-
P N

Freescale Semiconductor, Inc.

CodeWarrior™
Development Studio for
Freescale™ 56800/E
Hybrid Controllers:
DSP56F80x/DSP56F82x
Family
Targeting Manual

metrowerks

For More Information: www.freescale.com

Freescale Semiconductor, Inc.

Metrowerks and the Metrowerks logo are registered trademarks of Metrowerks Corporation in the United States and/
or other countries. CodeWarrior is a trademark or registered trademark of Metrowerks Corporation in the United States
and/or other countries. All other trade names and trademarks are the property of their respective owners.

Copyright © 2004 Metrowerks Corporation. ALL. RIGHTS RESERVED.

No portion of this document may be reproduced or transmitted in any form or by any means, electronic or me-
chanical, without prior written permission from Metrowerks. Use of this document and related materials are
governed by the license agreement that accompanied the product to which this manual pertains. This document
may be printed for non-commercial personal use only in accordance with the aforementioned license agree-
ment. If you do not have a copy of the license agreement, contact your Metrowerks representative or call 1-800-
377-5416 (if outside the U.S., call +1-512-996-5300).

Metrowerks reserves the right to make changes to any product described or referred to in this document without further
notice. Metrowerks makes no warranty, representation or guarantee regarding the merchantability or fitness of its prod-
ucts for any particular purpose, nor does Metrowerks assume any liability arising out of the application or use of any
product described herein and specifically disclaims any and all liability. Metrowerks software is not authorized for
and has not been designed, tested, manufactured, or intended for use in developing applications where the fail-
ure, malfunction, or any inaccuracy of the application carries a risk of death, serious bodily injury, or damage
to tangible property, including, but not limited to, use in factory control systems, medical devices or facilities,
nuclear facilities, aircraft navigation or communication, emergency systems, or other applications with a simi-
lar degree of potential hazard.

How to Contact Metrowerks

Corporate Headquarters Metrowerks Corporation
7700 West Parmer Lane
Austin, TX 78729

U.S.A.
World Wide Web http://www.metrowerks.com
Sales United States Voice: 800-377-5416

United States Fax: 512-996-4910
International Voice: +1-512-996-5300
Email: sales@metrowerks.com

Technical Support United States Voice: 800-377-5416
International Voice: +1-512-996-5300
Email: support@metrowerks.com

For More Information: www.freescale.com

Freescale Semiconductor, Inc.

Table of Contents

1 Introduction 13
CodeWarriorIDE13
Freescale 56800/E Hybrid Controllers 15
References.16
2 Getting Started 19
System Requirements 19
DSP56800 Hardware Requirements. 19
Installing and Registering the CodeWarrior IDE 20
Installing DSP56800 Hardware25
Using Parallel Port726
Installing the PCI Command Converter 28
3 Development Studio Overview 33
CodeWarriorIDE33
CodeWarrior Compiler for DSP56800. 34
CodeWarrior Assembler for DSP56800 34
CodeWarrior Linker for DSP56800. 34
CodeWarrior Debugger for DSP56800 34
Metrowerks Standard Library 34
Development Process35
Project Files versus Makefiles.37
EditingCode. oo oo oo 3T
Compiling. 3T
Linking. 000000003
Debugging o003
Viewing Preprocessor Output39
4 Tutorial 41
CodeWarrior Development Studio for Freescale 56800/E Hybrid Controllers Tutorial
41
Creating a Project. 4
Targeting DSP56F80x/DSP56F82x Controllers 3

For More Information: www.freescale.com

Freescale Semiconductor, Inc.

Table of Contents

Working with the Debugger.58
References 07

5 Target Settings 69
Target Settings Overview06
Target Setting Panels6
Changing Target Settings. 171
Exporting and Importing Panel Options to XML Files 72
Restoring Target Settings. 72
CodeWarrior IDE Target Settings Panels73
DSP56800-Specific Target Settings Panels 74
Target Settings T4
M56800 Target.o o o5
C/C++ Language (Conly) T
C/C++Preprocessor. o o o oo oo ... 80
C/C++ Warnings o ..o 8l1
M56800 Assembler ... 85
ELF Disassembler8
M56800 Processor L L L. L Lo ... o o9
M56800 Linker. 9
Remote Debugging9
M56800 Target (Debugging)98
Remote Debug Options102

6 Processor Expert Interface 105
Processor Expert Overviewl105
Processor Expert Code Generation106
Processor ExpertBeans o oo .107
Processor Expert Menu10
Processor Expert Windows113
Bean Selectoro 0oL 113
Bean Inspector 114
Target CPU Windowll6

4 Targeting DSP56F80x/DSP56F82x Controllers

For More Information: www.freescale.com

Freescale Semiconductor, Inc.

Table of Contents

Memory Map Window. L. 121
CPU Types Overview«122
ResourceMeter123
Installed Beans Overview.124
Peripherals Usage Inspector.125
Processor Expert Tutorial126
7 C for DSP56800 143
General NotesonCl143
Number Formats 143
DSP56800 Integer Formats14
DSP56800 Floating-Point Formats14
DSP56800 Fixed-Point Formats145
Calling Conventions, Stack Frames145
Calling Conventions. « « « . v o145
Volatile and Non-Volatile Registers.146
Stack Frame oo ... 149
User Stack Allocation150
Sections Generated by the Compiler.155
OMR Settings15
OptimizingCode ... 157
Page 0 Register Assignment.157
Array Optimizations.158
Multiply and Accumulate (MAC) Optimizations159
Compiler or Linker Interactionsl6l
Deadstripping Unused Code and Data.16l
LinkOrder161

8 Inline Assembly Language and Intrinsic Functions 163
Working With DSP56800 Assembly Language163
Inline Assembly Language Syntax for DSP56800164
Adding Assembly Language to C Source Code166
General Notes on Inline Assembly Language166
Targeting DSP56F80x/DSP56F82x Controllers 5

For More Information: www.freescale.com

Freescale Semiconductor, Inc.

Table of Contents

Creating Labels for M56800 Inline Assembly.167
Using Comments in M56800 Inline Assembly167
Calling Assembly Language Functions fromCCode168
Calling Inline Assembly Language Functions.168
Calling Stand-alone Assembly Language Functions169
Calling Functions from Assembly Language170
Intrinsic Functions for DSP56800 171
An Overview of Intrinsic Functions. . 171
Fractional Arithmetic . 171
Macros Used with Intrinsics. . 172
List of Intrinsic Functions: Definitions and Examples.173
Absolute/Negate . . 174
__abs . 174
__negate . . 174
_L_negate. . 175
Addition/Subtraction . 176
__add . 176
_sub . 177
_L_add. 177
_L_sub. . 178
Control . . 180
__stop . . 180
Conversion . . 181
__fixed2int . . 181
__fixed2long . . 182
__fixed2short . . 183
__int2fixed . . 183
__labs . . 184
__long2fixed . 185
__short2fixed . 185
Copy . . 187
__memcpy . 187
__strepy . 188

Targeting DSP56F80x/DSP56F82x Controllers

For More Information: www.freescale.com

Freescale Semiconductor, Inc.

Table of Contents

Deposit/ Extract o18
_extracth18
_extract_l L. oo 189
L. deposith19
L. deposit. I 19
Division Lo s a192
T« § T £ 2]
_divIs Lo s s e s s s 192
Multiplication/ MAC194
S ' L O %
CMSUT e e e e e e s s 19
_mult .o L L e 196
_multr .o L L L s s s e a9
_L_mac. 198
_Lomsu.19
Lmult .. 0L s 199
L multls200
Normalization00 202
Cmnorm_l . .. L L s e e s s u202
CNOIML_S . v . v e e e e e e e e e e oo oo .208
Roundingo Lo L. 204
_round L Lo a0
Shifting. L. L. L. L2058
_shl.o ... 205
_shr. .. Lo oou206
_shrr. ..o L2207
L.shlo ... 208
_L_shr s 209
Lshrr 0210
Pipeline Restrictions. 211

9 Debugging for DSP56800 215
Target Settings for Debugging215

Targeting DSP56F80x/DSP56F82x Controllers 7

For More Information: www.freescale.com

Freescale Semiconductor, Inc.

Table of Contents

Command Converter Server216
Essential Target Settings for Command Converter Server217
Changing the Command Converter Server Protocol to Parallel Port217
Changing the Command Converter Server Protocolto HTT220
Changing the Command Converter Server ProtocoltoPCI.220
Setting Up a Remote Connection.221
Debugging a Remote TargetBoard224

Launching and Operating the Debugger224
Setting Breakpoints 228
Setting Watchpoints229
Viewing and Editing Register Values229
Viewing X: Memory. 0232
Viewing P: Memory.233

Load/Save Memory238

Fil Memory u240

Save/Restore Registers242

OnCE Debugger Features.244
Watchpoints and Breakpoints245
Trace Buffer.251

Using the DSP56800 Simulator .252
Cycle/Instruction Count253
MemoryMap25

Register Details Window25

Loading a .elf File without a Project.256

Using the Command Window .257

System-Level Connect257

Debugging on a Complex Scan Chain257
SettingUp. L25T
JTAG Initialization File25

Debugging in the FlashMemory .26l
Flash Memory Commands261
set_hfmclkd <value>.261
set_hfm _base <address>262

8 Targeting DSP56F80x/DSP56F82x Controllers

For More Information: www.freescale.com

Freescale Semiconductor, Inc.

Table of Contents

set_hfm_config_base <address> . . 262
add_hfm_unit <startAddr> <endAddr> <bank> <numSectors> <pageSize>

<progMem> <boot> <interleaved>. . 262

set_hfm_erase_mode units | pages | all . . 263

set_hfm_verify_erase 110. . 263

set_hfm_verify_program 110 . . 263

Setting up the Debugger for Flash Programming . . 263

Use Flash Config File . . 264

Notes for Debugging on Hardware . . 265

Flash Programming the Reset and Interrupt Vectors . 266

10 Data Visualization 267

Starting Data Visualization . . 267

Data Target Dialog Boxes. . 269

Memory . 269

Registers . . 270

Variables 271

Graph Window Properties. .272

11 Profiler 275

12 ELF Linker 277

Structure of Linker Command Files . 277

Memory Segment. . 278

Closure Blocks . . 278

Sections Segment . . 279

Linker Command File Syntax . . 280

Alignment. . 280

Arithmetic Operations . . 281

Comments . 281

Deadstrip Prevention . 282

Variables, Expressions and Integral Types . . 282

File Selection . . 284

Function Selection . 284

Targeting DSP56F80x/DSP56F82x Controllers 9

For More Information: www.freescale.com

Freescale Semiconductor, Inc.

Table of Contents

ROMto RAM Copying285
StackandHeap.287
Writing Data Directly to Memory288
Linker Command File Keyword Listing288
. (locationcounter) o.o.0.28
ADDRo 290
ALIGN. oo s s 290
ALIGNALLo o029
FORCE_ACTIVE29
INCLUDE s 292
KEEP_SECTION.29
MEMORYo oo .293
OBIECT oo u295
REF_INCLUDE29
SECTIONSu29
SIZEOFo 297
SIZEOFWo s 2y
WRITEB29
WRITEH298
WRITES298
WRITEW. o . o o299
Sample M56800 Linker Command File299

13 Command-Line Tools 305
Usageo e300
ResponseFile3006
Sample Build Script oo oo oo Lo oo oL 307
Arguments. L L L L. ..o oo 307

General Command-Line Options.307
Linker 318
Assembler. L L L L L L oL L322

10 Targeting DSP56F80x/DSP56F82x Controllers

For More Information: www.freescale.com

Freescale Semiconductor, Inc.

Table of Contents

14 Libraries and Runtime Code 323
MSL for DSP56800323

Using MSL for DSP56800 R YA

Allocating Stacks and Heaps for the DSP56800326

Runtime Initialization327

15 Troubleshooting 333
Troubleshooting Tips333

The Debugger Crashes or Freezes When Steppmg Through a REP Statement . 334

"Can’t Locate Program Entry On Start" or "Fstart.c Undefined"334

When Opening a Recent PrOJect the CodeWarrior IDE Asks If My Target Needs To

BeRebuilt G X 2

"Timing values not found in FLASH configuration file. Please upgrade your
configuration file. On -chip timing values will be used which may result in

programming errors” . . . G X 0
IDE Closes Immediately After Openmg e33
Errors When Assigning Physical Addresses With The Org Directive335
The Debugger Reports a Plug-in Error335
Windows Reports a Failed Service Startup336
No Communication With The Target Board337
Downloading Code to DSP Hardware Fails. e e e oo 337
The CodeWarrior IDE Crashes When Running My Code337
The Debugger Acts Strangely .337
Problems With Notebook Computers338
How to make Parallel Port Command Converter work on Windows® 2000
Machines338
A Porting Issues 341
Converting the DSP56800 Projects from Previous Versions341
Removing “illegal object_c on pragma directive” Warning.342
Setting-up Debugging Connections342
Using XDEF and XREF Directives342
Using the ORG Directive33
Targeting DSP56F80x/DSP56F82x Controllers 11

For More Information: www.freescale.com

Freescale Semiconductor, Inc.

Table of Contents

B DSP56800x New Project Wizard 345
Overviewo L345
PageRuleso oL L34

Resulting TargetRules.35

RuleNotes3l

DSP56800x New Project Wizard Graphical User Interface.351

Invoking the New Project Wizard352

New Project DialogBox35
TargetPages.34

Program Choice Page35

Data Memory Model Page360
External/Internal Memory Page36l

FinishPage 362

Index 363
12 Targeting DSP56F80x/DSP56F82x Controllers

For More Information: www.freescale.com

Freescale Semiconductor, Inc.

Introduction

This manual explains how to use the CodeWarrior™ Integrated Development
Environment (IDE) to develop code for the DSP56800 family of processors
(DSP56F80x and the DSP56F82x).

This chapter contains the following sections:
e CodeWarrior IDE
* Freescale 56800/E Hybrid Controllers

e References

CodeWarrior IDE

The CodeWarrior IDE consists of a project manager, a graphical user interface,
compilers, linkers, a debugger, a source-code browser, and editing tools. You can edit,
navigate, examine, compile, link, and debug code, within the one CodeWarrior
environment. The CodeWarrior IDE lets you configure options for code generation,
debugging, and navigation of your project.

Unlike command-line development tools, the CodeWarrior IDE organizes all files
related to your project. You can see your project at a glance, so organization of your
source-code files is easy. Navigation among those files is easy, too.

When you use the CodeWarrior IDE, there is no need for complicated build scripts of
makefiles. To add files to your project or delete files from your project, you use your
mouse and keyboard, instead of tediously editing a build script.

For any project, you can create and manage several configurations for use on different
computer platforms. The platform on which you run the CodeWarrior IDE is called he
host. host, you use the CodeWarrior IDE to develop code to target various platforms.

Note the two meanings of the term farget:

¢ Platform Target — The operating system, processor, or microcontroller fin
which/on which your code will execute.

¢ Build Target — The group of settings and files that determine what your code is,
as well as control the process of compiling and linking.

Targeting DSP56F80x/DSP56F82x Controllers 13

For More Information: www.freescale.com

Freescale Semiconductor, Inc.

Introduction
CodeWarrior IDE

The CodeWarrior IDE lets you specify multiple build targets. For example, a project
can contain one build target for debugging and another build target optimized for a
particular operating system (platform target). These build targets can share files, even
though each build target uses its own settings. After you debug the program, the only
actions necessary to generate a final version are selecting the project’s optimized build
target and using a single Make command.

The CodeWarrior IDE’s extensible architecture uses plug-in compilers and linkers to
target various operating systems and microprocessors. For example, the IDE uses a
GNU tool adapter for internal calls to DSP56800 development tools.

Most features of the CodeWarrior IDE apply to several hosts, languages, and build
targets. However, each build target has its own unique features. This manual explains
the features unique to the CodeWarrior Development Studio for Freescale 56800.

For comprehensive information about the CodeWarrior IDE, see the CodeWarrior
IDE User’s Guide.

NOTE For the very latest information on features, fixes, and other matters,
see the CodeWarrior Release Notes, on the CodeWarrior IDE CD.

14

Targeting DSP56F80x/DSP56F82x Controllers

For More Information: www.freescale.com

Freescale Semiconductor, Inc.

Introduction
Freescale 56800/E Hybrid Controllers

Freescale 56800/E Hybrid Controllers

The Freescale 56800/E Hybrid Controllers consist of two sub-families, which are
named the DSP5S6F80x/DSP56F82x (DSP56800) and the MC56F83xx/DSP5685x
(DSP56800E). The DSP56800E is an enhanced version of the DSP56800.

The processors in the DSP56800 and DSP56800E sub-families are shown in Table
1.1.

With this product the following Targeting Manuals are included:

e Code Warrior Development Studio for Freescale 56800/E Hybrid Controllers:
DSP56F80x/DSP56F82x Family Targeting Manual

e Code Warrior Development Studio for Freescale 56800/E Hybrid Controllers:
MC56F83xx/DSP5685x Family Targeting Manual

NOTE Please refer to the Targeting Manual specific to your processor.

Table 1.1 Supported DSP56800x Processors for CodeWarrior Development Studio
for Freescale 56800

DSP56800 DSP56800E
DSP56F801 (60 MHz) DSP56852
DSP56F801 (80 MHz) DSP56853
DSP56F802 DSP56854
DSP56F803 DSP56855
DSP56F805 DSP56857
DSP56F807 DSP56858
DSP56F826 MC56F8322
DSP56F827 MC56F8323
MC56F8345
MC56F8346
MC56F8356
MC56F8357
MC56F8365
MC56F8366
Targeting DSP56F80x/DSP56F82x Controllers 15

For More Information: www.freescale.com

Introduction
References

Freescale Semiconductor, Inc.

Table 1.1 Supported DSP56800x Processors for CodeWarrior Development Studio
for Freescale 5680@(tind

DSP56800 DSP56800E

MC56F8367

MC56F8122

MC56F8123

MC56F8145

MC56F8146

MC56F8147

MC56F8155

MC56F8156

MC56F8157

MC56F8165

MC56F8166

MC56F8167

References

¢ Your CodeWarrior IDE includes these manuals:

Code Warrior IDE User’s Guide

CodeWarrior Development Studio IDE 5.6 Windows® Automation Guide

Code Warrior Development Studio for Freescale 56800/E Hybrid
Controllers: DSP56F80x/DSP56F82x Family Targeting Manual

Code Warrior Development Studio for Freescale 56800/E Hybrid
Controllers: MC56F83xx/DSP5685x Family Targeting Manual

Code Warrior Builds Tools Reference for Freescale 56800/E Hybrid
Controllers

Code Warrior Development Studio IDE 5.5 User’s Guide Profiler
Supplement

Code Warrior Development Studio HTI HostTarget Interface (for Once™/
JTAG Communication) User’s Manual

— Assembler Reference Manual

16

Targeting DSP56F80x/DSP56F82x Controllers

For More Information: www.freescale.com

Freescale Semiconductor, Inc.

Introduction
References

— MSL C Reference (Metrowerks Standard C libraries)

— DSP56800 to DSP56800E Porting Guide Freescale Semiconductors, Inc.
¢ To learn more about the DSP56800 processor, refer to the following manuals:

— DSP56800 Family Manual. Freescale Semiconductors, Inc.

— DSP56F801 Hardware User Manual. Freescale Semiconductors, Inc.

— DSP56F803 Hardware User Manual. Freescale Semiconductors, Inc.

— DSP56F805 Hardware User Manual. Freescale Semiconductors, Inc.

— DSP56F807 Hardware User Manual. Freescale Semiconductors, Inc.

— DSP56F826 Hardware User Manual. Freescale Semiconductors, Inc.

— DSP56F827 Hardware User Manual. Freescale Semiconductors, Inc.

* For more information on the various command converters supported by the
CodeWarrior Development Studio for Freescale 56800 (DSP56F80x/
DSP56F82x), refer to the following manuals:

— Suite56™ Ethernet Command Converter User’s Manual, Freescale
Semiconductors, Inc.

— Suite56™ PCI Command Converter User’s Manual, Freescale
Semiconductors, Inc.

— Suite56™ Parallel Port Command Converter User’s Manual, Freescale
Semiconductors, Inc.

To download electronic copies of these manuals or order printed versions, visit:

http://www.freescale.com/

Targeting DSP56F80x/DSP56F82x Controllers 17

For More Information: www.freescale.com

Introduction
References

Freescale Semiconductor, Inc.

18

Targeting DSP56F80x/DSP56F82x Controllers

For More Information: www.freescale.com

Freescale Semiconductor, Inc.

Getting Started

This chapter explains how to install and run the CodeWarrior™ IDE on your
Windows® operating system. This chapter also explains how to connect hardware for
each of the communications protocols supported by the CodeWarrior debugger.

This chapter contains the following sections:
* System Requirements
* Installing and Registering the CodeWarrior IDE
 Installing DSP56800 Hardware

System Requirements

Table 2.1 lists system requirements for installing and using the CodeWarrior IDE for
DSP56800.

Table 2.1 Requirements for the CodeWarrior IDE

Category Requirement
Host Computer PC or compatible host computer with 133-megahertz Pentium®-
Hardware compatible processor, 64 megabytes of RAM, and a CD-ROM drive

Operating System | Microsoft® Windows® 98/2000/NT/XP

Hard Drive 1.2 gigabytes of free space, plus space for user projects and source
code

DSP56800 See DSP56800 Hardware Requirements

Other Power supply

DSP56800 Hardware Requirements

You can use various DSP56800 hardware configurations with the CodeWarrior IDE.
Table 2.2 lists these configurations.

Targeting DSP56F80x/DSP56F82x Controllers 19

For More Information: www.freescale.com

Freescale Semiconductor, Inc.

Getting Started
Installing and Registering the CodeWarrior IDE

NOTE Each protocol in Table 2.2 is selected from the M56800 Target Settings
panel.

Table 2.2 DSP56800 Hardware Requirements

Target Connection | Boards Supported | Hardware Provided With Command

Converter
Parallel port on-board All 56800 targets ¢ 25-pin parallel-port interface cable
Command Converter * Power supply, 9-12 Vdc, 500 mA with

2.5 mm receptacle (inside positive)

External Parallel Port All 56800 targets Freescale Parallel Port Command
Command Converter Converter

25-pin parallel-port interface cable
25-pin OCD ribbon cable
Target Interface Module
¢ JTAG 14-pin ribbon interface cable

PCIl Command Converter | All 56800 targets

Installing and Registering the
CodeWarrior IDE

Follow these steps:

1. To install the CodeWarrior software:

a. Insert the CodeWarrior CD into the CD-ROM drive — the welcome screen
appears.

NOTE If the Auto Install is disabled, run the program Setup . exe in the
root directory of the CD.

b. Click Launch CodeWarrior Setup — the install wizard displays welcome
page.
c. Follow the wizard instructions, accepting all the default settings.

d. At the prompt to check for updates, click the Yes button — the CodeWarrior
updater opens.

2. To check for updates:

20 Targeting DSP56F80x/DSP56F82x Controllers

For More Information: www.freescale.com

Freescale Semiconductor, Inc.

Getting Started
Installing and Registering the CodeWarrior IDE

NOTE If the updater already has Internet connection settings, you may
proceed directly to substep f.

a. Click the Settings button — the Updater Settings dialog box appears.

b. Click the Load Settings button — the updater loads settings from your
Windows control panel.

c. Modify the settings, as appropriate.

d. If necessary, enter the proxy username and the password.

e. Click the Save button — the Updater Settings dialog box disappears.
f. In the updater screen, click the Check for Updates button.

g. If updates are available, follow the on-screen instructions to download the
updates to your computer.

h. When you see the message, “Your version ... is up to date”, click the OK
button — the message box closes.

i. Click the updater Close button — the installation resumes.

j- At the prompt to restart the computer, select the Yes option button.

k. Click the Finish button — the computer restarts, completing installation.
3. To register the CodeWarrior software:

a. Select Start> Programs>Metrowerks CodeWarrior> CW for DSP56800
R7.0>CodeWarrior IDE — the registration window appears.

Targeting DSP56F80x/DSP56F82x Controllers 21

For More Information: www.freescale.com

h o
g |

Freescale Semiconductor, Inc.

Getting Started
Installing and Registering the CodeWarrior IDE

Figure 2.1 CodeWarrior Registration Window

e g i
4 TR ¥ |

CodeWarrior

Development Studio

There are 15 days until the curent license expires.

“f'ou must register yaur product to receive pour permanent license keys. |f you have a registration card
with pour product, please register by pressing the "Register Mow'' button belaw; atherwise, pou can
continue to use Code'w armior Development Studio until it expires by pressing the "Register Later'' button,

Contact license@metrowerks.com if you have any questions.

Fiegister Later | Register Mow I Buy Now

NOTE To evaluate this product before purchasing it, click Register Later
and skip to Step 4.

b. Click Register Now — the Metrowerks registration web page appears in the
web browser window.

22 Targeting DSP56F80x/DSP56F82x Controllers

For More Information: www.freescale.com

g |

Freescale Semiconductor, Inc.

Getting Started
Installing and Registering the CodeWarrior IDE

Figure 2.2 Metrowerks Registration Web Page

/3 Metrowerks Registration and Licensing System - Enter your registration code - Microsoft Inte: o] 34

File Edit Wiew Favorites Tools Help | !‘r'

Qe - @ - l_L| IELI _;‘, | /7\;Searth \;\'/ Favorites @Y Media Q"(| - A',’, - ﬁ

Address |:§'] Rktp f feenes metrowerks, com/mregister/

Links **

j Go
m et rower k s‘ . About Metrowerks Contact Us Search _ ®

home products services buy downloads support

Registration and Licensing System

This online registration system will register your Metrowerks product and maintenance and
technical support agreement, If you have questions regarding registration or licensing, click
here.

Step 1: Enter your registration code

Items marked with an * are required.
Registration Code

License Type
MNew Purchase =

Registration Code®

When entering 3 cods walus:

‘Use capital lettars anly
‘Uss the numbers 0 and 1, not the letters *0% and *1" (uppercass ")

Technical Support Certificate or Annual License Certificate

Do you have a Technical Support Certificate or &nnual License Certificate for this

product? >
4| | v

[&] pone [[wntermet w

c. Follow the instructions to complete the registration — Metrowerks will send
you the license authorization code to your e-mail address.

d. Close the web browser window.

e. Check your e-mail and retrieve the license authorization code.

NOTE If you encounter difficulty during the registration process, send an e-
mail to 1icense@metrowerks. com.

f. From the CodeWarrior menu bar, select Help > License Authorization —
the License Authorization dialog box appears.

g. Enter the license authorization code that Metrowerks sent you.

Targeting DSP56F80x/DSP56F82x Controllers 23

For More Information: www.freescale.com

Freescale Semiconductor, Inc.

Getting Started

Installing and Registering the CodeWarrior IDE

NOTE To avoid transcription errors, we recommend that you copy and paste
the license authorization code rather than typing it in. Metrowerks
license authorization codes do not contain the letters O or I.

h. Click the OK button — this completes the installation and registation.

4. Your CodeWarrior software is ready for use:

a. Table 2.3 lists the directories created during full installation.

b. To test your system, follow the instructions of the next section to create a

project.

Table 2.3 Installation Directories, CodeWarrior IDE for DSP56800

Directory

Contents

(CodeWarrior_Examples)

Target-specific projects and code.

(Helper Apps) Applications such as cwspawn.exe and cvs.exe.

bin The CodeWarrior IDE application and associated plug-in
tools.

ccs Command converter server executable files and related

support files.

DSP 56800x_EABI_Support

Default files used by the CodeWariior IDE for the
DSP56800 stationery.

DSP56800x_EABI_Tools

Drivers to the CCS and command line tools, plus IDE
default files for the DSP56800x stationery.

Freescale_Documentation

Documentation specific to the Freescale DSP56800
series.

Help Core IDE and target-specific help files. (Access help files
through the Help menu or F1 key.)

License The registration program and additional licensing
information.

Lint Support for PCLint.

M56800 Support Initialization files, Metrowerks Standard Library (MSL)
and Runtime Library.

M56800x Support Profiler libraries.

Other_Metrowerks_Tools

MWRemote executable files.

24

Targeting DSP56F80x/DSP56F82x Controllers

For More Information: www.freescale.com

Freescale Semiconductor, Inc.

Getting Started
Installing DSP56800 Hardware

Table 2.3 Installation Directories, CodeWarrior IDE for DSP56800

Directory Contents

ProcessorExpert Files for the Processor Expert.

Release_Notes Release notes for the CodeWarrior IDE and each tool.

Stationery Templates for creating DSP56800 projects. Each
template pertains to a specific debugging protocol.

Installing DSP56800 Hardware

This section explains how to connect the DSP568xx hardware to your computer.
Parallel port connections are explained in the Kit Installation Guide for each
individual DSP568xXEVM board. All descriptions assume the default jumper settings,
as explained in the Hardware Manual for your product, unless otherwise stated.

Targeting DSP56F80x/DSP56F82x Controllers 25

For More Information: www.freescale.com

Freescale Semiconductor, Inc.

Getting Started
Installing DSP56800 Hardware

NOTE You can use the DSP56800 Simulator provided with the
CodeWarrior IDE instead of installing additional DSP568xx
hardware. However, the DSP56800 Simulator is a core simulator and
will not give you product specific features (such as peripherals,
specialized memory maps, etc.)

Using Parallel Port
Connect the parallel port cable to your DSP568xXEVM board as described below.

Connecting via the on board Parallel Command
Converter on DSP568xxEVM Board

1. Connect the 25-pin male connector at one end of a parallel port cable to the 25-pin
female connector on your computer (Figure 2.3).

2. Connect the 25-pin female connector at the other end of the parallel port cable to
the 25-pin male connector on the DSP568xxEVM.

3. Plug the power supply into a wall socket.
4. Connect the power supply to the power connector on the DSP568xxEVM board.

The green LED next to the power connector lights up.

26 Targeting DSP56F80x/DSP56F82x Controllers

For More Information: www.freescale.com

Freescale Semiconductor, Inc.

Getting Started
Installing DSP56800 Hardware

Figure 2.3 Connecting Parallel Port Cable to DSP568xxEVM Board

Host
DSP568xxEVM 25-pin Parallel Port Cable Computer
Parallel Port
Connector
Power Supply

Connecting via the Suite56™ Parallel Port Command
Converter Module and DSP568xxEVM Board

1. Enable the JTAG port.

See the Hardware Manual or Kit Installation Guide for the jumpers that you need
to change from the default configuration for your particular hardware.

2. Connect the 25-pin male connector at one end of a parallel port cable to the 25-pin
female connector on your computer (Figure 2.4).

Targeting DSP56F80x/DSP56F82x Controllers 27

For More Information: www.freescale.com

Freescale Semiconductor, Inc.

Getting Started
Installing DSP56800 Hardware

Figure 2.4 Connecting Parallel Port Cable to Suite56™ Parallel Command

Converter Module and DSP568xxEVM Board

: Host
14-pin Ribbon E,sﬁlg Pballrallel Computer
DSP568xXxEVM | Caple ort Cable
4 Suite56™ Parallel /
Command Converter
JTAG / OnCE port Module Parallel Port
Power Supply Connector

3. Connect the 25-pin female connector at the other end of the parallel port cable to
the 25-pin male connector on the Suite56™ Parallel Port Command Converter
module.

4. Locate the 14-pin ribbon cable hanging from the Suite56™ Parallel Port
Command Converter module. Connect the 14-pin female connector of the ribbon
cable to the 14-pin JTAG male connector on the DSP568xxEVM board.

Ensure that the red stripe on the ribbon cable corresponds to pin 1 on the
DSP568xxEVM card.

5. Plug the power supply into a wall socket.
6. Connect the power supply to the power connector on the DSP568xxEVM board.

The green LED next to the power connector lights up.

Installing the PCI Command Converter

Connect the PCI Command Converter and your Freescale DSP568xxEVM board to
your computer as described below.

Installing the PCI Command Converter

Install the PCI Command Converter hardware:

28

Targeting DSP56F80x/DSP56F82x Controllers

For More Information: www.freescale.com

Freescale Semiconductor, Inc.

Getting Started
Installing DSP56800 Hardware

1. Place your PCI Command Converter card on a static-proof mat.

2. Shut down your computer.

WARNING! Do not touch the components and connectors on the board or inside
your computer without first being grounded. Otherwise, you could
damage the hardware with static discharge.

3. Locate an empty card slot in your computer.

4. Insert the PCI Command Converter card in the empty card slot.

NOTE One end of the 25-pin cable has a 24-pin female connector. A ground
cable is retrofitted to a wire of the 25-pin cable at the same end of the
cable. The ground cable is crimped to a female disconnect terminal.

5. Connect the 24-pin female connector at one end of the 25-pin cable to the 24-pin
female connector on the PCI Command Converter card (Figure 2.5).

6. Connect the female disconnect terminal of the ground cable to the socket
protruding from the PCI Command Converter card in your computer.

7. Connect the 25-pin female connector at the other end of the 25-pin cable to the 25-
pin male connector on the OCDemon™ Wiggler.

Procedure for Manual Installation of PClI Command
Converter Drivers

Windows® 98
The required files are located in the following directory:

CodeWarrior\DSP56800x_EABI_Tools\drivers\ADS_PCI_drivers\Win_95_98

1. Install CodeWarrior for DSP56800 Software Development Tools.

2. Shut down your computer.

3. Install the PCI command converter hardware into an empty PCI slot.
4. Turn on your computer.
5

The Add New Hardware Wizard window appears. Click the Next button.

Targeting DSP56F80x/DSP56F82x Controllers 29

For More Information: www.freescale.com

Getting Started

Freescale Semiconductor, Inc.

Installing DSP56800 Hardware

6. Check the Search button and then click the Next button.
7. Click the Browse button.
8. Select the following directory:
C:\Program
Files\Metrowerks\CodeWarrior\DSP56800x_EABI_Tools\drivers\ADS_PCI_driv
ers\Win_95_98
NOTE This is the default installation directory. If you changed this directory
during the software installation, you will need to select your custom
directory. Then, click the Next button.
Windows 98 finds the correct driver.
9. Copy the windrvr. sys file to \Windows\System32\Drivers
10. Copy the windrvr .vxd file to \Windows\System\vmm32.
11. From the command prompt, change to the following directory:
CodeWarrior\DSP56800x_EABI_Tools\drivers\ADS_PCI_drivers\Win_95_98
12. Type the following:

wdreg -name "Macraigor_PCI" -file windrvr install

Windows NT® 4.0/ Windows® 2000/ Windows® XP

The required files are located in the following directory:

CodeWarrior\DSP_EABI_Tools\ADS_PCI_drivers\Win_NT

1

2
3.
4

Copy the raptor. inf file to /winnt/inf.
Copy the mac_mot . sys file to /winnt/system32/drivers.
Copy the windrvr. sys file to /winnt/system32/drivers.

Install the raptor . inf file by right-clicking on this file and selecting the Install
button.

From the command prompt, change to the following directory:

CodeWarrior\DSP_EABI_Tools\ADS_PCI_drivers\Win_NT

30

Targeting DSP56F80x/DSP56F82x Controllers

For More Information: www.freescale.com

Freescale Semiconductor, Inc.

Getting Started
Installing DSP56800 Hardware

6. Type the following:
wdreg -file mac_mot remove
wdreg remove
wdreg install
wdreg -file mac_mot install
7. Shut down your computer.

8. Turn on your computer.

Connecting the PCl Command Converter to the
DSP568xxEVM Board

To connect the PCI Command Converter to your DSP568xxEVM board, follow the
steps explained in “Installing the PCI Command Converter” on page 28 before
performing the steps in this section.

Connect the PCI Command Converter to your DSP568xXxEVM board:

1. Enable the JTAG port.

See the Hardware Manual or Kit Installation Guide for the jumpers that you need
change from the default configuration for your particular hardware.

2. Locate the 14-pin ribbon cable hanging from the OCDemon™ Wiggler. Connect
the 14-pin female connector of the ribbon cable to the 14-pin JTAG male
connector on the DSP568xxEVM board.

Ensure that the red stripe on the ribbon cable corresponds to pin 1 on the
DSP568xxEVM card.

3. Plug the power supply into a wall socket.
4. Connect the power supply to the power connector on the DSP568xxEVM board.

The green LED next to the power connector lights up. The board is now
connected.

Targeting DSP56F80x/DSP56F82x Controllers 31

For More Information: www.freescale.com

Getting Started
Installing DSP56800 Hardware

Freescale Semiconductor, Inc.

Figure 2.5 Attaching PCl Command Converter to DSP568xxEVM Board

DSP568xxEVM

Host
Computer

\Power Supply

14-pin Ribbon
Cable Ground Cable
25-pin Cab‘le
== '
—
s
OCDemon™
JTAG / OnCE port Wiggler
PCI Command

Converter Card

32

Targeting DSP56F80x/DSP56F82x Controllers

For More Information: www.freescale.com

Freescale Semiconductor, Inc.

Development Studio
Overview

This chapter is for new users of the CodeWarrior™ IDE. This chapter contains the
following sections:

* CodeWarrior IDE
* Development Process

If you are an experienced CodeWarrior IDE user, you will recognize the look and feel
of the user interface. However, it is necessary that you become familiar with the
DSP56800 runtime software environment.

CodeWarrior IDE

The CodeWarrior IDE lets you create software applications. It controls the project
manager, the source-code editor, the class browser, the compiler, linker, and the
debugger.

In the project manager, you can organize all the files and settings related to your
project so that you can see your project at a glance and easily navigate among your
source-code files. The CodeWarrior IDE automatically manages build dependencies.

A project can have multiple build targets. A build target is a separate build (with its
own settings) that uses some or all of the files in the project. For example, you can
have both a debug version and a release version of your software as separate build
targets within the same project.

The CodeWarrior IDE has an extensible architecture that uses plug-in compilers and
linkers to target various operating systems and microprocessors. The CodeWarrior CD
includes a C compiler for the DSP56800 family of processors. Other CodeWarrior
software packages include C, C++, and Java compilers for Win32, Linux, and other
hardware and software combinations.

Targeting DSP56F80x/DSP56F82x Controllers 33

For More Information: www.freescale.com

Freescale Semiconductor, Inc.

Development Studio Overview
CodeWarrior IDE

CodeWarrior Compiler for DSP56800

The CodeWarrior compiler for DSP56800 is an ANSI-compliant C compiler. This
compiler is based on the same compiler architecture used in all CodeWarrior C
compilers. When it is used together with the CodeWarrior linker for DSP56800, you
can generate DSP56800 applications and libraries.

NOTE The CodeWarrior compiler for DSP56800 does not support C++.

CodeWarrior Assembler for DSP56800

The CodeWarrior assembler for DSP56800 has an easy-to-use syntax. The
CodeWarrior IDE assembles any file with an . asm extension in the project. For
information on features and syntax of the assembler, refer to the Code Warrior
Development Studio Freescale DSP56800x Embedded Systems Assembler Manual.
For opcode listings, refer to the DSP56800 Family Manual.

CodeWarrior Linker for DSP56800

The CodeWarrior linker for Freescale DSP56800 is in an Executable and Linker
Format (ELF) linker. This linker lets you generate an ELF file (the default output file
format) for your application and generate an S-record output file for your application.

CodeWarrior Debugger for DSP56800

The CodeWarrior debugger controls your program’s execution and lets you see what
happens internally as your program runs. Use the debugger to find problems in your
program’s execution.

The debugger can execute your program one statement at a time and suspend
execution when control reaches a specified point. When the debugger stops a program,
you can view the chain of function calls, examine and change the values of variables,
inspect the contents of the processor’s registers and see the contents of memory.

Metrowerks Standard Library

The Metrowerks Standard Library (MSL) is a set of standard C libraries for use in
developing DSP56800 applications. These libraries are ANSI-compliant. Access the
library sources for use in your projects. These libraries are a subset of the same ones

34 Targeting DSP56F80x/DSP56F82x Controllers

For More Information: www.freescale.com

Freescale Semiconductor, Inc.

Development Studio Overview
Development Process

used for all platform targets, but the libraries have been customized and the runtime
adapted for use in DSP56800 development.

Development Process

The CodeWarrior IDE helps you manage your development work more effectively
than you can with a traditional command-line environment. Figure 3.1 depicts
application development using the IDE.

Targeting DSP56F80x/DSP56F82x Controllers 35

For More Information: www.freescale.com

Freescale Semiconductor, Inc.

Development Studio Overview
Development Process

Figure 3.1 CodeWarrior IDE Application Development

(start)
Y

‘Create/Manage Project— ™

: Manage Files (1) : ‘
Specify Target

! Settings @) !

| |

| |

‘ Edit Files (3)

Build (Make) Project = — -

‘ Compile Project

|
i no |

!

yes

I

I

. . l
Link Project |
|

|

|

(4)

Notes:

(1) Use any combination: stationery
(template) files, library files,

or your own source files.

(2) Compiler, linker, debugger
settings; target specification;
optimizations.

(3) Edit source and resource files.
(4) Possible corrections:

adding a file, changing

settings, or editing a file.

36

Targeting DSP56F80x/DSP56F82x Controllers

For More Information: www.freescale.com

Freescale Semiconductor, Inc.

Development Studio Overview
Development Process

Project Files versus Makefiles

The CodeWarrior IDE project is analogous to a collection of makefiles because you
can have multiple builds in the same project. For example, you can have one project
that maintains both a debug version and a release version of your code. You can build
either or both of these versions as you wish. Different builds within a single project are
called “build targets.”

The CodeWarrior IDE uses the project window to list the files in a project. A project
can contain various types of files, such as source-code files and libraries.

You can easily add or remove files from a project. You can assign files to one or more
build targets within the same project. These assignments let you easily manage files
common to multiple build targets.

The CodeWarrior IDE automatically handles the dependencies between files, and it
tracks which files have changed since the last build. When you rebuild a project, only
those files that have changed are recompiled.

The CodeWarrior IDE also stores compiler and linker settings for each build target.
You can modify these settings by changing the options in the target settings panels of
the CodeWarrior IDE or by using #pragma statements in your code.

Editing Code

The CodeWarrior IDE features a text editor. It handles text files in MS-DOS®/
Windows,® and UNIX formats.

To open and edit a source-code file, or any other editable file in a project, use either of
the following options:

¢ Double-click the file in the project window.

* Click the file. The file is highlighted. Drag the file to the Metrowerks
CodeWarrior IDE window.

The editor window has excellent navigational features that allow you switch between
related files, locate any particular function, mark any location within a file, or go to a
specific line of code.

Compiling

To compile any source-code file in the current build target, select the source-code file
in the project window and then select Project > Compile from the menu bar of the
Metrowerks CodeWarrior window.

Targeting DSP56F80x/DSP56F82x Controllers 37

For More Information: www.freescale.com

g |

Freescale Semiconductor, Inc.

Development Studio Overview
Development Process

To compile all the files in the current build target that were modified since they were
last compiled, select Project >Bring Up To Date from the menu bar of the
Metrowerks CodeWarrior window.

In UNIX and other command-line environments, object code compiled from a source-
code file is stored in a binary file (a . o or . obj file). On Windows targets, the
CodeWarrior IDE stores and manages object files internally in the data folder.

A proprietary compiler architecture is at the heart of the CodeWarrior IDE. This
architecture handles multiple languages and platform targets. Front-end language
compilers generate an intermediate representation (IR) of syntactically correct source
code. The IR is memory-resident and language-independent. Back-end compilers
generate code from the IR for specific platform targets. The CodeWarrior IDE
manages the whole process (Figure 3.2).

Figure 3.2 CodeWarrior Build System

Front-end Language Project Manager

C/C++, Java
Object Pascal

Intermediate
Representation

Compiler) I: Assembler)

Back—end CodeGen

MIPS, PPC, ¥R, x86
68K, DSP, SH, ¥8xx

As aresult of this architecture, the CodeWarrior IDE uses the same front-end compiler
to support multiple back-end platform targets. In some cases, the same back-end
compiler can generate code from a variety of languages. Users derive significant
benefit from this architecture. For example, an advance in the C/C++ front-end
compiler means an immediate advance in all code generation. Optimizations in the IR
mean that any new code generator is highly optimized. Targeting a new processor does
not require compiler-related changes in the source code, so porting is much simpler.

38

Targeting DSP56F80x/DSP56F82x Controllers

For More Information: www.freescale.com

Freescale Semiconductor, Inc.

Development Studio Overview
Development Process

All compilers are built as plug-in modules. The compiler and linker components are
modular plug-ins. Metrowerks publishes this API, allowing developers to create
custom or proprietary tools. For more information, go to Metrowerks Support at this
URL:

http://www.metrowerks.com/MW/Support

Once the compiler generates object code, the plug-in linker generates the final
executable file. Multiple linkers are available for some platform targets to support
different object-code formats.

Linking
To link object code into a final binary file, select Project > Make from the menu bar

of the Metrowerks CodeWarrior window. The Make command brings the active
project up to date, then links the resulting object code into a final output file.

The CodeWarrior IDE controls the linker through the use of linker command files.
There is no need to specify a list of object files. The Project Manager tracks all the
object files automatically. You can also use the Project Manager to specify link order.

The Target>M56800 Target settings panel lets you set the name of the final output file.

