace with your target.

• Record trace continuously

• Show Instruction Trace config view

• Download trace buffer from target

• Link to source

javascript:executeCommand("org.eclipse.ui.views.showView(org.eclipse.ui.views.showView.viewId=com.crt.etmetb.views.EtbView,org.eclipse.ui.views.showView.makeFast=false)")
javascript:executeCommand("org.eclipse.ui.views.showView(org.eclipse.ui.views.showView.viewId=com.crt.etmetb.views.EtbView,org.eclipse.ui.views.showView.makeFast=false)")

NXP Semiconductors LPCXpresso IDE Instruction Trace Guide

LPCXpresso IDE Instruction Trace Guide -

User Guide
All information provided in this document is subject to legal disclaimers

Rev. 8.1 — 3 June, 2016
© 2013-2016 NXP Semiconductors. All rights reserved.

16

• Link to disassembly

• Toggle profile information

• Save trace to csv

• Jump to trigger

• Stop auto resume

• Select columns to display

4.1.2 Record trace continuously

The Record trace continuously button configures the trace buffer as a circular buffer.
Once the trace buffer is filled up, older trace data is overwritten by newer trace data.

This mode of operation ensures that when the target is paused, the buffer will contain the
most recently executed instructions.

Note: The target must be connected, with your code downloaded and execution
suspended, before you can configure trace.

 Show Instruction Trace config view

Press the Show Instruction Trace config view button to display the Instruction Trace
config view. This view will provide you with access to all of the trace buffer’s configuration
settings.

The Instruction Trace config view’s contents depend on the features supported by your
target. See the following sections for more information on your target.

• Cortex M0+ MTB [18]

• Cortex M3 ETB [20]

• Cortex M4 ETB [20]

Note: The target must be connected, with your code downloaded and execution
suspended, before you can configure trace.

4.1.3 Download trace buffer

Press the Download trace buffer button to download the content of the trace buffer
from the target. The data will be downloaded and decompressed. The list of executed
instructions will be entered into the Instruction View table.

Notes

• The target must be suspended in order to perform this action

• The content of the trace buffer can persist across resets on some targets. The buffer is
decompressed using the current code image. If the code has changed since the data
was entered in the buffer, the decompresser’s output will be garbage.

NXP Semiconductors LPCXpresso IDE Instruction Trace Guide

LPCXpresso IDE Instruction Trace Guide -

User Guide
All information provided in this document is subject to legal disclaimers

Rev. 8.1 — 3 June, 2016
© 2013-2016 NXP Semiconductors. All rights reserved.

17

• If no instructions are listed after downloading, check your configuration to make sure that
instruction trace started.

4.1.4 Link to source

The Link to source toggle button enables the linking of the currently-selected instruction
in the Instruction Trace View to the corresponding line of source code in the source code
viewer. The line of source code that generated the selected instruction will be highlighted
in the source code viewer.

Tip:
You can use the the cursor keys within the Instruction Trace View to scroll
through the executed instructions.

4.1.5 Link to disassembly

The Link to disassembly toggle button enables the linking of the currently selected
instruction in the Instruction Trace View to the corresponding instruction in the disassembly
viewer. The selected instruction will be highlighted in the disassembly viewer.

Note: The target must be suspended to allow the disassembly view to display the code
on the target.

Tip:
You can use the the cursor keys within the Instruction Trace View to scroll
through the executed instructions.

4.1.6 Toggle profile information

The Toggle profile button enables and disables the display of profile information
corresponding to the currently downloaded instruction trace.

When the display of profile information is enabled, a column appears in the disassembly
view that shows the count of each executed instruction that was captured in the trace buffer.

Lines of source code whose instructions were recorded in the trace buffer are highlighted
in the source view.

Tip:
You can customize the display of the highlighting by editing the Profile info
in source view item in the preferences panel under General -> Editors ->
Text Editors -> Annotations

4.1.7 Save trace

The Save trace button saves the content of the Instruction Trace View to a csv file.
These files can be large and may take a few seconds to save.