Debugging

To debug a project, select Project > Debug from the menu bar of the Metrowerks
CodeWarrior window.

Viewing Preprocessor Output

To view preprocessor output, select the file in the project window and select Project >
Preprocess from the menu bar of the Metrowerks CodeWarrior window. The
CodeWarrior IDE displays a new window that shows you what your file looks like
after going through the preprocessor.

You can use this feature to track down bugs caused by macro expansion or other
subtleties of the preprocessor.

Targeting DSP56F80x/DSP56F82x Controllers 39

For More Information: www.freescale.com

Freescale Semiconductor, Inc.

Development Studio Overview
Development Process

40 Targeting DSP56F80x/DSP56F82x Controllers

For More Information: www.freescale.com

Freescale Semiconductor, Inc.

Tutorial

This chapter gives you a quick start at learning how to use the CodeWarrior
Development Studio for Freescale 56800/E Hybrid Controllers for the DSP56F80x/
DSP56F82x Controllers.

CodeWarrior Development Studio for
Freescale 56800/E Hybrid Controllers
Tutorial

This chapter provides a tour of the software development environment of the
CodeWarrior Development Studio for Freescale 56800/E Hybrid Controllers. You will
learn how to use the tools to program for DSP56800 boards.

This tutorial introduces you to many important elements of the CodeWarrior IDE that
you will use when programming for DSP56800. However, the tutorial does not cover
or explain all the features of the IDE.

You will learn how to create, compile, and link code that runs on DSP56800 system:s.

If you are already familiar with the CodeWarrior software, read through the steps in
this tutorial anyway. You will encounter the DSP56800 compiler and linker for the
first time, as well as other features specific to DSP56800 application development.

This tutorial is divided into segments. In each segment, you will perform steps that
introduce you to the critical elements of the CodeWarrior IDE programming
environment. The segments are:

* Creating a Project

* Working with the Debugger

Creating a Project

You can create a DSP56800x project by using the:
* DSP56800x new project stationery wizard

Targeting DSP56F80x/DSP56F82x Controllers 41

For More Information: www.freescale.com

Freescale Semiconductor, Inc.

Tutorial
CodeWarrior Development Studio for Freescale 56800/E Hybrid Controllers Tutorial

* DSP56800x EABI stationery

To create a new project with the DSP56800x new project wizard, please see the sub-
section “Creating a New Project with the DSP56800x New Stationery Project
Wizard.”

To create a new project with the DSP56800x EABI stationery, please see the sub-
section “Creating a New Project with the DSP56800x EABI Stationery.”

Creating a New Project with the DSP56800x New
Stationery Project Wizard

In this section of the tutorial, you work with the CodeWarrior IDE to create a project.
with the DSP56800x New Stationery Project Wizard.

To create a project:
1. From the menu bar of the Metrowerks CodeWarrior window, select File>New.

The New dialog box appears.

42 Targeting DSP56F80x/DSP56F82x Controllers

For More Information: www.freescale.com

g |

Freescale Semiconductor, Inc.

Tutorial
CodeWarrior Development Studio for Freescale 56800/E Hybrid Controllers Tutorial

Figure 4.1 New Dialog Box

vew x|

Project |File I Dbiectl

o5 DEPEEB00: EABI Stationery Project name:
ﬁ DSPEEE00% Examples Stationeny Ithe_pmiecd
a5 DSP5SE200% New Froject Wizard
ﬁ Empty Project Location:
ﬁ Makefile Importer Wizard _ IE:\m_l,l_proiects\the_prnieu:t Set..
ﬁ Proceszzor Expert Examples Stationeny
5 Processor Expert Stationer fidd | Tiargets to Project;
Froject:

| 5

QK I Caricel

2. Select DSP56800x New Project Wizard (Figure 4.2).

In the Project Name text box, type the project name. For example, the_project.

4. In the Location text box, type the location where you want to save this project or
choose the default location.

5. Click OK. The DSP56800x New Project Wizard — Target dialog box (Figure
4.2) appears.

Targeting DSP56F80x/DSP56F82x Controllers 43

For More Information: www.freescale.com

g |

Freescale Semiconductor, Inc.

Tutorial
CodeWarrior Development Studio for Freescale 56800/E Hybrid Controllers Tutorial

Figure 4.2 DSP56800x New Project Wizard — Target Dialog Box

DSP56800x New Project Wizard - Target X x|

Select family and then processor for this project....

LAl Juouas 1 animy I Proceszor
DSPEEFE0: DSPEES00_simulator
DSPEEFE2x D5 PEEE00E simulator
D5Po6EE:
MCHEFTT e
MCHEFT3xx
Simulators

< Back I Ment » I Cancel

6. Select the target board and processor
a. Select the family, such as Simulators, from the DSP56800x Family list.

b. Select the processor, such as DSP56800_simulator, from the Processors list.

7. Click Next. The DSP56800x New Project Wizard — Program Choice dialog
box (Figure 4.3) appears.

44 Targeting DSP56F80x/DSP56F82x Controllers

For More Information: www.freescale.com

Freescale Semiconductor, Inc.

Tutorial
CodeWarrior Development Studio for Freescale 56800/E Hybrid Controllers Tutorial

Figure 4.3 DSP56800x New Project Wizard — Program Choice Dialog Box
x|

Select the example main(] program for thiz project...

— Program

= Simple Mixed Aszembly and C
i~ Simple Assembly
" Elarik

< Back I Hest » I Cancel

8. Select the example main[] program for this project, such as Simple C.

9. Click Next. The DSP56800x New Project Wizard — Finish dialog box ()
appears.

Targeting DSP56F80x/DSP56F82x Controllers 45

For More Information: www.freescale.com

Freescale Semiconductor, Inc.

Tutorial
CodeWarrior Development Studio for Freescale 56800/E Hybrid Controllers Tutorial

Figure 4.4 DSP56800x New Project Wizard — Finish Dialog Box

DSP56800x New Project Wizard - Finish |

Click. Finigh to create the project.

Cancel |

< Back

10. Click Finish to create the new project.

NOTE For more details of the DSP56800x New Project Stationery Wizard,
please see “DSP56800x New Project Wizard.”.

Creating a New Project with the DSP56800x EABI
Stationery

In this section of the tutorial, you work with the CodeWarrior IDE to create a project
with the DSP56800x EABI Stationery.

You will start using a project stationery. A project stationery file is a template that
describes a pre-built project, complete with source-code files, libraries, and all the
appropriate compiler and linker settings. When you create a project based on

stationery, the stationery is duplicated and becomes the basis of your new project.

You can create customized project stationery as well. Project stationery is a useful
feature of the CodeWarrior IDE.

Practice working with a sample project as follows:

46 Targeting DSP56F80x/DSP56F82x Controllers

For More Information: www.freescale.com

Freescale Semiconductor, Inc.

Tutorial
CodeWarrior Development Studio for Freescale 56800/E Hybrid Controllers Tutorial

1. Launch the CodeWarrior IDE.

The Metrowerks CodeWarrior window appears with a menu bar at the top (Figure
4.5).

Figure 4.5 Metrowerks CodeWarrior Window

i#EMetrowerks CodeWarrior

Ei_le Edit Wiew Search Project IZ__)._BEUQ Processar Expert "ﬂind'ow I-_i_elp-

- GEERFSYEEE AR IBE NN

To create a new project from project stationery:

1. From the menu bar of the Metrowerks CodeWarrior window, select File > New.

The New window appears with a list of options in the Project tab (Figure 4.6).

Targeting DSP56F80x/DSP56F82x Controllers 47

For More Information: www.freescale.com

g |

Freescale Semiconductor, Inc.

Tutorial
CodeWarrior Development Studio for Freescale 56800/E Hybrid Controllers Tutorial

Figure 4.6 New Window

hew x|

Proiect | File | Object |

5 DSP5ERN0: EABI Stationery Project name:
ﬁ DSPRES00x Examples Stationery |gamp|e{
ﬁ DSPRE300s Mew Project Wizard
ﬁ Empty Project Location:
ﬁ Maksfile Importer 'wizard) |E:'xm_l.J_prniecls_folder\sample Set .
}ﬁ Proceszor Expert Examplas Stationery
@ Proceszor Expert Stationery dd to Project:
Project:

I 5

Ok I Cancel

2. Select DSP56800x EABI Stationery in the Project tab.

NOTE To create a new project without using stationery, select Empty Project
in the New window. This option lets you create a project from scratch.
If you are a beginner, you should not try to use an Empty Project as it
will not have any of the necessary target settings, startup files, or
libraries included that are specific to the DSP56800 that allow you to
quickly get up and running. This is why we include the
DSP56800x_EABI Stationery, as it takes care of these tasks and
minimizes the startup effort that is required.

3. Type a name in the Project name field (in this tutorial use “sample” as the name).

The CodeWarrior IDE adds the .mcp extension automatically to your file when
the project is saved. The .mcp extension allows any user to recognize the file as
a Metrowerks CodeWarrior project file. In this tutorial, the file name is
sample.mcp.

48 Targeting DSP56F80x/DSP56F82x Controllers

For More Information: www.freescale.com

g |

Freescale Semiconductor, Inc.

Tutorial
CodeWarrior Development Studio for Freescale 56800/E Hybrid Controllers Tutorial

4. Set the location for the project.
If you want to change the default location, perform the following steps:

a. In the New window, click the Set button. The Create New Project dialog box
(Figure 4.7) appears:

Figure 4.7 Create New Project Dialog Box

Create New Project... ﬂﬂ
Save i |lcj my_projects_falder j 4= Fj(Ef-
File narme: zample] Save I
Save as bype: |Project Files [mep) =] Cancel |
¥ Create Folder
4

b. Use the standard navigation controls in the Create New Project dialog box to
specify the path where you want the project file to be saved.

c. Click the Save button. The CodeWarrior IDE closes the Create New Project
dialog box.

If you want to use the default location for your project, go to step 5.

In either case, the CodeWarrior IDE creates a folder with the same name as your
project in the directory you select.

NOTE Enable the Create Folder checkbox in the Create New Project file dialog
box to create a new folder for your project in the selected location.

5. Click OK in the New window.

The New Project window appears (Figure 4.8) with a list of board-specific project
stationeries.

Targeting DSP56F80x/DSP56F82x Controllers 49

For More Information: www.freescale.com

Freescale Semiconductor, Inc.

Tutorial
CodeWarrior Development Studio for Freescale 56800/E Hybrid Controllers Tutorial

Figure 4.8 New Project Window
|

Select project stationen:

N Froject Stationery

- DSPSEFE0Z

- DSPSEFE03

= DSPSEFE05

EBlank.

Simple_ Azm_and_C

Simple_dszm
mple_C

- DSPSEFa07 e

- DSPSEFE26

[+ DSPaEFEZ7 v!

0k, I Cancel |

6. Select DSP56F805 as the Project Stationery for your target.

>

Click the hierarchical control for the Project Stationery to expand the hierarchical
view. Then, select Simple_C language from the hierarchical tree.

7. Click OK in the New Project window.

A project window appears (Figure 4.9). This window displays all the files and
libraries that are part of the project stationery.

50 Targeting DSP56F80x/DSP56F82x Controllers

For More Information: www.freescale.com

Freescale Semiconductor, Inc.

Tutorial

CodeWarrior Development Studio for Freescale 56800/E Hybrid Controllers Tutorial

Figure 4.9 CodeWarrior Project Window

Synchronize
Modification
Dates

Target
Settings

sample mcp I

/

I 8 extemal memory

Fies | Link Order | Targets |

SE v @ ? >

¥ | Fik | Code | Data [#0/3 [=
& [#{] code 1] 0« » =~
 [#H_] suppart 1] 0+ = =

Debug
Make

The project window is the central location from which you control development. You
can use this window to:

¢ Add or remove source files

e Add libraries of code

¢ Compile code

¢ Generate debugging information and much more

* Confirm that the Files tab is selected in the project window (it should be selected
by default).

¢ Click the hierarchical controls next to ‘code’ and ‘support’ to expand
and view their contents (Figure 4.10).

Targeting DSP56F80x/DSP56F82x Controllers 51

For More Information: www.freescale.com

g |

Freescale Semiconductor, Inc.

Tutorial
CodeWarrior Development Studio for Freescale 56800/E Hybrid Controllers Tutorial

Figure 4.10 CodeWarrior Project Window with Expanded Hierarchical Folders

i

sample.mcp I

I'ﬁ external memary j By ¢ % >

Files | Link. Drderl Targetsl

¢ | Fis | Cods | Data ¥4 |-
E-E3 code 169 168 +« o« = &
EEH support B2k . |
EE3 DSPEEFE05 212 2+ » =
[EHE3 startup 80 0D« « =
i ol DSPBEFE09_ .. an 0 » =
interrupt vechors 132 .|
-l DSPEEFS09 ... 132 2+« =
B DSPSEFE05_v.. néa n'a =l
link.er command files] o« =l
@R DSPSEFE0S ex.. néa nia * =l
-l DSPREFA05 «. . nda nia =l
EE30b B2 K e =
& FP5E300.Iib 2724 2. =l
=

~f8 MSL C 58800 Lib 50838 3248 »

8. View a Source File

a. Double-click the main.c file in the project window, the source code in the file
is displayed in a CodeWarrior source-code editor window (Figure 4.11).

NOTE For more details about the CodeWarrior editor and its features, see
the IDE User’s Guide.

52 Targeting DSP56F80x/DSP56F82x Controllers

For More Information: www.freescale.com

Freescale Semiconductor, Inc.

Tutorial
CodeWarrior Development Studio for Freescale 56800/E Hybrid Controllers Tutorial

Figure 4.11 CodeWarrior Editor Window

{ gmain.c B o =]]
b-{}-nm- ~ o' - Path |C:\m_l,l_proiects_folder'\sample\main.c:
|

o ©

S% metrowerks sanple code %7

#include <stdio.h:
#include <stdlib.h:»

#define SIZE 10

-~ prototypes
wold swap (int *a, int =h);
volid print_arravi{int arr[]. int length):

int main({void)

int arr[SIZE] = {4,6,7,1,2,3,4,12,4.5};
int 1,3;

Line 1 Call ||«] | rlz

9. Examine the build target settings.

The CodeWarrior IDE allows your project to have several different configurations
contained within the project. These are called “build targets.” When you work
with a new CodeWarrior project, you will want to examine your build target
settings.

a. To specify a build target, double-click the Settings icon in the Project window
(see Figure 4.9 for location of icons in the Project window).

The Target Settings window {external RAM (mode 3) Settings in sample }
appears (Figure 4.12).

This window contains several different panels. In Figure 4.12, the Target
Settings Panels is displayed in the Target Settings window.

Targeting DSP56F80x/DSP56F82x Controllers 53

For More Information: www.freescale.com

g |

Freescale Semiconductor, Inc.

Tutorial
CodeWarrior Development Studio for Freescale 56800/E Hybrid Controllers Tutorial

Figure 4.12 Target Settings Window

@ external memory Settings ﬂil

N Target Settings Panels H Target Settings
Target Mame: |e:-:tema| iyttt]
- Build Extraz Linker:IMSEEDD Linker j
- File Mappings Pre-linker:INone j
- Source Trees Postlinker
- MBE300 Target ostlinker.[None [
= Language Settings DOutput Directon:
- C/C++ Language | Choosze... |
-~ C/C++ Preprocessor {Prajectioutput
-~ C/AC++ Warnings ﬂl
- MBEB00 dssembler .) .)
W
- Code Generation | ¥ Save project entries using relative paths
- ELF Dizazsembler
- MBEB00 Processor
- [Elobal Optimizations
= Linker
L MBE300 Linker LI
Factory Settings Fresert Import Parnel... | Ewport Panel... |
] | Carcel | Spply |

b. Ifitis not already visible, click Target from the tree structure in the Target
Settings Panels pane to expand the hierarchical view.

c. Click Target Settings from the hierarchical tree.

The Target Settings panel appears which displays all the options related to
selecting a build target.

NOTE By selecting M56800 Linker from the Linker list box, the
CodeWarrior IDE recognizes that the code you are writing is
intended for DSP56800 processors, and populates the Target Settings
Panel with the DSP56800 specific panels.

The Target Settings window is the location for all options related to the build
target. Every panel and option is explained in the CodeWarrior documentation.
Most of the general settings panels are explained in the IDE User Guide.
DSP56800 target-specific panels are explained in this targeting manual.

54 Targeting DSP56F80x/DSP56F82x Controllers

For More Information: www.freescale.com

Freescale Semiconductor, Inc.

Tutorial
CodeWarrior Development Studio for Freescale 56800/E Hybrid Controllers Tutorial

10. Set build target options:

a. Inthe Target Settings Panels panel, click Target in the tree structure to expand
the hierarchical view.

b. Click M56800 Target from the hierarchical tree.
The M56800 Target panel appears (Figure 4.13).

Figure 4.13 M56800 Target Settings Panel

i gexternal memory Settings ed |
H Target Settings Panels H M5EB00 Target
= Target 1|) —

- Target Settings Project T}lpe:l;‘-‘«pphcatlon j

""\"C_CBSS Praths Application Infa

- Build Extras ;
- File Mappings Output File Hame Iexternal_memnry.elf
-~ Source Trees

o 56200 T arget
= Language Settings
- C4C++ Language
- C/C++ Preprocessorn
o CAC+H+ Warningz
- MBEE00 Assembler
= Code Generation
- ELF Disassembler
- MBE300 Processor
- [3lobal Optimizations
[= Linker

L MBEA00 Linker ll

Factom Settings Fresert Import Panel... | Export Panel... I

Ok, | Cancel | Spply I

11. Set linker options.

a. In the Target Settings Panels pane, click Linker in the tree structure to expand
the hierarchical view.

b. Click M56800 Linker from the hierarchical tree.
The M56800 Linker panel appears (Figure 4.14).

Targeting DSP56F80x/DSP56F82x Controllers 55

For More Information: www.freescale.com

Tutorial

Freescale Semiconductor, Inc.

CodeWarrior Development Studio for Freescale 56800/E Hybrid Controllers Tutorial

Figure 4.14 M56800 Linker Settings

B Target Settings Panels N t5EE00 Linker
=~ Tanget 1B ; -
- Target Settings I Generate Symbalic Info [Disable Deadstipping
- Access Paths [+ Store Full Path Mames [+ Generats ELF Symbol Table
B.u'ld EHt[‘_aS IV Generate Link bap ™ Suppress Warning Meszages
- File Mappings I Listu 4 Dbiect
- Source Trees R
- MEB300 Target [Show Transitive Closure
[Language Seftings ™ Generate 5-Record File
Ejgﬁ Il;anguage I Soit By Addiess Max Record Length: 272
I:.-’E: dz?;?ncge:sur ™| Generate Bute Addiesses EOL Character: Dos -
- MEEB00 Aszsembler .
Entry Paint: ini
=~ Code Generation |- e Finit_M5605_
-~ ELF Dizazsembler Force Active Symbals:
- M5E200 Processar
- [Global Optimizations
= Linker
Factary Settings Bewvert Impaort Panel. . | Export Panel.. |
QK | Cancel | Aoply |

12. Examine the default settings and select the options according to your

13.

requirements. Close the Target window when you are finished by clicking the OK
button.

Verify debugging information is generated.

For the debugger to work, it needs certain information from the CodeWarrior IDE
so that it can connect object code to source code. You must instruct the
CodeWarrior IDE to produce this information.

There is a debug-related column in the project window (Figure 4.15). Every file,
for which the IDE generates debugging information, has a dot in the Debug
column. To enable symbolic information for a file, click the Debug column next to
the file. A dot appears confirming that debugging information is generated for that
file.

56

Targeting DSP56F80x/DSP56F82x Controllers

For More Information: www.freescale.com

Freescale Semiconductor, Inc.

Tutorial

CodeWarrior Development Studio for Freescale 56800/E Hybrid Controllers Tutorial

Figure 4.15 Turning on Debugging Per File

sample.mcp I

I % external memory

Files | Link Order | Targets |

"By 3 %> B

| Fie | Code | Data [#0|e |-

@ [code 0 O« » ==
" . i} 0+ + =
@ S5 suppart 1] O+ « =
@ [EE3D5PSEFE0S a O+ « =
o EHE3 startup 1] 0« « =
W - *.H DSPSGFE05_init.c 0 0D « =
W EHZA intermupt vectors 0 0« o =
3 i HR DSPREFS05_vector_pRAM.asm 1] 0+ « =
¢ -l DSPSEFE05_vector_pROM.asm nda nda =l
& SR linker command files 0 o =
W @ DSPSEFS05_asternal_mern_linkercmd nda nia |
ol DSPEEFE05_<ROM-xRAM_linker. crmd nda n'a =l
¢ EElib] 1] =
& 8 FP5EB00.Ib 1] a =l
L3 g MSL C 5E800 Lib 1] a =l

Debug Column

14. Compile the code using either of the following options:

¢ From the menu bar of the Metrowerks CodeWarrior window, select Project >

Make.

* In the project window, click the Make icon.

The above step updates all files that need to be compiled and re-linked in the
project. The IDE tracks these dependencies automatically.

NOTE

The Make command in the menu bar of the Metrowerks CodeWarrior
window compiles selected files, not all changed files. The Bring Up To
Date command in the menu bar compiles all changed files, but does
not link the project into an executable.

When you select the Make command, the IDE compiles all of the code. This may
take some time as the IDE locates the files, opens them, and generates the object
code. When the compiler completes the task, the linker creates an executable from

Targeting DSP56F80x/DSP56F82x Controllers 57

For More

Information: www.freescale.com

Freescale Semiconductor, Inc.

Tutorial
CodeWarrior Development Studio for Freescale 56800/E Hybrid Controllers Tutorial

the objects. You can see the compiler’s progress in the project window and in the
toolbar.

Editing the Contents of a Project

To change the contents of a project:

1. Add source files to the project.

Most stationery projects contain source files that act as placeholders. Replace
these placeholders with your own files.

To add files, use one of the following options:

e From the menu bar of the Metrowerks CodeWarrior window, select Project >
Add Files.

* Drag files from the desktop or Windows Explorer to the project window.
To remove files:
a. Select the files in the project window that you want to delete.
b. Press the Backspace or Delete key.
2. Edit code in the source files.

Use the IDE’s source-code editor to modify the content of a source-code file. To
open a file for editing, use either of the following options:

* Double-click the file in the project window.
* Select the file in the project window and press Enter.

Once the file is open, you can use all of the editor’s features to work with your
code.

You have now been introduced to the major components of CodeWarrior
Development Studio for Freescale 56800/E Hybrid Controllers, except for the
debugger. You are now familiar with the project manager, source code editor, and
settings panels.

Working with the Debugger

In this section, you will explore the CodeWarrior debugger.

This tutorial assumes that you have already started the CodeWarrior IDE and have
opened a sample project.

58 Targeting DSP56F80x/DSP56F82x Controllers

For More Information: www.freescale.com

g |

Freescale Semiconductor, Inc.

Tutorial
CodeWarrior Development Studio for Freescale 56800/E Hybrid Controllers Tutorial

NOTE CodeWarrior IDE automatically enables the debugger and sets
debugger-related settings within the project.

1. Access the Target Settings window (Figure 4.13).
2. Set debugger options.

a. In the Target Settings Panels pane, click Debugger in the tree structure to
expand the hierarchical view.

b. Click M56800 Target Settings from the hierarchical tree
The M56800 Target Settings panel appears (Figure 4.16).

Figure 4.16 Selecting Debugger Settings

B external memory Settings ilﬂ
H Target Settings Panels H MSEB00 Target Settings
= Language Settings iz
o CAC++ Language ... IV Always reset on dowrload
o CAC++ Preprocessar
o CAC++ Warnings I Use Flash Corfig File | Choose,. I
- MBEB00 dssembler
= Code Generation Breakpoint mode: I."-'«utomatic Vi
- ELF Dizazsembler
- MEEE00 Processor [T auto-clear previous hardware breakpoirt
-« [Flnbal Optimizations
= Linker v Initialize OB for program memory
L MBR300 Linker
= ;E it Program memary mode; IE:-:lemaI ;I
e Custom Kewords
= Debugger
i Debugger Settings
Processar: |DSF'EEFEDE j
Factom Setings I Hewert | Import Parel... | Ewport Panel... |

OF. | Carcel | Soply |

3. Set protocol specific options:
* Always reset on download

Select this option to reset the board every time you download code to the board. If
unchecked, the board is reset only before the initial download.

Targeting DSP56F80x/DSP56F82x Controllers 59

For More Information: www.freescale.com

g |

Tutorial

Freescale Semiconductor, Inc.

CodeWarrior Development Studio for Freescale 56800/E Hybrid Controllers Tutorial

NOTE This option is not displayed if you select Simulator from the Protocol
menu.
* Breakpoint Mode

From the pull-down menu, select Software.
Initialize OMR for Program Memory

Enable OMR For Program Memory checkbox and select External memory.

4. Debug the project by using either of the following options:

From the Metrowerks CodeWarrior window, select Project > Debug.
Click the Debug button in the project window.

This command instructs the IDE to compile and link the project. An ELF file is
created in the process. ELF is the file format created by the CodeWarrior linker
for DSP56800. The ELF file contains the information required by the debugger
and prepared by the IDE. When you debug the project on DSP hardware, the
debugger displays the following message:

Resetting hardware. Please wait.

This reset step occurs automatically only once per debugging session. To reset
the boards manually, press the Reset button on your board. Next, the debugger
displays this message:

Download external memory.elf

When the download to the board is complete, the IDE displays the Program
window (external_memory .elf in sample) shown in Figure 4.17.

NOTE Source code is shown only for files that are in the project folder or

that have been added to the project in the project manager, and for
which the IDE has created debug information. You must navigate the
file system in order to locate sources that are outside the project
folder and not in the project manager, such as library source files.

60

Targeting DSP56F80x/DSP56F82x Controllers

For More Information: www.freescale.com

g |

Freescale Semiconductor, Inc.

Tutorial
CodeWarrior Development Studio for Freescale 56800/E Hybrid Controllers Tutorial

Figure 4.17 Program Window

Kill Step Over

Step Into
Step Out

Break

Run

i-exrt-rne'_menor .elf o] 4|

R E x THOOER

IEStack] @ Yariables: Al | Walue | Location =]

init_M56805_ A1 ||&- an O=3221 Ox3221 =

| 5165 s

i 55 $MRE
=i =l

-

Source: Ty projects_foldersamplemain o B
A prototypes ==
vold swap (int #a, int #b);
void print_arrayi{int arr[]. int length):
int main{wvoid) b

-8
- int arr[SIZE] = {4.6.7.1.2.3.4,12.4,5}:
Y 1.0
printf("\n\n\n======================================\n")
printf{" Are vou ready to be a DSP Warrior?-n");
printf("======================================"n"n"):
i 4 3
34| Line 24 Col1l | Source SR | | Y

5. Navigate through your code.

The Program window has three panes:
e Stack pane
The Stack pane shows the function calling stack.
¢ Variables pane
The Variables pane displays local variables.
® Source pane

The Source panel displays source or assembly code.

Targeting DSP56F80x/DSP56F82x Controllers

For More Information: www.freescale.com

61

g |

Freescale Semiconductor, Inc.

Tutorial
CodeWarrior Development Studio for Freescale 56800/E Hybrid Controllers Tutorial

The toolbar at the top of the Program window has buttons that allows you access
to the execution commands in the Debug menu.

6. Set breakpoints.

a. Scroll through the code in the Source pane of the Program window until you
come across the main () function.

b. Click the gray dash in the far left-hand column of the window, next to the first
line of code in the main () function. A red dot appears (Figure 4.18),
confirming you have set your breakpoint.

Figure 4.18 Breakpoint in the Program Window

i mexternal_memory.elf i | | |5|
nE x 0aOIEEE
IEStack] @ Y ariables: Al | alue | Location =]
init_M5E505_ A1 ||&- an O=3221 0=3221 =
| 5185 ¥R
i 55 $MRE
-
Source: Cvmy projects Folderszampletmain o =]
S prototvpes =
vold =swap (int #a, int #*b):
void print_arrayi{int arr[]. int length):
Bre'r_,lkpoint int main(wvoid) b
Setting —®te &
- int arr[SIZE] = {4.6.7.1.2.3.4.12,.4.5};
Iht 1..3%
printf("\n\n\n====================s==s==s==s==s=s===s======3p"};
printf{" Are you ready to be a DSEP Warrior?-n"):
Printf("=s============z=======================\p'n");
34| Line 24 Col1l | Source SR | 3 7

NOTE To remove the breakpoint, click the red dot. The red dot disappears.

62 Targeting DSP56F80x/DSP56F82x Controllers

For More Information: www.freescale.com

Freescale Semiconductor, Inc.

Tutorial
CodeWarrior Development Studio for Freescale 56800/E Hybrid Controllers Tutorial

7. View and edit register values.

8. Registers are platform-specific. Different chip architectures have different
registers.

a. From the menu bar of the Metrowerks CodeWarrior window, select
View > Registers.

Expand the General Purpose Registers tree control to view the registers as in
Figure 4.19, or double-click on General Purpose Registers to view the registers
as in Figure 4.20.

Figure 4.19 General Purpose Registers for DSP56800

(=[]
R Begister | W alue
[i56800 Simulator =
H- external_memory.elf
- _
- General Furpose RegQisters
S Ox0000000000
- A0 Ox0000
- Al Ox0000
- A2 000
- B Ox0000000000
- BO Ox0000
- Bl Ox0000
- B2 000
- X0 Ox0000 b
S Ox00000000
- 0 Ox0000
-l Ox0000
- RO Ox0000
- R1 Ox221E
- R2 Oxz2002
- R32 Oxz2002
- N Ox0000
- MOl 0OxFFFF
- 5P 0x221E
- PC Ox00s0 ;l
- IPR Ox0000 v
Targeting DSP56F80x/DSP56F82x Controllers 63

For More Information: www.freescale.com

Freescale Semiconductor, Inc.

Tutorial
CodeWarrior Development Studio for Freescale 56800/E Hybrid Controllers Tutorial

Figure 4.20 General Purpose Registers Window

_Bix
external_memary.elf []

A 00000000000 OMR. 0=0103 ;I
Al Q0000 HwsS O=0000
Al Q0000 LZ O=0001
A2 nsquln] LA O=<01&0
E Q0000000000 PCRO Qx0000
EO Q=000 FCR1 O=<0z200
Bl Ox0000 MRO Ox0000
=3 000 MR1 Ox0000
=0 O=0000 MRz Ox0000
A Q00000000 MRZ Ox0000
0 Q0000 MR4 00000
L Qoooo MRS Ox0000
RO Q=000 MRE& O=0000
R1 Ox221B MRF Ox0000
Rz Oxz002 MRE 0Ox0000
F3 Oxz2002 MRS 0Ox0000
N O=0000 MR10 Ox0000
MOl OxFFFF MR11 00000
SP Ox<221E MR1z 00000
P Ox0o0s0 MR.1Z Ox0000
IFR <0000 MR.14 O=0000
BCR w0000 MR1E Ox321E

5R Ox0114
’j
v

b. To edit values in the register window, double-click a register value. Change
the value as you wish.

9. View Data X:Memory.
All variables reside at a specific memory address determined at runtime.

a. To view the memory address range of a variable, select Data > View Memory
from the menu bar of the Metrowerks CodeWarrior window.

TIP If Data > View Memory is greyed out, make sure that you have
the Program window as the highlighted window and that you
either have the cursor in the Source pane or have a function
selected in the Stack pane.

The Memory window appears (Figure 4.21).

b. Locate the Page list box at the bottom of the View Memory window. Select X
Memory from the Page list box.

64 Targeting DSP56F80x/DSP56F82x Controllers

For More Information: www.freescale.com

Freescale Semiconductor, Inc.

Tutorial
CodeWarrior Development Studio for Freescale 56800/E Hybrid Controllers Tutorial

Figure 4.21 View X:Memory Window

i mexrternal_memory.elf Memory 1 10 =l

Display: 02000 View:lHaw data j
H Address Hex: 00001C04:00002C04 A
40002000 4C10 0000 0400 0500 0700 L - A
00002006 | (0100 0200 0300 0400 0200 0400 .. |

oooozaoc 0500 0AD0 0ADD 0AQD 3000 3000 e e e = =
oooozolz 3000 3000 3000 3000 3000 3000 = = = = = =
00002015 3000 3000 3000 3000 3000 3000 = = = = = =
0000z 01E 2000 2000 2000 2000 2000 2000 = = = = = =
oooozoz4 2000 2000 2000 2000 2000 2000 = = = = = =
oooozozA | (2000 2000 2000 2000 2000 2000 = = = = = =

oooozaozo 2000 2000 2000 2000 2000 2000 = = = = = = -
o0o0z03é 0ADD 0000 2000 2000 4100 7200 L &
o0o0z03c &E00 2000 7200 &FO0 7500 2000 [¥ ooou
oooozo42 F200 6E00 @100 400 7300 2000 r a d vy
ooo0z048 7400 GF00 2000 6200 6500 2000 t b e

o000z 04E &100 2000 4400 5200 5000 2000 a oD = P -
oooozas4 EFO0 &100 7200 7200 e300 &FO0 W a r r i o v

Word Size:l‘l 5 vI FPage: |><: kemory vl 4

10. Enter the memory address in the Display field.

Enter a hexadecimal address in standard C hex notation, for example, 0x100.
The window displays the contents of X: memory.

If you are using the EVM hardware, type the address, 0x2000 in the Display text
field and press Enter. You see the memory starting at that location. This is the
beginning of the . data section. The memory address location for . data section
(or any other section) are set through a combination of the Memory Segment and
Sections Segment of the linker command file. Note that you see both the
hexadecimal and ASCII values for X: memory. The contents of this window are
editable as well.

11. View Program P:Memory.

a. To view the memory address range of a variable, select Data > View Memory
from the menu bar of the Metrowerks CodeWarrior window.

TIP If Data > View Memory is greyed out, make sure that you have
the Program window as the highlighted window and that you

Targeting DSP56F80x/DSP56F82x Controllers 65

For More Information: www.freescale.com

Freescale Semiconductor, Inc.

Tutorial
CodeWarrior Development Studio for Freescale 56800/E Hybrid Controllers Tutorial

either have the cursor in the Source pane or have a function
selected in the Stack pane.

The Memory window appears (Figure 4.22).

b. Locate the Page list box at the bottom of the View Memory. Select P Memory
from the Page list box.

c. Using the View list box, you have the option to view four types of P:Memory:
e Raw Data
¢ Disassembly
* Source
¢ Mixed
d. Enter the memory address in the Display field.
Enter a hexadecimal address in standard C hex notation, for example, 0x1000.

Figure 4.22 shows Raw Data.

Figure 4.22 View P:Memory Window

{ gexternal_memory.elf Memory 1 - | EI|_|

*

Display: |0x1000 View:'Flaw data j
H &ddress N Hex: 00000CO4:00001C04 R &z
00001000 | [F4FF 3944 39EE S5AZ 3ABD 3842 -8 3 U g A
00001006 | (3890 FOBE 84E2 &70F 1FFA 40ED g 2@ a
0000100C | [82B0 F990 FSBO 145E D2AT FOAS .
00001012 | (1400 FOBA 40ED 82B1 FOED 5174 - .oa q
00001018 | [FR90 FOBE 1447 FREO 3164 3990 - - s 18
0OO0L01E | (3000 0349 3568 BE4A 1400 3944 oo o8]
00001024 | [39BE 7A8z FOBA FREL S3B0 4364 sz C
00001024 | (8291 FOBS 8781 OBE7 FEE4 CEFO .
00001030 | [FAFF 0074 FESE CEDO FAFF FEES %|
Oo0nd 03 o1 Al OQon SO A000 (=Tl el ¥
Wwiord Size; |1 g vI Page.lF’ b erniany 'I 4
12. Run the debugger.
Use either of the following options:
a. Select Project > Run.
66 Targeting DSP56F80x/DSP56F82x Controllers

For More Information: www.freescale.com

Freescale Semiconductor, Inc.

Tutorial
CodeWarrior Development Studio for Freescale 56800/E Hybrid Controllers Tutorial

b. Click the Run icon in the toolbar of the Program window.

In this simple example, the debugger will halt at a debug instruction after printing
out messages to the console window. This debug instruction is the portion of the
startup code which handles the program’s exit.

13. Quit the application.

From the menu bar of the Metrowerks CodeWarrior window, select Debug > Kill.
This stops the code execution and quits debugging.

Use either of the following options:
a. Select Debug > Kill
b. Click the Kill icon in the toolbar of the Program window.

This will stop code execution and close the Program window if the project is
running. In this case, it will simply close the Program window, as we are
currently halted.

References

You have completed the tutorial and used the basic elements of the CodeWarrior
Development Studio for Freescale 56800/E Hybrid Controllers.

Refer to the IDE User Guide to learn more about the features available to you.

Targeting DSP56F80x/DSP56F82x Controllers 67

For More Information: www.freescale.com

Freescale Semiconductor, Inc.

Tutorial
CodeWarrior Development Studio for Freescale 56800/E Hybrid Controllers Tutorial

68 Targeting DSP56F80x/DSP56F82x Controllers

For More Information: www.freescale.com

Freescale Semiconductor, Inc.

Target Settings

Each build target in a CodeWarrior™ project has its own settings. This chapter
explains the target settings panels for DSP56800 software development. The settings
that you select affect the DSP56800 compiler, linker, assembler, and debugger.

This chapter contains the following sections:
» Target Settings Overview
* CodeWarrior IDE Target Settings Panels
¢ DSP56800-Specific Target Settings Panels

Target Settings Overview

The target settings control:
¢ Compiler options
¢ Linker options
¢ Assembler options
* Debugger options
* Error and warning messages

When you create a project using stationery, the build targets, which are part of the
stationery, already include default target settings. You can use those default target
settings (if the settings are appropriate), or you can change them.

NOTE Use the DSP56800 project stationery when you create a new project.

Target Setting Panels

Table 5.1 lists the target settings panels:

* Links identify the panels specific to DSP56800 projects. Click the link to go to
the explanation of that panel.

Targeting DSP56F80x/DSP56F82x Controllers 69

For More Information: www.freescale.com

Freescale Semiconductor, Inc.

Target Settings
Target Settings Overview

* The Use column explains the purpose of generic IDE panels that also can apply to
DSP56800 projects. For explanations of these panels, see the IDE User Guide.

Table 5.1 Target Setting Panels

Group Panel Name Use
Target Target Settings
Access Paths Selects the paths that the IDE

searches to find files of your project.
Types include absolute and project-
relative.

Build Extras Sets options for building a project,
including using a third-party debugger.

File Mappings Associates a filename extension, such
as .c, with a plug-in compiler.

Source Trees Defines project -specific source trees
(root paths) for your project.

M56800 Target

Language Settings C/C++ Language (C only)

C/C++ Preprocessor

C/C++ Warnings

M56800 Assembler

Code Generation ELF Disassembler

M56800 Processor

Global Optimization Configures how the compiler
optimizes code.
Linker M56800 Linker
Editor Custom Keywords Changes colors for different types of
text.
Debugger Debugger Settings Specifies settings for the CodeWarrior
- debugger.
Remote Debugging
M56800 Target
(Debugging)
Remote Debug Options
70 Targeting DSP56F80x/DSP56F82x Controllers

For More Information: www.freescale.com

Freescale Semiconductor, Inc.

Target Settings
Target Settings Overview

Changing Target Settings
To change target settings:
1. Select Edit > Target Name Settings.

Target is the name of the current build target in the CodeWarrior project.

After you select this menu item, the CodeWarrior IDE displays the Target Settings
window (Figure 5.1).

Figure 5.1 Target Settings Window

@ external memory Settings llll

B Target Settings Panels B Target Settings

= Tanget -
N T arget Settings Target Mame: |simulatol

o Access Paths ; -

. Build Exiras Linker {MSGE00 Linker

- File Mappings Pre-linker:anne

- Source Trees ;

. M5EE00 T arget F'u:ust-llnker:lNune

[=- Language Settings Output Directon:

- CAC++ Language Chooze... |

o CAC++ Preprocessar [{Projectioutput
v CAC++ Warnings ﬂl
- MBEE00 Assembler
= Code Generation]
- ELF Dizassembler
- MBEE00 Processor
- Global Dptimizations
= Linker
“o MBE200 Linker |

Ledla] e

™ Save project entries using relative paths

Factory Settings Rewvert Import Panel... | Export Panel... |

0k Cancel | Apply |

The left side of the Target Settings window contains a list of target settings panels
that apply to the current build target.

2. To view the Target Settings panel:

Click on the name of the Target Settings panel in the Target Settings panels list on
the left side of the Target Settings window.

The CodeWarrior IDE displays the target settings panel that you selected.

Targeting DSP56F80x/DSP56F82x Controllers 71

For More Information: www.freescale.com

Freescale Semiconductor, Inc.

Target Settings
Target Settings Overview

3. Change the settings in the panel.
4. Click OK.

Exporting and Importing Panel Options to
XML Files

The CodeWarrior IDE can export options for the current settings panel to an
Extensible Markup Language (XML) file or import options for the current settings
panel from a previously saved XML file.

Exporting Panel Options to XML File

1. Click the Export Panel button.

2. Assign a name to the XML file and save the file in the desired location.

Importing Panel Options from XML File

1. Click the Import Panel button.
2. Locate the XML file to where you saved the options for the current settings panel.

3. Open the file to import the options.

Saving New Target Settings in Stationery

To create stationery files with new target settings:

1. Create your new project from an existing stationery.

2. Change the target settings in your new project for any or all of the build targets in
the project.

3. Save the new project in the Stationery folder.

Restoring Target Settings

After you change settings in an existing project, you can restore the previous settings
by using any of the following methods:

72

Targeting DSP56F80x/DSP56F82x Controllers

For More Information: www.freescale.com

Freescale Semiconductor, Inc.

Target Settings
CodeWarrior IDE Target Settings Panels

* Torestore the previous settings, click Revert at the bottom of the Target Settings
window.

» To restore the settings to the factory defaults, click Factory Settings at the bottom
of the window.

CodeWarrior IDE Target Settings Panels

Table 5.2 lists and explains the CodeWarrior IDE target settings panels that can apply
to DSP56800.

Table 5.2 Code Warrior IDE Target Settings Panels

Target Settings Description
Panels
Access Paths Use this panel to select the paths that the

CodeWarrior IDE searches to find files in your project.
You can add several kinds of paths including absolute
and project-relative.

See IDE User Guide.

Build Extras Use this panel to set options that affect the way the
CodeWarrior IDE builds a project, including the use of a
third-party debugger.

See IDE User Guide.

File Mappings Use this panel to associate a file name extension, such
as.c, with a plug-in compiler.
See IDE User Guide.

Source Trees Use this panel to define project-specific source trees
(root paths) for use in your projects.
See IDE User Guide.

Custom Keywords Use this panel to change the colors that the
CodeWarrior IDE uses for different types of text.
See IDE User Guide.

Global Optimizations Use this panel to configure how the compiler optimizes
the object code.
See IDE User Guide.

Debugger Settings Use this panel to specify settings for the CodeWarrior
debugger.
Targeting DSP56F80x/DSP56F82x Controllers 73

For More Information: www.freescale.com

Freescale Semiconductor, Inc.

Target Settings
DSP56800-Specific Target Settings Panels

DSP56800-Specific Target Settings
Panels

This section explains individual settings on DSP56800-specific target settings panels.

Target Settings

The Target Settings panel (Figure 5.2), lets you set the name of your build target, as
well as the linker and post-linker plug-ins to be used with the build target. By selecting
a linker, you are specifying which family of processors to use. The other available
panels in the Target Settings window change to reflect your choice.

Because the linker choice affects the visibility of other related panels, you must first

set your build target before you can specify other options, like compiler and linker
settings.

Figure 5.2 Target Settings Panel

H Target 5ettings

Target Hame: Isimulatnr

Linkerzgmzsssuu Linker

F're-linker:!None

Lefleflel

PDS[-“nkBII!NDne

- Dutput Directony:

Chooge... !
Clear I

!{Proiect}outpal_

[~ Save project entries using relative paths

Target Name

Use the Target Name field to set or change the name of a build target. When you use

the Targets view in the project window, you see the name entered in the Target Name
field.

74 Targeting DSP56F80x/DSP56F82x Controllers

For More Information: www.freescale.com

Freescale Semiconductor, Inc.

Target Settings
DSP56800-Specific Target Settings Panels

The name you specify here is not the name of your final output file. It is instead a
name for your personal use that you assign to the build target. You specify the name of
the final output file in the Output File Name field of the M56800 Target panel.

Linker

Select a linker from the items listed in the Linker menu.

For DSP56800 projects, you must select the M56800 Linker. The selected linker
defines the build targets. After you select a linker, only the panels appropriate for your
build target (in this case, DSP56800) are available.

Pre-Linker

Some build targets have pre-linkers that perform additional work, such as data-format
conversion, before the final executable file is built. CodeWarrior Development Studio
for Freescale 56800 does not require a pre-linker, so set the Pre-Linker menu to None.

Post-Linker

Some build targets have post-linkers that perform additional work, such as data-format
conversion, on the final executable file. CodeWarrior Development Studio for Freescale
Freescale 56800 does not require a post-linker, so set the Post-Linker menu set to

None.