4.1.8 Jump to trigger

Trace downloaded from an ETB (the embedded trace buffer on the Cortex M3 and M4)
may contain a trigger packet. If the trace stream contain such a packet, the jump to trigger

 button will show it in the instruction trace view.

javascript:executeCommand("org.eclipse.ui.window.preferences(preferencePageId=org.eclipse.ui.editors.preferencePages.Annotations)")
javascript:executeCommand("org.eclipse.ui.window.preferences(preferencePageId=org.eclipse.ui.editors.preferencePages.Annotations)")

NXP Semiconductors LPCXpresso IDE Instruction Trace Guide

LPCXpresso IDE Instruction Trace Guide -

User Guide
All information provided in this document is subject to legal disclaimers

Rev. 8.1 — 3 June, 2016
© 2013-2016 NXP Semiconductors. All rights reserved.

18

4.1.9 Stop auto-resume

When using the MTB auto-resume feature [8], the user may not have time to press the
suspend button or the Cancel button in the download trace progress dialog box as the
target is being rapidly suspended and restarted. Pressing the Stop auto-resume button

 will turn off the auto-resume feature, so that the target will suspend the next time the
MTB reaches its watermark level without resuming.

4.1.10 Select columns

You can choose the columns shown in the instruction list using the select columns action

. The available columns are listed below.

Rearrange the column ordering in the table by dragging the header of the columns.

Table 4.1. Instruction view column descriptions

Column Description
Inst No The index of the instruction in the trace
Time The timestamp associated with an instruction
PC The address of the instruction
Disassembly The disassembled instruction
C The condition code for the instruction. E for instructions that passed their condition and

were executed, N for instructions which were not executed.
opCode The op code for the instruction.
Arguments The arguments for the op code
Offset Offset of the instruction within the function
Function The C function name which the instruction belongs to
Filename The C source file that the instruction is associated with
Line no The line number in the C source file that the instruction is associated with

4.2 Instruction Trace Config view for the MTB

Instruction trace with the MTB can be fully configured using the Instruction Trace Config
view. Open the Instruction Trace view by clicking Window -> Show View -> Instruction

Trace or by clicking on the Instruction Trace Config button in the Instruction Trace

view. Once the target is connected, refreshing the view with the refresh button will
display the options for the target.

Changes made to the MTB configuration are only applied when the Apply button is
pressed.

javascript:executeCommand("org.eclipse.ui.views.showView(org.eclipse.ui.views.showView.viewId=com.crt.etmetb.views.ConfigFormView,org.eclipse.ui.views.showView.makeFast=false)")
javascript:executeCommand("org.eclipse.ui.views.showView(org.eclipse.ui.views.showView.viewId=com.crt.etmetb.views.ConfigFormView,org.eclipse.ui.views.showView.makeFast=false)")

NXP Semiconductors LPCXpresso IDE Instruction Trace Guide

LPCXpresso IDE Instruction Trace Guide -

User Guide
All information provided in this document is subject to legal disclaimers

Rev. 8.1 — 3 June, 2016
© 2013-2016 NXP Semiconductors. All rights reserved.

19

Figure 4.2. Instruction Trace config view for MTB instruction trace

4.2.1 Configuring the buffer

If the target does not have a buffer allocated for the MTB the view will display instruction
on how to create the buffer when it is refreshed.

4.2.2 Enabling

The three check-boxes in the top section of the view control whether the MTB is enabled
or not. The first check-box Enable MTB can be used to directly enable or disable the MTB.
The second two check-boxes control whether or not the MTB is affected by start and stop
signals TSTART and TSTOP which can be triggered by software using the target’s external
trace buffer command register EXTTRACECMD.

4.2.3 Buffer

The buffer section of the MTB configuration view displays information about where in
memory the MTB data is stored. It displays the size of the buffer and provides instructions
on how to change or remove the buffer.

See MTB memory configuration [7] for more information and Configuring the Cortex-M0+
for instruction trace [2] for an example.

4.2.4 Watermark

The watermark section of the MTB advanced configuration view allows you to configure
an action to be performed when the buffer fills to a certain level. The slider configures the

NXP Semiconductors LPCXpresso IDE Instruction Trace Guide

LPCXpresso IDE Instruction Trace Guide -

User Guide
All information provided in this document is subject to legal disclaimers

Rev. 8.1 — 3 June, 2016
© 2013-2016 NXP Semiconductors. All rights reserved.