Output Directory

This field shows the directory to which the IDE saves the executable file that is built
from the current project. The default output directory is the same directory in which
the project file is located. If you want to save the executable file to a different
directory, click the Choose. To erase the contents of this field, click Clear.

M56800 Target

The M56800 Target panel (Figure 5.3) instructs the compiler and linker about the
environment in which they are working, such as available memory and stack size. This
panel is only available when the current build target uses the M56800 Linker.

Targeting DSP56F80x/DSP56F82x Controllers 75

For More Information: www.freescale.com

Freescale Semiconductor, Inc.

Target Settings
DSP56800-Specific Target Settings Panels

Figure 5.3 M56800 Target Panel

@external memory Settings) ﬂi‘

= Linker

N Target Settings Panels § MSEE00 Target
= Target -] _ —
- Target Settings Froject T_l,lpe:l.-’-‘«pplm:atlon _vJ
Ac.c:ess Pathz Application
- Build Extras ;
-~ File Mappings Outpt File Hame Ienternal_memnry.elf

- Source Trees

o 4 SEB00 T arget
= Language Settings
-« C/C++ Language
- CAC++ Preprocessor
- CAC++ Warnings
- MBEB00 dssembler
= Code Generation -
- ELF Dizazsembler
- MBEB00 Processor
- [dlnbal Optimizations

S MEESODLinker |

Factor Sethings Hesert Import Parel... | Ewport Panel... |

OF. | Carcel | Apply |

The items in the M56800 Target panel are:

Project Type

The Project Type menu determines the kind of project you are creating. The available
project types are Application and Library.

Use this menu to select the project type that reflects the kind of project you are
building (Figure 5.3).

Output File Name

The Output File Name field specifies the name of the executable file or library to
create. This file is also used by the Code Warrior debugger. By convention, application
names must end with the extension “. e1£” (without the quotes), and library names
must end with the extension “.1ib” (without the quotes).

76

Targeting DSP56F80x/DSP56F82x Controllers

For More Information: www.freescale.com

g |

Freescale Semiconductor, Inc.

Target Settings
DSP56800-Specific Target Settings Panels

NOTE When building a library, ensure that you use the extension “. 1ib,”
as this is the default file-mapping entry for libraries.

If you wish to change an extension, you must add a file-mapping entry in the File
Mappings settings panel.

C/C++ Language (C only)

Use the C/C++ Language (C Only) panel (Figure 5.4) to specify C language features.
Table 5.3 explains the elements of this panel that apply to the processor, which
supports only the C language.

Figure 5.4 C/C++ Language Panel (C only)

B C/C++ Language [C anly]

I™ | Eorce C++ Compilation [~ &MSI Strict

[T |50 G++ Template Parser [T &NSI Keywords Only

I~ | Wze Instance Manager [Expand Trigraphs

I" | Enable C++ Exceptions " Lenacy for-scoping

I Ensblz BT ¥ Flequire Function Prototypes

I" | Enable bool Support
I” Enable wehar,_ b Support
[T EC++ Compatibility bads

[" | Enable £33 Extensions
" Enable GEE Extensions

P4 Qff - [Enums Always Int
Inline Depth:m [Use Unsigned Chars
[~ Auto-lrline [Pool Stings
[~ Bottarm-up Inlining ¥ Feuse Stings
Targeting DSP56F80x/DSP56F82x Controllers 77

For More Information: www.freescale.com

Target Settings

Freescale Semiconductor, Inc.

DSP56800-Specific Target Settings Panels

NOTE

Always disable the following optionw, which do not apply to the
DSP56800 compiler: Legacy for-scoping and Pool Strings

Table 5.3 C/C++ Language (C Only) Panel Elements

Element

Purpose

Comments

IPA list box

Specifies Interprocedural Analysis (IPA):
Off — IPA is disabled

File — inlining is deferred to the end of the
file processing

Inline Depth list
box

Together with the ANSI Keyword Only
checkbox, specifies whether to inline
functions:

Don’t Inline — do not inline any

Smart — inline small functions to a depth of
2to4

1 to 8 — Always inline functions to the
number’s depth

Always inline — inline all functions,
regardless of depth

If you call an inline function, the
compiler inserts the function code,
instead of issuing calling instructions.
Inline functions execute faster, as
there is no call. But overall code may
be larger if function code is repeated
in several places.

Auto-Inline Checked — Compiler selects the functions | To check whether automatic inlining
checkbox to inline is in effect, use the
Clear — Compiler does not select functions | __option(auto_inline) command.
for inlining
Bottom-up Checked — For a chain of function calls, To check whether bottom-up inlining
Inlining the compiler begins inlining with the last is in effect, use the
checkbox function. __option(inline_bottom_up)
Clear — Compiler does not do bottom-up command.
inlining.
ANSI Strict Checked — Disables CodeWarrior compiler | Extensions are C++-style comments,
checkbox extensions to C unnamed arguments in function
Clear — Permits CodeWarrior compiler definitions, # not and argument in
extensions to C macros, identifier after #endif,
typecasted pointers as Ivalues,
converting pointers to same-size
types, arrays of zero length in
structures, and the D constant suffix.
To check whether ANSI strictness is
in effect, use the
__option(ANSI_strict) command.
78 Targeting DSP56F80x/DSP56F82x Controllers

For More Information: www.freescale.com

Freescale Semiconductor, Inc.

Target Settings
DSP56800-Specific Target Settings Panels

Table 5.3 C/C++ Language (C Only) Panel Elements (continued)

Element

Purpose

Comments

ANSI Keywords

Checked — Does not permit additional

Additional keywords are asm (use the

characters, per strict ANSI/ISO standards.

Only checkbox keywords of CodeWarrior C. compiler built-in assembler) and
Clear — Does permit additional keywords. | inline (lets you declare a C function to
be inline).
To check whether this keyword
restriction is in effect, use the
__option(only_std_keywords)
command.
Expand Checked — C Compiler ignores trigraph Many common character constants
Trigraphs characters. resemble trigraph sequences,
checkbox Clear — C Compiler does not allow trigraph | especially on the Mac OS. This

extension lets you use these
constants without including escape
characters.

NOTE: If this option is on, be careful
about initializing strings or multi-
character constants that include
question marks.

To check whether this option is on.
use the __option(trigraphs)
command.

Require Function
Prototypes
checkbox

Checked — Compiler does not allow
functions that do not have prototypes.
Clear — Compiler allows functions without
prototypes.

This option helps prevent errors from
calling a function before its
declaration or definition.

To check whether this option is in
effect, use the
__option(require_prototypes)
command.

Enums Always
Int checkbox

Checked — Restricts all enumerators to the
size of a singed int.

Clear — Compiler converts unsigned int
enumerators to signed int, then chooses an
accommodating data type, char to long int.

To check whether this restriction is in
effect, use the
__option(enumalwasysint) command.

Targeting DSP56F80x/DSP56F82x Controllers

79

For More Information: www.freescale.com

Freescale Semiconductor, Inc.

Target Settings
DSP56800-Specific Target Settings Panels

Table 5.3 C/C++ Language (C Only) Panel Elements (continued)

Element Purpose Comments

Use Unsigned Checked — Compiler treats a char Some libraries were compiled without

Chars checkbox | declaration as an unsigned char this option. Selecting this option may
declaration. make your code incompatible with
Clear — Compiler treats char and unsigned | such libraries.
char declarations differently. To check whether this option is in

effect, use the
__option(unsigned_char) command.

Reuse Strings Checked — Compiler stores only one copy | If you select this option, changing one
checkbox of identical string literals, saving memory of the strings affects them all.
space.

Clear — Compiler stores each string literal.

C/C++ Preprocessor

The C/C++ Preprocessor (Figure 5.5) panel controls how the preprocessor interprets
source code. By modifying the settings on this panel, you can control how the
preprocessor translates source code into preprocessed code.

More specifically, the C/C++ Preprocessor panel provides an editable text field that
can be used to #define macros, set #pragmas, or #include prefix files.

Figure 5.5 The C/C++ Preprocessor Panel

H C/C++ Preprocessar

Prefis Text

Source encoding: |ASCI - [Use prefis text in precompiled headers

Preproceszing O ptions

v Emit file changes I Show full paths [Use Hline
v Emit #pragmas | Keep comments I Keep whitespace
80 Targeting DSP56F80x/DSP56F82x Controllers

For More Information: www.freescale.com

Freescale Semiconductor, Inc.

Target Settings
DSP56800-Specific Target Settings Panels

Table 5.4 provides information about the options in this panel.

Table 5.4 C/C++ Language Preprocessor Elements

Element

Purpose

Comments

Source encoding

Allows you to specify the default encoding
of source files. Multibyte and Unicode
source text is supported.

To replicate the obsolete option
“Multi-Byte Aware”, set this option to
System or Autodetect. Additionally,
options that affect the
"preprocessing" request appear in
this panel.

Use prefix text in
precompiled
header

Controls whether a *.pch or *.pch++ file
incorporates the prefix text into itself.

This option defaults to “off” to
correspond with previous versions of
the compiler that ignore the prefix file
when building precompiled headers.
If any #pragmas are imported from
old C/C++ Language (C Only) Panel
settings, this option is set to “on”.

Emit file changes

Controls whether notification of file changes
(or #line changes) appear in the output.

Emit #pragmas

Controls whether #pragmas encountered in
the source text appear in the preprocessor
output.

This option is essential for producing
reproducible test cases for bug
reports.

Show full paths

Controls whether file changes show the full
path or the base filename of the file.

Keep comments

Controls whether comments are emitted in
the output.

Use #line

Controls whether file changes appear in
comments (as before) or in #line directives.

Keep whitespace

Controls whether whitespace is stripped out
or copied into the output.

This is useful for keeping the starting
column aligned with the original
source, though we attempt to
preserve space within the line. This
doesn’t apply when macros are
expanded.

C/C++ Warnings

Use the C/C++ Warnings panel (Figure 5.6) to specify C language features for the
DSP56800. Table 5.5 explains the elements of this panel.

Targeting DSP56F80x/DSP56F82x Controllers

81

For More Information: www.freescale.com

g |

Freescale Semiconductor, Inc.

Target Settings
DSP56800-Specific Target Settings Panels

NOTE The CodeWarrior compiler for DSP56800 does not support C++.

Figure 5.6 C/C++ Warnings Panel

H C/C++ "W amings

- Diagnastics Enablz &l | Disabledll |
¥ lllegal Pragras — Partability
¥ Possible Ermors ¥ Extra Commas
¥ Estended Eror Checking ¥ Inconsistent 'class' / 'struct’ Usages
™ Hidden ¥irtual Functions V¥ Empty Declarations
[Implicit Arithmetic Conversions [Include File Capitalization
™| Eloat Tiodnteger [T Check Spstem Ineludes =
[~ Sigred # nsigned [Pad Bytes Added *
™! Integer Ta Finat [~ Undefined Macra In #if #
[Paointer/Integral Conversions i imieatind
I™ Unused Variables ¥ Morrlrlined Function: *
[Unused Arguments
™ Missing retur’ Statements [Treat AllWWarnings &s Errors
[Expression Has Mo Side Effect * Mote: likely bo generate many spurnious
warnings!
82 Targeting DSP56F80x/DSP56F82x Controllers

For More Information: www.freescale.com

Freescale Semiconductor, Inc.

Target Settings

DSP56800-Specific Target Settings Panels

Table 5.5 C/C++ Warnings Panel Elements

Element

Purpose

Comments

lllegal Pragmas
checkbox

Checked — Compiler issues warnings
about invalid pragma statements.
Clear — Compiler does not issue such
warnings.

According to this option, the invalid
statement #pragma near_data off
would prompt the compiler response
WARNING: near data is not a
pragma.

To check whether this option is in
effect, use the
__option(warn_illpragma) command.

Possible Errors
checkbox

Checked — Compiler checks for common
typing mistakes, such as == for =.

Clear — Compiler does not perform such
checks.

If this option is in effect, any of these
conditions triggers a warning: an
assignment in a logical expression;
an assignment in a while, if, or for
expression; an equal comparison in a
statement that contains a single
expression; a semicolon immediately
after a while, if, or for statement.

To check whether this option is in
effect, use the
__option(warn_possunwant)
command.

Extended Error

Checked — Compiler issues warnings in

Syntax problems are: a non-void

checks.

Checking response to specific syntax problems. function without a return statement,
checkbox Clear — Compiler does not perform such an integer or floating-point value
checks. assigned to an enum type, or an

empty return statement in a function
not declared void.
To check whether this option is in
effect, use the
__option(extended_errorcheck)
command.

Hidden Virtual Leave clear. Does not apply to C.

Functions

Implicit Checked — Compiler verifies that operation | If this option is in effect, the compiler

Arithmetic destinations are large enough to hold all would issue a warning in response to

Conversions possible results. assigning a long value to a char

checkbox Clear — Compiler does not perform such variable.

To check whether this option is in
effect, use the
__option(warn_implicitconv)
command.

Targeting DSP56F80x/DSP56F82x Controllers

83

For More Information: www.freescale.com

Freescale Semiconductor, Inc.

Target Settings
DSP56800-Specific Target Settings Panels

Table 5.5 C/C++ Warnings Panel Elements (continued)

Element

Purpose

Comments

Pointer/Integral
Conversions

Checked — Compiler checks for pointer/
integral conversions.

Clear — Compiler does not perform such
checks.

See #pragma warn_any_ptr_int_conv
and #pragma warn_ptr_int_conv.

Unused Checked — Compiler checks for declared, | The pragma unused overrides this

Variables but unused, variables. option.

checkbox Clear — Compiler does not perform such To check whether this option is in

checks. effect, use the

__option(warn_unusedvar)
command.

Unused Checked — Compiler checks for declared, | The pragma unused overrides this

Arguments but unused, arguments. option.

checkbox Clear — Compiler does not perform such Another way to override this option is

checks.

clearing the ANSI Strict checkbox of
the C/C++ Language (C Only) panel,
then not assigning a name to the
unused argument.

To check whether this option is in
effect, use the
__option(warn_unusedarg)
command.

Missing ‘return’
Statements

Checked — Compiler checks for missing
‘return’ statements.

Clear — Compiler does not perform such
checks.

See #pragma warn_missingreturn.

Expression Has
No Side Effect

Checked — Compiler issues warning if
expression has no side effect.

Clear — Compiler does not perform such
checks.

See #pragma warn_no_side_effect.

Extra Commas
checkbox

Checked — Compiler checks for extra
commas in enums.

Clear — Compiler does not perform such
checks.

To check whether this option is in
effect, use the
__option(warn_extracomma)
command.

Inconsistent Use | Leave clear. Does not apply to C.
of ‘class’ and
‘struct’ Keywords
checkbox
84 Targeting DSP56F80x/DSP56F82x Controllers

For More Information: www.freescale.com

Freescale Semiconductor, Inc.

Target Settings

DSP56800-Specific Target Settings Panels

Table 5.5 C/C++ Warnings Panel Elements (continued)

Capitialization

include file capitialization.
Clear — Compiler does not perform such
checks.

Element Purpose Comments

Empty Checked — Compiler issues warnings According to this option, the

Declarations about declarations without variable names. | incomplete declaration int ; would

checkbox Clear — Compiler does not issue such prompt the compiler response

warnings. WARNING.

To check whether this option is in
effect, use the
__option(warn_emptydecl)
command.

Include File Checked — Compiler issues warning about | See #pragma warn_filenamecaps.

Pad Bytes
Added

Checked — Compiler checks for pad bytes
added.

Clear — Compiler does not perform such
checks.

See #pragma warn_padding.

Undefined Macro
In #if

Checked — Compiler checks for undefined
macro in #if.

Clear — Compiler does not perform such
checks.

See #pragma warn_undefmacro.

Errors checkbox

Clear — System keeps warnings and error
messages distinct.

Non-Inlined Checked — Compiler issues a warning if To check whether this option is in

Functions unable to inline a function. effect, use the

checkbox Clear — Compiler does not issue such __option(warn_notinlined) command.
warnings.

Treat All Checked — System displays warnings as

Warnings As error messages.

M56800 Assembler

The M56800 Assembler panel (Figure 5.7) determines the format used for the assembly
source files and the code generated by the DSP56800 assembler.

Targeting DSP56F80x/DSP56F82x Controllers

85

For More Information: www.freescale.com

Freescale Semiconductor, Inc.

Target Settings
DSP56800-Specific Target Settings Panels

Figure 5.7 M56800 Assembler Settings Panel

H M5E200 A ssembler

¥ Case Sensitive |dentifiers
[Generate Listing File
v Detects pipeline enor for delays to M register loads

Fiefix File :

The items in this panel are:

Case Sensitive Identifiers

When this option is enabled, the assembler distinguishes lowercase characters from
uppercase characters for symbols. For example, the identifier £ 1ag is the not the same
as Flag when the option is enabled.

NOTE This option must be enabled when mixing assembler and C code.

Generate Listing File

The Generate Listing File option determines whether or not a listing file is generated
when the CodeWarrior IDE assembles the source files in the project. The assembler
creates a listing file that contains file source along with line numbers, relocation

86 Targeting DSP56F80x/DSP56F82x Controllers

For More Information: www.freescale.com

Freescale Semiconductor, Inc.

Target Settings
DSP56800-Specific Target Settings Panels

information, and macro expansions when the option is enabled. When the option is
disabled, the assembler does not generate the listing file.

When a listing file is output, the file is created in the same directory as the assembly
file it is listing with a . 1st extension appended to the end of the file name.

Detects pipeline errors for delays to N register loads

Checking this option enables the assembler to generate error messages.

In the following instruction: [move X: (Rn+offset) ,N], Nis notavailable in the
instruction following immediately. This option allows the assembler to flag error for
pipeline dependencies.

Prefix File

The Prefix File field contains the name of a file to be included automatically at the
beginning of every assembly file in the project. This field lets you include common
definitions without using an include directive in every file.

ELF Disassembler

The ELF Disassembler panel (Figure 5.8) appears when you disassemble object files.
To view the disassembly of a module, select Project > Disassemble.

Targeting DSP56F80x/DSP56F82x Controllers 87

For More Information: www.freescale.com

Target Settings

Freescale Semiconductor, Inc.

DSP56800-Specific Target Settings Panels

Figure 5.8 ELF Disassembler Panel

N ELF Dizassembler

¥ Show Headers ™ wverbose Info
¥ Show Symbal and String T ables ¥ Show Relocations
— W Show Code Modules -
¥ Usze Extended Mremonics ¥ Show Source Code
V¥ Show Addresses and Object Code V¥ Show Comments

— Show Data Modules

™ Dizaszemble Exception Tables

[Show Debug Info

The ELF Disassembler panel options are:

Show Headers

The Show Headers option determines whether the assembled file lists any ELF
header information in the disassembled output.

Show Symbol and String Tables

The Show Symbol and String Tables option determines whether the disassembler
lists the symbol and string table for the disassembled module.

Verbose Info

The Verbose Info option instructs the disassembler to show additional
information in the ELF file. For the . symtab section, some of the descriptive
constants are shown with their numeric equivalents. The sections . 1ine and

. debug are shown with an unstructured hex dump.

Show Relocations

The Show Relocations option shows relocation information for the corresponding
text (.rela.text)ordata (.rela.data) section.

Show Code Modules

The Show Code Modules option determines whether the disassembler outputs the
ELF code sections for the disassembled module.

88

Targeting DSP56F80x/DSP56F82x Controllers

For More Information: www.freescale.com

Freescale Semiconductor, Inc.

Target Settings
DSP56800-Specific Target Settings Panels

If enabled, the Use Extended Mnemonics, Show Source Code, Show Addresses
and Object Code, and Show Comments options become available.

— Use Extended Mnemonics

The Use Extended Mnemonics option determines whether the disassembler
lists the extended mnemonics for each instruction of the disassembled
module.

This option is available only if the Show Code Modules option is enabled.
— Show Addresses and Object Code

The Show Addresses and Object Code option determines whether the
disassembler lists the address and object code for the disassembled module.

This option is available only if the Show Code Modules option is enabled.
— Show Source Code

The Show Source Code option determines whether the disassembler lists the
source code for the current module. Source code is displayed in mixed mode
with line number information from the original C source.

This option is available only if the Show Code Modules option is enabled.
— Show Comments

The Show Comments option displays comments produced by the
disassembler, in sections where comment columns are provided.

This option is available only if the Show Code Modules option is enabled.
* Show Data Modules

The Show Data Modules option determines whether or not the disassembler
outputs any ELF data sections (such as .data and . bss) for the disassembled
module.

— Disassemble Exception Tables

The Disassemble Exception Tables option determines whether or not the
disassembler outputs any C++ exception tables for the disassembled module.

This option is available when you select Show Data Modules.

NOTE Disassemble Exception Tables iS not available for DSP56800, since it
does not support C++.

* Show Debug Info

The Show Debug Info option directs the disassembler to include DWARF symbol
information in the disassembled output.

Targeting DSP56F80x/DSP56F82x Controllers 89

For More Information: www.freescale.com

Freescale Semiconductor, Inc.

Target Settings
DSP56800-Specific Target Settings Panels

M56800 Processor

The M56800 Processor settings panel (Figure 5.9) determines the kind of code the
compiler creates. This panel is available only when the current build target uses the
M56800 Linker.

Figure 5.9 M56800 Processor Settings Panel

N MEEE00 Processor

[Peephole Optimization

[~ Instruction Scheduling

[&llow Rep Instructions

[~ &llow DO Instuctions

[Make Strings Feaddnly

[Create Assembly Output

W Compiler adjusts for delaved load of M register
™ “wiite constart data to rodata section

[~ Generate code for profiing

The items in this panel are:

Peephole Optimization

This option controls the use of peephole optimizations. The peephole optimizations
are small local optimizations that eliminate some compare instructions and optimize
some address register updates for more efficient sequences.

Instruction Scheduling

This option determines whether the compiler rearranges instructions to take advantage
of the M56800’s scheduling architecture. This option results in faster execution speed,
but is often difficult to debug.

90 Targeting DSP56F80x/DSP56F82x Controllers

For More Information: www.freescale.com

Freescale Semiconductor, Inc.

Target Settings
DSP56800-Specific Target Settings Panels

NOTE Instruction Scheduling can make source-level debugging difficult
because the source code might not correspond exactly to the
underlying instructions. Disable this option when debugging code.

Allow REP Instructions

This option controls REP instruction usage. Such instructions are generally more
efficient, but they prevent you from servicing any incoming interrupts inside a REP
construct. If you are using interrupts or writing a time-critical real-time application,
avoid using REP instructions.

Allow DO Instructions

This option controls the compiler’s support for the DO instruction. Since the compiler
never nests DO instructions, interrupt routines are always free to use those instructions.

Make Strings ReadOnly

This option determines whether you can specify a location to store string constants. If
this option is disabled, the compiler stores string constants in the data section of the
ELF file. If this option is enabled, the compiler stores string constants in the read-only
.rodata section.

Create Assembly Output

This option allows the compiler to produce a . asm assembler-compatible file for each
C source file in the project. The . asm file is located in the same path as the Project/
Debug file and has the same name as the .c file containing main.

For example, MyProgram. ¢ would produce the assembly output
MyProgram.asm.

Compiler adjusts for delayed load of N-registers

When N-register (offset registers) are used consecutively, this option allows the
compiler to send NOP instruction to resolve the restrictions in pipeline dependencies.

Targeting DSP56F80x/DSP56F82x Controllers 91

For More Information: www.freescale.com

Freescale Semiconductor, Inc.

Target Settings
DSP56800-Specific Target Settings Panels

Write const data to .rodata section

This option allows the compiler to write all constant data to a read-only memory
section (.rodata). You must add .rodata section in the linker command file. This option
is overridden by the use_rodata pragma.

Generate code for profiling

This option allows the compiler to generate code for profiling. For more details about
the profiler, see the “Profiler” on page 275.

M56800 Linker

The M56800 Linker panel (Figure 5.10) controls the behavior of the linker. This panel
is only available if the current build target uses the M56800 Linker.

Figure 5.10 M56800 Linker Settings Panel

§ M5E200 Linker

¥ Generate Symbolic Info [™ Dizable Deadstripping
W Store Full Path Hames ¥ Generate ELF Symbol Table
¥ Generate Link Map [Suppress Waming Messages

[~ List Urwzed Objects
[T Show Transitive Closure
[Generate S-Fecord File

[Eeciii it Max Record Length: I;_-53
nas

[T Generate Epte Addresses EDOL Character:

Entry Foirt: Finit_t56805_

Force Active Symbols:

The M56800 Linker panel options are:
¢ Generate Symbolic Info

The Generate Symbolic Info option controls whether the linker generates
debugging information. If the option is enabled, the linker generates debugging

92 Targeting DSP56F80x/DSP56F82x Controllers

For More Information: www.freescale.com

Freescale Semiconductor, Inc.

Target Settings
DSP56800-Specific Target Settings Panels

information. This information is included within the linked ELF file. This setting
does not generate a separate file.

If you select Project > Debug, the CodeWarrior IDE enables the Generate
Symbolic Info option for you.

If the Generate Symbolic Info option is not enabled, the Store Full Path Names
option is not available.

NOTE If you decide to disable the Generate Symbolic Info option, you cannot
debug your project using the CodeWarrior debugger. For this reason,
the compiler enables this option by default.

— Store Full Path Names

The Store Full Path Names option controls how the linker includes path
information for source files when generating debugging information.

If this option is enabled, the linker includes full path names to the source files.
If this option is disabled, the linker uses only the file names. By default, this
option is enabled.

This option is available only if you enable the Generate Symbolic Info option.
* Generate Link Map

The Generate Link Map option controls whether the linker generates a link map.
Enable this option to let the linker generate a link map.

The file name for the link map adds the extension .xMAP to the generated file
name. The linker places the link map in the same folder as the output . el f file.

For each object and function in the output file, the link map shows which file
provided the definition. The link map also shows the address given to each object
and function, a memory map of where each section resides in memory, and the
value of each linker-generated symbol.

Although the linker aggressively strips unused code and data when the
CodeWarrior IDE compiles the relocatable file, it never deadstrips assembler
relocatable files or relocatable files built with other compilers. If a relocatable file
was not built with the CodeWarrior C compiler, the link map lists all of the
unused but unstripped symbols.

— List Unused Objects

The List Unused Objects option controls whether the linker includes unused
objects in the link map. Enable the option to let the linker include unused
objects in the link map. The linker does not link unused code in the program.

Targeting DSP56F80x/DSP56F82x Controllers 93

For More Information: www.freescale.com

Freescale Semiconductor, Inc.

Target Settings
DSP56800-Specific Target Settings Panels

Usually, this option is disabled. However, you might want to enable it in
certain cases. For example, you might discover that an object you expect to be
used is not actually used. This option is not available unless you enable the
Generate Link Map option.

— Show Transitive Closure

The Show Transitive Closure option recursively lists in the link map file all of
the objects referenced by main(). Listing 5.1 shows some sample code. To
show the effect of the Show Transitive Closure option, you must compile the
code.

Listing 5.1 Sample Code to Show Transitive Closure

void foot(void){ int a = 100; }
void pad(void){ int b = 101; }

int main(void) {
foot () ;
pad () ;
return 1;

}

After you compile the source, the linker generates a link map file. Note that
this option is not available unless you enable the Generate Link Map option.

Listing 5.2 Effects of Show Transitive Closure in the Link Map File

Link map of Finit_sim_
1] interrupt_vectors.text found in 56800_vector.asm
2] sim_intRoutine (notype,local) found in 56800 vector.asm
2] Finit_sim_ (func,global) found in 56800_init.asm
3] Fmain (func,global) found in M56800 main.c
4] Ffoot (func,global) found in M56800 main.c
4] Fpad (func,global) found in M56800 main.c
3] F__init sections (func,global) found in Runtime 56800.1lib
initsections.o
4] Fmemset (func,global) found in MSL C 56800.l1lib mem.o
5] F__fill mem (func,global) found in MSL C 56800.1ib mem funcs.o
1] Finit sim_ (func,global) found in 56800 init.asm

¢ Disable Deadstripping

The Disable Deadstripping option prevents the linker from removing unused code
and data.

94 Targeting DSP56F80x/DSP56F82x Controllers

For More Information: www.freescale.com

Freescale Semiconductor, Inc.

Target Settings
DSP56800-Specific Target Settings Panels

¢ Generate ELF Symbol Table

The Generate ELF Symbol Table option instructs the linker to generate an ELF
symbol table, as well as a list of relocations in the ELF executable file.

¢ Suppress Warning Messages

The Suppress Warning Messages option controls whether the linker displays
warnings. If this option is disabled, the linker displays warnings in the Message
window. If this option is disabled, the linker does not display warnings.

¢ Generate S-Record File

The Generate S-Record File option controls whether the linker generates an S-
record file based on the application object image. The S-record files have the
extension . s.

In the case of the DSP56800, the linker generates three different S-record files.
Their contents are:

- {output file name}.S

S-record file containing both P and X memory contents.
- {output file name}.p.S

S-record file containing P memory contents only.
- {output file name}.x.S

S-record file containing X memory contents only.

The linker places the S-record files in the output folder, which is a sub-folder of
the project folder.

The linker generates the following S3 type S-records:
— Sort by Address

This option enables the compiler to sort S-records generated by the linker
using byte address. This option is not available unless you enable the Generate
S-Record File option.

— Generate Byte Addresses

This option enables the linker to generate S-records in bytes. This option is
not available unless you enable the Generate S-Record File option.

— Max Record Length

The Max Record Length field specifies the maximum length of the S-record
generated by the linker. This field is available only if the Generate S-Record
File option is enabled. The maximum value for an S-record length is 256
bytes.

Targeting DSP56F80x/DSP56F82x Controllers 95

For More Information: www.freescale.com

Target Settings

Freescale Semiconductor, Inc.

DSP56800-Specific Target Settings Panels

NOTE Most programs that load applications onto embedded systems have a

maximum length for S-records. The CodeWarrior debugger can
handle S-records as large as 256 bytes. If you are using something
other than the CodeWarrior debugger to load your embedded
application, you need to determine its maximum length.

— EOL Character

The EOL Character list box defines the end-of-line character for the S-record
file. This list box is available only if you enable the Generate S-Record File
option.

¢ Entry Point

The starting point for a program is set in the Entry Point field in the M56800
settings panel. The Entry Point field specifies the function that the linker first uses
when the program runs.

The default function found in this field is located within the startup code that sets
up the DSP56800 environment before your code executes. This function and its
corresponding startup code will be different depending upon which stationery
you have selected. In the case of hardware targeted stationery, the startup code
can be found in the stationery-generated project’s startup folder.

The startup code performs other tasks, such as clearing the hardware stack,
creating an interrupt table, and getting the stack start and exception handler
addresses.

The final task performed by the startup code is to call your main () function.
Force Active Symbols

The Force Active Symbols field instructs the linker to include symbols in the link
even if the symbols are not referenced. In essence, it is a way to make symbols
immune to deadstripping. When listing multiple symbols, use a single space
between them as a separator.

Remote Debugging

Use the Remote Debugging panel (Figure 5.11, Figure 5.12) to set parameters for
communication between a DSP56800 board or Simulator and the CodeWarrior
DSP56800 debugger. Table 5.6 explains the elements of this panel.

NOTE Communications specifications also involve settings of the

debugging M56800 Target panel (Figure 5.13).

96

Targeting DSP56F80x/DSP56F82x Controllers

For More Information: www.freescale.com

g |

Freescale Semiconductor, Inc.

Target Settings
DSP56800-Specific Target Settings Panels

Figure 5.11 Remote Debugging Panel (56800 Simulator)

§ Remate Debugging

— Connection Setlings

Eunnection:IEEBDD Simulator ;i Edit Connection... |

"Hemute download path

’7|- Launch remate host application

Figure 5.12 Remote Debugging Panel (Local Connection)

§ Femaote Debuaging

— Connection Settings

EDHHECHDHZ'EEBDD Local Hardware Connection j E dit Connectior. . |

— Remote download path

—I Launch remote host application

—[Multi-Care Debugging——— ~JTAG Clock Speed
! 2l
Core Index; |n 3 { {200
Targeting DSP56F80x/DSP56F82x Controllers 97

For More Information: www.freescale.com

Freescale Semiconductor, Inc.

Target Settings
DSP56800-Specific Target Settings Panels

Table 5.6 Remote Debugging Panel Elements

Element Purpose Comments

Connection list Specifies the connection type: Selecting 56800 Simulator

box « 56800 Simulator — keeps the panel as Figure
appropriate for testing code 5.11 shows.
on the simulator before Selecting 56800 Local
downloading code to an actual Hardware Connection adds
board. the JTAG Clock Speed text

* 56800 Local Hardware box to the panel, as Figure

Connection (CSS) — 5.12 shows.

appropriate for using your
computer’'s command
converter server, connected to
a DSP56800 board.

Remote Not supported at this time.

Download Path

text box

Launch Remote Not supported at this time.

Host Application

checkbox

Multi-Core Allows debugging of multiple boards For more details, see

Debugging on a complex scan chain. Debugging on a Complex

Scan Chain

JTAG Clock Specifies the JTAG lock speed for This list box is available only if

Speed text box local hardware connection. (Defaultis | the Connection list box
600 kilohertz.) specifies 56800 Local

Hardware Connection (CSS).
The HTI will not work properly
with a clock speed over 800
kHz.

M56800 Target (Debugging)

The M56800 Target Settings panel lets you set communication protocols for interaction
between the DSP56800 board and the CodeWarrior debugger.

98 Targeting DSP56F80x/DSP56F82x Controllers

For More Information: www.freescale.com

Freescale Semiconductor, Inc.

Target Settings
DSP56800-Specific Target Settings Panels

Figure 5.13 M56800 Target Settings Panel

i gsimulator Settings 71 x|
H Target Settings Panels H M5E200 Target Settings
e

= Language Settings =
« C/C++ Language [... ¥ Ahwaps reset on download

o CAC++ Preprocessor

w CAC++Wamings ™" Use Flash Conlfig File I Choose... |

- MBEE00 Azzembler
Breakpoint mode: I.-’-‘«ulomatic vl

= Code Generation
- ELF Dizazsembler
- MBBE00 Pracessor [~ Auto-clear previous hardware breakpoint
- Global Dptimizations
= Linker [~ Initialize OME for program memory
o MBEE00 Linker
= Editor
o Custom Kepwords
= Debugger
- Debugger Settings
- Remate Debugging Processor. |DSP5E800_Simulstor |

Pragram memory mode: IIntemaI j

Factor_l,lSeltingsl Rewert | Import Panel... | Export Panel .. |

] 4 Cancel | Apply |

Table 5.7 Debugging M56800 Target Panel Elements

Element Purpose Comments
Always reset on | Checked — IDE issues a

download reset to the target board each

checkbox time you connect to the board.

Clear — IDE does not issue a
reset each time you connect
to the target board.

Use flash config | Checked — When the Use If the full path and file name
file checkbox Flash Config File option is are not specified, the default
enabled, you can specify location is the same as the
the use of a flash project file. You can click the
configuration file (Listing Choose button to specify the
5.3) in the text box . file. The Choose File dialog
Clear — Debugger assumes box appears (Figure 5.14).

no flash on the target.

Targeting DSP56F80x/DSP56F82x Controllers 929

For More Information: www.freescale.com

Freescale Semiconductor, Inc.

Target Settings
DSP56800-Specific Target Settings Panels

Table 5.7 Debugging M56800 Target Panel Elements (continued)

Element Purpose Comments
BreakpointMode | Specifies the breakpoint Software breakpoints contain debug
checkbox mode: instructions that the debugger writes
« Automatic — into your coc_ie. You can_nc_Jt set such
CodeWarrior software breakpoints in flash, as it is read-only.
determines when to Hardware breakpoints use the on-
use software or chip debugging capabilities of the
hardware DSP56800. The number of available
breakpoints. hardware breakpoints limits these
* Software — capabilities.
CodeWarrior software Note, Breakpoint Mode only effects
always uses software HW t t
breakpoints. argets.
* Hardware —
CodeWarrior software

always uses the
available hardware
breakpoints.

Auto-clear Checked — Automatically
previous clears the previous harware
hardware breakpoint.

breakpoint Clear — Does not

Automatically clears the
previous harware breakpoint.

Initialize OMR Checked — Choose the

for program program memory mode
memory (external or internal) at
checkbox connect.

Clear — OMR is unchanged.

Processor list Specifies the processor Currently this selects the register
box layout.
100 Targeting DSP56F80x/DSP56F82x Controllers

For More Information: www.freescale.com

h
L |

Freescale Semiconductor, Inc.

Target Settings
DSP56800-Specific Target Settings Panels

Figure 5.14 Choose File Dialog Box

2] x|
Look in: Iﬁ sample j o % ER-

[:I aukpuk

| sample_Data
D SUppart
main.c
mnain_hostio, o
sample.mcp

File name: I j Open
- Cancel |
= F

Files of bype: |

Listing 5.3 Flash Configuration File Line Format

baseAddr startAddr endAddr progMem regBaseAddr Terase
TME Tnvs Tpgs Tprog Tnvh Tnvhl Trcv

Each text line of the configuration file specifies a flash unit on the target. The
prototype is shown in Listing 5.3 and its arguments are shown in Table 5.8.

Table 5.8 Flash Configuration File Line Format

Argument Description
baseAddr address where row 0 (zero) starts
startAddr first flash memory address
endAddr last flash memory address
progMem 0 = data (X:), 1 = program memory (P:)
regBaseAddr location in data memory map where the
control registers are mapped
Terase erase time
Targeting DSP56F80x/DSP56F82x Controllers 101

For More Information: www.freescale.com

Target Settings

Freescale Semiconductor, Inc.

DSP56800-Specific Target Settings Panels

Argument Description

TME mass erase time

Tnvs PROG/ERASE to NVSTR set up time
Tpgs NVSTR to program set up time
Tprog program time

Tnvh NVSTR hold time

Tnvh1 NVSTR hold time(mass erase)

Trev recovery time

A sample flash configuration file for DSP5S6F803 and DSP56F805 is in Listing 5.4.
Do not change the contents of this file.

Listing 5.4 Sample Flash Configuration File for DSP56F803/5

0 0x0004 ox7dff 1 0x0£f40 0x0002 0x0006 0x001A 0x0033 0x0066 0x001A 0x019A 0x0006
0 0x8000 0x87ff 1 0x0£80 0x0002 0x0006 0x001A 0x0033 0x0066 0x001A 0x019A 0x0006
0 0x1000 0x1fff 0 0x0£60 0x0002 0x0006 0x001A 0x0033 0x0066 0x001A 0x019A 0x0006
NOTE You cannot use Flash ROM with the board set in development mode.
Ensure the Debugger sets OMR on launch is not enabled if you are using
this feature.
Remote Debug Options
Use the Remote Debug Options panel (Figure 5.15) to specify different remote debug
options.
102 Targeting DSP56F80x/DSP56F82x Controllers

For More Information: www.freescale.com

Freescale Semiconductor, Inc.

Target Settings
DSP56800-Specific Target Settings Panels

Figure 5.15 Remote Debug Options

H Femate Debug Options

— Program Download Options

Initial Launch Successive Runs
Section Tepe | Download Yenly Download Yenfy
Executable I~ [

Constant Data I~ [
Initialized D ata I~ [
Unitialized D ata I~ [

U
i i

— Memony Configuration O ptions

| Browsze... |

’7|_ Uz Memomny Configuration File

Targeting DSP56F80x/DSP56F82x Controllers 103

For More Information: www.freescale.com

Target Settings

DSP56800-Specific Target Settings Panels

Freescale Semiconductor, Inc.

Table 5.9 Remote Debug Options Panel Elements

Options area

section types to be
downloaded on initial
launch and on successive
runs.

Checked Verify
checkboxes specify the
section types to be verified
(that is, read back to the
linker).

Element Purpose Comments
Program Checked Download Section types:
Download checkboxes specify the

Executable — program-code
sections that have X flags in
the linker command file.

Constant Data — program-
data sections that do not
have X or W flags in the
linker command file.

Initialized Data — program-
data sections with initial
values. These sections have
W flags, but not X flags, in
the linker command file.

Uninitialized Data —
program-data sections
without initial values. These
sections have W flags, but
not X flags, in the linker
command file.

Use Memory
Configuration
File checkbox

Not supported at this time.

104

Targeting DSP56F80x/DSP56F82x Controllers

For More Information: www.freescale.com

Freescale Semiconductor, Inc.

6
Processor Expert Interface

Your CodeWarrior™ IDE features a Processor Expert™ plug-in interface, for rapid
development of embedded applications. This chapter explains Processor Expert
concepts, and Processor Expert additions to the CodeWarrior visual interface. This
chapter includes a brief tutorial exercise.

This chapter contains these sections:
¢ Processor Expert Overview
¢ Processor Expert Windows

¢ Processor Expert Tutorial

Processor Expert Overview

The Processor Expert Interface (PEI) is an integrated development environment for
applications based on DSP56800/E (or many other) embedded microcontrollers. It
reduces development time and cost for applications. Its code makes very efficient use
of microcontroller and peripheral capabilities. Furthermore, it helps develop code that
is highly portable.

Features include:

¢ Embedded Beans™ components — Each bean encapsulates a basic
functionality of embedded systems, such as CPU core, CPU on-chip peripherals,
and virtual devices. To create an application, you select, modify, and combine the
appropriate beans.

— The Bean Selector window lists all available beans, in an expandable tree
structure. The Bean Selector describes each bean; some descriptions are
extensive.

— The Bean Inspector window lets you modify bean properties, methods,
events, and comments.

¢ Processor Expert page — This additional page for the CodeWarrior project
window lists project CPUs, beans, and modules, in a tree structure. Selecting or
double-clicking items of the page opens or changes the contents of related
Processor Expert windows.

Targeting DSP56F80x/DSP56F82x Controllers 105

For More Information: www.freescale.com

Freescale Semiconductor, Inc.

Processor Expert Interface
Processor Expert Overview

Target CPU window — This window depicts the target microprocessor as a
simple package or a package with peripherals. As you move the cursor over this
picture’s pins, the window shows pin numbers and signals. Additionally, you can
have this window show a scrollable block diagram of the microprocessor.

CPU Structure window — This window shows the relationships of all target-
microprocessor elements, in an expandable-tree representation.

CPU Types Overview — This reference window lists all CPUs that your
Processor Expert version supports.

Memory Map — This window shows the CPU address space, plus mapping for
internal and external memory.

Resource Meter — This window shows the resource allocation for the target
microprocessor.

Peripheral Usage Inspector — This window shows which bean allocates each
on-chip peripheral.

Installed Beans Overview — This reference window provides information
about all installed beans in your Processor Expert version.

Driver generation — The PEI suggests, connects, and generates driver code for
embedded-system hardware, peripherals, and algorithms.

Top-Down Design — A developer starts design by defining application
behavior, rather than by focussing on how the microcontroller works.

Extensible beans library — This library supports many microprocessors,
peripherals, and virtual devices.

Beans wizard — This external tool helps developers create their own custom
beans.

Extensive help information — You access this information either by selecting
Help from the Program Expert menu, or by clicking the Help button of any
Processor Expert window or dialog box.

Processor Expert Code Generation

The PEI manages your CPU and other hardware resources, so that you can concentrate
on virtual prototyping and design. Your steps for application development are:

1.

Creating a CodeWarrior project, specifying the Processor Expert stationery
appropriate for your target processor.

Configuring the appropriate CPU bean.

Selecting and configuring the appropriate function beans.

106

Targeting DSP56F80x/DSP56F82x Controllers

For More Information: www.freescale.com

Freescale Semiconductor, Inc.

Processor Expert Interface
Processor Expert Overview

4. Starting code design (that is, building the application).

As you create the project, the project window opens in the IDE main window. This
project window has a Processor Expert page (Figure 6.1). The Processor Expert Target
CPU window also appears at this time. So does the Processor Expert bean selector
window, although it is behind the Target CPU window.

Figure 6.1 Project Window: Processor Expert Page

MewProj1.mcp I

==l

Files | Link Order | Tergats ~Frocessor Expett |

Ilﬂ sdm extemal memary _vJ By @ B >

(&= Configurations
(= Operating Systern
B CPUs
<) EE el
@ CpuSEFE346
- 4 Q Cpu:5EFE34E
= Beans
B & User Modules
< MewPrajl.c:main
& Generated Modules
= External Modules
= Documentation
w (= PESL

When you start code design, the PEI generates commented code from the bean
settings. This code generation takes advantage of the Processor Expert CPU
knowledge system and solution bank, which consists of hand-written, tested code

optimized for efficiency.

To add new functionalities, you select and configure additional beans, then restart
code design. Another straightforward expansion of PEI code is combining other code
that you already had produced with different tools.

Processor Expert Beans

Beans encapsulate the most-required functionalities for embedded applications.
Examples include port bit operations, interrupts, communication timers, and A/D

converters.

Targeting DSP56F80x/DSP56F82x Controllers

107

For More Information: www.freescale.com

g |

Freescale Semiconductor, Inc.