20

watermark level at which the action is triggered. The address next to the slider indicates
the absolute address of the watermark.

Selecting Halt target on match suspends the target when the buffer fills to the specified
watermark level. When the target is halted the content of the buffer is automatically drained
and stored. The buffer is reset so that it can be refilled once the target is resumed. The
trace is not decompressed or displayed in the Instruction Trace view until the Download
buffer button is pressed. This behavior allows multiple trace runs to be concatenated.

Selecting Auto resume allows the target to be automatically restarted once the buffer has
been downloaded. It only has an effect if Halt target on match is also selected. This auto-
resume feature allow the trace capture not to be limited to the size of the MTB’s buffer
allowing code coverage to measured. The frequent interruptions have a large impact on
target performance.

Note
You can suspend an auto-resuming target by pressing the cancel button in
the buffer download progress dialog box. If the MTB buffer is sufficiently small,
then the progress dialog box may not be displayed long enough for the user
to select cancel. In that case you should press the Stop auto-resume button

. Both of these methods will turn off the auto-resume feature and the target
will suspend without restarting the next time the watermark matches.

Selecting stop trace collection on match allows the MTB to stop recording trace once
it has been filled once, without interrupting the execution of the target. This feature could
be useful when used in conjunction with a DWT comparator that starts trace on a certain
condition.

4.2.5 Viewing the state of the MTB

The state of the target is read each time the refresh button in the Instruction Trace
Config view. For example the, the Enable MTB box will show whether or not the MTB
is currently enabled. This information can be useful for confirming that TSTART and TSTOP
signals are affecting the MTB as expected when using the target’s external trace buffer
command register EXTTRACECMD.

Pressing the Apply button will update the MTB’s configuration — even if no settings are
changed by the user. This action will have the effect of clearing the content of the MTB’s
buffer. That is, if the MTB contains trace that has not been downloaded and then the user
applies the configuration, the content of the buffer will be lost.

4.2.6 Instruction Trace Config view for the ETB

Instruction trace with the ETB and ETM can be fully configured using the Instruction
Trace Config view. Open the Instruction Trace view by clicking Window -> Show

View -> Instruction Trace or by clicking on the Instruction Trace Config button in the
Instruction Trace view. Once the target is connected, refreshing the view with the refresh

button will display the options for the target.

Changes made to the MTB configuration are only applied when the Apply button is
pressed. A star appended to a section title indicates that it contains unapplied changes.

javascript:executeCommand("org.eclipse.ui.views.showView(org.eclipse.ui.views.showView.viewId=com.crt.etmetb.views.ConfigFormView,org.eclipse.ui.views.showView.makeFast=false)")
javascript:executeCommand("org.eclipse.ui.views.showView(org.eclipse.ui.views.showView.viewId=com.crt.etmetb.views.ConfigFormView,org.eclipse.ui.views.showView.makeFast=false)")

NXP Semiconductors LPCXpresso IDE Instruction Trace Guide

LPCXpresso IDE Instruction Trace Guide -

User Guide
All information provided in this document is subject to legal disclaimers

Rev. 8.1 — 3 June, 2016
© 2013-2016 NXP Semiconductors. All rights reserved.

21

Figure 4.3. The advanced configuration dialog for the ETB

4.2.7 ETM Event configuration

An ETM event [9] is a boolean combination of up to two event resource inputs [9]. The
Instruction Trace Config view provides an easy way to build these events by allowing the
user to choose the complexity of the event. These are used for trace enablement and the
trigger condition for example.

• The simplest option is a binary enabled/disabled choice. This is accessed by selecting
the Simple tab. Select enable for the Event to always be true or disable for the event
to always be false. See Figure 4.4.

• To use a single event resource select the One Input tab. An event resource can be
chosen from the drop-down and the event will be true when the event resource is true.
Checking the Invert resource box will cause the Event to be true when the event
resource is false, and visa-versa. See Figure 4.5.