Processor Expert Interface
Processor Expert Overview

The Bean Selector (Figure 6.2) helps you find appropriate beans by category:
processor, MCU external devices, MCU internal peripherals, or on-chip peripherals.
To open the bean selector, select Processor Expert > View > Bean Selector, from the
main-window menu bar.

Figure 6.2 Bean Selector

e
Bean Categories | On Chip Peripherals I Quick help >

= CPU
= CPU extenal devices
Bl & CPU intemal peripherals
= Communication
= Caonverter
== Interupts
= Measurement
= Memarny
= Peripheral beans
EH= Part 14D
§ @ i
g P Bitsl0
g M Byte2i0
§ M Eyteain ~|

Filter: | alliCPU | Licensed A

-

The bean selector’s tree structures list all available beans; double-clicking the name
adds the bean to your project. Clicking the Quick Help button opens or closes an
explanation pane that describes the highlighted bean.

Once you determine the appropriate beans, you use the Bean Inspector (Figure 6.3) to
fine tune each bean, making it optimal for your application.

108

Targeting DSP56F80x/DSP56F82x Controllers

For More Information: www.freescale.com

g |

Freescale Semiconductor, Inc.

Processor Expert Interface
Processor Expert Overview

Figure 6.3 Bean Inspector

i, Bean Inspector AM1:AsynchroMaster -0l x|

< Bean ltems Vighility Help

Properties |Methods| Eventsl Comment

«’| Channel SCI0 = |SCI0

+Interrupt se|Dizable

T | -Settings

| Parity wake-up rhardware wake-up
| Width 9 bitz 9 bits

«’| Stop bit 1 |1

+Heceiver |Dizable

+T ransmitti| Dizable

T B aud rate .. | Uiazzigned timing
«'| Stopin wait no

+Initializatior

BASIC ADVANCED | EXPERT | 4

Using the Bean Inspector to set a bean’s initialization properties automatically adds
bean initialization code to CPU initialization code. You use the Bean Inspector to
adjust bean properties, so that generated code is optimal for your application.

Beans greatly facilitate management of on-chip peripherals. When you choose a
peripheral from bean properties, the PEI presents all possible candidates. But the PEI
indicates which candidates already are allocated, and which are not compatible with
current bean settings.

Processor Expert Menu

Table 6.1 explains the selections of the Processor Expert menu.

Targeting DSP56F80x/DSP56F82x Controllers 109

For More Information: www.freescale.com

Freescale Semiconductor, Inc.

Processor Expert Interface
Processor Expert Overview

Table 6.1 Processor Expert Menu Selections

Design

ltem Subitem Action

Open Processor none Opens the PEI for the current project.

Expert (Available only if the current project does not
already involve the PEL.)

Code Design none Generates code, including drivers, for the

<Project> current project. Access these files via the
Generate Code folder, of the project-window
Files page.

Undo Last Code none Deletes the most recently-generated code,

returning project files to their state after the
previous, error-free code generation.

View

Project Panel

Brings the Processor Expert page to the front of
the CodeWarrior project window.

(Not available if the project window does not
include a Processor Expert page.)

Bean Inspector

Opens the Bean Inspector window, which gives
you access to bean properties.

Bean Selector

Opens the Beans Selector window, which you
use to choose the most appropriate beans.

Target CPU Package

Opens the Target CPU Package window, which
depicts the processor. As you move your cursor
over the pins of this picture, text boxes show pin
numbers and signal names.

Target CPU Block Diagram

Opens the Target CPU Package window, but
portrays the processor as a large block diagram.
Scroll bars let you view any part of the diagram.
As you move your cursor over modules, floating
text boxes identify pin numbers and signals.

Error Window

Opens the Error Window, which shows hints,
warnings, and error messages.

Resource Meter

Opens the Resource Meter window, which
shows usage and availability of processor
resources.

View (continued)

Target CPU Structure

Opens the CPU Structure window, which uses
an expandible tree structure to portray the
processor.

110

Targeting DSP56F80x/DSP56F82x Controllers

For More Information: www.freescale.com

Freescale Semiconductor, Inc.

Processor Expert Interface
Processor Expert Overview

Table 6.1 Processor Expert Menu Selections (continued)

ltem Subitem Action

Peripherals Usage Opens the Peripherals Usage Inspector window,

Inspector which shows which bean allocates each
peripheral.

Peripheral Initialization Opens the Peripherals Initialization Inspector

Inspector window, which show the initialization value and
value after reset for all peripheral register bits.

Installed Beans Overview Opens the Beans Overview window, which
provides information about all beans in your
project.

CPU Types Overview Opens the CPU Overview window, which lists
supported processors in an expandable tree
structure.

CPU Parameters Overview | Opens the CPU Parameters window, which lists
clock-speed ranges, number of pins, number of
timers, and other reference information for the
supported processors.

Memory Map Opens the Memory Map window, which depicts
CPU address space, internal memory, and
external memory.

Tools <tool name> Starts the specified compiler, linker or other tool.
(You use the Tools Setup window to add tool
names to this menu.)

SHELL Opens a command-line window.

Tools Setup Opens the Tools Setup window, which you use
to add tools to this menu.

Help Processor Expert Help Opens the help start page.

Introduction

Opens the PEI help introduction.

Benefits

Opens an explanation of PEI benefits.

User Interface

Opens an explanation of the PEI environment.

Tutorial

[None available for the DSP56800/E.]

Quick Start

Opens PEI quick start instructions.

Help (continued)

Embedded Beans

Opens the first page of a description database of
all beans.

Targeting DSP56F80x/DSP56F82x Controllers

For More Information

111

: www.freescale.com

Freescale Semiconductor, Inc.

Processor Expert Interface
Processor Expert Overview

Table 6.1 Processor Expert Menu Selections (continued)

ltem Subitem Action
Embedded Beans Opens the first page of a description database of
Categories beans, organized by category.
Supported CPUs, Opens the list of processors and tools that the
Compilers, and Debuggers | PEI plug-in supports.
PESL Library User Manual | Opens the Processor Expert System Library, for
advanced developers.
User Guide Opens a .pdf guide that focuses on the
DSP56800/E processor family.
Search in PDF Opens documentation of the target processor, in
Documentation of the a .pdf search window.
Target CPU
Go to Processor Expert Opens your default browser, taking you to the
Home Page PEI home page.
About Processor Expert Opens a standard About dialog box for the PEI.
Update Update Processor Exert Opens the Open Update Package window. You

Beans from Package

can use this file-selection window to add
updated or new beans (which you downloaded
over the web) to your project.

Check Processor Expert

Checks for updates available over the web. If

Web for updates any are available, opens your default browser,
so that you can download them.
Bring PE Windows to | none Moves PEI windows to the front of your monitor
Front screen.
Arrange PE Windows | none Restores the default arrangement of all open

PEI windows.

112

Targeting DSP56F80x/DSP56F82x Controllers

For More Information: www.freescale.com

Freescale Semiconductor, Inc.

Processor Expert Interface
Processor Expert Windows

Processor Expert Windows

This section illustrates important Processor Expert windows and dialog boxes.

Bean Selector

The Bean Selector window (Figure 6.4) explains which beans are available, helping
you identify those most appropriate for your application project. To open this window,
select Processor Expert > View > Bean Selector, from the main-window menu bar.

Figure 6.4 Bean Selector Window

=
Bean Categories I On Chip F‘elipheralsl I < Quick help
[& CPU internal perpherals - Bean: BitsIO =
(= Communication
= I . . S
E | TWE' IE[This bean implements a multi-bit input/output. It
] . .
e ;E?sﬁ;em uses 1to 8 contiguous pins of one part,
5 Memar It is recommended to select this bean
. v exclusively for 2 to 7 bit input/output.
(= Peripheral beans —
O & Patl/0 B
§ @i = 1. If you want to use 1 bit anly, select the
g @m BitIO bean instead.
g @ Buteoll 2. If you want to use 8 bits, select the
BytelO bean instead.
§ M sytea0 = =l
Filter: | aljcPU | Licensed v

The Bean Categories page, at the left side of this window, lists the available beans in
category order, in an expandable tree structure. Green string bean symbols identify
beans that have available licenses. Grey string bean symbols identify beans that do not
have available licenses.

The On-Chip Peripherals page lists beans available for specific peripherals, also in
an expandable tree structure. Yellow folder symbols identify peripherals fully
available. Light blue folder symbols identify partially used peripherals. Dark blue
folder symbols identify fully used peripherals.

Bean names are black; bean template names are blue. Double-click a bean name to add
it to your project.

Click the Quick Help button to add the explanation pane to the right side of the
window, as Figure 6.4 shows. This pane describes the selected (highlighted) bean. Use
the scroll bars to read descriptions that are long.

Targeting DSP56F80x/DSP56F82x Controllers 113

For More Information: www.freescale.com

g |

Freescale Semiconductor, Inc.

Processor Expert Interface
Processor Expert Windows

Click the two buttons at the bottom of the window to activate or deactivate filters. If
the all/CPU filter is active, the window lists only the beans for the target CPU. If the
license filter is active, the window lists only the beans for which licenses are available.

Bean Inspector

The Bean Inspector window (Figure 6.5) lets you modify bean properties and other
settings. To open this window, select Processor Expert > View > Bean Inspector,
from the main-window menu bar.

Figure 6.5 Bean Inspector Window

--._-_'"-Bean Inspector AM1:AsynchroMaster] 4

< Bean Iltems Vizibility Help

ropertiss |Methnds| Everts | Comment

P

v’ | Bean name |Ak1 -
«*| Channel SCI0 «|SCI0

El| -Interrupt ze|Enable
' Interrupt
' Interrupt Rs 1T SCIO/IMT_SCI0RxFull
' Intermipt Fxmediun «| 1
' Interrupt To 1T SCIO/IMT_SCI0 T «E mpty
' Intermipt Tx=|mediun «|1

' Interrupt B [T _SCIO/IMT_SCI0_RxEmor
v

v

v

v

v

H

v

v

v

v

Interrupt Errjmediun « |1

Interrupt Idh| KT _SCIO/INT_SCIO_Txldie

Interrupt [dh[mediun =1 I

Input buffer |0

Output buth 0
-Settings

Parity wake-up r hardware wake-up

Width 9 bitz 9 hitz

Stop hit 1 |1

Mode Mormal «
Fl +Receiwer Nizahle ¥4 ;I
A

BASIC | ADvAMCED || EXPERT

This window shows information about the currently selected bean — that is, the
highlighted bean name in the project-window Processor Expert page. The title of the
Bean Inspector window includes the bean name.

The Bean Inspector consists of Properties, Methods, Events, and Comment pages. The
first three pages have these columns:

114

Targeting DSP56F80x/DSP56F82x Controllers

For More Information: www.freescale.com

Freescale Semiconductor, Inc.

Processor Expert Interface
Processor Expert Windows

* Item names — Items to be set. Double-click on group names to expand or
collapse this list. For the Method or Event page, double-clicking on an item may
open the file editor, at the corresponding code location.

¢ Selected settings — Possible settings for your application. To change any ON/
OFF-type setting, click the circular-arrow button. Settings with multiple possible
values have triangle symbols: click the triangle to open a context menu, then
select the appropriate value. Timing settings have an ellipsis (...) button: click this
button to open a setting dialog box.

» Setting status — Current settings or error statuses.

Use the comments page to write any notations or comments you wish.

NOTE If you have specified a target compiler, the Bean Inspector includes
an additional Build options page for the CPU bean.
If your project includes external peripherals, the Bean Inspector
includes an additional Used page. Clicking a circular-arrow button
reserves a resource for connection to an external device. Clicking the
same button again frees the resource.

The Basic, Advanced, and Expert view mode buttons, at the bottom of the window, let
you change the detail level of Bean Inspector information.

The Bean Inspector window has its own menu bar. Selections include restoring default
settings, saving the selected bean as a template, changing the bean’s icon,
disconnecting from the CPU, and several kinds of help information.

Targeting DSP56F80x/DSP56F82x Controllers 115

For More Information: www.freescale.com

Freescale Semiconductor, Inc.

Processor Expert Interface
Processor Expert Windows

Target CPU Window

The Target CPU window (Figure 6.6) depicts the target processor as a realistic CPU
package, as a CPU package with peripherals, or as a block diagram. To open this
window, select Processor Expert > View > Target CPU Package, from the main-
window menu bar. (To have this window show the block diagram, you may select
Processor Expert > View > Target CPU Block Diagram, from the main-window
menu bar.)

Figure 6.6 Target CPU Window: Package

Target CPU [Cpu:56F8346]

56FB8346

LLRLLR

< S ~
<= =

I BRI =
\.‘7?‘- ; =

F ~ - g
~ 1 E - ~

51 [wCaPt

[wCapL JwcC [Core Power when the internal voltage regulator is disabled v

Arrows on pins indicate input, output, or bidirectional signals. As you move your
cursor over the processor pins, text boxes at the bottom of this window show the pin
numbers and signal names.

116 Targeting DSP56F80x/DSP56F82x Controllers

For More Information: www.freescale.com

Freescale Semiconductor, Inc.

Processor Expert Interface
Processor Expert Windows

Use the control buttons at the left edge of this window to modify the depiction of the
processor. One button, for example, changes the picture view the CPU package with
peripherals. However, as Figure 6.7 shows, it is not always possible for the picture of a
sophisticated processor to display internal peripherals.

Figure 6.7 Target CPU Window: Package and Peripherals

Target CPU [Cpu:56F8346]

=EE 2 s @A

i

Huiu $HHH =
~ = SEEEE RS
e . - =

1 - % -. -

I | =

o

Targeting DSP56F80x/DSP56F82x Controllers 117

For More Information: www.freescale.com

Freescale Semiconductor, Inc.

Processor Expert Interface
Processor Expert Windows

In such a case, you can click the Always show internal peripheral devices control
button. Figure 6.8 shows that this expands the picture size, as necessary, to allow the
peripheral representations. This view also includes bean icons (blue circles) attached
to the appropriate processor pins. Use the scroll bars to view other parts of the
processor picture.

Figure 6.8 Target CPU Window: Peripherals and Bean Icons

EmE sl

[Pumaakin [Pudmaatin |fnone) [Pwsma Y

118 Targeting DSP56F80x/DSP56F82x Controllers

For More Information: www.freescale.com

h
L |

Freescale Semiconductor, Inc.

Processor Expert Interface
Processor Expert Windows

Click the Show MCU Block Diagram to change the picture to a block diagram, as
Figure 6.9 shows. Use the scroll bars to view other parts of the diagram. (You can

bring up the block diagram as you open the Target CPU window, by selecting

Processor Expert > View > Target CPU Block Diagram, from the main-window

menu bar.)

Figure 6.9 Target CPU Window: Block Diagram

'--.-_-"-Target CPU [Cpu:DSP56F836]

- 1ol x|
PHASEB HOME PHAS—
JPORT C PORTD PORTE PORTF ANO-AN7 ANO-AN7 pHATA[NDle pHA]EAl
P10 GPIO GPIO GPIO ADCAN ADCBY Quad_DecOf Quac
e 0] 99| €€ 0] €0 L 4 {
ee)] 3| 0] 0] 00| 00 A
22| aa| ee] eel ee| eel Kool éd
Qo) 0] 00 00 00| 00
r'S r'S
v J w ||
SPIO THMRAD TMRED TMRCO THE
4 L L4 L4 {
i T T T T
NS e | |00 |00
THMRAL TMRED TMRC1 THE
¢ L4 L4 {
SPIL T e e e T T
: r Y YyYyyry -----ﬂ r Y Y Y yY Y --}

Other control buttons at the left edge of the window let you:

» Show bean icons attached to processor pins.

¢ Rotate the CPU picture clockwise 90 degrees.

* Toggle default and user-defined names of pins and peripherals.
¢ Print the CPU picture.

Targeting DSP56F80x/DSP56F82x Controllers

For More Information: www.freescale.com

119

Freescale Semiconductor, Inc.

Processor Expert Interface
Processor Expert Windows

NOTE As you move your cursor over bean icons, peripherals, and modules,
text boxes or floating hints show information such as names,
descriptions, and the allocating beans.

And note these additional mouse control actions for the Target CPU window:

¢ Clicking a bean icon selects the bean in the project window’s Processor Expert
page.

* Double-clicking a bean icon open the Bean Inspector, displaying information for
that bean.

* Right-clicking a bean icon, a pin, or a peripheral opens the corresponding context
menu.

* Double-clicking an ellipsis (...) bean icon opens a context menu of all beans using
parts of the peripheral. Selecting one bean from this menu opens the Bean
Inspector.

* Right-clicking an ellipsis (...) bean icon opens a context menu of all beans using
parts of the peripheral. Selecting one bean from this menu opens the bean context
menu.

120 Targeting DSP56F80x/DSP56F82x Controllers

For More Information: www.freescale.com

Freescale Semiconductor, Inc.

Processor Expert Interface
Processor Expert Windows

Memory Map Window

The Memory Map window (Figure 6.10) depicts CPU address space, and the map of
internal and external memory. To open this window, select Processor Expert > View
> Memory Map, from the main-window menu bar.

Figure 6.10 Memory Map Window

..~ Memory Map [56F8346] 16k - 1ol x|
DaTa CODE
FFFFFF TFFFFF
FFFFO0
FRREHE EXTERNAL
EXTERNAL 30000
02FFFF
oo
QOFFFF HerE _
20FFF
QaFooo
QOEFFF
Q20000
EXTERMAL O1FFFF
Q02000 EXTERMAL
Q01FFF
o000
01000 OOFFFF
Q00OFFF

00aaoo 00aaoo

The color key for memory blocks is:
* White — Non-usable space
e Dark Blue — I/O space
* Medium Blue — RAM
* Light Blue — ROM

Targeting DSP56F80x/DSP56F82x Controllers 121

For More Information: www.freescale.com

Freescale Semiconductor, Inc.

Processor Expert Interface
Processor Expert Windows

* Cyan — FLASH memory or EEPROM
¢ Black — External memory.

Pause your cursor over any block of the map to bring up a brief description.

CPU Types Overview

The CPU Types Overview window (Figure 6.11) lists supported processors, in an
expandable tree structure. To open this window, select Processor Expert > View >
CPU Types Overview, from the main-window menu bar.

Figure 6.11 CPU Types Overview Window

Bl & Motarala

[B6R00

@ 5eans
i@ 5eas7
@ 56a55
@ Heans
4@ 56953
@ 5eas2

4@ 5eraze
i@ 5erazr
@ 5eFae
4@ 56Fa0s
@ 5EFe03
(@ 5EFA0ZTARD
@ 5EFA0ZTARD
@ 5EFa0FAR0
@ 5EFaIFAED
{@ 5eras
@ 56Fass
4@ Herae
4@ 5eFase

Right-click the window to open a context menu that lets you add the selected CPU to
the project, expand the tree structure, collapse the tree structure, or get help
information.

122 Targeting DSP56F80x/DSP56F82x Controllers

For More Information: www.freescale.com

Freescale Semiconductor, Inc.

Processor Expert Interface
Processor Expert Windows

Resource Meter

The Resource Meter window (Figure 6.12) shows the usage or availability of
processor resources. To open this window, select Processor Expert > View >
Resource Meter, from the main-window menu bar.

Figure 6.12 Resource Meter Window

_laix

Pinz usage'|

Port usage: DN~ 00 TG0 AT

Compare regs: Capture regs:
Communication: [ll- 00 0 0 AD channels:

Bars of this window indicate:
e The number of pins used
* The number of ports used
* Allocation of timer compare registers
e The number of timer capture registers used
* Allocation of serial communication channels
* Allocation of A/D converter channels.

Pausing your cursor over some fields of this window brings up details of specific
resources.

Targeting DSP56F80x/DSP56F82x Controllers 123

For More Information: www.freescale.com

Freescale Semiconductor, Inc.

Processor Expert Interface
Processor Expert Windows

Installed Beans Overview

The Installed Beans Overview window (Figure 6.13) shows reference information
about the installed beans. To open this window, select Processor Expert > View >
Installed Beans Overview, from the main-window menu bar.

Figure 6.13 Installed Beans Overview Window

. Installed Beans Dverview) B [m] 9
WView Help
BEANS [Bean Info Drivers | =
BytelD General Byte Input/Output (S bitz] BREBO0NE el dma
Status=encrypted, compressed BEBO0NEel 0. dry _J
Author=Processor Expert/SA
Current version=02.046
CallProgiessToneDetection | Call Piogress Tone Detection BEBOMNCallProgressT oneD etection.dmo
Status=snciypted, compressed SRA0MNCallProgressT oneD stection.dry
Author=Processor Expert / PA
Curent version=01.01 4
Capture Timer capture encapsulation BEE00C apture. dma
Status=encrypted, compressed BBE0NC apture. dryv
Author=Processor Expert/RH
Current version=02.082
CIDParser The Type 1 and 2 Telephany Parser Library SERO0NCIDParser.dmo
Status=encrypted, compressed BEBOOVCIDParser.dry
Author=Processor Expert / ACh
Current version=01.008
CIDTypel The Type 1 Telephony Features Libram BEE0NCID Tupel.dma
Statug=enciypted, compressed SEE0NCID Typel.drv
Author=Frocessor Expert / ACh
Current wersion=01.003
CIDTypel2 The Type 1 and 2 Telephony Features Library BEBOOMNCID Typel 2 dma
Status=encrypted, compressed BEBOVCID Typel 2.drv
Author=Processor Expert £ ACh
Current wersion=01,008 LI

This window’s View menu lets you change the display contents, such as showing
driver status and information, restricting the kinds of beans the display covers, and so
one.

124 Targeting DSP56F80x/DSP56F82x Controllers

For More Information: www.freescale.com

g |

Freescale Semiconductor, Inc.

Processor Expert Interface
Processor Expert Windows

Peripherals Usage Inspector

The Peripherals Usage window (Figure 6.14) shows which bean allocates each
peripheral. To open this window, select Processor Expert > View > Peripherals
Usage Inspector, from the main-window menu bar.

Figure 6.14 Peripherals Usage Window

‘. Peripheral Usage o] 4

Wiew Help

140 | Inlerruplsl Timersl Channels

Port GPIOD |
Fin 0 GPIODO_CS2B
Pin 1 GPIOD1_CS3B
Pin 2 GPIODE_T=01
Pin 3 GPIODY_R=D1

-Port GFIOE |Jzed by more beans
-PinD GFIOED_T=D0 |Jzed by bean: A1 :Asynchio

Alwayz_OutputDir Cutput Output
-Pin 1 GFIOE1_R=D0 Uszed by bean: A1 :Asynchio
Alwayz_|nputDie Input | mput

Pin 2 GFIOEZ_AR
Pin 3 GFIOE3 AT
Pin 4 GFIOE4_SCLED
Pin 5 GFIOES_KMOSIO
Pin b GFIOEE_MISO0
Pin 7 GFIOEY_S50B

-Port GFIOF o
Pin 0 GFIOFD_D7
Pin 1 GFIOF1_D&
Pin 2 GFIOF2 D3
Fin 3 GFIOF3 D10 hd

The pages of this window reflect the peripheral categories: 1/O, interrupts, timers, and
channels. The columns of each page list peripheral pins, signal names, and the
allocating beans.

Pausing your cursor over various parts of this window brings up brief descriptions of
items. This window’s View menu lets you expand or collapse the display.

Targeting DSP56F80x/DSP56F82x Controllers 125

For More Information: www.freescale.com

Freescale Semiconductor, Inc.

Processor Expert Interface
Processor Expert Tutorial

Processor Expert Tutorial

This tutorial exercise generates code that flashes the LEDs of a MC56F8346E
development board. Follow these steps:
1. Create a project:
a. Start the CodeWarrior IDE, if it is not started already.

b. From the main-window menu bar, select File > New. The New window
appears.

c. In the Project page, select (highlight) Processor Expert Examples
Stationery.

d. In the Project name text box, enter a name for the project, such as
LEDcontrol.

e. Click the OK button. The New Project window replaces the New window.

f. In the Project Stationery list, select TestApplications > Tools > LED >
56858.

g. Click the OK button.
h. Click the OK button. The IDE:

¢ Opens the project window, docking it the left of the main window. This
project window includes a Processor Expert page.

¢ Opens the Target CPU window, as Figure 6.15 shows. This window shows
the CPU package and peripherals view.

¢ Opens the Bean Selector window, behind the Target CPU window.

126 Targeting DSP56F80x/DSP56F82x Controllers

For More Information: www.freescale.com

h

Freescale Semiconductor, Inc.

Processor Expert Interface
Processor Expert Tutorial

Figure 6.15 Project, Target CPU Windows

File Edit View Search Project Debug Processor Expert Window Help
AhEsHaocr<xhaARANENER s HER

e
4346 PE.mcp I

[# s ClBy &5 e 0

Files | Link Orcer | Targets Pracessar Expett |

& Configurations
& CPUs

o« Cpu.SEFE346
-

& Documentation
(2 PESL

=mEle 2lrl@lQ

|108 |anBa [anB4 [inone) |Analog Input to ADC B, Channel 27

“-Bean Selector =13
Bean Calegoris | On Chip Peripherals | Quick help >

& CPU
© CPU estemal devices
B CPU inteinal peripherals
& Commurication
& Converter
G Intemupts
B Measurement
& Memary
& Peripheral beans
EE Portl/0
S@IE
§ @ e
8 M Bue20
§ M Bue=30 |

Fiter: | alfcPU | Licensed i

2. Select the sdm external memory target.

a. Click the project window’s Targets tab. The Targets page moves to the front
of the window.

b. Click the target icon of the sdm external memory entry. The black arrow
symbol moves to this icon, confirming your selection.

3. Add six BitIO beans to the project.

a. Click the project window’s Processor Expert tab. The Processor Expert page
moves to the front of the window.

b. Make the Bean Selector window visible:
* Minimize the Target CPU window.

* Select Processor Expert > View > Bean Selector, from the main-window
menu bar.

c. In the Bean Categories page, expand the entry MCU internal peripherals.

Targeting DSP56F80x/DSP56F82x Controllers 127

For More Information: www.freescale.com

g |

Freescale Semiconductor, Inc.

Processor Expert Interface
Processor Expert Tutorial

d. Expand the subentry Port 1/O.

e. Double-click the BitIO bean name six times. (Figure 6.16 depicts this bean
selection.) The IDE adds these beans to your project; new bean icons appear
in the project window’s Processor Expert page.

Figure 6.16 Bean Selector: BitlO Selection

_loix
Bean Categories | On Chip Peripherals I Quick help > |

& CPU A
= CPU external devices
= 2= CPU intemal peripherals
(= Commurnication
(= Converter
= Intermupts
= Measurement
= Memory
= Peripheral beans
Bl = Part 140
X1 Jei
§ @ Bitsl0
g M Byie2i0
§ M Byteai0 |

Filker: | all’'”’PU | Licensed A

NOTE If new bean icons do not appear in the Processor Expert page, the
system still may have added them to the project. Close the project,
then reopen it. When you bring the Processor Expert page to the front
of the project window, the page should show the new bean icons.

4. Add two Extlnt beans to the project.

a. In the Bean Categories page of the Bean Selector window, expand the
Interrupts subentry.

b. Double-click the ExtInt bean name two times. The IDE adds these beans to
your project; new bean icons appear in the Processor Expert page.

c. You may close the Bean Inspector window.

128 Targeting DSP56F80x/DSP56F82x Controllers

For More Information: www.freescale.com

Freescale Semiconductor, Inc.

Processor Expert Interface
Processor Expert Tutorial

5. Rename the eight beans GPIO_C0 — GPIO_C3, GPIO_D6, GPIO_D7, IRQA,
and IRQB.

a. In the project window’s Processor Expert page, right-click the name of the
first BitIO bean. A context menu appears.

b. Select Rename Bean. A change box appears around the bean name.

Targeting DSP56F80x/DSP56F82x Controllers 129

For More Information: www.freescale.com

Freescale Semiconductor, Inc.

Processor Expert Interface
Processor Expert Tutorial

c. Type the new name GPIO_CO0, then press the Enter key. The list shows the
new name; as Figure 6.17 shows, this name still ends with BitI0.

Figure 6.17 New Bean Name

LEDconirol mecp I

I'ﬂ sdm external memory j B % @ B >

Files | Link Order | Targets Processor Expett |

= Configurations
=& CPUs
« §@) CpuDSPSEF335
[l = Beans
P | ¥GFI0_CO:BitiD
< @ BitZ B0
« @ Bit2:BiD
« @@ Bit4:BilD
< @ Bit5:BHD
« @ BitE:BiD
« §J Elntl-Extint
« EF ElntZExtint
= Documentation
B PESL

HEEHEEBDE

d. Repeat substeps a, b, and c for each of the other BitlO beans, renaming them
GPIO_C1,GPIO_C2,GPIO_C3,GPIO D6, and GPIO D7.

130 Targeting DSP56F80x/DSP56F82x Controllers

For More Information: www.freescale.com

Freescale Semiconductor, Inc.

Processor Expert Interface
Processor Expert Tutorial

e. Repeat substeps a, b, and ¢ for the two ExtInt beans, renaming them IRQA and
IRQB. (Figure 6.18 shows the Processor Expert page at this point.)

Figure 6.18 New Bean Names

=l

LEDcontrol.mecp I

I'E sdm external memary j B v & % >

Files | Link Oider | Targets Processor Expett |

= Configurations
B CPUs

« i CpuDSP5EF335
== Beans
« @@ GRIO_CO:BiHD
« @@ GPIO_C1:BiD
« @@ GPIO_CZBitD
« @ GPIO_C3BiD
«+ @@ GRIO_DEEO
« @@ GRIO_D7EiO
€ IROAE st
"y @ ROE:E <tlnt
(= Documentation
B PESL

HEHEHEBEE

6. Update pin associations for each bean.

a. In the Processor Expert page, double-click the bean name GPIO 0. The
Bean Inspector window opens, displaying information for this bean.

b. Use standard window controls to make the middle column of the Properties
page about 2 inches wide.

c. In the Pin for I/0 line, click the triangle symbol of the middle-column list
box. The list box opens.

Targeting DSP56F80x/DSP56F82x Controllers 131

For More Information: www.freescale.com

Freescale Semiconductor, Inc.

Processor Expert Interface
Processor Expert Tutorial

d. Use this list box to select GPIOC0_SCLK1_TB0_PHASEAL1. (Figure 6.19

depicts this selection.)

Figure 6.19 New Pin Association

. Bean Inspector GPID_CO:BitI0 i]

< Bean ltemz Vighility Help

roperties |Methods| Eventsl Comment

Beanname |GPIO_CO

Safe mode |pes

E

v

AN NG ETR P 0 C0 SCLE] TEO PHASEAT ~|GFIOCO_SCLK1_TBO_F
«'| Pin zignal

o Pull registor | autozelected pull | no pull resigtor
«'| Opendiain |no open drain -

o' Direction | nputDutput | Input/ Jutput
«’| Imtiahization

o' ik, direction Dutput

| ik walue |0

v’

o

Optimization fc)zpeed

In the project window’s Processor Expert page, select the bean name
GPIO_C1. The Bean Inspector information changes accordingly.

Use the Pin for I/O middle-column list box to select
GPIOC1_MOSI1_TB1_PHASEBI.

. Repeat substeps e and f, for bean GPIO_C2, to change its associated pin to

GPIOC2_MISO1_TB2_INDEXI.

. Repeat substeps e and f, for bean GPIO €3, to change its associated pin to

GPIOC3_SSA_B_TB3_HOMEI].

Repeat substeps e and f, for bean GPIO_Dé, to change its associated pin to
GPIODG6_TxD1.

Repeat substeps e and f, for bean GPIO_ D7, to change its associated pin to
GPIOD7_RxD1.

. In the project window’s Processor Expert page, select the bean name IRQA.

The Bean Inspector information changes accordingly.

Use the Pin middle-column list box to select IRQA_B.

. Repeat substeps k and I, for bean IRQB, to change its associated pin to

IRQB_B.

. You may close the Bean Inspector window.

132

Targeting DSP56F80x/DSP56F82x Controllers

For More Information: www.freescale.com

Freescale Semiconductor, Inc.

Processor Expert Interface
Processor Expert Tutorial

7. Enable BitlO SetDir, CIrVal, and SetVal functions.

a. In the Processor Expert page, click the plus-sign control for the GPIO Co0
bean. The function list expands: red X symbols indicate disabled functions,
green check symbols indicate enabled functions.

b. Double-click function symbols as necessary, so that only SetDir, ClrVal, and
SetVal have green checks. (Figure 6.20 shows this configuration.)

Figure 6.20 GPIO_C3 Enabled Functions

El1E- Beans

= - @ i
= [GetDir
= [A] SetDir
H [Getal
= [Putéal
= [Cltval
B [Sefval
H A Negial

+ @ GRIO_C1:BitD

« @ GRIO_C2:BitD

L. e i el

c. Click the GPIO_C0 minus-sign control. The function list collapses.
d. Repeat substeps a, b, and ¢ for beans GPIO_C1, GPIO_C2, GPIO C3,
GPIO_ D6, and GPIO_D7.
8. Enable ExtInt Onlnterrupt, GetVal functions.

a. In the Processor Expert page, click the plus-sign control for the IRQA bean.
The function list expands.

b. Double-click function symbols as necessary, so that only OnInterrupt and
GetVal have green check symbols.

c. Click the TRQA minus-sign control. The function list collapses.

d. Repeat substeps a, b, and ¢ for bean IRQB.

9. Design (generate) project code.

a. From the main-window menu bar, select Processor Expert > Code Design
‘LEDcontrol.mcp.’ (This selection shows the actual name of your project.)
The IDE and PEI generate several new files for your project.

b. You may close all windows except the project window.

Targeting DSP56F80x/DSP56F82x Controllers 133

For More Information: www.freescale.com

g |

Freescale Semiconductor, Inc.

Processor Expert Interface
Processor Expert Tutorial

10. Update file Events.c.

a. Click the project window’s Files tab. The Files page moves to the front of the
window.

b. Expand the User Modules folder.

c. Double-click filename Events.c. An editor window opens, displaying this
file’s text. (Listing 6.1, at the end of this tutorial, shows this file’s contents.)

d. Find the line IRQB_OnInterrupt ().

e. Above this line, enter the new line extern short IRQB On;.

f. Inside IRQB OnInterrupt (), enter the new line IRQB On "= 1;.

g. Find the line IRQA OnInterrupt ().

h. Above this line, enter the new line extern short IRQA On;.

i. Inside IRQA OnInterrupt (), enter the new line IRQA On "= 1;.
NOTE Listing 6.1 shows these new lines as bold italics.

j- Save and close file Events.c.

11. Update file LEDcontrol.c.

a. In the project window’s Files page, double-click filename LEDcontrol.c (or
the actual .c filename of your project). An editor window opens, displaying
this file’s text.

b. Add custom code, to utilize the beans.

NOTE Listing 6.2 shows custom entries as bold italics. Processor Expert
software generated all other code of the file.

c. Save and close the file.

12. Build and debug the project.

a. From the main-window menu bar, select Project > Make. The IDE compiles
and links your project, generating executable code.

b. Debug your project, as you would any other CodeWarrior project.

134 Targeting DSP56F80x/DSP56F82x Controllers

For More Information: www.freescale.com

Freescale Semiconductor, Inc.

Processor Expert Interface
Processor Expert Tutorial

This completes the Processor Expert tutorial exercise. Downloading this code to a
DSP56836E development board should make the board LEDs flash in a distinctive
pattern.

Listing 6.1 File Events.c

/*
**
* %
* %
* %
* *
* %
* *
**
* %
* %
**
* %
* %
* %
* %
* %
* %
* %
* %
* %
* %
* %
* %
* %
* %
* %
* %
* %
* %
* %
* %
* %
* *
* *
* %

* %

R R

Filename : Events.C
Project : LEDcontrol

Processor : DSP56F836

Beantype : Events
Version : Driver 01.00
Compiler : Metrowerks DSP C Compiler

Date/Time : 3/24/2003, 1:18 PM
Abstract

This is user's event module.
Put your event handler code here.

Settings

Contents

IRQB OnInterrupt - void IRQB OnInterrupt (void) ;
IRQA OnInterrupt - void IRQA OnInterrupt (void) ;

(c) Copyright UNIS, spol. s r.o. 1997-2002

UNIS, spol. s r.o.
Jundrovska 33

624 00 Brno

Czech Republic

** http : WWW.processorexpert.com
** mail : info@processorexpert.com
Targeting DSP56F80x/DSP56F82x Controllers 135

For More Information: www.freescale.com

Freescale Semiconductor, Inc.

Processor Expert Interface
Processor Expert Tutorial

* %

*x HHAHAHSHHEHSHHEHSHH ARG HH SRR SRS H SR R R H A
*/
/* MODULE Events */

/*Including used modules for compilling procedure*/
#include "Cpu.h"
#include "Events.h"
#include "GPIO CO.h"
#include "GPIO Cl.h"
#include "GPIO C2.h"
#include "GPIO C3.h"
#include "GPIO D6.h"
#include "GPIO D7.h"
#include "IRQA.h"
#include "IRQB.h"

/*Include shared modules, which are used for whole project*/
#include "PE Types.h"

#include "PE_Error.h"

#include "PE Const.h"

#include "IO Map.h"

/*

** ——=—=—
* %k Event : IRQB OnInterrupt (module Events)

* *

* %k From bean . IRQB [ExtInt]

* % Description

* % This event is called when the active signal edge/level
** occurs.

* % Parameters : None

* % Returns : Nothing

** ———=—
*/

#pragma interrupt called
extern short IRQB On;
void IRQB OnInterrupt (void)
{
IRQB On “=1;
/* place your IRQB interrupt procedure body here */

}

/*

136 Targeting DSP56F80x/DSP56F82x Controllers

For More Information: www.freescale.com

Freescale Semiconductor, Inc.

Processor Expert Interface
Processor Expert Tutorial

* %k Event : IRQA OnInterrupt (module Events)

* %

* %k From bean . IRQA [ExtInt]

* % Description :

*k This event is called when the active signal edge/level

*x occurs.

* % Parameters : None

* % Returns : Nothing

** ———=—=—
*/

#pragma interrupt called
extern short IRQA On;
void IRQA OnInterrupt (void)
{ A
IRQA On “= 1;
/* place your IRQA interrupt procedure body here */

}

/* END Events */

/*

ok FHEKHHEFFHH A A R R

* %

*% This file was created by UNIS Processor Expert 03.15 for
** the Freescale DSP56x series of microcontrollers.

* %

Rl 2255 s s s s s s s s s s s s s s s s s s s S s s s s s s s s s s s s s s s
*
/

Targeting DSP56F80x/DSP56F82x Controllers 137

For More Information: www.freescale.com

Freescale Semiconductor, Inc.

Processor Expert Interface
Processor Expert Tutorial

Listing 6.2 File LEDcontrol.c

/*
* %
* %
* %
* %
* %
* %
* %
* %
* %
* %
* %
* %
* %
* %
* %
* %
* %
* %
* %
* %
* %
* %
* %
* %
* %
* %
* %
* %
* %
* %
* %
* %
* %
* %
* %
* %
* %
*/
/*

FHAFHAAAAA A HHHHHHHHHHHHHHHHHHHHHHHH AR AR IR HH

Filename : LEDcontrol.C

Project : LEDcontrol

Processor : DSP56F836

Version : Driver 01.00

Compiler : Metrowerks DSP C Compiler
Date/Time : 3/24/2003, 1:18 PM
Abstract

Main module.
Here is to be placed user's code.

Settings

Contents

No public methods

(c) Copyright UNIS, spol. s r.o. 1997-2002

UNIS, spol. s r.o.
Jundrovska 33

624 00 Brno

Czech Republic

http : Www.processorexpert.com
mail : info@processorexpert.com

FHAFHAAAAA AR HHHHHHHHHHHHHHHHHHHHHHHH AR AR B RS HH

MODULE LEDcontrol */

/* Including used modules for compilling procedure */
#include "Cpu.h"
#include "Events.h"

138

Targeting DSP56F80x/DSP56F82x Controllers

For More Information: www.freescale.com

Freescale Semiconductor, Inc.

Processor Expert Interface
Processor Expert Tutorial

#include "GPIO_CO.h"
#include "GPIO C1.h"
#include "GPIO C2.h"
#include "GPIO C3.h"
#include "GPIO D6.h"
#include "GPIO_D7 .h
#include "IRQA.h"
#include "IRQB.h"

/* Include shared modules, which are used for whole project */
#include "PE Types.h"
#include "PE_Error.h"
#include "PE Const.h"
#include "IO Map.h"

* Application Description:
* LED program for the 56836 EVM.

* Pattern: "Count" from 0 to 63, using LEDs to represent the bits of
the number.

*

* Pressing the IRQA button flips LED order: commands that previously
went to LED1 go to LED6, and so forth.

* Pressing the IRQB button reverses the enabled/disabled LED states.

*

*/

/* global used as bitfield, to remember currently active bits, used to
* enable/disable all LEDs. */

long num = 0;

short IRQA On,IRQB On;

/* simple loop makes LED changes visible to the eye */
void wait (int);
voide wait (int count)
{
int i;
for (i=0; i<count; ++1i);

}

/*set the given LED */
void setLED (int) ;
void setLED (int num)

{

if (IIRQA On)

Targeting DSP56F80x/DSP56F82x Controllers 139

For More Information: www.freescale.com

Freescale Semiconductor, Inc.

Processor Expert Interface
Processor Expert Tutorial

{
num = 7-num;
}
if (IIRQB On)
{
switch (num)
{
case 1: GPIO CO ClrVal(); break;
case 2: GPIO Cl ClrVal(); break:
case 3: GPIO C2 ClrVal(); break;
case 4: GPIO C3 ClrVal(); break;
case 5: GPIO D6 ClrVal(); break;
case 6: GPIO D7 ClrVal(); break;
}
}
else
{
switch (num)
{
case 1: GPIO CO SetVal(); break;
case 2: GPIO Cl1 SetVal(); break;
case 3: GPIO C2 SetVal(); break;
case 4: GPIO C3 SetVal(); break;
case 5: GPIO D6 SetVal(); break;
case 6: GPIO D7 SetVal(); break;
}
}

}

/* clear the given LED */
void clrLED(int) ;
void clrLED(int num)

{
if (!IRQA On)
{
num = 7-num;
}
if (IRQB On)
{
switch (num)
{
case 1: GPIO CO ClrVal(); break;
case 2: GPIO Cl1 clrval(); break;
case 3: GPIO C2 ClrVal(): break;
case 4: GPIO C3 clrval(); break;
140 Targeting DSP56F80x/DSP56F82x Controllers

For More Information: www.freescale.com

Freescale Semiconductor, Inc.

Processor Expert Interface
Processor Expert Tutorial

case 5: GPIO D6 ClrVal(); break;
case 6: GPIO D7 ClrVal(); break;

}
}
else
{
switch (num)
{
case 1: GPIO CO SetVal(); break;
case 2: GPIO Cl SetVal(); break;
case 3: GPIO C2 SetVal(); break;
case 4: GPIO C3 SetVal(); break;
case 5: GPIO D6 SetVal(); break;
case 6: GPIO D7 SetVal(); break;
}
}

}

#define CLEARLEDS showNumberWithLEDs (0)

/* method to set each LED status to reflect the given number/bitfield */
void shwNumberWithLEDs (long) ;

void showNumberWithLEDs (long num)

{
int i;
for (i=0; i<6; ++1)
{
if ((num>>i) & 1
setLED(i+1) ;
else
clrLED(i+1) ;
}
}

/* Pattern: "Count" from 0 to 63 in binary using LEDs to represent bits
of the current number. 1 = enabled LED, 0 = disabled LED. */

void pattern() ;

void pattern()

{
long 1i;
int Jjz
for (i=0; i<=0b111111; ++1)
{
showNumberWithLEDs (i) ;
wait (100000) ;
Targeting DSP56F80x/DSP56F82x Controllers 141

For More Information: www.freescale.com

Freescale Semiconductor, Inc.

Processor Expert Interface
Processor Expert Tutorial

}

void main (void)

{

/*** Processor Expert internal initialization. DON'T REMOVE THIS

CODE! !l *%*%/
PE_low_level init();
/*** End of Processor Expert internal initialization. *xkx [

/*Write your code here*/
#pragma warn possunwant off

IRQA On = IRQA GetVal() ? 1 : 0;
IRQB On = IRQB GetVal() ? 1 : 0;
for(;;); {

CLEARLEDS ;

pattern() ;

}

#ipragma warn possunwant reset

}

/* END LEDcontrol */

*

i* HEHFHHAHAHSHHAHHEHAH S H RS H RS SRS R R A H
*

i* This file was created by UNIS Processor Expert 03.15 for

* % the Freescale DSP56x series of microcontrollers.

* %

*; HEHSHH S R

*

142 Targeting DSP56F80x/DSP56F82x Controllers

For More Information: www.freescale.com

Freescale Semiconductor, Inc.

C for DSP56800

This chapter explains the CodeWarrior™ compiler for DSP56800.
This chapter contains the following sections:

*General Notes on C

*Number Formats

Calling Conventions, Stack Frames

*User Stack Allocation

*Sections Generated by the Compiler

*Optimizing Code

*Compiler or Linker Interactions

General Notes on C

Note the following on the DSP56800 processors:
*C++ language is not supported.
*Floating-point math functions (for example, sin, cos, and sqrt) are not supported.

*The sizeof function in C is not the same as the SIZEOF function in the linker. In C,
the sizeof function returns a number of type SIZE_T, which the complier declares
to be of type unsigned long int. The sizeof function in C returns the
number of words, whereas the SIZEOF function in the linker returns the number
of bytes.

Number Formats

This section explains how the CodeWarrior compilers implement integer and floating-
point types for DSP56800 processors. Look at 1imits.h for more information on
integer types and £1oat . h for more information on floating-point types. Both
limits.hand float.h are explained in the MSL C Reference Manual.

Targeting DSP56F80x/DSP56F82x Controllers 143

For More Information: www.freescale.com

C for DSP56800
Number Formats

Freescale Semiconductor, Inc.

DSP56800 Integer Formats

Table 7.1 shows the sizes and ranges of the data types for the DSP56800 compiler.

Table 7.1 Data Type Ranges

Type Option Setting Size Range
(bits)
bool n/a 16 true or false
char Use Unsigned Chars is disabled | 16 -32,768 to 32,767
in the C/C++ Language (C Only)
settings panel
Use Unsigned Chars is enabled | 16 0 to 65,535
signed char n/a 16 -32,768 to 32,767
unsigned char n/a 16 0 to 65,535
short n/a 16 -32,768 10 32,767
unsigned short | n/a 16 010 65,535
int n/a 16 -32,7681032,767
unsigned int n/a 16 0to 65,535
long n/a 32 -2,147,483,648 to
2,147,483,647
unsigned long n/a 32 0to 4,294,967,295
DSP56800 Floating-Point Formats
Table 7.2 shows the sizes and ranges of the floating-point types for the DSP56800
compiler.
Table 7.2 DSP56800 Floating-Point Types
Type Size (bits) | Range
float 32 1.17549e-38103.40282e+38
short double 32 1.17549e-38103.40282e+38
double 32 1.17549e-38103.40282e+38
long double 32 1.17549e-38103.40282e+38
144 Targeting DSP56F80x/DSP56F82x Controllers

For More Information: www.freescale.com

Freescale Semiconductor, Inc.

C for DSP56800
Calling Conventions, Stack Frames

DSP56800 Fixed-Point Formats

Table 7.3 shows the sizes and ranges of the fixed-point types for the DSP56800
compiler.

Table 7.3 DSP56800 Fixed-Point Types

Type Declared As Size | Range

(bits)
fixed _ fixed 16 (-1.0 <= x < 1.0)
short fixed __shortfixed 16 (-1.0 <= x < 1.0)
long fixed __longfixed 32 (-1.0 <= x < 1.0)

NOTEFor compatibility reasons, preferably use DSP intrinsics instead of fixed-point
types in Table 7.3 for fractional arithmetic.

Calling Conventions, Stack Frames

The CodeWarrior IDE for Freescale DSP56800 stores data and calls functions in ways
that might be different from other target platforms.

Calling Conventions

The registers A, R2, R3, Y0, and Y1 pass parameters to functions. When a function is
called, the parameter list is scanned from left to right. The parameters are passed in
this way:

1.The first 32-bit value is placed in A.

2.The first two 16-bit values are placed in YO and Y1, respectively.

3.The first two 16-bit addresses are placed in R2 and R3.

All remaining parameters are pushed onto the stack, beginning with the rightmost
parameter. Multiple-word parameters have the least significant word pushed onto
the stack first.

When calling a routine that returns a structure, the caller passes an address in R0
which specifies where to copy the structure.

Targeting DSP56F80x/DSP56F82x Controllers 145

For More Information: www.freescale.com

Freescale Semiconductor, Inc.

C for DSP56800
Calling Conventions, Stack Frames

The registers A, R0, R2, and YO are used to return function results as follows:
*32-bit values are returned in A.
*]16-bit addresses are returned in R2.

*All 16-bit non-address values are returned in YO.

Volatile and Non-Volatile Registers

Non-volatile Registers
Non-volatile registers are registers that can be saved across functions calls. These

registers are also called saved over a call registers (SOCs).

Volatile Registers

Volatile registers are registers that cannot be saved across functions calls. These
registers are also called non-SOC registers.

NOTESee Table 7.4 for a list of volatile (non-SOC) and non-volatile (SOC) registers.

Table 7.4 Volatile and Non-Volatile Registers

Unit Register | Size | Type Comments
Name
Arithmetic Y1 16 Volatile (non-
Logic Unit SOC)
(ALU)
YO0 16 Volatile (non-
SOC)
Y 32 Volatile (non-
SOC)
X0 16 Volatile (non-
SOC)
A2 4 Volatile (non-
SOC)
Al 16 Volatile (non-
SOC)
146 Targeting DSP56F80x/DSP56F82x Controllers

For More Information: www.freescale.com

Freescale Semiconductor, Inc.

C for DSP56800
Calling Conventions, Stack Frames

Table 7.4 Volatile and Non-Volatile Registers (continued)

Unit Register | Size | Type Comments
Name
A0 16 Volatile (non-
SOC)
A10 32 Volatile (non-
SOC)
A 36 Volatile (non-
SOC)
B2 4 Volatile (non-
SOC)
B1 16 Volatile (non-
SOC)
BO 16 Volatile (non-
SOC)
B10 32 Volatile (non-
SOC)
B 36 Volatile (non-
SOC)
Address RO 16 Volatile (non-
Generation SOC)
Unit (AGU)
R1 16 Volatile (non-
SOC)
R2 16 Volatile (non-
SOC)
R3 16 Volatile (non-
SOC)
N 16 Volatile (non-
SOC)
SP 16 Volatile (non-
SOC)
Targeting DSP56F80x/DSP56F82x Controllers 147

For More Information: www.freescale.com

Freescale Semiconductor, Inc.

C for DSP56800
Calling Conventions, Stack Frames

Table 7.4 Volatile and Non-Volatile Registers (continued)

Unit Register | Size | Type Comments
Name
MO1 16 Volatile (non- In certain registers,
SOC) values must be kept
for proper C
execution. Set to
OxFFFF for proper
execution of C code.
Program PC 21 Volatile (non-
Controller SOC)
LA 16 Volatile (non-
SOC)
HWS 16 Volatile (non-
SOC)
OMR 16 Volatile (non- In certain registers,
SOC) values must be kept
for proper C
execution. For
example, setthe CM
bit. (See “OMR
Settings” on page
156.)
SR 16 Volatile (non-
SOC)
LC 16 Volatile (non-
SOC)
Page 0 MRO 16 Volatile (non-
SOC)
MR1 16 Volatile (non-
SOC)
MR2 16 Volatile (non-
SOC)
MR3 16 Volatile (non-
SOC)
MR4 16 Volatile (non-
SOC)
148 Targeting DSP56F80x/DSP56F82x Controllers

For More Information: www.freescale.com

Freescale Semiconductor, Inc.

C for DSP56800
Calling Conventions, Stack Frames

Table 7.4 Volatile and Non-Volatile Registers (continued)

Unit Register | Size | Type Comments

Name

MR5 16 Volatile (non-
SOC)

MR6 16 Volatile (non-
SOC)

MR7 16 Volatile (non-
SOC)

MR8 16 Non-volatile
(non-SOC)

MR9 16 Non-volatile
(non-SOC)

MR10 16 Non-volatile
(non-SOC)

MR11 16 Non-volatile
(non-SOC)

MR12 16 Non-volatile
(non-SOC)

MR13 16 Non-volatile
(non-SOC)

MR14 16 Non-volatile
(non-SOC)

MR15 16 Non-volatile
(non-SOC)

Stack Frame

The stack frame is generated as shown in Figure 7.1. The stack grows upward,
meaning that pushing data onto the stack increments the address in the stack pointer.

Targeting DSP56F80x/DSP56F82x Controllers

149

For More Information: www.freescale.com

Freescale Semiconductor, Inc.

C for DSP56800
User Stack Allocation

Figure 7.1 The Stack Frame

SP called function
user locals
compiler locals
nonvolatile
status registers
return address
parameters
volatile register

SP-size calling function

The stack pointer register (SP) is a 16-bit register used implicitly in all PUSH and POP
instructions. The software stack supports structured programming, such as parameter
passing to subroutines and local variables. If you are programming in both assembly-
language and high-level language programming, use stack techniques. Note that it is
possible to support passed parameters and local variables for a subroutine at the same
time within the stack frame.

User Stack Allocation

The 56800 compilers build frames for hierarchies of function calls using the stack
pointer register (SP) to locate the next available free X memory location in which to
locate a function call’s frame information. There is usually no explicit frame pointer
register. Normally, the size of a frame is fixed at compile time. The total amount of
stack space required for incoming arguments, local variables, function return
information, register save locations (including those in pragma interrupt functions) is
calculated and the stack frame is allocated at the beginning of a function call.

Sometimes, you may need to modify the SP at runtime to allocate temporary local
storage using inline assembly calls. This invalidates all the stack frame offsets from
the SP used to access local variables, arguments on the stack, etc. With the User Stack
Allocation feature, you can use inline assembly instructions (with some restrictions) to
modify the SP while maintaining accurate local variable, compiler temps, and
argument offsets, i.e., these variables can still be accessed since the compiler knows
you have modified the stack pointer.

The User Stack Allocation feature is enabled with the #pragma

check inline sp effects [on|off|reset] pragma setting. The pragma may
be set on individual functions. By default the pragma is off at the beginning of
compilation of each file in a project.

150

Targeting DSP56F80x/DSP56F82x Controllers

For More Information: www.freescale.com

Freescale Semiconductor, Inc.

C for DSP56800
User Stack Allocation

The User Stack Allocation feature allows you to simply add inline assembly
modification of the SP anywhere in the function. The restrictions are straight-forward:

1.The SP must be modified by the same amount on all paths leading to a control flow
merge point

2.The SP must be modified by a literal constant amount. That is, address modes such
as “(SP)+N” and direct writes to SP are not handled.

3.The SP must remain properly aligned.

4.Y ou must not overwrite the compiler’s stack allocation by decreasing the SP into the
compiler allocated stack space.

Point 1 above is required when you think about an if-then-else type statement. If one
branch of a decision point modifies the SP one way and the other branch modifies SP
another way, then the value of the SP is run-time dependent, and the compiler is
unable to determine where stack-based variables are located at run-time. To prevent
this from happening, the User Stack Allocation feature traverses the control flow
graph, recording the inline assembly SP modifications through all program paths. It
then checks all control flow merge points to make sure that the SP has been modified
consistently in each branch converging on the merge point. If not, a warning is emitted
citing the inconsistency.

Once the compiler determined that inline SP modifications are consistent in the
control flow graph, the SP’s offsets used to reference local variables, function
arguments, or temps are fixed up with knowledge of inline assembly modifications of
the SP. Note, you may freely allocate local stack storage:

1.As long as it is equally modified along all branches leading to a control flow merge
point.

2.The SP is properly aligned. The SP must be modified by an amount the compiler can
determine at compile time.

A single new pragma is defined. #pragma check inline sp effects

[on|off |reset] will generate a warning if the user specifies an inline assembly
instruction which modifies the SP by a run-time dependent amount. If the pragma is
not specified, then stack offsets used to access stack-based variables will be incorrect.
It is the user’s responsibility to enable #pragma check_inline sp effects, if
they desire to modify the SP with inline assembly and access local stack-based
variables. Note this pragma has no effect in function level assembly functions or
separate assembly only source files (. asm files).

In general, inline assembly may be used to create arbitrary flow graphs and not all can
be detected by the compiler.

Targeting DSP56F80x/DSP56F82x Controllers 151

For More Information: www.freescale.com

Freescale Semiconductor, Inc.

C for DSP56800
User Stack Allocation

For example:

REP #3
LEA (SP)+

This example would modify the SP by three, but the compiler would only see a
modification of one. Other cases such as these might be created by the user using
inline jumps or branches. These are dangerous constructs and are not detected by the
compiler.

In cases where the SP is modified by a run-time dependent amount, a warning is
issued.

Listing 7.1 Example 1 — Legal modification of SP Using Inline Assembly

#define EnterCritical() { asm(lea (SP)+);\
asm(move SR,X: (SP)+); \
asm(bfset #0x0300,SR); \
asm(nop); \
asm (nop) ; }

#define ExitCritical() { asm(lea (SP)-;
asm(move X:SP) ,SR); \
asm(nop) ; \
asm (nop) ; }

#pragma check inline sp effects on
int func()

{

int a=1, b=1, c;

EnterCritical () ;
C = a+b;
ExitCritical() ;
}
This case will work because there are no control flow merge points. SP is modified
consistently along all paths from the beginning to the end of the function and is
properly aligned.
152 Targeting DSP56F80x/DSP56F82x Controllers

For More Information: www.freescale.com

Freescale Semiconductor, Inc.

C for DSP56800
User Stack Allocation

Listing 7.2 Example 2 - lllegal Modification of SP using Inline Assembly

#define EnterCritical() { asm(lea (SP)+);\
asm(move SR,X: (SP)+); \
asm(bfset #0x0300,SR); \
asm(nop); \
asm(nop) ; }

#define ExitCritical() { asm(lea (SP)-;\

asm(move X:SP) ,SR); \
asm(nop) ; \

asm (nop) ; }

#pragma check inline sp effects on

int func()

{

int a=1, b=1, c;

if (a)

EnterCritical () ;

c = a+b;
}
else {

c = b++;
}
ExitCritical () ;

return (b+c);

This example will generate the following warning because the SP entering the
‘ExitCritical’ macro is different depending on which branch is taken in the if.
Therefore, accesses to variables a, b, or ¢ may not be correct.

Warning : Inconsistent inline assembly modification of SP in this
function.
M56800 main.c line 29 ExitCritical() ;

Targeting DSP56F80x/DSP56F82x Controllers 153

For More Information: www.freescale.com

Freescale Semiconductor, Inc.

C for DSP56800
User Stack Allocation

Listing 7.3 Example 3 — Modification of SP by a Run-time Dependent Amount

#define EnterCritical () { asm(move n,SP);\
asm(move SR,X: (SP)+); \
asm(nop) ; \
asm (nop) ; }

#define ExitCritical() { asm(lea (SP)-;\
asm(move X: (SP) ,SR); \
asm(nop) ; \
asm (nop) ; }

#pragma check inline sp effects on
int func/()

{

int a=1, b=1, c;

if (a)

{
EnterCritical() ;
c = a+b;

}

else {
EnterCritical () ;
c = b++;

return (b+c);

This example will generate the following warning:

Warning : Cannot determine SP modification value at compile time
M56800 main.c line 20 EnterCritical() ;

This example is not legal since the SP is modified by run-time dependent amount.

If all inline assembly modifications to the SP along all branches are equal approaching
the exit of a function, it is not necessary to explicitly deallocate the increased stack
space. The compiler “cleans up” the extra inline assembly stack allocation
automatically at the end of the function.

154 Targeting DSP56F80x/DSP56F82x Controllers

For More Information: www.freescale.com

Freescale Semiconductor, Inc.

C for DSP56800
Sections Generated by the Compiler

Listing 7.4 Example 4 — Automatic Deallocation of Inline Assembly Stack
Allocation

#pragma check inline sp effects on
int func/()

{

int a=1, b=1, c;

if (a)

{
EnterCritical() ;
c = a+b;

}

else {
EnterCritical () ;
c = b++;

return (b+c);

This example does not need to call the ‘ExitCritical’ macro because the compiler will
automatically clean up the extra inline assembly stack allocation.

Sections Generated by the Compiler

The compiler creates certain sections by default when compiling C source files. These
default sections are all handled by the default LCF and are as follows:

e . text

The compiler places executable code here by default.
e . data

The compiler places initialized data here by default.
® . bss

The compiler places uninitialized data here by default.

Targeting DSP56F80x/DSP56F82x Controllers 155

For More Information: www.freescale.com

Freescale Semiconductor, Inc.

C for DSP56800
OMR Settings

NOTEThese sections are the sections generated by the compiler in the default case.
Other user-defined sections can be generated through the use of the
#pragma define section.

If the project has the Write constant data to .rodata section checkbox enabled in the
M56800 Processor portion of the Target Settings, then the compiler will generate the
.rodata section for constant data. This option is overridden by the #pragma
use_rodata.

NOTEThe .rodata section is not handled by the default LCF. Thus, you need to
add how you would like the LCF to place this section within the
memory map. For more details on how to work with LCFs, see “ELF
Linker.”

By default, zero-initialized data is put into the .lbss section by the compiler. This is
done to reduce the load size of the application. The load size is reduced because
instead of the debugger loading a sequence of zeros into the . data section (a
loadable section), the compiler simply moves the zero-initialized data to the .bss
section (not a loadable section) which is initialized to zero by the startup code. This
behavior can be overridden by using the #pragma explicit zero data or by
using the #pragma use_ rodata, which put all constant data into a special
.rodata section.

Table 7.5 shows the memory map.

Table 7.5 Memory Map

Section Size Range (Hexadecimal)
PROGRAM 64K x 16 bit 0000 - FFFF
DATA 64K x 16 bit 0000 - FFFF

OMR Settings

The Operating Mode Register (OMR) is part of the program controller of the
DSP56800 core. This register is responsible for the majority of how the core operates.

156 Targeting DSP56F80x/DSP56F82x Controllers

For More Information: www.freescale.com

Freescale Semiconductor, Inc.

C for DSP56800
Optimizing Code

NOTEFor general details about the OMR, see the DSP56800 Family Manual. For
specific register details of your chip, see your chip manual.

The CodeWarrior compiler has some requirements about the value contained within
this register and the mode in which the DSP56800 core operated. These requirements
are described in Table 7.6.

Table 7.6 OMR Bit Requirements

Bit Number Bit Name Requirements

4 Saturation or SA bit This bit must be cleared for
the compiled code to work
properly.

5 Rounding or R bit This bit must be cleared for
the compiled code to work
properly.

8 Condition code or CC | This bit must be set for the

bit compiled code to work
properly.

NOTEFor general details about the OMR, see the DSP56800 Family Manual. For
specific register details of your chip, see your chip manual.

Optimizing Code

Optimizations that are specific to DSP56800 development with the CodeWarrior IDE
are:

*Page 0 Register Assignment
*Array Optimizations

*Multiply and Accumulate (MAC) Optimizations

Page 0 Register Assignment

The compiler uses page 0 address locations X: 0x0030 - 0x003F as register
variables. Frequently accessed local variables are assigned to the page 0 registers
instead of to stack locations so that load and store instructions are shortened.

Targeting DSP56F80x/DSP56F82x Controllers 157

For More Information: www.freescale.com

Freescale Semiconductor, Inc.

C for DSP56800
Optimizing Code

Addresses X: 0x0030 - 0x0037 (page Oregisters MRO-MR7) are volatile
registers and can be overwritten. The remaining registers (page O registers MR8 -
MR15) are treated as non-volatile and, if used by a routine, must be saved on entry and
restored on exit.

Array Optimizations

Array indexing operations are optimized when optimizations are turned on in the
Global Optimizations settings panel.

In Listing 7.5, the i index is optimized out and the operation performs with address
registers.

Listing 7.5 C Code Example for Array Optimizations

void main(void) {
short a[100], b[100];
int i;

// ... other code
for (i 0; i < 100; i++) {
]

ArrayAl[i] = ArrayBI[il; }
// ... other code

It is easier to understand the optimization process by viewing the assembler code
mixed with C code, created both before (Listing 7.6) and after (Listing 7.7)
optimizations are turned on.

Listing 7.6 Array Example Before Optimizations - Mixed View

for (i = 0;1i < 100; di++)

00001004: A7B20000 moves #0,X:0x0032

00001006: ASOB bra main+0x18 (0x1018) ; 0x000812
{
ali]l = blil;

00001007: 88OF move SP,RO

00001008: DE40FF9D 1lea (RO+-99)

0000100A: BC32 moves X:0x0032,N

0000100B: F044 move X: (RO+N) , X0

0000100C: 880F move SP,RO

0000100D: DE40FF39 lea (RO+-199)

158 Targeting DSP56F80x/DSP56F82x Controllers

For More Information: www.freescale.com

Freescale Semiconductor, Inc.

C for DSP56800
Optimizing Code

0000100F: BC32 moves X:0x0032,N
00001010: D044 move X0,X: (RO+N)
}

The optimization level has been set to 3 (Listing 7.7). Note that 1 is optimized out and
the operation is now performed with address registers. This optimization is called
induction.

NOTEWith induction, the variable "i" is no longer used.

Listing 7.7 Array Example After Optimizations - Mixed View

for (i = 0; i < 100; i++)

00001008: A7B20000 moves #0,X:0x0032

0000100A: A905 bra START +0x3 (0x101la) ; 0x000810
{
alil = blil;

0000100B: FO1l6 move X:(R2),X0

0000100C: D017 move X0,X: (R3)

0000100D: DEO02 lea (R2) +

0000100E: DEO3 lea (R3) +
}

Multiply and Accumulate (MAC)
Optimizations

Multiply and Accumulate optimizations use address register calculations and perform
arithmetic operations with a MACR instruction. The effect of these optimizations
reflects in the source code examples in Listing 7.8 and Listing 7.9.

Listing 7.8 Sample Multiply and Accumulate Operation

void main(void)

{
__fixed a[100], b[100];
_ fixed sum = 0;
int i=0;
for (i = 0; i < 100; i++){
sum += al[i] * b[i];
Targeting DSP56F80x/DSP56F82x Controllers 159

For More Information: www.freescale.com

C for DSP56800
Optimizing Code

Freescale Semiconductor, Inc.

The mixed view without optimizations is as follows:

Listing 7.9 Assembly Output for Multiply and Accumulate Operation

for (i =
00001006:
00001008:

{

sum +=
00001009:
0000100A:
0000100C:
0000100D:
0000100E:
0000100F:
00001011:
00001012:
00001013:
00001014:
00001015:

}

0; 1 < 100; i++
A7B20000 moves

A90E bra
ali]l * bli]l;
880F move
DE40FF39 lea
BC32 moves
F344 move
880F move
DE40FF9D lea
BC32 moves
Fl44 move
B033 moves
7C79 macr
9033 moves

#0,X:0%x0032
START (0x1

SP,RO
(RO+-199)
X:0x0032,N
X: (RO+N) , Y1
SP,RO
(R0O+-99)
X:0x0032,N
X: (RO+N) , YO
X:0x0033,X0
+Y1,Y0,X0
X0,X:0x0033

01f) ; 0x000817

The optimized version with level 3 optimizations (Listing 7.10):

Listing 7.10 Assembly Output for Optimized Multiply and Accumulate Operation

for (i = 0; 1 < 100; i++

0000100A: A7B20000 moves #0,X:0x0032

0000100C: A908 bra START +0x5 (0x1021) ; 0x000815
{
sum += al[i] * b[i];

0000100D: F316 move X:(R2),Y1

0000100E: F117 move X:(R3),YO0

0000100F: BO33 moves X:0x0033,X0

00001010: 7C79 macr +Y1,Y0,X0

00001011: 9033 moves X0,X:0x0033

00001012: DEO02 lea (R2) +

00001013: DEO3 lea (R3) +
}

160 Targeting DSP56F80x/DSP56F82x Controllers

For More Information: www.freescale.com

Freescale Semiconductor, Inc.

C for DSP56800
Compiler or Linker Interactions

Compiler or Linker Interactions

This section explains important concepts about how the DSP56800 compiler and
linker interact.

Deadstripping Unused Code and Data

The DSP56800 linker deadstrips unused code and data only from files compiled by the
CodeWarrior C compiler. Assembler relocatable files and C object files built by other
compilers are never deadstripped. Libraries built with the CodeWarrior C compiler
only contribute the used objects to the linked program. If a library has assembly or
other C compiler-built files, only those files that have at least one referenced object
contribute to the linked program. Completely unreferenced object files are always
ignored when deadstripping is enabled. Deadstripping is enabled by default in the
Linker > M56800 Linker Target Settings panel.

Link Order

The DSP56800 linker always processes C and assembly source files, as well as archive
files (.a and . 1ib) in the order specified under the Link Order tab in the project
window. This is important in the case of symbol duplication. For example, if a symbol
is defined in a source-code file and a library, the linker uses the definition which
appears first in the link order.

If you want to change the link order, select the Link Order tab in the project window
and drag your source or library file to the preferred location in the link order list. Files
that appear at the top of the list are linked first.

Targeting DSP56F80x/DSP56F82x Controllers 161

For More Information: www.freescale.com

Freescale Semiconductor, Inc.

C for DSP56800
Compiler or Linker Interactions

162 Targeting DSP56F80x/DSP56F82x Controllers

For More Information: www.freescale.com

Freescale Semiconductor, Inc.

8

Inline Assembly Language
and Intrinsic Functions

This chapter explains the support for assembly language and intrinsic functions that is
built into the CodeWarrior™ compiler. This chapter only covers the CodeWarrior IDE
implementation of Freescale assembly language.

Working With DSP56800 Assembly
Language

This section explains how to use the CodeWarrior compiler and assembler for
assembly language programming, including assembly language syntax.
This chapter contains the following sections:

¢ Working With DSP56800 Assembly Language

e Calling Assembly Language Functions from C Code

* Calling Functions from Assembly Language

* Intrinsic Functions for DSP56800

General Notes on Stand-Alone Assembly and Inline Assembly

The CodeWarrior IDE for the DSP56800 distinguishes between stand-alone assembly
language and inline assembly language.

Stand alone assembly language files (files containing assembly language statements
and having the file mapping suffix associated with the stand-alone assembler,

usually . asm) are handled with an explicit stand-alone assembler plugin called the
asm_m56800.d11. This plugin assembler supports a feature-rich assembly
language syntax. The exact syntax of the assembly language statements and directives
are found in the DSP56800x_Assembly.pdyf.

Inline assembly language, on the other hand, is a DSP56800 instruction syntax
handled directly by an internal compiler assembly language syntax parser and

Targeting DSP56F80x/DSP56F82x Controllers 163

For More Information: www.freescale.com

Freescale Semiconductor, Inc.

Inline Assembly Language and Intrinsic Functions
Working With DSP56800 Assembly Language

assembler. Inline assembly is normally distinguished by asm { } constructs within a
C language function or as an explicit assembly language function in C, such as asm
int functionname (). The inline assembler is meant for light duty enhancements
or changes to instructions emitted by the compiler.

The following outlines a few of the key differences between stand-alone and inline
assembly:

* Inline assembly statements are restricted to simple mnemonics and operand
syntax as documented in the DSP56800 Family manual.

* Directives are not supported in inline assembly.
¢ Single and dual parallel move syntax is supported in both assemblers.

* Labels may be defined in inline assembly language, but their scope is restricted to
the current function being compiled.

¢ Labels in the stand-alone assembler may be defined and exported (via the
GLOBAL directive) in either X: or P: address space, therefore these labels are not
scope limited.

¢ Data variables may not be defined in inline assembly language as the ORG
directive is not supported in inline assembly (data requires ORG X: directive).

* Colons are required for any label definition in the inline assembler. The stand-
alone assembler does not require a colon on labels as long as the label symbol
name begins in the first character position.

* Mnemonics may begin at any character position on a line in the inline assembler.
Mnemonics may not begin at the first character position in the stand-alone
assembler.

¢ The stand-alone assembler allows semicolon comments. The inline assembler
does not allow semicolon comments.

Inline Assembly Language Syntax for
DSP56800

This section explains the inline assembly language syntax specific to DSP56800
development with the CodeWarrior IDE.

Function-level Inline Assembly Language

To specify that a block of code in your file should be interpreted as assembly
language, use the asm keyword and standard DSP56800 instruction mnemonics.

164

Targeting DSP56F80x/DSP56F82x Controllers

For More Information: www.freescale.com

Freescale Semiconductor, Inc.

Inline Assembly Language and Intrinsic Functions
Working With DSP56800 Assembly Language

To ensure that the C compiler recognizes the asm keyword, you must disable the ANSI
Keywords Only option in the C/C++ Language (C Only) panel.

You can use the M56800 inline assembly language to specify that an entire function is
in assembly language by using the syntax displayed in Listing 8.1.

Listing 8.1 Function-level Syntax

asm <function header>

{
}

<assembly instructionss>

The function header is any valid C function header, and the local declarations are any
valid C local declarations.

Statement-level Inline Assembly Language

The M56800 inline assembly language supports single assembly instructions as well
as asm blocks, within a function using the syntax in Listing 8.2. The inline assembly
language statement is any valid assembly language statement.

Listing 8.2 Statement-level Syntax

asm { inline assembly statement
inline assembly statement

}

asm (inline assembly statement ;
inline assembly statement ;

There are two different ways to represent statement-level assembly. In the first way,
you use braces "{}" to contain the block. Within this type of block, the semicolon that
separates statements is optional. In the second way, you use parentheses "()" to contain
the block and the semicolon between statements is mandatory.

Targeting DSP56F80x/DSP56F82x Controllers 165

For More Information: www.freescale.com

Freescale Semiconductor, Inc.

Inline Assembly Language and Intrinsic Functions
Working With DSP56800 Assembly Language

Adding Assembly Language to C Source
Code

There are two ways to add assembly language statements in a C source code file. You
can define a function with the asm qualifier, or you can use the inline assembly
language.

The first method uses the asm keyword to specify that all statements in the function
are in assembly language, as shown in Listing 8.3 and Listing 8.7. Note that if you are
using this method, you must define local variables within the function.

Listing 8.3 Defining a Function with asm

asm long MyAsmFunction (void)

{

/* Local variable definitions */
/* Assembly language instructions */

The second method uses the asm qualifier as a statement to provide inline assembly
language instructions, as shown in Listing 8.4. Note that if you are using this method,
you must not define local variables within the inline asm statement.

Listing 8.4 Inline Assembly with asm

long MyInlineAsmFunction (void)

asm { move x:(r0)+,x0 }

General Notes on Inline Assembly
Language
Keep these points in mind as you write inline assembly language functions:

» All statements must either be a label:
[LocalLabel:]
Or an instruction:
((instruction) [operands])

¢ Each statement must end with a new line

166 Targeting DSP56F80x/DSP56F82x Controllers

For More Information: www.freescale.com

Freescale Semiconductor, Inc.

Inline Assembly Language and Intrinsic Functions
Working With DSP56800 Assembly Language

* Assembly language directives, instructions, and registers are not case-sensitive:
add x0,y0
ADD X0,YO

Creating Labels for M56800 Inline
Assembly

A label can be any identifier that you have not already declared as a local variable. A
label must end with a colon.

Listing 8.5 Labels in M56800 Assembly

x1l: add
x2: add
x3 add

x0,v1,a
x0,v1l,a
x0,yl,a //ERROR, MISSING COLON

Using Comments in M56800 Inline
Assembly

Comments in inline assembly language can only be in the form of C and C++
comments. You cannot begin the inline assembly language comments with a
semicolon (;) nor with a pound sign (#) - the preprocessor uses the pound sign. You
can use the semicolon for comments in . asm sources. The proper comment format is
shown in Listing 8.6.

Listing 8.6 Comments Allowed in M56800 Inline Assembly Language
move x:(r3),y0 # ERROR
add x0,vy0 // OK
move r2,x: (sp) ; ERROR
adda ro,rl,n /* OK */
Targeting DSP56F80x/DSP56F82x Controllers 167

For More Information: www.freescale.com

Freescale Semiconductor, Inc.

Inline Assembly Language and Intrinsic Functions
Calling Assembly Language Functions from C Code

Calling Assembly Language Functions
from C Code

You can call assembly language functions from C just like you would call any
standard C function. You need to use standard C syntax for calling inline assembly
language functions and stand-alone assembly language functions in . asm files.

Calling Inline Assembly Language
Functions

You can call inline assembly language functions just like you would call any standard
C function. Listing 8.7 demonstrates how to create an inline assembly language
function in a C source file. This example adds two 16-bit integers and returns the
result.

Notice that you are passing two 16-bit addresses to the add_int function. You pick up
those addresses in R3 and R2, and in YO pass back the result of the addition.

Listing 8.7 Sample Code - Creating an Inline Assembly Language Function

asm int add int(int * i, int * j)
{

move x:(r2),y0

move x:(r3),x0

add x0,vy0

// int result returned in yO0

rts

}

Now you can call your inline assembly language function with standard C notation, as
in Listing 8.8.

Listing 8.8 Sample Code - Calling an Inline Assembly Language Function
int x = 4, y = 2;

y = add_int(&x, &y); /* Returns 6 */

168 Targeting DSP56F80x/DSP56F82x Controllers

For More Information: www.freescale.com

Freescale Semiconductor, Inc.

Inline Assembly Language and Intrinsic Functions
Calling Assembly Language Functions from C Code

Calling Stand-alone Assembly Language
Functions

In order for your assembly language files to be called from C code, you need to specify
a SECTION mapping for your code so that it is linked appropriately. You must also
specify a memory space location. Code is usually specified to program memory (P)
space with the ORG directive.

When defining an assembly language function, use the GLOBAL directive to specify
the list of symbols within the current section. You can then define the assembly
language function.

An example of a complete assembly language function is shown in Listing 8.9. In this
function, two 16-bit integers are written to program memory. A separate function is
needed to write to P: memory because C pointer variables cannot be employed. C
pointer values only allow access to X: data memory.

The first parameter is a short value and the second parameter is the 16-bit address
where the first parameter is written.

Listing 8.9 Sample Code - Creating an Assembly Language Function

;"my assym.asm”

SECTION user ;map to user defined section in CODE

ORG P: ;put the following program in P
;memory

GLOBAL Fpmemwrite ;This symbol is defined within the

;current section and should be
;accessible by all sections

Fpmemwrite:
MOVE Y1l,RO ;Set up pointer to address
NOP ;Pipeline delay for RO
MOVE YO0,P: (RO)+ ;Write 16-bit value to address
;pointed to by RO in P: memory and
;jpost-increment RO
rts ;return to calling function
ENDSEC ;End of section
END ;End of source program
Targeting DSP56F80x/DSP56F82x Controllers 169

For More Information: www.freescale.com

Freescale Semiconductor, Inc.

Inline Assembly Language and Intrinsic Functions
Calling Functions from Assembly Language

NOTE The compiler prepends the letter ‘F’ to every function label name.
Therefore, when calling C functions from either Assembly Language
or Inline Assembly, the ’F’ must be prepended.

You can now call your assembly language function from C, as shown in Listing 8.10.

Listing 8.10 Sample Code - Calling an Assembly Language Function from C

void pmemwrite(short, short); /* Write a value into P: memory */

void main(void)

{

// ...other code

// Write the value given in the first parameter to the address
// of the second parameter in P: memory
pmemwrite ((short)0xE9C8, (short)0x0010);

// other code...

Calling Functions from Assembly
Language
Assembly programs can call C function or Assembly language functions. This section
explains the compiler convention for:
* Calling C Functions from Assembly Language

Functions written in C can be called from within assembly language instructions.
For example, if you defined your C program function as:

void foot (void)
/* Do something */
}
You could then call your C function from assembly language as:
jsr Ffoot

¢ Calling Assembly Language Functions from Assembly Language

170 Targeting DSP56F80x/DSP56F82x Controllers

For More Information: www.freescale.com

Freescale Semiconductor, Inc.

Inline Assembly Language and Intrinsic Functions
Intrinsic Functions for DSP56800

To call an assembly language function from assembly language, use the jsr
instruction with the function name as defined in your assembly language source.
For example, you can call your function in Listing 8.9 on page 169 as:

jsr Fpmemwrite

Intrinsic Functions for DSP56800

This section explains issues related to DSP56800 intrinsic functions and using them
with DSP56800 projects.

¢ An Overview of Intrinsic Functions
¢ Fractional Arithmetic

e Macros Used with Intrinsics

An Overview of Intrinsic Functions

CodeWarrior C for DSP56800 has intrinsic functions to generate inline assembly
language instructions.

Intrinsic functions are used to target specific processor instructions. They can be
helpful in accomplishing a few different things:

 Intrinsic functions let you pass in data to perform specific optimized
computations. For example, some calculations may be inefficient if coded in C
because the compiler has to follow ANSI C rules to represent data, and this may
cause the program to jump to runtime math routines for certain computations. In
such cases, it probably is better to code these calculations using assembly
language instructions and intrinsic functions.

* Intrinsic functions can control small tasks. For example, with intrinsic functions
you can set a bit in the operating mode register to enable saturation. This is more
convenient than using inline assembly language syntax and specifying the
operation in an asm block, every time that the operation is required.

NOTE Support for intrinsic functions is not part of the ANSI C standard.
They comprise an extension provided by the CodeWarrior compiler.

Fractional Arithmetic

Many of the intrinsic functions for Freescale DSP56800 use fractional arithmetic with
implied fractional values. An implied fractional value is a symbol, which has been

Targeting DSP56F80x/DSP56F82x Controllers 171

For More Information: www.freescale.com

Freescale Semiconductor, Inc.

Inline Assembly Language and Intrinsic Functions
Intrinsic Functions for DSP56800

declared as an integer type, but is to be calculated as a fractional type. Data in a
memory location or register can be interpreted as fractional or integer, depending on
the needs of a user's program.

All intrinsic functions that generate multiply and divide instructions (DIV, MPY,
MAC, MPYR, and MACR) perform fractional arithmetic on implied fractional values.
The following equation shows the relationship between a 16-bit integer and a
fractional value:

Fractional Value = Integer Value / (215)

Similarly, the equation for converting a 32-bit integer to a fractional value is as
follows:

Fractional Value = Long Integer Value / (231)

Table 8.1 shows how both 16 and 32-bit values can be interpreted as either fractional
or integer values.

Table 8.1 Interpretation of 16- and 32-bit Values

Type Hex Integer Fixed-point
Value Value

short int 0x2000 8192 0.25

short int 0xE000 -8192 -0.25

long int 0x20000000 536870912 0.25

long int 0XE0000000 -536870912 | -0.25

Macros Used with Intrinsics

These macros are used in intrinsic functions:

¢ Wordl6. A macro for signed short.

* Word32. A macro for signed long.

172

Targeting DSP56F80x/DSP56F82x Controllers

For More Information: www.freescale.com

Freescale Semiconductor, Inc.

Inline Assembly Language and Intrinsic Functions
List of Intrinsic Functions: Definitions and Examples

List of Intrinsic Functions: Definitions
and Examples

The intrinsic functions supported by the DSP56800 are shown in Table 8.2.

Table 8.2 Intrinsic Functions for DSP56800

Category Function Category Function
Absolute/Negate __abs Multiplication/ __mac_r
__negate MAC __msu_r
_L_negate __mult
Addition/ __add __mult_r
Subtraction " ewb L mac
_L_add _L_msu
_L_sub _L_mult
Control __stop _L_mult_Is
Conversion __fixed2int Normalization __norm_|
__fixed2long __norm_s
__fixed2short Rounding __round
__int2fixed Shifting __shl
__labs __shr
__long2fixed __shr_r
__short2fixed _L _shl
Copy __memcpy _L_shr
__strcpy _L_shr_r
Deposit/ Extract __extract_h
__extract_|
_L_deposit_h
_L_deposit_|I
Division __div
__div_Is
Targeting DSP56F80x/DSP56F82x Controllers 173

For More Information: www.freescale.com

Freescale Semiconductor, Inc.

Inline Assembly Language and Intrinsic Functions
List of Intrinsic Functions: Definitions and Examples

Absolute/Negate

e abs
* _ negate

e _L._negate

__abs
Definition
Computes and returns the absolute value of a 16-bit integer. Generates an ABS
instruction.
Assumption
Prototype
int _ abs(int);
Example
int i = -2;
i=_abs(1i);
__hegate
Definition
Negates a 16-bit integer or fractional value returning a 16-bit result. ~ Returns
0x7FFF for an input of 0x8000.
Assumptions
OMR’s SA bit was set to 1 at least 3 cycles before this code, that is, saturation on data
ALU results enabled.
174 Targeting DSP56F80x/DSP56F82x Controllers

For More Information: www.freescale.com

Freescale Semiconductor, Inc.

Inline Assembly Language and Intrinsic Functions
List of Intrinsic Functions: Definitions and Examples

Prototype

Wordlé _ negate (Wordlé svarl)

Example
int result, sl = 0xE000;/* - 0.25 */
result = negate(sl);

// Expected value of result: 0x2000 = 0.25

_L_negate

Definition

Negates a 32-bit integer or fractional value returning a 32-bit result. ~ Returns
0x7FFFFFFF for an input of 0x80000000.

Assumptions

OMR’s SA bit was set to 1 at least 3 cycles before this code, that is, saturation on data
ALU results enabled.

Prototype

Word32 _L negate (Word32 lvarl)

Example
long result, sl = 0xE0000000; /* - 0.25 */
result = L negate(sl);

// Expected value of result: 0x20000000 = 0.25

Targeting DSP56F80x/DSP56F82x Controllers 175

For More Information: www.freescale.com

Freescale Semiconductor, Inc.

Inline Assembly Language and Intrinsic Functions
List of Intrinsic Functions: Definitions and Examples

Addition/Subtraction
e _ add
e _ sub
e _L_add
e _L sub

__add

Definition
Addition of two 16-bit integer or fractional values, returning a 16-bit result.

Assumptions

OMR’s SA bit was set to 1 at least 3 cycles before this code, that is, saturation on data
ALU results enabled.

Prototype
Wordle _ add(Wordlé src_dst, Wordlé src2)

Example

short si1 0x4000;/* 0.5 *x/

short s2 = 0x2000;/* 0.25 */

short result;

result = _ add(sl,s2);

// Expected value of result: 0x6000 = 0.75

176 Targeting DSP56F80x/DSP56F82x Controllers

For More Information: www.freescale.com

Freescale Semiconductor, Inc.

Inline Assembly Language and Intrinsic Functions
List of Intrinsic Functions: Definitions and Examples

sub

Definition
Subtraction of two 16-bit integer or fractional values, returning a 16-bit result.

Assumptions

OMR’s SA bit was set to 1 at least 3 cycles before this code, that is, saturation on data
ALU results enabled.

Prototype

Wordlé _ sub(Wordlé src_dst, Wordlé src2)

Example

short sl = 0x4000;/* 0.5 */

short s2 = O0xE000;/* -0.25 */

short result;

result = _ sub(sl,s2);

// Expected value of result: 0x6000 = 0.75

_L add

Definition
Addition of two 32-bit integer or fractional values, returning a 32-bit result.

Assumptions

OMR’s SA bit was set to 1 at least 3 cycles before this code, that is, saturation on data
ALU results enabled.

Targeting DSP56F80x/DSP56F82x Controllers 177

For More Information: www.freescale.com

Freescale Semiconductor, Inc.

Inline Assembly Language and Intrinsic Functions
List of Intrinsic Functions: Definitions and Examples

L sub

Prototype

Word32 L add(Word32 src_dst, Word32 src2)

Example
long la = 0x40000000;/* 0.5 */

long 1b 0x20000000;/* 0.25 */

long result;

result = L add(la,lb);

// Expected value of result: 0x60000000 = 0.75

Definition
Subtraction of two 32-bit integer or fractional values, returning a 32-bit result.

Assumptions

OMR’s SA bit was set to 1 at least 3 cycles before this code, that is, saturation on data
ALU results enabled.

Prototype

Word32 _L_ sub(Word32 src_dst, Word32 src2)

178

Targeting DSP56F80x/DSP56F82x Controllers

For More Information: www.freescale.com

Freescale Semiconductor, Inc.

Inline Assembly Language and Intrinsic Functions
List of Intrinsic Functions: Definitions and Examples

Example
long la = 0x40000000;/* 0.5 */

long 1b 0xE0000000;/* -0.25 */

long result;

result = L sub(la,lb);

// Expected value of result: 0x60000000 = 0.75

Targeting DSP56F80x/DSP56F82x Controllers 179

For More Information: www.freescale.com

Freescale Semiconductor, Inc.

Inline Assembly Language and Intrinsic Functions
List of Intrinsic Functions: Definitions and Examples

Control

__stop

__stop

Definition
Generates a STOP instruction which places the processor in the low power STOP
mode.

Prototype
void _ stop(void)
Usage

__stop();

180 Targeting DSP56F80x/DSP56F82x Controllers

For More Information: www.freescale.com

Freescale Semiconductor, Inc.

Inline Assembly Language and Intrinsic Functions
List of Intrinsic Functions: Definitions and Examples

Conversion

The following intrinsics are provided to convert between various integer and fixed
point types. The appropriate intrinsic should always be used when referencing an
integer constant in fixed point context (i.e., assignment and comparisons).

e fixed2int

e _ fixed2long

e _ fixed2short
e int2fixed

e _ labs

e __ long2fixed

e _ short2fixed

__fixed2int

Definition

Converts a 16-bit __fixed__ value to a 16-bit integer.

Prototype
int fixed2int (_ fixed);
Targeting DSP56F80x/DSP56F82x Controllers 181

For More Information: www.freescale.com

Freescale Semiconductor, Inc.