• To combine two event resources select the Two Inputs tab. The events can be chosen
from the drop-downs and the logical combination operation selected. As with the One
Input tab the resources can be inverted. See Figure 4.6.

The configuration on the visible tab is used when the Apply button is clicked.

NXP Semiconductors LPCXpresso IDE Instruction Trace Guide

LPCXpresso IDE Instruction Trace Guide -

User Guide
All information provided in this document is subject to legal disclaimers

Rev. 8.1 — 3 June, 2016
© 2013-2016 NXP Semiconductors. All rights reserved.

22

Figure 4.4. Simple ETM event configuration

Figure 4.5. One Input ETM event configuration

Figure 4.6. Two Inputs ETM event configuration

NXP Semiconductors LPCXpresso IDE Instruction Trace Guide

LPCXpresso IDE Instruction Trace Guide -

User Guide
All information provided in this document is subject to legal disclaimers

Rev. 8.1 — 3 June, 2016
© 2013-2016 NXP Semiconductors. All rights reserved.

23

5. Troubleshooting
This section of the help provides solutions to common problems that you may encounter
while using Instruction Trace.

5.1 General

5.1.1 Instruction Trace claims target not supported when it should be

Instruction Trace caches some information about the target in the Launch configuration to
reduce setup time. In some cases this information may become corrupted. Deleting the
Launch configuration will force Instruction Trace to refresh this information.

You can also double check that your target is in Supported Targets [1]

5.2 MTB

5.2.1 Target crashes when MTB is enabled

The MTB may be overwriting code or data on the target. Check that the MTB’s memory
configuration is compatible with the target’s memory configuration.

5.3 Target keeps resuming itself and I cannot stop it

Try to press the Stop auto-resume button in the instruction trace view toolbar. This
button disables auto-resume so that the target will remain halted the next time the MTB
suspends it.

See Auto-resume [8] in the Concepts section for more information.

5.4 ETB

5.4.1 Trigger Packet missing from trace even though trigger occurred

It may be that the trigger packet was lost due to FIFO overflow and was not written to the
ETB. To make sure that it actually was triggered, look at the trigger counter (the number
of words to write after the trigger condition). The trigger counter only decrements after the
trigger has been activated. If it has not decremented, check your trigger condition.

If the trigger counter has decremented and you see no packet, try enabling stalling if it is
implemented.

5.5 Comparator sharing

Watchpoints, Data Watch trace and Instruction trace all make use of hardware debug
comparators. These comparators can match PC values, data values and address accesses
which can be used to pause the execution of a target; output a message over the SWO; or
to start an instruction trace buffer recording for example.

There are a limited number of these hardware debug comparators implemented on a
part, for example the DWT unit of a Corex-M3 would typically have four. A specific
comparator can only be used by one component at a time. To use a comparator for
a particular component, either watchpoint, data watch or instruction trace, it must be

NXP Semiconductors LPCXpresso IDE Instruction Trace Guide

LPCXpresso IDE Instruction Trace Guide -

User Guide
All information provided in this document is subject to legal disclaimers

Rev. 8.1 — 3 June, 2016
© 2013-2016 NXP Semiconductors. All rights reserved.

24

requested from the IDE. If all of the comparators are currently in use the request will be
denied. Comparators need to be explicitly released by the component that has successfully
requested it to be available to another component. Different comparators may be used by
different components at the same time.

5.5.1 Watchpoints – requesting and releasing comparators

Watchpoints are similar to breakpoints, but instead of halting execution on a specific line
number, they halt execution when a specific variable is accessed.

Comparators for watchpoints are requested automatically when the debugger resumes
execution of the target. If there are insufficient comparators available the error message in
the figure Figure 5.1 below will be shown.

The comparators for watchpoints are released when the target suspend execution

Figure 5.1. Unable to set watchpoints

5.5.2 SWO Data Watch comparators

The SWO data watch comparators emit information about a data access over the SWO
channel.

A comparator is requested when a check is marked next to an item in the SWO Data Watch
view. The tool selects the first free comparator to use. If no comparators are available you
will be alerted with the error message in figure Figure 5.2.

When an item is unchecked in the SWO Data Watch view its comparator is released and
will become available to other components.