Inline Assembly Language and Intrinsic Functions
List of Intrinsic Functions: Definitions and Examples

Example

int i;

int j;

_ fixed i fix = 0.645;

i = fixed2int(i fix); /* Returns 21135 */

_ fixed2int(0.645);

.
I

printf ("PASSED\n") ;

if (i == _ fixed2int(0.645))

printf ("PASSED\n") ;

if (§ == 21135)

printf ("PASSED\n") ;

__fixed2long
Definition
Converts a 32-bit __longfixed__ value to a 32-bit long integer.

Prototype

long _ fixed2long (_ longfixed);

182 Targeting DSP56F80x/DSP56F82x Controllers

For More Information: www.freescale.com

Freescale Semiconductor, Inc.

Inline Assembly Language and Intrinsic Functions
List of Intrinsic Functions: Definitions and Examples

Example

long 1;

__longfixed = 1fix = 0.645;

1 = fixed2long(1fix); /* Returns 1385126952 */
__fixed2short

Definition

Converts a 16-bit __shortfixed__ value to a 16-bit short integer.
Prototype
short _ fixed2short (_ shortfixed);

Example

short s;

__ _shortfixed sfix = 0.645;

s = _ fixed2short(sfix); /* Returns 21135 */

__int2fixed

Definition

Converts a 16-bit integer value to a 16-bit __fixed__ value.

Prototype
_ fixed = int2fixed (int);
Targeting DSP56F80x/DSP56F82x Controllers 183

For More Information: www.freescale.com

Freescale Semiconductor, Inc.

Inline Assembly Language and Intrinsic Functions
List of Intrinsic Functions: Definitions and Examples

Example
int i = 0x2000;
_ fixed ifix;

_ fixed jfix;

/* Returns 0.25%/

ifix = int2fixed(i);
jfix = int2fixed(0x2000);
if (ifix == jfix)

printf ("PASSED\n") ;

if (ifix == int2fixed(0x2000))

printf ("PASSED\n") ;

if (jfix == 0.25)

printf ("PASSED\n") ;

__labs
Definition
Computes and returns the absolute value of a 32-bit long integer. Generates an
ABS instruction.
Prototype
long _ labs (long);
184 Targeting DSP56F80x/DSP56F82x Controllers

For More Information: www.freescale.com

Freescale Semiconductor, Inc.

Inline Assembly Language and Intrinsic Functions
List of Intrinsic Functions: Definitions and Examples

Example
long 1 = -2;

1 = _1labs(1); /* Returns 2 */

__long2fixed

Definition
Converts a 32-bit long integer to a 32-bit __longfixed__ type.
Prototype

_ longfixed _ long2fixed (long);

Example

long 1 = 2;

_ longfixed 1fix;

/* Returns 9.31le-10 (2730)%/

1fix = long2fixed(1);

__short2fixed

Definition
Converts a 16-bit short integer to a 16-bit __shortfixed__ type.
Prototype

__shortfixed = short2fixed (short);

Targeting DSP56F80x/DSP56F82x Controllers

For More Information: www.freescale.com

Freescale Semiconductor, Inc.

Inline Assembly Language and Intrinsic Functions
List of Intrinsic Functions: Definitions and Examples

Example
short s = 2;

__ _shortfixed sfix;

/* Returns 0.0000610 (27 %%)*/

sfix = _ short2fixed(s);

186 Targeting DSP56F80x/DSP56F82x Controllers

For More Information: www.freescale.com

Freescale Semiconductor, Inc.

Inline Assembly Language and Intrinsic Functions
List of Intrinsic Functions: Definitions and Examples

Copy

e __memcpy

e _ strepy
__memcpy
Definition

Copy a contiguous block of memory of n characters from the item pointed to by
source to the item pointed to by dest . The behavior of memcpy () is
undefined if the areas pointed to by dest and source overlap.

Prototype
void * memcpy (void *dest,

const void *source,

size t n);
Example
const int len = 9;
char al[len] = “Socrates\0”;
char a2[len] = null;

/* Now copy contents of al to a2 */

__memcpy((char *)a2, (char *)al, len);

Targeting DSP56F80x/DSP56F82x Controllers 187

For More Information: www.freescale.com

Freescale Semiconductor, Inc.

Inline Assembly Language and Intrinsic Functions
List of Intrinsic Functions: Definitions and Examples

__strcpy

Definition

Copies the character array pointed to by source to the character array pointed to by
dest. The source argument must be a constant string. The function will not be
inlined if source is defined outside of the function call. The resulting character
array at dest is null terminated as well.

Prototype
char * strcpy (char *dest,
const char *source) ;
Example
char d[11];

___strcpy(d, “Metrowerks\0”);

/* d array now contains the string “Metrowerks” */

188

Targeting DSP56F80x/DSP56F82x Controllers

For More Information: www.freescale.com

Freescale Semiconductor, Inc.

Inline Assembly Language and Intrinsic Functions
List of Intrinsic Functions: Definitions and Examples

Deposit/ Extract

e _ extract_h
e _ extract_l
e _L_deposit_h
e _L_deposit_I

__extract_h

Definition

Extracts the 16 MSBs of a 32-bit integer or fractional value. Returns a 16-bit value.
Does not perform saturation. When an accumulator is the destination, zeroes out the
LSP portion. Corresponds to "truncation" when applied to fractional values.

Prototype
Wordlé _ extract_h(Word32 lsrc)
Example

long 1 = 0x87654321;

short result;

result = _ extract h(l);

// Expected value of result: 0x8765

__extract_|

Definition

Extracts the 16 LSBs of a 32-bit integer or fractional value. Returns a 16-bit value.
Does not perform saturation. When an accumulator is the destination, zeroes out the
LSP portion.

Targeting DSP56F80x/DSP56F82x Controllers 189

For More Information: www.freescale.com

Inline Assembly Language and Intrinsic Functions

Freescale Semiconductor, Inc.

List of Intrinsic Functions: Definitions and Examples

Prototype

Wordle _ extract 1 (Word32 lsrc)

Example
long 1 = 0x87654321;

short result;

result = extract 1(1);

// Expected value of result:

_L_deposit_h

Definition

0x4321

Deposits the 16-bit integer or fractional value into the upper 16 bits of a 32-bit value,
and zeroes out the lower 16 bits of a 32-bit value.

Prototype

Word32 L deposit h(Wordlé ssrc)

Example
short sl = 0x3FFF;

long result;

result = L deposit h(sl);

// Expected value of result:

0x3f££0000

190

Targeting DSP56F80x/DSP56F82x Controllers

For More Information: www.freescale.com

Freescale Semiconductor, Inc.

Inline Assembly Language and Intrinsic Functions
List of Intrinsic Functions: Definitions and Examples

_L_deposit_I

Definition

Deposits the 16-bit integer or fractional value into the lower 16 bits of a 32- bit value,
and sign extends the upper 16 bits of a 32-bit value.

Prototype
Word32 L deposit 1 (Wordlé ssrc)
Example

short sl = 0x7FFF;

long result;

result = L deposit_1(sl);

// Expected value of result: 0x00007FFF

Targeting DSP56F80x/DSP56F82x Controllers 191

For More Information: www.freescale.com

Freescale Semiconductor, Inc.

Inline Assembly Language and Intrinsic Functions
List of Intrinsic Functions: Definitions and Examples

Division
e div
e _div_ls
__div
Definition
Divides two 16-bit short integers as a fractional operation and returns the result as a
16-bit short integer. Generates a DIV instruction.
Prototype
short div(short, short);
Example
short i = 0x2000; /* Assign 0.25 to i */
short j = 0x4000; /* Assign 0.50 to j */
_ fixed £
i=_div(1i, 3); /* Returns 16384 */
f = short2fixed(i); /* Returns 0.50 */
__div_Is
Definition
Single quadrant division, that is, both operands are positive two 16-bit fractional
values, returning a 16-bit result. If both operands are equal, returns Ox7FFF (occurs
naturally).
192 Targeting DSP56F80x/DSP56F82x Controllers

For More Information: www.freescale.com

Freescale Semiconductor, Inc.

Inline Assembly Language and Intrinsic Functions
List of Intrinsic Functions: Definitions and Examples

Note

Does not check for division overflow cases.

Does not check for divide by zero cases.

Prototype

Wordleé _ div s (Wordlé s_denominator, Wordlé s _numerator)
Example

short s1=0x2000;/* 0.25 */

short s2=0x4000;/* 0.5 */

short result;

result = div s(s2,sl);

// Expected value of result: 0.25/0.5 = 0.5 = 0x4000

Targeting DSP56F80x/DSP56F82x Controllers 193

For More Information: www.freescale.com

Freescale Semiconductor, Inc.

Inline Assembly Language and Intrinsic Functions
List of Intrinsic Functions: Definitions and Examples

Multiplication/ MAC

e __mac_r
e __msu_r
e _ mult

e _ multr
e _L_mac
e L msu
e L mult

e L multls

__mac_r

Definition

Multiply two 16-bit fractional values and add to 32-bit fractional value. Round into a
16-bit result, saturating if necessary. When an accumulator is the destination, zeroes
out the LSP portion.

Assumptions

OMR’s SA bit was set to 1 at least 3 cycles before this code, that is, saturation on data
ALU results enabled.

OMR’s R bit was set to 1 at least 3 cycles before this code, that is, 2’s complement
rounding, not convergent rounding.

Prototype

Wordlé _ mac_r (Word32 laccum, Wordlé sinpl, Wordlé sinp2)

194 Targeting DSP56F80x/DSP56F82x Controllers

For More Information: www.freescale.com

Freescale Semiconductor, Inc.

Inline Assembly Language and Intrinsic Functions
List of Intrinsic Functions: Definitions and Examples

Example

short sl = 0xC000;/* - 0.5 */

short s2 = 0x4000;/* 0.5 */
short result;

long Acc = 0x0000FFFF;

result = mac_r(Acc,sl,s2);

// Expected value of result: 0xXE001

__msu.r

Definition

Multiply two 16-bit fractional values and subtract this product from a 32-bit fractional
value. Round into a 16-bit result, saturating if necessary. When an accumulator is the
destination, zeroes out the LSP portion.

Assumptions

OMR’s SA bit was set to 1 at least 3 cycles before this code, that is, saturation on data
ALU results enabled.

OMR’s R bit was set to 1 at least 3 cycles before this code, that is, 2’s complement
rounding, not convergent rounding.

Prototype

Wordlé _ msu_r(Word32 laccum, Wordlé sinpl, Wordlé sinp2)

Targeting DSP56F80x/DSP56F82x Controllers 195

For More Information: www.freescale.com

Freescale Semiconductor, Inc.

Inline Assembly Language and Intrinsic Functions
List of Intrinsic Functions: Definitions and Examples

Example
short sl = 0xC000;/* - 0.5 */

short s2 = 0x4000;/* 0.5 */

short result;

long Acc = 0x20000000;

result = msu r(Acc,sl,s2);

// Expected value of result: 0x4000

__mult

Definition

Multiply two 16-bit fractional values and truncate into a 16-bit fractional result.
Saturates only for the case of 0x8000 x 0x8000. When an accumulator is the
destination, zeroes out the LSP portion.

Assumptions

OMR’s SA bit was set to 1 at least 3 cycles before this code, that is, saturation on data
ALU results enabled.

Prototype

Wordlé _ mult (Wordlé sinpl, Wordlé sinp2)

196 Targeting DSP56F80x/DSP56F82x Controllers

For More Information: www.freescale.com

Freescale Semiconductor, Inc.

Inline Assembly Language and Intrinsic Functions
List of Intrinsic Functions: Definitions and Examples

Example

short sl = 0x2000;/* 0.25 */

short s2 = 0x2000;/* 0.25 */

short result;

result = mult(sl,s2);

// Expected value of result: 0.625 = 0x0800

__mult_r

Definition

Multiply two 16-bit fractional values, round into a 16-bit fractional result. Saturates
only for the case of 0x8000 x 0x8000. When an accumulator is the destination, zeroes
out the LSP portion.

Assumptions

OMR’s SA bit was set to 1 at least 3 cycles before this code, that is, saturation on data
ALU results enabled.

OMR’s R bit was set to 1 at least 3 cycles before this code, that is, 2’s complement
rounding, not convergent rounding.

Prototype

Wordle _ mult r (Wordlé sinpl, Wordlé sinp2)

Targeting DSP56F80x/DSP56F82x Controllers 197

For More Information: www.freescale.com

Freescale Semiconductor, Inc.

Inline Assembly Language and Intrinsic Functions
List of Intrinsic Functions: Definitions and Examples

Example

short sl = 0x2000;/* 0.25 */

short s2 = 0x2000;/* 0.25 */

short result;

result = mult r(sl,s2);

// Expected value of result: 0.0625 = 0x0800

_L_mac

Definition

Multiply two 16-bit fractional values and add to 32-bit fractional value, generating a
32-bit result, saturating if necessary.

Assumptions

OMR’s SA bit was set to 1 at least 3 cycles before this code, that is, saturation on data
ALU results enabled.

Prototype

Word32 _L mac (Word32 laccum, Wordlé sinpl, Wordlé sinp2)

Example
short s1 = 0xC000;/* - 0.5 */
short s2 = 0x4000;/* 0.5 */

long result, Acc = 0x20000000;/* 0.25 */

result = L mac(Acc,sl,s2);

// Expected value of result: 0

198 Targeting DSP56F80x/DSP56F82x Controllers

For More Information: www.freescale.com

Freescale Semiconductor, Inc.

Inline Assembly Language and Intrinsic Functions
List of Intrinsic Functions: Definitions and Examples

_L_msu

Definition

Multiply two 16-bit fractional values and subtract this product from a 32-bit fractional
value, saturating if necessary. Generates a 32-bit result.

Assumptions

OMR’s SA bit was set to 1 at least 3 cycles before this code, that is, saturation on data
ALU results enabled.

Prototype
Word32 L msu(Word32 laccum, Wordlé sinpl, Wordlé sinp2)

Example

short sl = 0xC000;/* - 0.5 */

short s2 = 0xC000;/* - 0.5 */

long result, Acc = 0;

result = L msu(Acc,sl,s2);

// Expected value of result: 0.25

_L_mult

Definition

Multiply two 16-bit fractional values generating a signed 32-bit fractional result.
Saturates only for the case of 0x8000 x 0x8000.

Assumptions

OMR’s SA bit was set to 1 at least 3 cycles before this code, that is, saturation on data
ALU results enabled.

Targeting DSP56F80x/DSP56F82x Controllers 199

For More Information: www.freescale.com

Freescale Semiconductor, Inc.

Inline Assembly Language and Intrinsic Functions
List of Intrinsic Functions: Definitions and Examples

Prototype

Word32 L mult (Wordlé sinpl, Wordlé sinp2)

Example
short s1 = 0x2000;/* 0.25 */

short s2 0x2000;/* 0.25 */

long result;

result = L mult(sl,s2);

// Expected value of result: 0.0625 = 0x08000000

L mult_Is

Definition

Multiply one 32-bit and one-16-bit fractional value, generating a signed 32-bit
fractional result. Saturates only for the case of 0x80000000 x 0x8000.

Assumptions

OMR’s SA bit was set to 1 at least 3 cycles before this code, that is, saturation on data
ALU results enabled.

Prototype

Word32 L mult 1ls(Word32 linpl, Wordlé sinp2)

200

Targeting DSP56F80x/DSP56F82x Controllers

For More Information: www.freescale.com

Freescale Semiconductor, Inc.

Inline Assembly Language and Intrinsic Functions
List of Intrinsic Functions: Definitions and Examples

Example
long 11 = 0x20000000;/* 0.25 */
short s2 = 0x2000;/* 0.25 */

long result;

result = L mult 1s(11,s2);

// Expected value of result: 0.0625

= 0x08000000

Targeting DSP56F80x/DSP56F82x Controllers

201

For More Information: www.freescale.com

Freescale Semiconductor, Inc.

Inline Assembly Language and Intrinsic Functions
List of Intrinsic Functions: Definitions and Examples

Normalization

e _ norm_l

¢ __norm_S

__norm_|

Definition

Computes the number of left shifts required to normalize a 32-bit value, returning a
16-bit result. Returns a shift count of 0 for an input of 0x00000000.

Note
Does not actually normalize the value!

This operation is NOT optimal on the DSP56800 because of the case of returning O for
an input of 0x00000000.

Prototype
Wordlé _ norm 1 (Word32 lsrc)
Example

long 11 = 0x20000000;/* .25 */

short result;

result = norm 1(11);

// Expected value of result: 1

202 Targeting DSP56F80x/DSP56F82x Controllers

For More Information: www.freescale.com

Freescale Semiconductor, Inc.

Inline Assembly Language and Intrinsic Functions
List of Intrinsic Functions: Definitions and Examples

__horm_s

Definition

Computes the number of left shifts required to normalize a 16-bit value, returning a
16-bit result. Returns a shift count of 0 for an input of 0x0000.

Note
Does not actually normalize the value!

This operation is NOT optimal on the DSP56800 because of the case of returning O for
an input of 0x0000. See the intrinsic __norm_l which is more optimal but generates a
different value for the case where the input == 0x0000.

Prototype
Wordlé _ norm s (Wordlé ssrc)
Example

short sl1 = 0x2000;/* .25 */

short result;

result = norm _s(sl);

// Expected value of result: 1

Targeting DSP56F80x/DSP56F82x Controllers 203

For More Information: www.freescale.com

Freescale Semiconductor, Inc.

Inline Assembly Language and Intrinsic Functions
List of Intrinsic Functions: Definitions and Examples

Rounding

__round

__round

Definition

Rounds a 32-bit fractional value into a 16-bit result. When an accumulator is the
destination, zeroes out the LSP portion.

Assumptions

OMR’s R bit was set to 1 at least 3 cycles before this code, that is, 2’s complement
rounding, not convergent rounding.

OMR’s SA bit was set to 1 at least 3 cycles before this code, that is, saturation on data
ALU results enabled.

Prototype

Wordl6é _ round(Word32 lvarl)

Example

long 1 = 0x12348002;/*if low 16 bits = OxFFFF > 0x8000 then add
1 x/

short result;

result = _ round(l);

// Expected value of result: 0x1235

204

Targeting DSP56F80x/DSP56F82x Controllers

For More Information: www.freescale.com

Freescale Semiconductor, Inc.

Inline Assembly Language and Intrinsic Functions
List of Intrinsic Functions: Definitions and Examples

Shifting
e _ shl

e _ shr

e shrr

e I shl

e I shr

e L shrr

__shl

Definition

Arithmetic shift of 16-bit value by a specified shift amount. If the shift count is
positive, a left shift is performed. Otherwise, a right shift is performed. Saturation may
occur during a left shift. When an accumulator is the destination, zeroes out the LSP
portion.

Note

This operation is not optimal on the DSP56800 because of the saturation requirements
and the bidirectional capability.

Assumptions

OMR’s SA bit was set to 1 at least 3 cycles before this code, that is, saturation on data
ALU results enabled.

Prototype

Wordlé _ shl (Wordlé sval2shft, Wordlé s_shftamount)

Targeting DSP56F80x/DSP56F82x Controllers 205

For More Information: www.freescale.com

Freescale Semiconductor, Inc.

Inline Assembly Language and Intrinsic Functions
List of Intrinsic Functions: Definitions and Examples

Example
short result;
short sl1 = 0x1234;

short s2= 1;

result = _ shl(sl,s2);

// Expected value of result: 0x2468

__shr
Definition
Arithmetic shift of 16-bit value by a specified shift amount. If the shift count is
positive, a right shift is performed. Otherwise, a left shift is performed. Saturation may
occur during a left shift. When an accumulator is the destination, zeroes out the LSP
portion.
Note
This operation is not optimal on the DSP56800 because of the saturation requirements
and the bidirectional capability.
Assumptions
OMR’s SA bit was set to 1 at least 3 cycles before this code, that is, saturation on data
ALU results enabled.
Prototype
Wordlé _ shr (Wordlé sval2shft, Wordlé s_shftamount)

206 Targeting DSP56F80x/DSP56F82x Controllers

For More Information: www.freescale.com

Freescale Semiconductor, Inc.

Inline Assembly Language and Intrinsic Functions
List of Intrinsic Functions: Definitions and Examples

Example
short result;
short sl1 = 0x2468;

short s2= 1;

result = _ shr(sl,s2);

// Expected value of result: 0x1234

__shr_r

Definition

Arithmetic shift of 16-bit value by a specified shift amount. If the shift count is
positive, a right shift is performed. Otherwise, a left shift is performed. If a right shift
is performed, then rounding performed on result. Saturation may occur during a left
shift. When an accumulator is the destination, zeroes out the LSP portion.

Note

This operation is not optimal on the DSP56800 because of the saturation requirements
and the bidirectional capability.

Assumptions

OMR’s SA bit was set to 1 at least 3 cycles before this code, that is, saturation on data
ALU results enabled.

Prototype

Wordlé _ shr r(Wordlé s_val2shft, Wordlé s_shftamount)

Targeting DSP56F80x/DSP56F82x Controllers 207

For More Information: www.freescale.com

Freescale Semiconductor, Inc.

Inline Assembly Language and Intrinsic Functions
List of Intrinsic Functions: Definitions and Examples

Example
short result;
short sl1 = 0x2468;

short s2= 1;

result = _ shr(sl,s2);

// Expected value of result: 0x1234

_L_shl
Definition
Arithmetic shift of 32-bit value by a specified shift amount. If the shift count is
positive, a left shift is performed. Otherwise, a right shift is performed. Saturation may
occur during a left shift. When an accumulator is the destination, zeroes out the LSP
portion.
Note
This operation is not optimal on the DSP56800 because of the saturation requirements
and the bidirectional capability. See the intrinsic _L_shl or result = shlfts(l, s1); which
are more optimal.
Assumptions
OMR’s SA bit was set to 1 at least 3 cycles before this code, that is, saturation on data
ALU results enabled.
Prototype
Word32 _L_shl (Word32 1lval2shft, Wordlé s_shftamount)

208 Targeting DSP56F80x/DSP56F82x Controllers

For More Information: www.freescale.com

Freescale Semiconductor, Inc.

Inline Assembly Language and Intrinsic Functions
List of Intrinsic Functions: Definitions and Examples

Example
long result, 1 = 0x12345678;

short s2= 1;

result = L shl(1l,s2);
// Expected value of result: 0x2468ACF0
result = shlfts(l, sl1);

// Expected value of result: 0x91A259E0Q

_L_shr

Definition

Arithmetic shift of 32-bit value by a specified shift amount. If the shift count is
positive, a right shift is performed. Otherwise, a left shift is performed. Saturation may
occur during a left shift. When an accumulator is the destination, zeroes out the LSP
portion.

Note

This operation is not optimal on the DSP56800 because of the saturation requirements
and the bidirectional capability.

Assumptions

OMR’s SA bit was set to 1 at least 3 cycles before this code, that is, saturation on data
ALU results enabled.

Prototype

Word32 _L_shr(Word32 lval2shft, Wordlé s_shftamount)

Targeting DSP56F80x/DSP56F82x Controllers 209

For More Information: www.freescale.com

Freescale Semiconductor, Inc.

Inline Assembly Language and Intrinsic Functions
List of Intrinsic Functions: Definitions and Examples

Example
long result, 1 = 0x24680000;

short s2= 1;

result = L shr(l,s2);

// Expected value of result: 0x12340000

L shrr

Definition

Arithmetic shift of 32-bit value by a specified shift amount. If the shift count is
positive, a right shift is performed. Otherwise, a left shift is performed. If a right shift
is performed, then rounding performed on result. ~ Saturation may occur during a left
shift.

Assumptions

OMR's SA bit was set to 1 at least 3 cycles before this code, that is, saturation on
data ALU results enabled.

Prototype

Word32 L shr r(Word32 lval2shft, Wordlé s shftamount)

210 Targeting DSP56F80x/DSP56F82x Controllers

For More Information: www.freescale.com

Freescale Semiconductor, Inc.

Inline Assembly Language and Intrinsic Functions
Pipeline Restrictions

Example
long 11 = 0x41111111;
short s2 = 1;

long result;

result = L shr r(ll,s2);

// Expected value of result: 0x20888889

Pipeline Restrictions

This section gives an overview of how the pipeline restrictions are handled by the
DSP56800 compiler.

The following list contains pipeline restrictions that are detected and handled. If any of
these cases are detected by the compiler’s inline assembler, the compiler generates a
warning and inserts a NOP instruction to correct the violation of the pipeline
restriction.

1. A NORM instruction cannot be immediately followed by an instruction that
accesses X memory using the RO pointer. The following example shows a warning
is generated:

NORM RO,A
MOVE X:(RO)+,A ;Cannot reference RO after NORM

2. Any jump, branch, or branch on bit field may not specify the instruction at LA or
LA-1 of a hardware DO loop as their target addresses.

DO #7,LABEL
BCC LABEL ;Cannot branch to LA
;instruction

LABEL:

Targeting DSP56F80x/DSP56F82x Controllers 211

For More Information: www.freescale.com

Freescale Semiconductor, Inc.

Inline Assembly Language and Intrinsic Functions
Pipeline Restrictions

3. Any jump, branch, or branch on bit field instructions may not be located in the last
two locations of a hardware DO loop (that is, at LA or at LA-1).

DO #7,LABEL
BCC ULABEL ;Cannot branch in LA
;instruction

LABEL:

NOTE A warning will be emitted when pipeline conflicts are detected.

4. 1If a MOVE instruction changes the value in one of the address registers (R0-R3),
then the contents of the register are not available for use until the second following
instruction. That is, the instruction immediately following the MOVE instruction
does not use the modified register to access X memory or update an address. This
also applies to the SP register and MO1 register.

MOVE X:(SP-2),R1
MOVE X:(R1)+,A; ; Rl is not available

In addition, it applies if a 16-bit immediate value is moved to the N register, and the
option for Compiler adjusts for delayed load of N register in the M56800 Processor
target settings panel is enabled.

MOVE #3,n
MOVE X: (SP+N) , YO ; N is not available

5. [If abit-field instruction changes the value in one of the address registers (R0-R3),
then the contents of the register are not available for use until the second following
instruction. That is, the instruction immediately following the MOVE instruction
does not use the modified register to access X memory or update an address. This
applies to the SP and MO1 registers.

BFCLR #1,R1
MOVE X:(R1)+,A; ; Rl is not available

In addition, it applies to the N register when the Compiler adjusts for delayed load of N
register option in the M56800 Processor target settings panel is enabled.

BFCLR #1,N

MOVE X: (RO+N) , YO0 ;N is not available

212 Targeting DSP56F80x/DSP56F82x Controllers

For More Information: www.freescale.com

Freescale Semiconductor, Inc.

Inline Assembly Language and Intrinsic Functions
Pipeline Restrictions

6. For the case of nested hardware DO loops, it is required that there be at least two
instructions after the pop of the LA and LC registers before the instruction at the
last address of the outer loop.

DO #3,0LABEL ; Beginning of outer loop
PUSH LC
PUSH LA
DO X0,ILABEL ; Beginning of inner loop
; (instructions)
REP Y0 ; Skips ASL if y0 = 0
ASL A
; (instructions)
ILABEL: ; End of inner loop
POP LA
POP LC
NOP; 3 instructions required after POP
NOP; 3 instructions required after POP
NOP; 3 instructions required after POP
OLABEL: ; End of outer loop

7. If the CLR instruction changes the value in one of the address registers (R0-R3),
then the contents of the register are not available for use until the second following
instruction. That is, the instruction immediately following the CLR instruction
does not use the modified register to acccess X memory or update an address. This
also applies to the SP register and the MO1 register.

CLR RO
MOVE X: (RO) +,A;Cannot reference RO after NORM

In addition, it applies if the 16-bit immediate value is moved to the N register and the
option for Compiler adjusts for delayed load of N register in the M56800 Processor
target settings panel is enabled.

clr N
MOVE X:(SP)+N,Y0 ;N is not available

Targeting DSP56F80x/DSP56F82x Controllers 213

For More Information: www.freescale.com

Freescale Semiconductor, Inc.

Inline Assembly Language and Intrinsic Functions
Pipeline Restrictions

214 Targeting DSP56F80x/DSP56F82x Controllers

For More Information: www.freescale.com

Freescale Semiconductor, Inc.

9
Debugging for DSP56800

This chapter, which explains the generic features of the CodeWarrior™ debugger,
consists of these sections:

» Target Settings for Debugging

* Command Converter Server

* Launching and Operating the Debugger
* Load/Save Memory

* Fill Memory

* Save/Restore Registers

¢ OnCE Debugger Features

¢ Using the DSP56800 Simulator

* Register Details Window

* Loading a .elf File without a Project

¢ Using the Command Window

¢ System-Level Connect

¢ Debugging on a Complex Scan Chain

* Debugging in the Flash Memory

* Setting up the Debugger for Flash Programming
* Notes for Debugging on Hardware

* Flash Programming the Reset and Interrupt Vectors

Target Settings for Debugging

This section explains how to control the debugger by modifying the appropriate
settings panels.

Targeting DSP56F80x/DSP56F82x Controllers 215

For More Information: www.freescale.com

Freescale Semiconductor, Inc.

Debugging for DSP56800
Command Converter Server

To properly debug DSP56800 software, you must set certain preferences in the Target
Settings window. The M56800 Target panel is specific to DSP56800 development. The
remaining settings panels are generic to all build targets.

Other settings panels can affect debugging. Table 9.1 lists these panels.

Table 9.1 Setting Panels that Affect Debugging

This panel... Affects... Refer to...

M56800 Linker symbolics, linker “M56800 Linker”
warnings

M56800 Processor optimizations “Optimizing Code”

Debugger Settings Debugging options

Remote Debugging Debugging “Remote Debugging”
communication
protocol
Remote Debug Debugging options “Remote Debug Options”
Options

The M56800 Target panel is unique to DSP56800 debugging. The available options in
this panel depend on the DSP56800 hardware you are using and are described in detail
in the section on “Remote Debug Options”.

Command Converter Server

The command converter server (CCS) handles communication between the
CodeWarrior debugger and the target board. An icon in the status bar indicates the
CCS is running. The CCS is automatically launched by your project when you start a
CCS debug session if you are debugging a target board using a local machine.
However, when debugging a target board connected to a remote machine, see “Setting
Up a Remote Connection” on page 221.

NOTE Projects are set to debug locally by default. The protocol the
debugger uses to communicate with the target board, for example,
PCI, is determined by how you installed the CodeWarrior software.
To modify the protocol, make changes in the Metrowerks Command
Converter Server window (Figure 9.3).

216 Targeting DSP56F80x/DSP56F82x Controllers

For More Information: www.freescale.com

Freescale Semiconductor, Inc.

Debugging for DSP56800
Command Converter Server

Essential Target Settings for Command
Converter Server

Before you can download programs to a target board for debugging, you must specify
the target settings for the command converter server:

¢ Local Settings

If you specify that the CodeWarrior IDE start the command converter server
locally, the command converter server uses the connection port (for example,
LPT1) that you specified when you installed CodeWarrior Development Studio
for Freescale 56800.

¢ Remote Settings

If you specify that the CodeWarrior IDE start the command converter server on a
remote machine, specify the IP address of the remote machine on your network
(as described in “Setting Up a Remote Connection” on page 221.)

¢ Default Settings

By default, the command converter server listens on port 41475. You can specify
a different port number for the debugger to connect to if needed (as described in
“Setting Up a Remote Connection” on page 221.) This is necessary if the CCS is
configured to a port other than 41475.

After you have specified the correct settings for the command converter server (or
verified that the default settings are correct), you can download programs to a target
board for debugging.

The CodeWarrior IDE starts the command converter server at the appropriate time if
you are debugging on a local target.

Before debugging on a board connected to a remote machine, ensure the following:
* The command converter server is running on the remote host machine.

* Nobody is debugging the board connected to the remote host machine.

Changing the Command Converter Server
Protocol to Parallel Port

If you specified the wrong parallel port for the command converter server when you
installed CodeWarrior Development Studio for Freescale 56800, you can change the
port.

Change the parallel port:

Targeting DSP56F80x/DSP56F82x Controllers 217

For More Information: www.freescale.com

Freescale Semiconductor, Inc.

Debugging for DSP56800
Command Converter Server

1. Click the command converter server icon.

While the command converter server is running, locate the command converter
server icon on the status bar. Right-click on the command converter server icon
(Figure 9.1):

Figure 9.1 Command Converter Server Icon

L

A menu appears (Figure 9.2):

Figure 9.2 Command Converter Server Menu

Show console
Hide console
About CC5

Quit CC5

2. Select Show console from the menu.

The Metrowerks Command Converter Server window appears (Figure 9.3).

218 Targeting DSP56F80x/DSP56F82x Controllers

For More Information: www.freescale.com

g |

Freescale Semiconductor, Inc.

Debugging for DSP56800
Command Converter Server

Figure 9.3 Metrowerks Command Converter Server Window

Metrowerks Command Converter Server i 1ol =l

File Edit Show History Debug Help

Metrowerks Command Conwverter Serwer console display active

0: Parallel Port [(LPT:1) CC software wer. {3.0}

Server listening on port: 41475

Jerver listening on port: 41475

Clients accepted from all hosts

Connection #l accepted from PETERAHN.mtwk.sps.mot.cow at Wed Feb 04 12:34:34 200
4

Connection #l from PETERAHN.mtwk.sps.mot.com closed at Wed Feb 04 12:35:25 2004
(bin] 1 %

|»

L«

3. On the console command line, type the following command:

delete all

4. Press Enter.

5. Type the following command, substituting the number of the parallel port to use

(for example, 1 for LPT1):

config cc parallel:l
6. Press Enter.

7. Type the following command to save the configuration:

config save

8. Press Enter.

Targeting DSP56F80x/DSP56F82x Controllers

For More Information: www.freescale.com

219

Freescale Semiconductor, Inc.

Debugging for DSP56800
Command Converter Server

Changing the Command Converter Server
Protocol to HTI

To change the command converter server to an HTI Connection:

1. While the command converter server is running, right-click on the command
converter server icon shown in Figure 9.1 or double click on it.

2. From the menu shown in Figure 9.2, select Show Console.

3. At the console command line in the Metrowerks Command Converter Server
window shown in Figure 9.3, type the following command:

delete all
4. Press Enter.

5. Type the following command:
config cc: address

(substituting for address the name of the IP address of your CodeWarrior HTT)

NOTE If the software rejects this command, your CodeWarrior HTI may be
an earlier version. Try instead the command: config cc
nhti:address, or the command: config cc
Panther:address, substituting for address the IP address of
the HTIL.

6. Press Enter.

7. Type the following command to save the configuration:

config save

8. Press Enter.

Changing the Command Converter Server
Protocol to PCI

To change the command converter server to a PCI Connection:

220 Targeting DSP56F80x/DSP56F82x Controllers

For More Information: www.freescale.com

Freescale Semiconductor, Inc.

Debugging for DSP56800
Command Converter Server

1. While the command converter server is running, right-click on the command
converter server icon shown in Figure 9.1 or double click on it.

2. From the menu shown in Figure 9.2, select Show Console.

3. At the console command line in the Metrowerks Command Converter Server
window shown in Figure 9.3, type the following command:

delete all
4. Press Enter.

5. Type the following command:

config cc pci
6. Press Enter.

7. Type the following command to save the configuration:

config save

8. Press Enter.

Setting Up a Remote Connection

A remote connection is a type of connection to use for debugging along with any
preferences that connection may need. To change the preferences for a remote
connection or to create a new remote connection:

1. On the main menu, select Edit > Preferences.

The IDE Preferences Window appears.

2. Click Remote Connections in the left column.

The Remote Connections panel shown in Figure 9.4 appears.

Targeting DSP56F80x/DSP56F82x Controllers 221

For More Information: www.freescale.com

g |

Freescale Semiconductor, Inc.

Debugging for DSP56800
Command Converter Server

Figure 9.4 Remote Connections Panel

i g IDE Preferences

2]

R IDE Preference Panels

R Remate Connections

= General
- Build Settings

- |DE Extras

- Plugin Settings

- Shielded Faolders

-

H Mame

| Type

RE200 Local Hardware Connechion
RE200 Simulator

REZ00E Local Hardware Connection
REZ00E Simulator

CCS Remote Connection =
Simulator

CC5 Remote Connection

Simulator

- Source Trees
= Editor

- Code Completion
- Code Formatting
- Editor Settings
- Font & Tabs

- Text Colars
= Debugger
- Digplay Settings
- wfindow Settings
- [lobal Settings 'I

Lnnec

Add... Change.. I Hemove I

= RAD Tools

Factary Sethings Fieyert | Impoart Panel .. I Export Panel... |

0k | Cancel | Spply |

To Add a New Remote Connection

To add a new remote connection:

1. Click the Add button.

The New Connection window appears as shown in Figure 9.5.

222 Targeting DSP56F80x/DSP56F82x Controllers

For More Information: www.freescale.com

g |

Freescale Semiconductor, Inc.

Debugging for DSP56800
Command Converter Server

Figure 9.5 New Connection Window

x

Name: ||

Debugger:IEES 56200 Protocal Plugin j [Show in processes list

— Connection T_l,lpe:IECS Remote Connection j

—Iv Usze Remate CCS Part #:
Server P Address: [127.0.0.1 (41475

—[Specify CCS Executable

I Ehonse.. |

—I Multi-Core Debugging
JTAG Configuration File:

I Choose,. |

—ECS Timeout

IED seconds

Factory Settings | Revert Panel | Cancel]

2. In the Name edit box, type in the connection name.

3. Check Use Remote CCS checkbox.

Select this checkbox to specify that the CodeWarrior IDE is connected to a
remote command converter server. Otherwise, the IDE starts the command
converter server locally

4. Enter the Server IP address or host machine name.

Use this text box to specify the IP address where the command converter server
resides when running the command converter server from a location on the
network.

5. Enter the Port # to which the command converter server listens or use the default
port, which is 41475.

Targeting DSP56F80x/DSP56F82x Controllers 223

For More Information: www.freescale.com

Freescale Semiconductor, Inc.

Debugging for DSP56800
Launching and Operating the Debugger

6. Click the OK button.

To Change an Existing Remote Connection

To change an existing remote connection:

Double click on the connection name that you want to change, or click once on
the connection name and click the Change button (shown in Figure 9.4 in grey).

To Remove an Existing Remote Connection

To remove an existing remote connection:

Click once on the connection name and click the Remove button (shown in Figure
9.4 in grey).

Debugging a Remote Target Board

For debugging a target board connected to a remote machine with Code Warrior IDE
installed, perform the following steps:

1. Connect the target board to the remote machine.
2. Launch the command converter server (CCS) on the remote machine with the
local settings configuration using instructions described in the section “Essential

Target Settings for Command Converter Server” on page 217.

3. In the Target Settings>Remote Debugging panel for your project, make sure the
proper remote connection is selected.

4. Launch the debugger.

Launching and Operating the Debugger

NOTE CodeWarrior IDE automatically enables the debugger and sets
debugger-related settings within the project.

224 Targeting DSP56F80x/DSP56F82x Controllers

For More Information: www.freescale.com

g |

Freescale Semiconductor, Inc.

Debugging for DSP56800
Launching and Operating the Debugger

1. Set debugger preferences.

Select Edit >external memory Settings from the menu bar of the Metrowerks
CodeWarrior window.

The IDE displays the Remote Debugging window.

Figure 9.6 Remote Debugging Panel

: gexternal memory Settings . ﬂﬂ

H Target Settings Panels B Remaote Debugaing

= Languags Settings ;| — Connection Settings
o C/C++ Language

- C/C++ Preprocessor Connectinn:IEBSDD Local Hardware Connection ;! Edit Connection... |

- CAC++Wamings — Remote downlaad path
- MBBE00 Azzembler I
=+ Code Generation
»+ ELF Disassembler —I Launch remate host application
- MBBEN0 Processor
- [Global Optimizations |
= Linker - .

{.. MBESON Linker —I Multi-Core Debugging———— ’—JTAG Clock Speed

. T Al
= Editor Core Index: i} = IEDD

L Custom Keywords
= Debugager

> D ebugoer Settings

> Femate Debugging

> MBER00 T arget

L. Remote Debug I:Ipt.__:

Factom Settings Hewert Import Panel... | Export Panel.. |

' | Cancel | Apply |

2. Select the Connection.

For example, select 56800 Local Hardware Connection (CCS).
3. Click OK button.

4. Debug the project.
Use either of the following options:
¢ From the Metrowerks CodeWarrior window, select Project > Debug.

¢ Click the Debug button in the project window.

Targeting DSP56F80x/DSP56F82x Controllers 225

For More Information: www.freescale.com

Freescale Semiconductor, Inc.

Debugging for DSP56800
Launching and Operating the Debugger

This command resets the board (if Always reset on download is checked in the
Debugger’s M56800 Target panel shown in Figure 5.13) and the download process
begins.

When the download to the board is complete, the IDE displays the Program
window (sim.elf in sample) shown in Figure 9.7.

NOTE Source code is shown only for files that are in the project folder or
that have been added to the project in the project manager, and for
which the IDE has created debug information. You must navigate the
file system in order to locate sources that are outside the project
folder and not in the project manager, such as library source files.

226 Targeting DSP56F80x/DSP56F82x Controllers

For More Information: www.freescale.com

g |

Freescale Semiconductor, Inc.

Debugging for DSP56800
Launching and Operating the Debugger

Figure 9.7 Program Window

Step Out
Step Into — Breakpoint

Step Over
Kill

Expressions

Break Symbolics

Run
i |] 1

B E X OGO EOREE

[§ Stack B | [J@ Variables: Al | Value | Location 21|

imit_MSE300_ A ||m- ar w3221 Ow3221 =

| 0 e

i] $MRE
= =

-

Source: C:hmy_projects_foldersnew_project\main.c =]
S prototypes e
wold =wap (int *a, int =b):
wold print_arravi{int arr[]. int length):
int main{woid) L

-

o int arr[SIZE] = {4.6.7.1.2.3,4,12,4.5%};

Lht 1.3%
printf{"“n nsp======================================"p") ;
printf(" Are vou readv to be a DSP Warrior?-n"):
pPrintf("s=============z=======================“p~n") ;

e 4 Ll_l

{} . Line 27 Call | Source 4 | b

5. Navigate through your code.
The Program window has three panes:
e Stack pane
The Stack pane shows the function calling stack.
e Variables pane
The Variables pane displays local variables.
= Source pane

Targeting DSP56F80x/DSP56F82x Controllers 227

For More Information: www.freescale.com

Freescale Semiconductor, Inc.

Debugging for DSP56800
Launching and Operating the Debugger

The Source pane displays source or assembly code.

The toolbar at the top of the window has buttons that allows you access to the
execution commands in the Debug menu.

Setting Breakpoints

1. Locate the code line.
Scroll through the code in the Source pane of the Program window until you
come across the main () function.

2. Select the code line.

Click the gray dash in the far left-hand column of the window, next to the first
line of code in the main () function. A red dot appears (Figure 9.8), confirming
you have set your breakpoint.

228 Targeting DSP56F80x/DSP56F82x Controllers

For More Information: www.freescale.com

g |

Freescale Semiconductor, Inc.

Debugging for DSP56800
Launching and Operating the Debugger

Figure 9.8 Breakpoint in the Program Window

raE— o
3 E x D4 O EEE
Symbalics
IE Stack 3] ables: Al | Value | Location [
init_MEEE00_ =] | [m an 03221 322 =]
mair i 0 A3
i 0 MRS

-
|E Source: Civmy_projects foldernew projectimain.c El

int main(woid)

-
= int arr[SIZE] = {4.6.7.1.2.3.4,12,4,5};
Tt 1.9
printf{"~n~nen=s===================================="p");
printf{" Are wou ready to be a DSP Warrior?»n"):
Drintf("=======s===s==========-=s===-c==e-=ssswnta'):
print_arravi{arr.SIZE):
for (i=0;i<SIZE-1i++)
for (j=i: j<SIZE: j++)
if (arr[i]>arr[j]) .
Breakpoint svap(éarr[i].&arr[i]):
Setting — print_arraviarr.SIZE):
printf{"~n*n... program done. ~n"):
€ . Line 27 Coll | Source 4] | a
NOTE To remove the breakpoint, click the red dot. The red dot disappears.

Setting Watchpoints

For details on how to set and use watchpoints, see the “OnCE Debugger Features” on

page 244..
NOTE For the DSP56800 only one watchpoint is available. This watchpoint
is only available on hardware targets.
Targeting DSP56F80x/DSP56F82x Controllers 229

For More Information: www.freescale.com

Freescale Semiconductor, Inc.

Debugging for DSP56800
Launching and Operating the Debugger

Viewing and Editing Register Values

Registers are platform-specific. Different chip architectures have different registers.

1. Access the Registers window.

From the menu bar of the Metrowerks CodeWarrior window, select View >

Registers.

Expand the General Purpose Registers tree control to view the registers as in
Figure 9.9, or double-click on General Purpose Registers to view the registers as

in Figure 9.10.

Figure 9.9 General Purpose Registers for DSP56800

i mRegisters 1ol x|
R Register | Walue |
- is&800 Local Hardware Connection | =]
Em.externaI_memury.EIf
o
B General FUrpose Redisters

- A 0x040DDEQDDO

- Al 0x0000

- AL 0x00DE

- AZ 0x04

- B Ox0FEASADDDD

-~ BO 0x0000

- B1 OxEAAA

- B2 0x0F

- %0 0x0000

S 0%025 70000 [

o [N A

230

Targeting DSP56F80x/DSP56F82x Controllers

For More Information: www.freescale.com

Freescale Semiconductor, Inc.

Debugging for DSP56800
Launching and Operating the Debugger

Figure 9.10 General Purpose Registers Window

i mGeneral Purpose Registers Window = IEllil
extemal_memary.elf []

A 0=04000B0000 OMR. 0x0103 ;I
Al O=0000 HwWS 0=0040
Al O=000E L Ox000l
Az 004 LA Ox0len
E O=0F BALAD000 PCRO Ox00FF
EO O=oooo FCR1 O«<00FF
Bl E4= T MRO O<D043
B2 OxOF MR1 0Ox&1D7
*0 O=0000 MRZ Ox32A4
s 0=03570000 MR3 0O<E&03
0 O=0000 MR4 0<9716
1 O=0357 MRE O<0B&E
RO O=00o00 MRE O<EQFD
R1 Oxz221E MR.7 DDA
RZ O=z2002 MR.E O<0ADE
R3Z Oxz002 MRS OxGADd
N 0=BO3S MR10 O<3EXZ
Mol OxFFFF MR11 O<10EZ
SP 0x321E MR1z2 O=8CC2
P O=00s0 MR13 Q<4130
IPR. <0000 MR.14 4405
BCR. Ox<00FF MR.1E OxZ:Z1E

SR 0=0114
’:I
A

2. Edit register values.
To edit values in the register window, double-click a register value. Change the
value as you wish.

3. Exit the window.

The modified register values are saved.

NOTE To view peripheral registers, select the appropriate processor form
the processor list box in the M56800 Target Settings Panel.

Targeting DSP56F80x/DSP56F82x Controllers 231

For More Information: www.freescale.com

g |

Freescale Semiconductor, Inc.

Debugging for DSP56800
Launching and Operating the Debugger

Viewing X: Memory

You can view X memory space values as hexadecimal values with ASCII equivalents.
You can edit these values at debug time.

NOTE On targets that have Flash ROM, you cannot edit those values in the
memory window that reside in Flash memory.

1. Locate a particular address in program memory.

From the menu bar of the Metrowerks CodeWarrior window, select Data >
View Memory.

NOTE The Source pane in the Program window needs to be the active one in
order for the Data > View Memory to be activated.

The Memory window appears (Figure 9.11).

Figure 9.11 View X:Memory Window

{ menternal_memory.elf Memory 1 -0l x|

Display: {012030 Wiew: [Fiaw data =]

R Address R Hex: 00001C34:00002C34 R Ascii
00002020 | (0020 0020 0030 0020 0020 003D Smus = s
00002026 | [000A DODO 0020 0020 0041 0072
0000z03C | |0065 DDZO 0079 OOGF DOFS 0020 e
ooo0zo4z | |0072 DDES 001 0064 DOFS 0020 £
00002048 | |0074 DDEF 0020 0062 DOES 0020 t
0000204E | [0061 D020 0044 0053 DOS0 0020 a D
W
f

Oon T oo o

ooooz2054 005y 0061 0072 0072 0063 O0GF
o0o002058 A 0072 ey 0004 0000 0020 0020
ooooz20&0 0030 0020 0020 0020 0020 0020 = = = = = =
00002066 0030 0020 0020 0020 00320 0020 = = = = = =
0000206 0030 0020 0020 0020 00320 0020 = = = = = =
oooozoyz 0030 0020 0020 0020 00320 0020 = = = = = =
ooooz2o07sE 0030 0020 0020 0020 00320 0020 = = = = = =
ooo00207E 0030 0020 0020 0020 0020 0020 = = = = = =
ooooz20s4 000A 0004 0000 000A 0004 OOZE B owan omn oomr g g o

Word Size: |1E; vl Page: |>< b emorny vl o

232 Targeting DSP56F80x/DSP56F82x Controllers

For More Information: www.freescale.com

g |

Freescale Semiconductor, Inc.

Debugging for DSP56800
Launching and Operating the Debugger

2. Select type of memory.

Locate the Page list box at the bottom of the View Memory window. Select X
Memory for X Memory.

Enter memory address.

Type the memory address in the Display field located at the top of the Memory
window.

To enter a hexadecimal address, use standard C hex notation, for example, 0x0.
You also can enter the symbolic name whose value you want to view by typing
its name in the Display field of the Memory window.

NOTE The other view options (Disassembly, Source and Mixed) do not

apply when viewing X memory.

Viewing P: Memory

You can view P memory space and edit the opcode hexadecimal values at debug time.

NOTE On targets that have Flash ROM, you cannot edit those values in the

memory window that reside in Flash memory.

1.

Locate a particular address in program memory.

To view program memory, from the menu bar of the Metrowerks
CodeWarrior window, select Data > View Memory.

The Memory window appears (Figure 9.11).

Select type of memory.
Locate the Page list box at the bottom of the View Memory window. Select P
Memory for P Memory.
Enter memory address.

Type the memory address in the Display field located at the top of the Memory
window.

To enter a hexadecimal address, use standard C hex notation, for example: 0x82.

Targeting DSP56F80x/DSP56F82x Controllers 233

For More Information: www.freescale.com

Freescale Semiconductor, Inc.

Debugging for DSP56800
Launching and Operating the Debugger

4. Select how you want to view P memory.

Using the View list box, you have the option to view P Memory in four different
ways.

¢ Raw Data (Figure 9.12).

Figure 9.12 View P:Memory (Raw Data) Window

ol
Dizplay: !main Wiem: |
§ &ddiess B Hex: 0000000800001 008 N & scii
Qoooooso 38ED OBDE 1FDD 33ED OEDE 1FDD N A
oooooose 0ACC OFDE OF22 40DE FFFF D187 :I
oooooosc 0320 0ACL OL1FO0 0000 1264 7CAG - o0 d L
oooooosez DOos7 0Dz20 OBEDE 1FDE C2EZ O&0E
ooooooss 1EDE D027 3520 OBDE 1FDE CEEZ
Qo0o0003E Oe0E 1BDE D027 SEZ0 OBEDE 1FD2
Qooo00A4 C2EZ? 060E 1EDE OF2A 42DE F7FF
000000A4 | |0ACL CSER EFO0 B9AF 0000 2EA2
000000BO | |29B0 2890 1FAS OFSSE 400E F7FF
000000BE | |29B0 40EQ 44F1 OFSS8 400E F7FF
000000BC | |2SE0 40E0 44F0 437C 1047 29E0
000000C2 | |0956 0080 OFSS 40E0 O4DE 1084 W
000000CS | |28B0 0956 0080 OFSS 40E0 040E -
000000CE | |108B CSER 2201 BS4A 38E0 0ASE S =
00000004 | |SEAS B94A 29B0 095E 57AS OFSA S v
Whard Slze.|15 vl F'age.iP Memony vl o

234 Targeting DSP56F80x/DSP56F82x Controllers

For More Information: www.freescale.com

Freescale Semiconductor, Inc.

Debugging for DSP56800

Launching and Operating the Debugger

* Disassembly (Figure 9.13).

Figure 9.13 View P:Memory (Disassembly) Window

i gexternal_memory.elf Memory 1 3§

Display: |mair

Wiew:

E_ﬂ Source: C:ADocuments and SettingshsopelasDesktophNew Projectsiha.. \main.c

P:00000070:
P:00000072:
P: 00000074 :
P:00000076:
P:00000078:
P:O0000007A:
B 0000007
P:0000007E:
F:00000080:
F:00000081:
P: 00000082 :
P:00000083:
P:00000084 :
P:00000085:
F:00000086:

| Line 1 Col1

E98410B1
ES8410E1
E98410B1
E98410B1
E98410E1
E98410E1
E98410B1
ES8410B1
BD38
DEOE
DD1F
BD39
DEOE
DD1F
CCOA

1]

jnp
Jnp
inp
Jnp
Jnp
inp
jnp
Inp
noves
lea
nove
noves
lea
nove
movel

0x0010b1
0x0010b1
0=0010b1
0x=0010b1
0x0010b1
0=x0010b1
0x0010b1
0x0010b1

X:0=0038,

(SE)+
N.K:(SP)

i:0=x0039,

(SE)+
H.X:(5P)
#10.H

H

H

Targeting DSP56F80x/DSP56F82x Controllers

For More Information: www.freescale.com

235

g |

Freescale Semiconductor, Inc.

Debugging for DSP56800
Launching and Operating the Debugger

* Source (Figure 9.14).

Figure 9.14 View P:Memory (Source) Window

i gexternal_memory.elf Memory 1 h

Display: |main

Hﬂ Source: C:ADocuments and SettingshsopelatDeskiopiMew Projectshha.. \main.c

24 prototypes
vold =wap (int %*a, int *h);
void print arrayiint arr[]. int length);

int mainfwoid)

S
- ing arR[SIEE] = e dakaded aakdadabils
T 1

- printf("\n\n\nz===============================

i printf(" Are wvou ready to be a DSP Warrior?-n

= Drintf("=s===scSsscmcosiomosocmoooosesooosoooes
-

] Line 29 Coll 4] | 3
A

236

Targeting DSP56F80x/DSP56F82x Controllers

For More Information: www.freescale.com

Freescale Semiconductor, Inc.

Debugging for DSP56800
Launching and Operating the Debugger

¢ Mixed (Figure 9.15).

Figure 9.15 View P:Memory (Mixed) Window

{ gexternal_memory.elf Memory 1

Display: |mair

E_ﬂ Source: C:ADocuments and SettingshsopelatDeskiopiNew Projectshha.. \main.c
&
{ L
-eF: 00000080 ED3& noves X:.0x0038.H
- P:00000081: DEOE lea {SPi+ _J
- PB:00000082: DDLF nowve H.X:(SP)
- F:00000083: ED39 NOveESs X:.0x0039.H
- P:00000084: DEOE lea {SP1+
F:00000085: DDLF nove H.X: (SP)
F: 00000086 CCOA nowvei #10.H
- P:00000087: DEOF lea {SPI+H
int arr[SIZE] = {4.6,7,1,2,3,4,12,4,5}:
- P:00000088: 880F nove SF. RO
- P:00000089: DE40FFF? lea (RO+-9}
- P:0000008E: 87012003 mowvel #8135 R1
- P:00000080: C10A nowvei #10, %0
F:000000BE: FOO1 nowe I (REl1)+. X0
-
£, Line 29 Coll 4] | v []
Targeting DSP56F80x/DSP56F82x Controllers 237

For More Information: www.freescale.com

g |

Freescale Semiconductor, Inc.

Debugging for DSP56800
Load/Save Memory

Load/Save Memory

From the menu bar of the Metrowerks CodeWarrior window, select Debug > 56800 >
Load/Save Memory to display the Load/Save Memory dialog box (Figure 9.16).

Figure 9.16 Load/Save Memory Dialog Box

Load/Save Memory x|
Hiztary : I LI
— Parameters

¢ Load Memaory " Save Memaory

=l
[B

Address (hex): || Cancel

"Dperalinn

Memom Type: I F: Mermary

[Hffeethex/integer]: I

Size [hexdinteger]: I

File name: I Browsze |

[™ | Dvensrite Existing

File format; IBina[_l,.l Raw j

— Progrezs

Use this dialog box to load and save memory at a specified location and size with a
user-specified file. You can associate a key binding with this dialog box for quick
access. Press the Tab key to cycle through the dialog box displays, which lets you
quickly make changes without using the mouse.

History Combo Box

The History combo box displays a list of recent loads and saves. If this is the first time
you load or save, the History combo box is empty. If you load/save more than once, the
combo box fills with the memory address of the start of the load or save and the size of
the fill, to a maximum of ten sessions.

If you enter information for an item that already exists in the history list, that item
moves up to the top of the list. If you perform another operation, that item appears
first.

238

Targeting DSP56F80x/DSP56F82x Controllers

For More Information: www.freescale.com

Freescale Semiconductor, Inc.

Debugging for DSP56800
Load/Save Memory

NOTE By default, the History combo box displays the most recent
settings on subsequent viewings.

Radio Buttons

The Load/Save Memory dialog box has two radio buttons:
¢ Load Memory
* Save Memory

The default is Load Memory.

Memory Type Combo Box

The memory types that appear in the Memory Type Combo box are:
e P: Memory (Program Memory)
¢ X:Memory (Data Memory)

Address Text Field

Specify the address where you want to write the memory. If you want your entry to be
interpreted as hex, prefix it with ox; otherwise, it is interpreted as decimal.

Size Text Field

Specify the number of words to write to the target. If you want your entry to be
interpreted as hex, prefix it with ox; otherwise, it is interpreted as decimal.

Dialog Box Controls

Cancel, Esc, and OK

In Load and Save operations, all controls are disabled except Cancel for the duration of
the load or save. The status field is updated with the current progress of the operation.
Clicking Cancel halts the operation, and re-enables the controls on the dialog box.
Clicking Cancel again closes the dialog box. Pressing the Esc key is same as clicking
the Cancel button.

Targeting DSP56F80x/DSP56F82x Controllers 239

For More Information: www.freescale.com

Freescale Semiconductor, Inc.

Debugging for DSP56800

Fill Memory

With the Load Memory radio button selected, clicking OK loads the memory from the
specified file and writes it to memory until the end of the file or the size specified is
reached. If the file does not exist, an error message appears.

With the Save Memory radio button selected, clicking OK reads the memory from the
target piece by piece and writes it to the specified file. The status field is updated with
the current progress of the operation.

Browse Button

Clicking the Browse button displays OPENFILENAME or SAVEFILENAME,
depending on whether you selected the Load Memory or Save Memory radio button.

Fill Memory

From the menu bar of the Metrowerks CodeWarrior window, select Debug > 56800>
Fill memory to display the Fill Memory dialog box (Figure 9.17).

Figure 9.17 Fill Memory Dialog Box

x
Hiztam | Ll
— Parameters
temory Type : IF': M emary LI ;¢
Address [hex] : I Cancel |

Size [hexdinteger]: I

Fill Expr. [hexdinteger): I
~ Progress

Use this dialog box to fill memory at a specified location and size with user- specified
raw memory data. You can associate a key binding with this dialog box for quick
access. Press the Tab key to cycle through the dialog box display, which lets you
quickly make changes without using the mouse.

240

Targeting DSP56F80x/DSP56F82x Controllers

For More Information: www.freescale.com

Freescale Semiconductor, Inc.

Debugging for DSP56800
Fill Memory

History Combo Box

The History combo box displays a list of recent fill operations. If this is the first time
you perform a fill operation, the History combo box is empty. If you do more than one
fill, then the combo box populates with the memory address of that fill, to a maximum
of ten sessions.

If you enter information for an item that already exists in the history list, that item
moves up to the top of the list. If you do another fill, then this item is the first one that
appears.

NOTE By default, the History combo box displays the most recent
settings on subsequent viewings.

Memory Type Combo
Box

The memory types that can appear in
the Memory Type Combo box are:

* P:Memory (Program Memory)

* X:Memory (Data Memory)

Address Text Field

Specify the address where you want to write the memory. If you want it to be
interpreted as hex, prefix it with 0x; otherwise, it is interpreted as decimal.

Size Text Field

Specify the number of words to write to the target. If you want it to be interpreted as
hex, prefix your entry with 0x; otherwise, it is interpreted as decimal.

Fill Expression Text Field

Fill writes a set of characters to a location specified by the address field on the target,
repeatedly copying the characters until the user-supplied fill size has been reached.
Size is the total words written, not the number of times to write the string.

Targeting DSP56F80x/DSP56F82x Controllers 241

For More Information: www.freescale.com

Freescale Semiconductor, Inc.

Debugging for DSP56800
Save/Restore Registers

Interpretation of the Fill Expression

The fill string is interpreted differently depending on how it is entered in the Fill String
field. Any words prefixed with 0x is interpreted as hex bytes. Thus, 0xBE OxEF
would actually write 0OXBEEF on the target. Optionally, the string could have been set
to 0XBEEF and this would do the same thing. Integers are interpreted so that the
equivalent signed integer is written to the target.

ASCII Strings

ASCII strings can be quoted to have literal interpretation of spaces inside the quotes.
Otherwise, spaces in the string are ignored. Note that if the ASCII strings are not
quoted and they are numbers, it is possible to create illegal numbers. If the number is
illegal, an error message is displayed.

Dialog Box Controls

OK, Cancel, and Esc

Clicking OK writes the memory piece by piece until the target memory is filled in. The
Status field is updated with the current progress of the operation. When this is in
progress, the entire dialog box grays out except the Cancel button, so the user cannot
change any information. Clicking the Cancel button halts the fill operation, and re-
enables the controls on the dialog box. Clicking the Cancel button again closes the
dialog box. Pressing the Esc key is same as pressing the Cancel button.

Save/Restore Registers

From the menu bar of the Metrowerks CodeWarrior window, select Debug > 56800 >
Save/Restore Registers to display the Save/Restore Registers dialog box (Figure
9.18).

242

Targeting DSP56F80x/DSP56F82x Controllers

For More Information: www.freescale.com

g |

Freescale Semiconductor, Inc.

Debugging for DSP56800
Save/Restore Registers

Figure 9.18 Save/Restore Registers Dialog Box

Save/Restore Registers il
History I j
— Parameters
— Operation

(¥ Save Registers ¢ Bestore Registers

ok

General Purpoze Registers
Cancel

i

Browse

'

Filenarme I
[Ovenwrite E xisting

— Progress

Use this dialog box to save and restore register groups to and from a user-specified
file.

History Combo Box

The History combo box displays a list of recent saves and restores. If this is the first
time you have saved or restored, the History combo box is empty. If you saved or
restored before, the combo box remembers your last ten sessions. The most recent
session will appear at the top of the list.

Radio Buttons

The Save/Restore Registers dialog box has two radio buttons:
* Save Registers
* Restore Registers

The default is Save Registers.

Targeting DSP56F80x/DSP56F82x Controllers 243

For More Information: www.freescale.com

Freescale Semiconductor, Inc.

Debugging for DSP56800
OnCE Debugger Features

Register Group List

This list is only available when you have selected Save Registers. If you have selected
Restore Registers, the items in the list are greyed out. Select the register group that
you wish to save.

Dialog Box Controls

Cancel, Esc, and OK

In Save and Restore operations, all controls are disabled except Cancel for the duration
of the load or save. The status field is updated with the current progress of the
operation. Clicking Cancel halts the operation, and re-enables the controls on the
dialog box. Clicking Cancel again closes the dialog box. Pressing the Esc key is same
as clicking the Cancel button.

With the Restore Registers radio button selected, clicking OK restores the registers
from the specified file and writes it to the registers until the end of the file or the size
specified is reached. If the file does not exist, an error message appears.

With the Save Register radio button selected, clicking OK reads the registers from the
target piece by piece and writes it to the specified file. The status field is updated with
the current progress of the operation.

Browse Button

Clicking the Browse button displays OPENFILENAME or SAVEFILENAME,
depending on whether you selected the Restore Registers or Save Registers radio
button.

OnCE Debugger Features

The following OnCE Debugger features are discussed in this section:
* Watchpoints and Breakpoints

e Trace Buffer

244 Targeting DSP56F80x/DSP56F82x Controllers

For More Information: www.freescale.com

Freescale Semiconductor, Inc.

Debugging for DSP56800
OnCE Debugger Features

Watchpoints and Breakpoints

The CodeWarrior DSP56800 debugger allows you to monitor the status of a
watchpoint. Since the OnCE™ port only supports either a hardware breakpoint or a
watchpoint, you cannot have both active at the same time.

Watchpoints are useful for monitoring memory and processes where software
breakpoints cannot be set, such as in Flash ROM, or a data or address bus. If the
watchpoint status is used as a trace counter, it can also be helpful to debug sections of
code that do not have a normal flow or are hung up in infinite loops.

Watchpoints are available regardless of whether you have checked “Use Hardware
Breakpoints.” The watchpoint status window does not report the status of hardware
breakpoints. OnCE™ hardware only supports one hardware breakpoint or watchpoint
at a time. If a watchpoint is in place, you cannot use a breakpoint and vice versa.

The CodeWarrior watchpoint debugger can monitor:
* Program memory addresses
e Data memory addresses
* The value on the Core Global Data Bus
* The value on the Program Address Bus

* Specified number of occurrences

NOTE If you are debugging Flash ROM, enable the Use Hardware
breakpoints option in the M56800 Target Settings panel. However,
you can use the Watchpoint status window debugging RAM as well.

Opening the Watchpoint Status Window

To select a new watchpoint status:

1. Start a debugging session.

2. From the menu bar of the Metrowerks CodeWarrior window, select DSP56800 >
Watchpoint status.

The Watchpoint Status window appears (Figure 9.19).

NOTE The Watchpoint Status menu item is disabled when you use the
Simulator or during a system-level connect.

Targeting DSP56F80x/DSP56F82x Controllers 245

For More Information: www.freescale.com

g |

Freescale Semiconductor, Inc.

Debugging for DSP56800
OnCE Debugger Features

Figure 9.19 Watchpoint Status Window

x4
— Breakpaint Lnit 1 — Breakpaint Uit 2

[~ Reserve Breakpoint Unit 2 for debugger

Bus: |Executed program fetch > | Bus: IEore Global Data Bus =l

Walue: IDMD Walue: I'J?'iD
Mode: IHead 'I task: IDHFFFF

Occurence Counter: I1
—Sequence

% Breakpoint 1 nccurs COUNTER times
" Breakpaint 1 or Breakpaint 2 occurs COUNTER times
" Breakpaint 1 and Breakpaint 2 simultaneously occur COUNTER times

" Breakpoint 2 occurs ohce, then Breakpoint 1 occurs COUNTER times

" Breakpoint 2 ocours COUMTER times, then Breakpoint 1 occurs once

— Status

“Watchpoint iz available.

Set Watchpointl [Elear watchpaint |
Cloze |

NOTE When you clear a custom watchpoint, the settings you last used are
now selected instead of the previous default values. These settings do
not carry over from previous debugging sessions.

Breakpoint Unit 1

Breakpoint unit 1 (BPU1) of the watchpoint status window allows you to monitor
address values and access type for any X or P memory location.

Options for setting BPU1 are in the Breakpoint Unit 1 group box shown in Figure 9.20
and listed in Table 9.2.

246 Targeting DSP56F80x/DSP56F82x Controllers

For More Information: www.freescale.com

Freescale Semiconductor, Inc.

Debugging for DSP56800
OnCE Debugger Features

Figure 9.20 Breakpoint Unit 1 Options

— Breakpaint Unit 1

Busz IEHecutedpruglamfetch j

Walue: IUHEI

Mode: I Read

4

Table 9.2 Options for Breakpoint Unit 1

Setting | Value

Comment

Bus Execute program fetch

When a P memory instruction is executed.
Mode defaults to Read. Useful when only
interest is opcode instructions.

Any P memory access

Any time a P memory address is accessed,
depending on the value of Mode. Useful when
writing or reading data from P memory.

X Address Bus 1

Access for all X address values through XAB1
(internal or external memory) depending on the
Mode you select.

Value C hexadecimal or decimal | Range: 0x0 to OXFFFF
notation

Mode Read
Write

Read and Write

NOTE If Breakpoint Unit 2 is disabled (in use by the debugger), then the
occurrence counter is set to 1 as the default.

Breakpoint Unit 2

Breakpoint unit 2 (BPU2) of the watchpoint status window allows you to monitor
values (and their masks) in either the Core Global Data Bus (CGDB) or Program
Address Bus (PAB). When you use BPU2 in conjunction with BPU1 and the
occurrence counter, you can monitor the status of a watchpoint to a resolution as fine

as 1 bit at single memory location.

Targeting DSP56F80x/DSP56F82x Controllers

247

For More Information: www.freescale.com

Debugging for DSP56800
OnCE Debugger Features

Freescale Semiconductor, Inc.

Options for setting BPU2 are in the Breakpoint Unit 2 group box are in Figure 9.21

and listed in Table 9.3.

Figure 9.21 Breakpoint Unit 2 Options

— Breakpaint Unit 2

[Reserve Breakpoint Uit 2 for debugger

Bus: IEDle Global Data Bus j

Walue: IDHD

Mask: ID:-:FFFF

NOTE

If you are using Breakpoint Unit 2, ensure that one of the radio
buttons is set to use Breakpoint 2 in the Sequence group box.

Table 9.3 Options for Breakpoint Unit 2

Setting Value Comment
Reserve Enabled Breakpoint unit 2 cannot be user
Breakpoint Unit defined and the occurrence counter
2 for Debugger defaults to 1 for BPU1.

Disabled Breakpoint unit 2 is user-defined and

occurrence counter is available for
both BPU1 and BPU2. Single
stepping, stepping over, and
stepping out of functions cannot be
done when hardware breakpoints
are enabled.

Bus

Core Global Data
Bus (CGDB)

Data transfer between the data ALU
and X data memory for one memory
access.

Program Address
Bus (PAB)

19-bit program memory address
bus.

248

Targeting DSP56F80x/DSP56F82x Controllers

For More Information: www.freescale.com

Freescale Semiconductor, Inc.

Debugging for DSP56800
OnCE Debugger Features

Table 9.3 Options for Breakpoint Unit 2 (continued)

Setting

Value

Comment

Value

The hexadecimal
value read from the
specified Bus.

To read full value, set Mask to
OxXFFFF.

Mask

Mask value in C
hex notation from
0x0 to OxFFFF.

Specify a value of 0xFFFF for full
value specified by Value. Specify
other hex value to exclude bits. For
example, if you wanted to stop at
any value where bit 15 is set, you
would specify 0x8000 in both the
Mask and Value fields

Occurrence Counter and Sequence Options

This section explains how the debugger uses the Occurrence Counter (hardware

breakpoint counter) and Sequence Options when halting the debugger.

Occurrence Counter

The Occurrence Counter uses the OnCE breakpoint counter (OCNTR) for stopping on

the nth iteration of a program loop or when the nth occurrence of a data memory

access occurs. When you specify a value from 1 to 256 in the Occurrence Counter text

box, it sets ONCTR to that value minus 1. Refer to OnCE Breakpoint Counter

(OCNTR) in the DSP56800 Family Manual for more information.

NOTE

Once the Occurrence Counter is decremented and a breakpoint is
reached, the counter is not reset. Hence, the Occurrence Counter

remains at one and stops at every specified breakpoint.

Sequence Options

To define the criteria for how often the debugger stops on a watchpoint, use the

Sequence group box (Figure 9.22). The value you set in the Occurrence Counter text
box determines the value of COUNTER.

Targeting DSP56F80x/DSP56F82x Controllers

For More Information: www.freescale.com

249

Freescale Semiconductor, Inc.

Debugging for DSP56800
OnCE Debugger Features

Figure 9.22 Sequence Counter Options in the Watchpoint Status Window

—Sequence

¥ Breakpoint 1 ocours COUMTER times
= Breakpoint 1 or Breakpoint 2 occurs COUNTER times
" Breakpaoint 1 and Breakpoint 2 simultaneously occur COUMTER times

" Breakpaint 2 occurs once, then Breakpoint 1 occurs COUMTER times

" Breakpaint 2 occurs COUMTER times, then Breakpoint 1 ocours once

Table 9.4 explains the options available in the Sequence group box

Table 9.4 Options for the Occurrence Counter

Option

Comment

Breakpoint 1 occurs
COUNTER times

If Reserve Breakpoint Unit 2 for Debugger is
enabled, this is the default option and COUNTER
is 1.

Breakpoint 1 or
Breakpoint 2 occurs
COUNTER times

BPU1 and BPU2 work independently. If you are
only interested in using BPU2, set BPU1 to a value
you know will not be reached during program
execution.

Breakpoint 1 and
Breakpoint 2
simultaneously occur
COUNTER times

BPU1 and BPU2 work together. This is useful for
monitoring bit status with a defined mask.

Breakpoint 2 occurs once,
then Breakpoint 1 occurs
COUNTER times

Useful for monitoring the status of recursive or
nested algorithms.

Breakpoint 2 occurs
COUNTER times, then
Breakpoint 1 occurs once

Useful for monitoring the status of recursive or
nested algorithms

Setting and Clearing Watchpoint Status

You can set and clear a watchpoint only through the Watchpoint Status window. Use
the following commands:

* Set Watchpoint

Enables a watchpoint for the values specified by BPU1 and BPU2. Hardware
breakpoints are not available when a watchpoint is set.

* Clear Watchpoint

250 Targeting DSP56F80x/DSP56F82x Controllers

For More Information: www.freescale.com

Freescale Semiconductor, Inc.

Debugging for DSP56800
OnCE Debugger Features

Disables the current watchpoint and returns all values in the Watchpoint Status
window to their default values.

Trace Buffer

From the menu bar of the Metrowerks CodeWarrior window, select DSP56800 > Dump
Trace Buffer to see the most recent changes in the program flow and a reconstructed
program trace (Figure 9.23).

Use this feature to query the Trace Buffer, located in the On-Chip Emulation module
of a hardware target. This buffer stores the eight most recent changes in the program
flow. The debugger retrieves these addresses and attempts to reconstruct a trace of the
program flow. This occurs both when the window is opened and whenever debugging
stops while the window is open.

The Trace Buffer menu item is enabled when the IDE is debugging a hardware target
and debugging has stopped.

Figure 9.23 Trace Buffer Window

i mTrace Buffer B -0l x|
|T-" |Trace Buffer il_?j

: P:0Ox00000145

FB05_init.c line £
[address: P:ox00000L145
DSPSEFE05_init.c line 69

o e T e OO Y A "
g | _>l_‘

b - {} - M- [:3- o'~ Path | C\Documents and Settings.. \DSPSEFB05 inite <>

/7 or we reach ti Hl

decw =0 7+ decrement our
tstw =0 s test for zero
= beg pll timeout < 1f timed—out,

=] brclr ¥oll=sr init = FPLISE pll test lock |
pll_timeout

< pll locked
T nove Fpllor proceed,x:FLILCE ~ ==t lock detec
= nove wrPLESE =0 <o clear pending
- nove =0, =z:FLLSE

< metup exception handler and interrupt lewvels

Line 70 Call 4] | 3 7

Targeting DSP56F80x/DSP56F82x Controllers 251

For More Information: www.freescale.com

Freescale Semiconductor, Inc.

Debugging for DSP56800
Using the DSP56800 Simulator

The trace buffer lets you view the target addresses of change-of-flow instructions that
the program executes.

To view the contents of the trace buffer (Figure 9.24):

1. From the IDE menu bar, select DSP56800 > Dump Trace Buffer.

Figure 9.24 Contents of Trace Buffer

_iojx
|2 |Tra|:e Buffer ﬂﬂ
[« |

! B addressz: P:0x00000000

~

vector.c line 42

[address: P:oxooooo000
wector.c line 42

e

b -1} -n- - o'~ Path |I::"'.SDK"'.-:IspEEESEevm_'mus"-.cunfig"wectl:ur.l: o

#include "configdefine=s h" %
fundef CFG_SECTIOH_ISE _DECLARATION
Ir—

— 1=r archStart <% JP-0=00, 3% RESET#*.
- j=r SDE_Interruptl <% JP.0=02.3+ COF REe=et
- j=r SDE_illegal <% JP.0m04,3+ Illegal In
- j=r SDE_Interrupt3 <% JP.0=x06,.3} Softwvare I
- Jj=r SDE_HUSOwerf low <% JP.0x08,3+ Hardware S
Line 43 Coll |4] | AW

Using the DSP56800 Simulator

The CodeWarrior Development Studio for Freescale 56800 includes the Freescale
DSP56800 Simulator. This software lets you run and debug code on a simulated
DSP56800 architecture without installing any additional hardware.

The simulator simulates the DSP56800 processor, not the peripherals. In order to use
the simulator, you must select a connection that uses the simulator as your debugging
protocol from the Remote Debugging panel.

252

Targeting DSP56F80x/DSP56F82x Controllers

For More Information: www.freescale.com

g |

Freescale Semiconductor, Inc.

Debugging for DSP56800
Using the DSP56800 Simulator

NOTE The simulator also enables the 56800 menu for retrieving the
machine cycle count and machine instruction count when debugging.

Cycle/Instruction Count

From the menu bar of the Metrowerks CodeWarrior window, select 56800 > Display
Cycle/Instruction count. The following window appears (Figure 9.25):

Figure 9.25 Simulator Cycle/Instruction Count

i mDSP568 Simulator Cycle/Instrucki il

Machine cycles simulated: 92

Machine instructions simulated: 24

Reset |

NOTE Cycle counting is not accurate while single stepping through source
code in the debugger. It is only accurate while running. Thus, the
cycle counter is more of a profiling tool than an interactive tool.

Press the Reset button to zero out the current machine-cycle and machine-instruction
readings.

Targeting DSP56F80x/DSP56F82x Controllers 253

For More Information: www.freescale.com

Freescale Semiconductor, Inc.

Debugging for DSP56800
Using the DSP56800 Simulator

Memory Map

Figure 9.26 Simulator Memory Map

$FFFF $FFFF
Reserved
$FFCO
X Data
Program Memory
Memory Space
Space
$2000
Reserved
$1300
$7F
Interrupt
Vectors
$0 $0
P: X:
NOTE Figure 9.26 is the memory map configuration for the simulator.

Therefore, the simulator does not simulate each DSP568xx device’s
specific memory map, but assumes the memory map of the
DSP56824.

254 Targeting DSP56F80x/DSP56F82x Controllers

For More Information: www.freescale.com

Freescale Semiconductor, Inc.

Debugging for DSP56800
Register Details Window

Register Details Window

From the menu bar of the Metrowerks CodeWarrior window, select View > Register
Details or in the Registers window (Figure 9.9) double-click on the register. The
Register Details window appears (Figure 9.27).

Figure 9.27 Register Details Window

i mRegister Details x|
Dezcription File: I Browsze. . |

Reqizter Marme: Format:lDefauIt j

R EEEEEEEEREEEEGEEEERNEEREEREREERE

| ==

Type the name of a register or a full path to a description file in the ;I
'Degcription File:' field.

I

4

Eewvert | Fead | Wite | F!esetVaIuel Te:-:t‘-a"iew:l.i‘-.utu j

In the Register Details window, type the name of the register (e.g., OMR, SR, IPR,
etc.) in the Description File field. The applicable register and its values appears.

By default, the CodeWarrior IDE looks in the following path when searching for
register description files.

\CodeWarrior\bin\Plugins\support\Registers\M56800\GPR

Register description files must end with the .xm1 extension. Alternatively, you can
use the Browse button to locate the register description files.

Using the Format list box in the Register Details window, you can change the format in
which the CodeWarrior IDE displays the registers.

Using the Text View list box in the Register Details window, you can change the text
information the CodeWarrior IDE displays.

Targeting DSP56F80x/DSP56F82x Controllers 255

For More Information: www.freescale.com

Freescale Semiconductor, Inc.

Debugging for DSP56800
Loading a .elf File without a Project

Loading a .elf File without a Project

You can load and debug a . elf file without an associated project. Toload a .elf
file for debugging without an associated project:

1. Launch the CodeWarrior IDE.

2. Choose File > Open and specify the file to load in the standard dialog box that
appears.

Alternatively, you can drag and drop a . elf file onto the IDE.

3. You may have to add additional access paths in the Access Path preference panel
in order to see all of the source code.

4. Choose Project > Debug to begin debugging the application.

NOTE When you debug a . elf£ file without a project, the IDE sets the
Build before running setting on the Build Settings panel of the IDE
Preference panels to Never. Consequently, if you open another
project to debug after debugging a . e1f£ file, you must change the
Build before running setting before you can build the project.

The project that the CodeWarrior tools uses to create a new project for the given .e1f
fileis 56800 Default Project.xml and is located in the path:

CodeWarrior\bin\plugins\support directory

You can create your own version of this file to use as a default setting when opening a
.elf file:

1. Create a new project with the default setting you want.
2. Export the project to xml format.

3. Rename the xml format of the project to 56800_Default_Project.xml and place it
in the support directory.

NOTE Back up or rename the original version of the default xml project
before overwriting it with your own customized version.

256 Targeting DSP56F80x/DSP56F82x Controllers

For More Information: www.freescale.com

Freescale Semiconductor, Inc.

Debugging for DSP56800
Using the Command Window

Using the Command Window

In addition to using the regular CodeWarrior IDE debugger windows, you also can
debug using Tcl scripts or the Command Window.

For more information on Tcl scripts and the Command Window, please see the
CodeWarrior Development Studio IDE 5.6 Windows® Automation Guide.

System-Level Connect

The CodeWarrior DSP56800 debugger lets you connect to a loaded target board and
view system registers and memory. A system-level connect does not let you view
symbolic information during a connection.

NOTE The following procedure explains how to connect in the context of
developing and debugging code on a target board. However, you can
select the Debug > Connect command anytime you have a project
window open, even if you have not yet downloaded a file to your
target board.

To perform a system-level connect:
1. Select the Project window for the program you downloaded.

2. From the menu bar, select Debug > Connect.

The debugger connects to the board. You can now examine registers and the
contents of memory on the board.

Debugging on a Complex Scan Chain

This section describes the procedure for debugging a chip connected on a complex
JTAG chain.

Setting Up

The general steps for debugging a DSP56800 chip connected on a complex scan chain
are:

Targeting DSP56F80x/DSP56F82x Controllers 257

For More Information: www.freescale.com

g |

Freescale Semiconductor, Inc.

Debugging for DSP56800
Debugging on a Complex Scan Chain

Set up and connect your JTAG chain of target boards.
Write a JTAG initialization file that describes the items on the JTAG chain.

Open a project to debug.

L b=

In the project you are debugging, open the Remote Debugging preference panel
(Figure 9.28).

Figure 9.28 Remote Debugging Preference Panel
=

B Target Settings Panels |IE Femote Debugaing

Source Trees ;I (0

Settings
MBEE00 Target

anguage Settings CUnnecl\Un.lEBBDD Local Hardware Connection j Edit Connection... |

L CICH+ Language "Hemnle download path

i CJC++ Preprocessor
b CIC++ 'Wamings

= Code Generation
i ELF Disassembler
- MEEG00 Processar
- Global Oplimizations
= Linker
o MEBE00 Linker
= Editor
i Custom Keywaords
= Debugger =
i.. Debugger Setlings

[~ Multi-Core Debugging

2|

* MBBA00 Assembler ’7 [~ Launch remate host application
(Core Index: =

JTAG Clock Speed
haunn

emote Debugging R

Factory Settings Frewert Import Panel... | Expoit Panel... |

[0]:4 | Cancel | Apply |

5. Click the Edit Connection button and enable the Multi-Core Debugging
checkbox (Figure 9.29).

258 Targeting DSP56F80x/DSP56F82x Controllers

For More Information: www.freescale.com

Freescale Semiconductor, Inc.

Debugging for DSP56800
Debugging on a Complex Scan Chain

Figure 9.29 56800 Local Hardware Connection with Multi-Core Debugging Enabled

56800 Local Hardware Connection x|

Mame: IEBSDD Local Hardware Connection

Debugger:IEES BEE00 Protocol Plugin j " Show in processes list

— Connection Type:lEES Femote Connection YI

—I Use Remote CC5———————————————— "F‘ort #:

Server P Address: 127,001 41475

—I Specify CCS Executable

I Ehoose... I
—
JTAG Configuration File:

I Choose... |

— CCS Timeout

IBD seconds

Factory Seftings | Rewvert Panel | Cancel | 0K |

6. Specify the name and path of the JTAG initialization file in the JTAG
Configuration File text field.

7. Click OK to close the connection panel.

8. In the Remote Debugging panel, specify the index of the core to debug by
enabling the Multi-Core Debugging checkbox and changing the Core Index
selection.

9. Select Project > Run.

The IDE downloads the program to the specified core. You can begin debugging.

JTAG Initialization File

Although you may debug only one single chip at a time, you must create a JTAG
initialization file that specifies the type and order of all the chips in the chain.

To specify DSP56800 chips, you must specify DSP56800 as the name of a the chip
you are debugging. For example, Listing 9.1 shows a JTAG initialization file for three
56800 chips, an SC140 and an MCore210 in a JTAG chain.

Targeting DSP56F80x/DSP56F82x Controllers 259

For More Information: www.freescale.com

Freescale Semiconductor, Inc.

Debugging for DSP56800

Debugging on a Complex Scan Chain

NOTE

Device 0 is the device closest to the TDO signal on the Command
Converter Server.

Listing 9.1 Example JTAG Initialization File for DSP56800, SC140 and MCore210
Boards

JTAG Initialization File

Has an index value of

DSP56800
Has an
DSP56800
Has an
DSP56800
Has an
SC140

Has an
MCore210

index

index

index

index

value

value

value

value

of

of

of

of

0

in

in

in

in

in

the

the

the

the

the

JTAG chain

JTAG chain

JTAG chain

JTAG chain

JTAG chain

NOTE

See the sample initialization file in the
DSP5680OX_EABI_TOOlS/JTAG folder.

In addition, you can specify other chips to debug on the JTAG chain. To do so, you use
the following syntax to specify the chip as a generic device:

Generic instruct reg length data reg bypass length
JTAG bypass_instruction

Table 9.5 shows the definitions of the variables that you must specify for a generic

device.

Table 9.5 Syntax Variables to Specify a Generic Device on a JTAG Chain

Variable

Description

instruct_reg length

Length in bits of the JTAG instruction register.

data_reg bypass_length

Length in bits of the JTAG bypass register.

JTAG_bypass_instruct

Hexadecimal value that specifies the JTAG bypass instruction.

Listing 9.2 shows a JTAG initialization file that includes a DSP56800 chip and a
generic device in a JTAG chain.

260

Targeting DSP56F80x/DSP56F82x Controllers

For More Information: www.freescale.com

Freescale Semiconductor, Inc.

Debugging for DSP56800
Debugging in the Flash Memory

Listing 9.2 Example JTAG Initialization File with a Generic Device

JTAG Initialization File

Has an index value of 0 in the JTAG chain
DSP56800

Has an index value of 1 in the JTAG chain
Generic 4 1 Oxf

Debugging in the Flash Memory

The debugger is capable of programming flash memory. The programming occurs at
launch, during download. The flash programming option is turned on and the
parameters are set in the initialization file. This file is specified in the
Debugger>M56800 Target preference panel. A list of flash memory commands is
given in the next section.

The stationery provides an example of how to specify a default initialization file, how
to write a linker command file for flash memory, and how to copy initialized data from
ROM to RAM using provided library functions.

Flash Memory Commands

The following is a list of flash memory commands that can be included in your
initialization file.

set_hfmclkd <value>

This command writes the value which represents the clock divider for the flash
memory to the hfmclkd register.

The value for the set _hfmclkd command depends on the frequency of the clock.
If you are using a supported EVM, this value should not be changed from the value
provided in the default initialization file. However, if you are using an unsupported
board and the clock frequency is different from that of the supported EVM, a new
value must be calculated as described in the user’s manual of the particular processor
that you are using.

Targeting DSP56F80x/DSP56F82x Controllers 261

For More Information: www.freescale.com

g |

Freescale Semiconductor, Inc.

Debugging for DSP56800
Debugging in the Flash Memory

NOTE The set_hfmclkd, set_hfm base, and at least one
add_hfm unit command must exist to enable flash
programming. All other flash memory commands are
optional.

set_hfm_base <address>

This command sets the address of hfm_ base, which is where the flash control
registers are mapped in X: memory.

NOTE The set_hfm base and add_hfm_unit commands should
not be changed for a particular processor. Their values will
always be the same.

set_hfm_config_base <address>

This command sets the address of hfm config base, which is where the flash
security values are written in program flash memory. If this command is present, the
debugger used the address to mimic part of the hardware reset behavior by copying the
protection values from the configuration field to the appropriate flash control registers.

add_hfm_unit <startAddr> <endAddr> <bank> <numSectors> <page-
Size> <progMem> <boot> <interleaved>

This command adds a flash unit to the list and sets its parameters.

NOTE The set_hfm base and add_hfm unit commands should
not be changed for a particular processor. Their values will
always be the same.

262 Targeting DSP56F80x/DSP56F82x Controllers

For More Information: www.freescale.com

Freescale Semiconductor, Inc.

Debugging for DSP56800
Setting up the Debugger for Flash Programming

set_hfm_erase_mode units | pages | all

This command sets the erase mode as units, pages or all. If you set this to
units, the units that are programmed are mass erased. If set this to pages, the pages
that are programmed are erased. If you set this to al1l, all units are mass erased
including those that have not been programmed. If you omit this command, the erase
mode defaults to the unit mode.

set_hfm_verify_erase 110

If you set this to 1, the debugger verifies that the flash memory has been erased, and
alerts you if the erase failed. If this command is omitted, the flash erase is not verified.

set_hfm_verify_program 110

If you set this to 1, the debugger verifies that the flash has been programmed correctly,
and alerts you if the programming failed. If you omit this command, flash
programming is not verified.

Setting up the Debugger for Flash
Programming

In order for the debugger to download into Flash, the Use Flash Config File option is
required in the M56800 Target panel and must be enabled.

Figure 9.30 shows the M56800 Target panel when you use minimum requirements for
Flash programming.

Targeting DSP56F80x/DSP56F82x Controllers 263

For More Information: www.freescale.com

Freescale Semiconductor, Inc.