See SWO Trace view for more information about using SWO Data Watch Trace.

NXP Semiconductors LPCXpresso IDE Instruction Trace Guide

LPCXpresso IDE Instruction Trace Guide -

User Guide
All information provided in this document is subject to legal disclaimers

Rev. 8.1 — 3 June, 2016
© 2013-2016 NXP Semiconductors. All rights reserved.

25

Figure 5.2. Unable to set watchpoints

5.5.3 Instruction Trace

The comparators can be used to control the starting and stopping of instruction trace
buffers.

To use a comparator select the Request button corresponding to the comparator to use in
the Watchpoint comparators section (see figure Figure 5.3). If that specific comparator
is already in use you will see an error message (see figure Figure 5.4). Once it has been
successfully requested it can be configured and the Request button is replaced with a
Release button.

Figure 5.3. Instruction Trace configuration

Press the Release button to stop using the comparator for Instruction trace and allow other
components to use it.

NXP Semiconductors LPCXpresso IDE Instruction Trace Guide

LPCXpresso IDE Instruction Trace Guide -

User Guide
All information provided in this document is subject to legal disclaimers

Rev. 8.1 — 3 June, 2016
© 2013-2016 NXP Semiconductors. All rights reserved.

26

Error message shown when the user tries to request a comparators that is already in use.

Figure 5.4. Unable to set watchpoints

	LPCXpresso IDE Instruction Trace Guide
	Table of Contents
	1. Trace Overview
	1.1 Instruction Trace Overview
	1.1.1 Supported targets

	2. Getting Started
	2.1 Configuring the Cortex-M0+ for Instruction Trace
	2.2 Trace the most recently executed instructions
	2.3 Stop trace when a variable is set (Cortex M3 or M4 using ETB)

	3. Concepts
	3.1 Micro Trace Buffer (MTB)
	3.1.1 Enabling the MTB
	3.1.2 MTB memory configuration
	3.1.3 MTB Watermarking
	3.1.4 MTB Auto-resume
	3.1.5 MTB Downloading Trace

	3.2 Embedded Trace Macrocell (ETM)
	3.2.1 Stalling
	3.2.2 ETM events
	3.2.3 Event Resources
	3.2.4 Watchpoint comparator event resource
	3.2.5 Counter event resource
	3.2.6 Trace start/stop unit event resource
	3.2.7 External event resource
	3.2.8 Hard wired event resource

	3.3 Embedded Trace Buffer (ETB)
	3.3.1 Triggers
	3.3.2 Timestamps
	3.3.3 Debug Request
	3.3.4 Output all branches

	3.4 Data Watchpoint and Trace
	3.4.1 Instruction address Comparator
	 Data access address Comparators

	3.4.2 Data Value comparator
	3.4.3 Cycle Count

	4. Reference
	4.1 Instruction Trace view
	4.1.1 Instruction Trace view Toolbar buttons
	4.1.2 Record trace continuously
	 Show Instruction Trace config view

	4.1.3 Download trace buffer
	4.1.4 Link to source
	4.1.5 Link to disassembly
	4.1.6 Toggle profile information
	4.1.7 Save trace
	4.1.8 Jump to trigger
	4.1.9 Stop auto-resume
	4.1.10 Select columns

	4.2 Instruction Trace Config view for the MTB
	4.2.1 Configuring the buffer
	4.2.2 Enabling
	4.2.3 Buffer
	4.2.4 Watermark
	4.2.5 Viewing the state of the MTB
	4.2.6 Instruction Trace Config view for the ETB
	4.2.7 ETM Event configuration

	5. Troubleshooting
	5.1 General
	5.1.1 Instruction Trace claims target not supported when it should be

	5.2 MTB
	5.2.1 Target crashes when MTB is enabled

	5.3 Target keeps resuming itself and I cannot stop it
	5.4 ETB
	5.4.1 Trigger Packet missing from trace even though trigger occurred

	5.5 Comparator sharing
	5.5.1 Watchpoints – requesting and releasing comparators
	5.5.2 SWO Data Watch comparators
	5.5.3 Instruction Trace