Debugging for DSP56800
Setting up the Debugger for Flash Programming

Figure 9.30 M56800 Target Panel for Programming Flash

Einternal memory with *ROM-to-xRAM copy Settings ﬂﬁj
B Target Settings Panels R tSEE00 Target 5ettings
= Language Settings 12
o CAC++ Language ... IV &lways reset on download
-« CAC++ Preprocessor
o CAC++ Warnings IV Use Flash Config File |588I35_fla$h.cfg Choose... i
- MBEB00 dszembler
= Code Generation Breakpoint mode: |.-’-‘-.ut0matic vI
- ELF Dizazsembler
- M56800 Frocessor [Auto-clear previous hardware brealpaoint
- [Alnbal Optimizations
= Linker v Initizlize: OMB for program meman
Lo MBRB00 Linker
= ;Edltm Program meman mode: Ilnlemal ;I
e Custom Keywords
= Debugger
> Debugoer Settings
& Remote Debugging Frocessar: |DSF'5ECF8E|5 ‘ﬂ
= ! Targ o
‘.. Remote Debug Opt... =
Factom Settings | Bewert | Import Panel... I Export Panel... |
ok | Cancel | Spply |

Use Flash Config File

When the Use Flash Config File option is enabled, you can specify the use of a flash
configuration file (Listing 5.3) in the text box. If the full path and file name are not
specified, the default location is the same as the project file.

You can click the Choose button to specify the file. The Choose File dialog box
appears (Figure 9.31).

264 Targeting DSP56F80x/DSP56F82x Controllers

For More Information: www.freescale.com

b -

g |

Freescale Semiconductor, Inc.

Debugging for DSP56800
Notes for Debugging on Hardware

Figure 9.31 Choose File Dialog Box

2[]
Loak ir: Iﬁ zample j - £ EE-

IcF

oukpuk

sample_Data

skarkup
MS6500_main.c
MSES800_main_hastio.c
sample.mcp

File name: || j Open I

Files of type: I j Cancel |
ra

rd

For more information on the Flash Configuration File Line Format, see “M56800
Target (Debugging).”

Notes for Debugging on Hardware

Below are some tips and somethings to be aware of when debugging on a hardware
target:

* Ensure your Flash data size fits into Flash memory.

The linker command file specifies where data is written to. There is no bounds
checking for Flash programming.

* The standard library I/O function such as print £ uses large amount of memory
and may not fit into flash targets.

* Use the Flash stationery when creating a new project intended for ROM.

The default stationery contains the Flash configuration file and debugger settings
required to use the Flash programmer.

¢ There is only one hardware breakpoint available, which is shared by IDE
breakpoints (when the Breakpoint Mode is set to hardware in the M56800 Target
panel), watchpoints, and OnCE triggers. Only one of these may be set at a time.

Targeting DSP56F80x/DSP56F82x Controllers 265

For More Information: www.freescale.com

Freescale Semiconductor, Inc.

Debugging for DSP56800
Flash Programming the Reset and Interrupt Vectors

Flash Programming the Reset and
Interrupt Vectors

The first four P: (program) memory locations in Flash ROM are actually "mirrored"
from the first four memory locations of Boot Flash. Therefore, when Flash
programming the reset vectors, write the reset vectors to the beginning of Boot Flash.
The interrupt vectors are located in Program Flash. Write the interrupt vectors
normally, starting at P:0x0004. The Flash targets in the stationery demonstrate how
the source, linker command file, and flash configuration file look.

NOTE It is important that you use the flash configuration file provided in the
stationery. Using a flash configuration file with extra sections can
lead to multiple erases of the same flash unit resulting in Flash
programming errors.

266 Targeting DSP56F80x/DSP56F82x Controllers

For More Information: www.freescale.com

Freescale Semiconductor, Inc.

10
Data Visualization

Data visualization lets you graph variables, registers, and regions of memory as they
change over time.

The Data Visualization tools can plot memory data, register data, and global variable
data.

» Starting Data Visualization
» Data Target Dialog Boxes
* Graph Window Properties

Starting Data Visualization

To start the Data Visualization tool:

1. Start a debug session
2. Select Data Visualization > Configurator.

The Data Types window (Figure 10.1) appears. Select a data target type and click
the Next button.

Targeting DSP56F80x/DSP56F82x Controllers 267

For More Information: www.freescale.com

Freescale Semiconductor, Inc.

Data Visualization
Starting Data Visualization

Figure 10.1 Data Types Window

Data Types ﬁ

Select a target data twpe for which the data is to be visualized.

ﬂ hemony
] Registers
abe ariables

St H5ST

< Back I et » I Cancel | Help

3. Configure the data target dialog box and filter dialog box.

4. Run your program to display the data (Figure 10.2).

Figure 10.2 Graph Window

i @short DataDut[10] M= B
/¥

8943 /]

945 \

Ay = /
Vi ! / /

o
E
= 1082 \ /
-3052 \
-5052 \ \ /
-7082 /
9082
005 1 15 2 25 3 35 ?medﬁ 5 55 B BS 7 745 8 858 8
268 Targeting DSP56F80x/DSP56F82x Controllers

For More Information: www.freescale.com

Freescale Semiconductor, Inc.

Data Visualization
Data Target Dialog Boxes

Data Target Dialog Boxes

There are four possible data targets. Each target has its own configuration dialog.
* Memory
* Registers

¢ Variables

Memory
The Target Memory dialog box lets you graph memory contents in real-time.

Figure 10.3 Target Memory Dialog Box

Target Memory Data

Select the way the memony iz to be visualized.

Data Tupe: I unsighed 32-b "I Data Urits: I'| o

— Memony Yisualization

% Single location changing over bime

Addess Ox IEIEIDEIEFED

™ temory Begion chaning over time

[ez g I

¥ iz O I

< Back I et » I Cancel Help

Targeting DSP56F80x/DSP56F82x Controllers 269

For More Information: www.freescale.com

Freescale Semiconductor, Inc.

Data Visualization
Data Target Dialog Boxes

Data Type

The Data Type list box lets you select the type of data to be plotted.

Data Unit

The Data Units text field lets you enter a value for number of data units to be plotted.
This option is only available when you select Memory Region Changing Over Time.
Single Location Changing Over Time

The Single Location Changing Over Time option lets you graph the value of a single
memory address. Enter this memory address in the Address text field.

Memory Region Changing Over Time

The Memory Region Changing Over Time options lets you graph the values of a
memory region. Enter the memory addresses for the region in the X-Axis and Y-Axis
text fields.

Registers

The Target Registers dialog box lets you graph the value of registers in real-time.

Figure 10.4 Target Registers Dialog Box

Target Registers E

Select registers for which the data is to be visualized.

EIH General Purpose Hegisﬂ EIH General Purposze Fegisters
) 5.....'r:= D1

;lll « i

< Back I Mest » I Cancel | Help |

270 Targeting DSP56F80x/DSP56F82x Controllers

For More Information: www.freescale.com

g |

Freescale Semiconductor, Inc.

Data Visualization
Data Target Dialog Boxes

Select registers from the left column, and click the -> button to add them to the list of
registers to be plotted.

Variables

The Target Globals dialog box lets you graph the value of global variables in real-
time. (See Figure 10.5.)

Figure 10.5 Target Globals Dialog Box

Target Globals |

Select globalz which are to be vizualized.

----- H long _ main ;I

----- H lorg _ mem_limit

----- H long __receive -

..... H long ___send —>|
----- H long ___sendnreceive L|
..... H long __ size

..... H long __ stack_safety il

----- H long __ spzcall

----- Fl lnnn alreadn renishens
4| | E

< Back I MHemt » I Cancel Help

Select global variables from the left column, and click the -> button to add them to the
list of variables to be plotted.

Targeting DSP56F80x/DSP56F82x Controllers 271

For More Information: www.freescale.com

Freescale Semiconductor, Inc.

Data Visualization
Graph Window Properties

Graph Window Properties

To change the look of the graph window, click the graph properties button to open
the Format Axis dialog box.

Figure 10.6 Format Axis Dialog Box

Format Axis ﬂ

—#-huis Scale [auto when checked)

v Minimum: I v bajor unit: I

v b awirmum: I— ¥ Bdirior, urit: I
I—
I—

[~ Logarithmic scale

=iz Scale [auto when checked)]

Iv Minimun: I— v Major unit:
IV b awimum: I— I¥ | Hiror unit:

[~ Logarnithmic scale

— Digplay

Units: I vl [~ Show displayiunits on labe!
Mo of Points: |1IJD

Ok I Cancel |

Scaling

The default scaling settings of the data visualization tools automatically scale the
graph window to fit the existing data points.

To override the automatic scaling, uncheck a scaling checkbox to enable the text field
and enter your own value.

To scale either axis logarithmically, enable the Logarithmic Scale option of the
corresponding axis.

272 Targeting DSP56F80x/DSP56F82x Controllers

For More Information: www.freescale.com

Freescale Semiconductor, Inc.

Data Visualization
Graph Window Properties

Display

The Display settings let you change the maximum number of data points that are
plotted on the graph.

Targeting DSP56F80x/DSP56F82x Controllers 273

For More Information: www.freescale.com

Freescale Semiconductor, Inc.

Data Visualization
Graph Window Properties

274 Targeting DSP56F80x/DSP56F82x Controllers

For More Information: www.freescale.com

Freescale Semiconductor, Inc.

11
Profiler

The profiler is a run-time feature that collects information about your program. It
records the minimum, maximum, and total number of clock cycles spent in each
function. The profiler allows you to evaluate your code and determine which functions
require optimization.

When profiling is enabled, the compiler adds code to call the entry functions in the
profiler library. These profiler library functions do all of the data collection. The
profiler library, with the help of the debugger create a binary output file, which is
opened and displayed by the CodeWarrior IDE.

NOTE For more information on the profiler library and its usage, see the
CodeWarrior Development Studio IDE 5.5 User’s Guide Profiler
Supplement.

To enable your project for profiling:
1. Add the following path to your list of user paths in the Access Paths settings
panel:

{Compiler}M56800x Support\profiler

2. Add the following line to the file that contains the function main():
#include "Profiler.h"
3. Add the profiler library file to your project. Select the library that matches your
target from this path:

{CodeWarrior path}M56800x Support\profiler\lib

Targeting DSP56F80x/DSP56F82x Controllers 275

For More Information: www.freescale.com

g |

Freescale Semiconductor, Inc.

Profiler
4. Add the following function calls to main():
ProfilerInit ()
ProfilerClear ()
ProfilerSetStatus ()
ProfilerDump ()
ProfilerTerm()
For more details of these functions, see the CodeWarrior Development Studio
IDE 5.5 User’s Guide Profiler Supplement.
5. It may be necessary to increase the heap size to accommodate the profiler data
collection. This can be set in the linker command file by changing the value of
__heap_size.
6. Enable profiling by setting the Generate code for profiling option in the
M56800 Processor settings panel or by using the profile on | off pragma to select
individual functions to profile.
NOTE For a profiler example, see the profiler example in this path:
{CodeWarrior path} (CodeWarrior Examples)\
SimpleProfiler
276 Targeting DSP56F80x/DSP56F82x Controllers

For More Information: www.freescale.com

Freescale Semiconductor, Inc.

12

ELF Linker

The CodeWarrior™ Executable and Linking Format (ELF) Linker makes a program
file out of the object files of your project. The linker also allows you to manipulate
code in different ways. You can define variables during linking, control the link order
to the granularity of a single function, change the alignment, and even compress code
and data segments so that they occupy less space in the output file.

All of these functions are accessed through commands in the linker command file
(LCF). The linker command file has its own language complete with keywords,
directives, and expressions, that are used to create the specifications for your output
code. The syntax and structure of the linker command file is similar to that of a
programming language.
This chapter contains the following sections:

* Structure of Linker Command Files

¢ Linker Command File Syntax

* Linker Command File Keyword Listing

¢ Sample M56800 Linker Command File

Structure of Linker Command Files

Linker command files contain three main segments:
* Memory Segment
* Closure Blocks
* Sections Segment

A command file must contain a memory segment and a sections segment. Closure
segments are optional.

Targeting DSP56F80x/DSP56F82x Controllers 277

For More Information: www.freescale.com

Freescale Semiconductor, Inc.

ELF Linker
Structure of Linker Command Files

Memory Segment

In the memory segment, available memory is divided into segments. Listing 12.1
shows a sample memory-segment format.

Listing 12.1 Sample MEMORY Segment

MEMORY {
segment 1 (RWX): ORIGIN 0x1000, LENGTH = 0x1000
segment 2 (RWX): ORIGIN = AFTER(segment 1), LENGTH = O

data (RW) : ORIGIN = 0x2000, LENGTH = 0x0000
#segment name (RW) : ORIGIN = memory address, LENGTH = segment
length

#and so on...

}

The (RWX) portion consists of ELF access permission flags, read, write, and execute
where:

* ORIGIN represents the start address of the memory segment.
e LENGTH represents the maximum size allowed for the memory segment.

Memory segments with RWX attributes are placed into P memory while RW attributes
are placed into X memory.

Memory segments with R attributes denote X ROM memory, and memory segments
with RX attributes denote P ROM memory.

You can put a segment immediately after the previous one using the AFTER
command.

If you cannot predict how much space a segment will occupy, you can use the
command LENGTH = O (unlimited length) and let the linker figure out the size of the
segment.

Closure Blocks

The linker is very good at deadstripping unused code and data. Sometimes, however,
symbols need to be kept in the output file even if they are never directly referenced.
Interrupt handlers, for example, are usually linked at special addresses, without any
explicit jumps to transfer control to these places.

Closure blocks provide a way to make symbols immune from deadstripping. The
closure is transitive, meaning that symbols referenced by the symbol being closed are
also forced into closure, as are any symbols referenced by those symbols, and so on.

278 Targeting DSP56F80x/DSP56F82x Controllers

For More Information: www.freescale.com

Freescale Semiconductor, Inc.

ELF Linker
Structure of Linker Command Files

NOTE The closure blocks need to be in place before the SECTIONS
definition in the linker command file.

The two types of closure blocks available are:

* Symbol-level

Use FORCE_ACTIVE to include a symbol into the link that would not be
otherwise included. An example is in Listing 12.2.

Listing 12.2 Sample Symbol-level Closure Block

FORCE ACTIVE {break handler, interrupt handler, my function}

¢ Section-level

Use KEEP_SECTION when you want to keep a section (usually a user-defined
section) in the link. Listing 12.3 is an example.

Listing 12.3 Sample Section-level Closure Block

KEEP_SECTION {.interruptl, .interrupt2}

A variant is REF_INCLUDE. It keeps a section in the link, but only if the file
where it is coming from is referenced. This is very useful to include version
numbers. Listing 12.4 is an example.

Listing 12.4 Sample Section-level Closure Block With File Dependency

REF_INCLUDE {.version}

Sections Segment

In the Sections segment, you define the contents of memory segments and any global
symbols to be used in the output file.

The format of a typical sections block is in Listing 12.5.

Listing 12.5 Sample SECTIONS Segment

SECTIONS ({
.section name : #the section name is for your reference
{ #the section name must begin with a '.'
Targeting DSP56F80x/DSP56F82x Controllers 279

For More Information: www.freescale.com

Freescale Semiconductor, Inc.

ELF Linker
Linker Command File Syntax

filename.c (.text) #put the .text section from filename.c
filename2.c (.text) #then the .text section from filename2.c
filename.c (.data)
filename2.c (.data)
filename.c (.bss)
filename2.c (.bss)
= ALIGN (0x10); #align next section on 16-byte boundary.
} > segment 1 #this means "map these contents to segment 1"

.next_section_name:

more content descriptions
} > segment x # end of .next_section name definition
} # end of the sections block

Linker Command File Syntax

This section explains some practical ways in which to use the commands of the linker
command file to perform common tasks.

Alignment

To align data on a specific byte-boundary, you use the ALIGN and ALIGNALL
commands to bump the location counter to the preferred boundary. For example, the
following fragment uses ALIGN to bump the location counter to the next 16-byte
boundary. A sample is in Listing 12.6.

Listing 12.6 Sample ALIGN Command Usage

file.c (.text)
= ALIGN (0x10) ;
file.c (.data) # aligned on a 16-byte boundary.

You can also align data on a specific byte-boundary with ALIGNALL as shown
in (Listing 12.7).

Listing 12.7 Sample ALIGNALL Command Usage

file.c (.text)
ALIGNALL (0x10); #everything past this point aligned on 16 bytes
280 Targeting DSP56F80x/DSP56F82x Controllers

For More Information: www.freescale.com

Freescale Semiconductor, Inc.

ELF Linker
Linker Command File Syntax

file.c (.data)

Arithmetic Operations

Standard C arithmetic and logical operations may be used to define and use symbols in
the linker command file. Table 12.1 shows the order of precedence for each operator.
All operators are left-associative.

Table 12.1 Arithmetic Operators

Precedence Operators
1 (highest) - T
2 * /0%
3 + -
4 >> <<
5 == I= > < <= >=
6 &
7
8 &&
9 |
NOTE The shift operator shifts two-bits for each shift operation. The divide

operator performs division and rounding.

Comments

Add comments by using the pound character (#) or C++ style double-slashes (/ /). C-
style comments are not accepted by the LCF parser. Listing 12.8 shows examples of
valid comments.

Listing 12.8 Example Comments

This is a one-line comment
* (.text) // This is a partial-line comment

Targeting DSP56F80x/DSP56F82x Controllers 281

For More Information: www.freescale.com

ELF Linker

Freescale Semiconductor, Inc.

Linker Command File Syntax

Deadstrip Prevention

The M56800 linker removes unused code and data from the output file. This process is
called deadstripping. To prevent the linker from deadstripping unreferenced code and
data, use the FORCE_ACTIVE, KEEP SECTION, and REF INCLUDE directives
to preserve them in the output file.

Variables, Expressions and Integral Types

This section explains variables, expressions, and integral types.

Variables and Symbols

All symbol names within a Linker Command File (LCF) start with the underscore
character (_), followed by letters, digits, or underscore characters. Listing 12.9 shows
examples of valid lines for a command file:

Listing 12.9 Valid Command File Lines

_dec_num

= 99999999;

hex num = 0x9011276;

Variables that are defined within a SECTIONS section can only be used within a
SECTIONS section in a linker command file.

Global Variables

Global variables are accessed in a linker command file with an ‘F’ prepended to the
symbol name. This is because the compiler adds an ‘F’ prefix to externally defined
symbols.

Listing 12.10 shows an example of using a global variable in a linker command file.
This example sets the global variable foot, declared in C with the extern
keyword, to the location of the address location current counter.

Listing 12.10 Using a Global Variable in the LCF

F_foot

.7

If you use a global symbol in an LCF, as in Listing 12.10, it can be accessed from C
program sources as shown in Listing 12.11.

282

Targeting DSP56F80x/DSP56F82x Controllers

For More Information: www.freescale.com

Freescale Semiconductor, Inc.

ELF Linker
Linker Command File Syntax

Listing 12.11 Accessing a Global Symbol From C Program Sources

extern unsigned long _foot;
void main(void) {
unsigned long i;

/] ...

i = foot; // _foot value determined in LCF
/] ...
1

Expressions and Assignments

You can create symbols and assign addresses to those symbols by using the standard
assignment operator. An assignment may only be used at the start of an expression,
and a semicolon is required at the end of an assignment statement. An example of
standard assignment operator usage is shown in Listing 12.12.

Listing 12.12 Standard Assignment Operator Usage

_symbolicname = some_expression; # Legal
_syml + sym2 = sym3; # ILLEGAL!

When an expression is evaluated and assigned to a variable, it is given either an
absolute or a relocatable type. An absolute expression type is one in which the symbol
contains the value that it will have in the output file. A relocatable expression is one in
which the value is expressed as a fixed offset from the base of a section.

Integral Types

The syntax for linker command file expressions is very similar to the syntax of the C
programming language. All integer types are long or unsigned long.

Octal integers (commonly know as base eight integers) are specified with a leading
zero, followed by numeral in the range of zero through seven. Listing 12.13 shows
valid octal patterns you could put into your linker command file.

Listing 12.13 Sample Octal Patterns

_octal number = 012;
_octal number2 = 03245;

Targeting DSP56F80x/DSP56F82x Controllers 283

For More Information: www.freescale.com

ELF Linker

Freescale Semiconductor, Inc.

Linker Command File Syntax

Decimal integers are specified as a non-zero numeral, followed by numerals in the
range of zero through nine. To create a negative integer, use the minus sign (-) in front
of the number. Listing 12.14 shows examples of valid decimal integers that you could
write into your linker command file.

Listing 12.14 Sample Decimal Integers

_dec_num

= 9999;

_decimalNumber = -1234;

Hexadecimal (base sixteen) integers are specified as 0x or 0X (a zero with an X),
followed by numerals in the range of zero through nine, and/or characters A through F.
Examples of valid hexadecimal integers you could put in your linker command file
appear in Listing 12.15.

Listing 12.15 Example Hexadecimal Integers

__somenumber = 0xO0F21;
_fudgefactorspace = 0XF0O0D;
_hexonyou = Oxcafe;

File Selection

When defining the contents of a SECTION block, specify the source files that are
contributing to their sections. The standard method of doing this is to list the files.

In a large project, the list can grow to become very long. For this reason, use the
asterix (*) keyword. The asterix (*) keyword represents the filenames of every file in
your project. Note, that since you have already added the . text sections from the
filesmain.c, file2.c,and file3. ¢, the '*' keyword does not include the

. text sections from those files again.

Function Selection

The OBJECT keyword allows precise control over how functions are placed within a
section. For example, if the functions pad and foot are to be placed before anything
else in a section, use code like the example in Listing 12.16.

Listing 12.16 Sample Function Selection Using the Object Keyword

SECTIONS ({

284

Targeting DSP56F80x/DSP56F82x Controllers

For More Information: www.freescale.com

g |

Freescale Semiconductor, Inc.

ELF Linker
Linker Command File Syntax

.program_section :

OBJECT (Fpad, main.c)
OBJECT (Ffoot, main.c)
* (.text)

} > ROOT

NOTE If an object is written once using the Object function selection
keyword, you can prevent the same object from being written again
using the '*' file selection keyword.

ROM to RAM Copying

In embedded programming, it is common to copy a portion of a program resident in
ROM into RAM at runtime. For example, program variables cannot be accessed until
they are copied to RAM.

To indicate data or code that is meant to be copied from ROM to RAM, the data or
code is given two addresses. One address is its resident location in ROM (defined by
the linker command file). The other is its intended location in RAM (defined in C code
where you do the actual copying).

To create a section with the resident location in ROM and an intended location in
RAM, you define the two addresses in the linker command file. Use the MEMORY
segment to specify the intended RAM location, and the AT (address) parameter to
specify the resident ROM address.

NOTE This method only works for copying from data ROM to data RAM.

For example, you have a program and you want to copy all your initialized data into
RAM at runtime. Listing 12.17shows you the LCF used to set up for writing initialized

data to ROM.

NOTE If you want to write initialized data to program ROM, use the WRITE
commands in the LCF. Also, write your own P to X memory copy
routine in assembly to copy data from program ROM to data RAM at
runtime.

Targeting DSP56F80x/DSP56F82x Controllers 285

For More Information: www.freescale.com

Freescale Semiconductor, Inc.

ELF Linker
Linker Command File Syntax

Listing 12.17 LCF File to Prepare Data Copy From ROM to RAM

MEMORY {
.text (RWX) : ORIGIN = 0x8000, LENGTH = 0x0 # code (P)
.data (RW) : ORIGIN = 0x3000, LENGTH = 0x0 # data (X)-> RAM

}

SECTIONS{

F__ROM_Address = 0x1000; # ROM Starting Address

.main_application :

{

.text sections

(.text)
(.rtlib.text)
(.fp_engine.txt)
(user.text)

} o> .text

.data : AT(F__ROM_Address) # Start data at 0x1000 -> ROM
{
.data sections
F Begin Data = .; # Get start location for RAM
* (.data) # Write data to the section (ROM)
* (fp_state.data) ;
*(rtlib.data) ;
F_End Data = .; # Get end location for RAM

.bss sections
* (rtlib.bss.lo)
* (.bss)

} > .data

}

To make the runtime copy the section from ROM to RAM, you need to know where
the data start in ROM (__ROM_Address) and the size of the block in ROM you want
to copy to RAM. In Listing 12.18, all variables in the data section from ROM to RAM
in C code are copied.

Listing 12.18 ROM to RAM Copy From C After Data-Flash Write

#include <stdio.h>

286 Targeting DSP56F80x/DSP56F82x Controllers

For More Information: www.freescale.com

Freescale Semiconductor, Inc.

ELF Linker
Linker Command File Syntax

#include <string.hs>

int GlobalFlash = 6;

// From linker command file
extern _ Begin Data, _ ROMAddress, __ End Data;

void main(void)

{

unsigned short a = 0, b = 0, ¢ = 0;
unsigned long datalLen = 0x0;
unsigned short _ myArray[] = { Oxdead, Oxbeef, Oxcafe };

// Calculate the data length of the X memory written to Flash
dataLen = (unsigned long)é& End Data -
(unsigned long) & Begin Data;

// Block move from ROM to RAM

memcpy ((unsigned long *)& Begin Data,
(const unsigned long *)& ROMAddress,
dataLen) ;

a = GlobalFlash;

return;

NOTE For this example to work, you must be writing to Flash with the
CodeWarrior debugger and have your board jumpered to mode 0.

Stack and Heap

To reserve space for the stack and heap, arithmetic operations are performed to set the
values of the symbols used by the runtime.

The Linker Command File (LCF) performs all the necessary stack and heap
initialization. When Stationery is used to create a new project, the appropriate LCFs
are added to the new project.

See any Stationery-generated LCFs for examples of how stack and heap are initialized.

Targeting DSP56F80x/DSP56F82x Controllers 287

For More Information: www.freescale.com

ELF Linker
Linker Command File Keyword Listing

Freescale Semiconductor, Inc.

Writing Data Directly to Memory

You can write directly to memory using the WRITEx command in the linker
command file. The WRITEB command writes a byte, the WRITEH command writes
two bytes, and the WRITEW command writes four bytes. You insert the data at the

section’s current address.

Listing 12.19 Embedding Data Directly Into the Output

.example data_section :

{

WRITEB 0x48; // 'H!'
WRITEB 0x69; // 'i
WRITEB O0x21; // '!!

Linker Command File Keyword Listing

This sections explains the keywords available for use when creating CodeWarrior
Development Studio for Freescale 56800 applications with the linker command file.
Valid linker command file functions, keywords, directives, and commands are
described:

. (location counter)
ADDR

ALIGN
ALIGNALL
FORCE_ACTIVE
INCLUDE
INCLUDE
KEEP_SECTION
MEMORY
OBJECT
REF_INCLUDE
SECTIONS
SIZEOF
SIZEOFW

288

Targeting DSP56F80x/DSP56F82x Controllers

For More Information: www.freescale.com

Freescale Semiconductor, Inc.

ELF Linker
Linker Command File Keyword Listing

 WRITEB
e WRITEH
* WRITES
e WRITEW

. (location counter)

The period character (.) always maintains the current position of the output location.
Since the period always refers to a location in a SECTIONS block, it can not be used
outside a section definition.

A period may appear anywhere a symbol is allowed. Assigning a value to period that
is greater than its current value causes the location counter to move, but the location
counter can never be decremented.

This effect can be used to create empty space in an output section. In the example
below, the location counter is moved to a position that is 0x1000 words past the
symbol FSTART .

Example
.data :
{
* (.data)
*(.bss)
FSTART = .;
. = FSTART + 0x1000;
_end = .;

} > DATA

Targeting DSP56F80x/DSP56F82x Controllers 289

For More Information: www.freescale.com

Freescale Semiconductor, Inc.

ELF Linker
Linker Command File Keyword Listing

ADDR
The ADDR function returns the address of the named section or memory segment.
Prototype
ADDR (sectionName | segmentName)
In the example below, ADDR is used to assign the address of ROOT to the symbol
___rootbasecode.
Example
MEMORY {
ROOT (RWX) : ORIGIN = 0x8000, LENGTH = 0
}
SECTIONS {
.code
{
___rootbasecode = ADDR (ROOT) ;
*(.text);
} > ROOT
}
ALIGN
The ALIGN function returns the value of the location counter aligned on a boundary
specified by the value of alignVvalue. The alignVvalue must be a power of two.
290 Targeting DSP56F80x/DSP56F82x Controllers

For More Information: www.freescale.com

Freescale Semiconductor, Inc.

ELF Linker
Linker Command File Keyword Listing

Prototype

ALIGN (alignValue)

Please note that ALIGN does not update the location counter; it only performs
arithmetic. To update the location counter, use an assignment such as the following:

Example
= ALIGN(0x10) ; #update location counter to 16

#byte alignment

ALIGNALL

ALIGNALL is the command version of the ALIGN function. It forces the minimum
alignment for all the objects in the current segment to the value of alignvValue. The
alignValue must be a power of two.

Prototype

ALIGNALL (alignValue) ;

Unlike its counterpart ALIGN, ALIGNALL is an actual command. It updates the location
counter as each object is written to the output.

Targeting DSP56F80x/DSP56F82x Controllers 291

For More Information: www.freescale.com

Freescale Semiconductor, Inc.

ELF Linker
Linker Command File Keyword Listing

Example
.code :
{
ALIGNALL(16); // Align code on 16 byte boundary
* (.init)
* (.text)
ALIGNALL(16); //align data on 16 byte boundary
* (.rodata)
} > .text

FORCE_ACTIVE
The FORCE_ACTIVE directive allows you to specify symbols that you do not want
the linker to deadstrip. You must specify the symbol(s) you want to keep before you
use the SECTIONS keyword.

Prototype

FORCE ACTIVE{ symbol[, symbol] }

INCLUDE

The INCLUDE command allows you to include a binary file in the output file.

Prototype

INCLUDE filename

292 Targeting DSP56F80x/DSP56F82x Controllers

For More Information: www.freescale.com

Freescale Semiconductor, Inc.

ELF Linker
Linker Command File Keyword Listing

KEEP_SECTION

The KEEP_SECTION directive allows you to specify sections that you do not want
the linker to deadstrip. You must specify the section(s) you want to keep before you
use the SECTION keyword.

Prototype

KEEP_SECTION{ sectionTypel[, sectionTypel }

MEMORY

The MEMORY directive allows you to describe the location and size of memory
segment blocks in the target. This directive specifies the linker the memory areas to
avoid, and the memory areas into which it links the code and date.

The linker command file may only contain one MEMORY directive. However, within
the confines of the MEMORY directive, you may define as many memory segments as
you wish.

Prototype

MEMORY { memory spec }

The memory spec is:

segmentName (accessFlags) : ORIGIN = address, LENGTH = length
[, COMPRESS] [> fileName]

segmentName can include alphanumeric characters and underscore '_' characters.

accessFlags are passed into the output ELF file (Phdr.p_flags). The
accessFlags can be:

e R-read

e W-write

¢ X-executable (for P memory placement)
address originis one of the following:

* Memory address

Targeting DSP56F80x/DSP56F82x Controllers 293

For More Information: www.freescale.com

Freescale Semiconductor, Inc.

ELF Linker
Linker Command File Keyword Listing

Specify a hex address, such as 0x8000.
* AFTER command

Use the AFTER (name [, name]) command to instruct the linker to place the
memory segment after the specified segment. In the example below, overlayl
and overlay?2 are placed after the code segment. When multiple memory

segments are specified as parameters for AFTER, the highest memory address is

used.
Example
MEMORY {
code (RWX) : ORIGIN = 0x8000, LENGTH = 0
overlayl (RWX) : ORIGIN = AFTER (code), LENGTH = 0
overlay2 (RWX) : ORIGIN = AFTER (code), LENGTH = 0
data (RW) : ORIGIN = 0x1000, LENGTH = 0

}

ORIGIN is the assigned address.
LENGTH is any of the following:
e A value greater than zero.

If you try to put more code and data into a memory segment greater than your
specified length allows, the linker stops with an error.

¢ Autolength by specifying zero.

When the length is 0, the linker lets you put as much code and data into a memory
segment as you want.

NOTE There is no overflow checking with autolength. The linker can
produce an unexpected result if you use the autolength feature
without leaving enough free memory space to contain the memory
segment. Using the AFTER keyword to specify origin addresses
prevents this.

> fileName is an option to write the segment to a binary file on disk instead of an
ELF program header. The binary file is put in the same folder as the ELF output file.
This option has two variants:

e > fileName

294 Targeting DSP56F80x/DSP56F82x Controllers

For More Information: www.freescale.com

Freescale Semiconductor, Inc.

ELF Linker
Linker Command File Keyword Listing

Writes the segment to a new file.
e >> fileName

Appends the segment to an existing file.

OBJECT

The OBJECT keyword allows control over the order in which functions are placed in
the output file.

Prototype

OBJECT (function, sourcefile.c)

It is important to note that if an object is written to the outfile using the OBJECT
keyword, the IDE does not allow the same object to be written again by using the "*'
wildcard selector.

REF_INCLUDE

The REF_INCLUDE directive allows you to specify sections that you do not want the
linker to deadstrip, but only if they satisfy a certain condition: the file that contains the
section must be referenced. This is useful if you want to include version information
from your source file components. You must specify the section(s) you want to keep
before you use the SECTIONS keyword.

Prototype

REF _INCLUDE{ sectionType [, sectionTypel }

SECTIONS

A basic SECTIONS directive has the following form:

Targeting DSP56F80x/DSP56F82x Controllers 295

For More Information: www.freescale.com

Freescale Semiconductor, Inc.

ELF Linker
Linker Command File Keyword Listing

Prototype

SECTIONS { <section_spec> }

section_spec is one of the following:

sectionName : [AT (loadAddress)] {contents} > segmentName
sectionName : [AT (loadAddress]] {contents} >> segmentName
sectionName The section name for the output section. It

must start with a period character. For
example, .mysection.

AT (loadAddress) An optional parameter that specifies the
address of the section. The default (if not
specified) is to make the load address the
same as the relocation address.

contents Made up of statements.

These statements can:

* assign a value to a symbol.

» describe the placement of an output section, including which input sections are
placed into it.

segmentName is the predefined memory segment into which you want to put the
contents of the section. The two variants are:

> segmentName Places the section contents at the beginning
of the memory segment segmentName.

>> segmentName Appends the section contents to the
memory segment segmentName.

Here is an example section definition:

296 Targeting DSP56F80x/DSP56F82x Controllers

For More Information: www.freescale.com

Freescale Semiconductor, Inc.

ELF Linker
Linker Command File Keyword Listing

Example
SECTIONS {
.text : {
F_textSegmentStart = .;
footpad.c (.text)
= ALIGN (0x10);
padfoot.c (.text)

F textSegmentEnd = .;

.data : { *(.data) }
.bss : { *(.bss)

* (COMMON)

SIZEOF

The SIZEOF function returns the size of the given segment or section. The return
value is the size in bytes.

Prototype

SIZEOF (segmentName | sectionName)

SIZEOFW

The SIZEOFW function returns the size of the given segment or section. The return
value is the size in words.

Targeting DSP56F80x/DSP56F82x Controllers 297

For More Information: www.freescale.com

ELF Linker

Freescale Semiconductor, Inc.

Linker Command File Keyword Listing

Prototype

SIZEOFW (segmentName | sectionName)

WRITEB

The WRITEB command inserts a byte of data at the current address of a section.

Prototype

WRITEB (expression);

expression is any expression that returns a value 0x00 to 0xFF.

WRITEH

The WRITEH command inserts two bytes of data at the current address of a section.

Prototype

WRITEH (expression);

expression is any expression that returns a value 0x0000 to OXFFFF.

WRITES

The WRITES command is a string of variables with maximum length of 255
characters.

You can use DATE and TIME in conjunction with the WRITES command.
DATE returns the current date as a C string (must be within parentheses).

TIME returns the current time as a C string (must be within parentheses).

Prototype

WRITES (string) ;

298

Targeting DSP56F80x/DSP56F82x Controllers

For More Information: www.freescale.com

Freescale Semiconductor, Inc.

ELF Linker
Sample M56800 Linker Command File

string is any string within parentheses.

Examples
WRITES ("Hello World").
WRITES ("Today is" DATE) .

WRITES ("The time is " TIME) .

WRITEW

The WRITEW command inserts 4 bytes of data at the current address of a section.

Prototype

WRITEW (expression);

expression is any expression that returns a value 0x00000000 to
OxXFFFFFFFF.

Sample M56800 Linker Command File

A sample M56800 linker command file is in Listing 12.20. This is the typical linker
command file.

Listing 12.20 Sample Linker Command File (DSP56805EVM)

Metrowerks, a company of Freescale
sample code

I+

linker command file for DSP56805EVM
using
external pRAM
external xRAM
internal xRAM (0x30-40 for compiler regs)
mode 3
EXT O

HH HF H HHHH

revision history

Targeting DSP56F80x/DSP56F82x Controllers 299

For More Information: www.freescale.com

Freescale Semiconductor, Inc.

ELF Linker
Sample M56800 Linker Command File

011020 R4.1 a.h. first version
030220 R5.1 a.h. improved comments

__

see end of file for additional notes

additional reference: Freescale docs

for this LCF:

interrupt vectors --> external pRAM starting at zero

program code --> external pRAM

constants --> external XRAM

dynamic data --> external xRAM

stack size is set to 0x1000 for external RAM LCF

requirements: Mode 3 and EX=0

note -- there is a mode OB but any Reset or COP Reset

resets the memory map back to Mode O0A.

DSPS56805EVM eval board settings:

OFF --> jumper JG7 (mode 0 upon exit from reset)

ON --> jumper JG8 (enable external board SRAM)

CodeWarrior debugger Target option settings

OFF --> "Use Hardware Breakpoints"

ON --> "Debugger sets OMR at Launch" option

note: with above option on, CW debugger sets OMR as

OMR:

0 --> EX bit (stay in Debug processing state)

1 --> MA bit

1 --> MB bit

56805

mode 3 (development)

EX =0

MEMORY

{
.p_interrupts RAM (RWX) : ORIGIN = 0x0000, LENGTH = 0x0080
.p_external RAM (RWX) : ORIGIN = 0x0080, LENGTH = 0x0000
.Xx_compiler regs iRAM (RW) : ORIGIN = 0x0030, LENGTH = 0x0010

300 Targeting DSP56F80x/DSP56F82x Controllers

For More Information: www.freescale.com

Freescale Semiconductor, Inc.

ELF Linker
Sample M56800 Linker Command File

.X_internal RAM (RW) : ORIGIN =
.X_reserved (R) : ORIGIN =
.X_peripherals (RW) : ORIGIN =
.x_flash ROM (R) : ORIGIN =
.X_external RAM (RW) : ORIGIN =
.X_core_regs (RW) : ORIGIN =

}

we ensure the interrupt vector section

KEEP_SECTION{ interrupt vectors.text }

0x0040, LENGTH = 0x07CO
0x0800, LENGTH = 0x0400
0x0C00, LENGTH = 0x0400
0x1000, LENGTH = 0x1000
0x2000, LENGTH = 0xDF80
O0xFF80, LENGTH = 0x0080

is not deadstripped here

place all executing code & data in external memory

SECTIONS ({

interrupt vectors for p ram :{ # from 56805 vector.asm

(interrupt vectors.text)

} > .p_interrupts_RAM

.executing code
.text sections

(.text)
(rtlib.text)
(fp_engine.text)
(user.text)

> .p_external RAM

—~ * X X X

.data

{

.data sections

.const.data)
fp_state.data)
rtlib.data)
.data)

* % ok ok

(
(
(
(

*

Targeting DSP56F80x/DSP56F82x Controllers

301

For More Information: www.freescale.com

ELF Linker
Sample M56800 Linker Command File

Freescale Semiconductor, Inc.

.bss sections

* (rtlib.bss
__bss_start
* (.bss)
__bss _end

bss size =

setup the

.1o)

.

__bss end - _ bss start;

heap address

__heap addr = .;
_ _heap _size = 0x1000; # larger heap for hostIO
__heap end = heap addr + _ heap size;

= heap end;

setup the stack address

_min stack size = 0x0200;

__stack_addr
__stack_end

__heap end;
= stack addr + min stack size;

= stack end;

set global

vars

MSL uses these globals:

F_heap addr
F_heap end
F stack addr

stationery

F bss size
F _bss addr

= _ heap_addr;
= _ heap_end;
= stack addr;

init code globals

= bss size;
= _ bss_start;

next not used in this LCF
we define anyway so init code will 1link

302

Targeting DSP56F80x/DSP56F82x Controllers

For More Information: www.freescale.com

Freescale Semiconductor, Inc.

ELF Linker
Sample M56800 Linker Command File

H* H H H H* H H H H

H H*

these can be removed with removal of rom-to-ram
copy code in init file

F data_ size = 0x0000;
F data RAM addr = 0x0000;
F_data_ROM addr = 0x0000;
F_rom to_ram = 0x0000; # zero is no rom-to-ram copy

} > .x_external RAM

additional notes:

about the reserved sections
for this external RAM only LCF:

p_interrupts RAM -- reserved in external pRAM
memory space reserved for interrupt vectors
interrupt vectors must start at address zero
interrupt vector space size is 0x80

x _compiler regs iRAM -- reserved in internal xRAM
The compiler uses page 0 address locations 0x30-0x40
as register variables. See the Target manual for more info.

notes:

program memory (p memory)

(RWX) read/write/execute for pRAM
(RX) read/execute for flashed pROM

data memory (X memory)
(RW) read/write for xRAM
(R) read for data flashed xROM

LENGTH = next start address - previous
LENGTH = 0x0000 means use all remaining memory

Targeting DSP56F80x/DSP56F82x Controllers 303

For More Information: www.freescale.com

Freescale Semiconductor, Inc.

ELF Linker
Sample M56800 Linker Command File

304 Targeting DSP56F80x/DSP56F82x Controllers

For More Information: www.freescale.com

Freescale Semiconductor, Inc.

13
Command-Line Tools

This chapter contains the following sections:
* Usage
* Response File
e Sample Build Script

e Arguments

Usage

To call the command-line tools, use the following format:

Table 13.1 Format

Tools File Names Format

Compiler mwcc56800.exe compiler-options [linker-options] file-list
Linker mwld56800.exe linker-options file-list

Assembler | mwasm56800.exe assembler-options file-list

The compiler automatically calls the linker by default and any options from the linker
is passed on by the compiler to the assembler. However, you may choose to only
compile with the —c flag. In this case, the assembler will only assemble and will not
call the linker.

Also, available are environment variables. These are used to provide path information
for includes or libraries, and to specify which libraries are to be included. You can
specify the variables listed in Table 13.2.

Targeting DSP56F80x/DSP56F82x Controllers 305

For More Information: www.freescale.com

Freescale Semiconductor, Inc.

Command-Line Tools
Response File

Table 13.2 Environment Variables

Tool Library Description

Compiler MWCM56800Includes Similar to Access Paths panel; separate
paths with ;” and prefix a path with ‘+’ to
specify a recursive path

Linker MW56800Libraries Similar to MWC56800Includes
List of library names to link with project;
MW56800LibraryFiles separate with *;’
Assembler MWAsm56800Includes (similar to MWC56800Includes)

These are the target-specific variables, and will only work with the DSP56800 tools.
The generic variables MW ClIncludes, MWLibraries, MWLibraryFiles, and

MW AsmlIncludes apply to all target tools on your system (such as Windows). If you
only have the DSP56800 tools installed, then you may use the generic variables if you
prefer.

Response File

In addition to specifying commands in the argument list, you may also specify a
“response file”. A response file’s filename begins with an ‘@’ (for example, @file),
and the contents of the response file are commands to be inserted into the argument
list. The response file supports standard UNIX-style comments. For example, the
response file @file, contain the following:

Response file @file
-o out.elf # change output file name to ‘out.elf’

generate debugging symbols

The above response file can used in a command such as:
mwce56800 @file main.c
It would be the same as using the following command:

mwcce56800 —o out.elf —g main.c

Targeting DSP56F80x/DSP56F82x Controllers

For More Information: www.freescale.com

Freescale Semiconductor, Inc.

Command-Line Tools
Sample Build Script

Sample Build Script

This following is a sample of a DOS batch (BAT) file. The samp
* Setting of the environmental variables.

» Using the compiler to compile and link a set of files.

le demonstrates:

REM *** gset GUI compiler path ***
set COMPILER={path to compiler)}

REM *** get includes path ***

set MWCIncludes=+%COMPILER%\M56800 Support

set MWLibraries=+%COMPILER%\M56800 Support

set MWLibraryFiles=MSL C 56800.1ib;FP56800.1ib

REM *** add CLT directory to PATH ***
set

PATH=%PATHS% ; $COMPILER%\DSP56800 EABI Tools\Command Line Tools\

REM *** compile options and files ***
set COPTIONS=-03

set CFILELIST=filel.c file2.c

set LOPTIONS=-m FSTART -o output.elf -g
set LCF=linker.cmd

REM *** compile, assemble and link ***
mwcc56800 %$COPTIONS% %CFILELISTS
mwasm56800 %$AFILELISTS

mwld56800 %LOPTIONS% %LFILELIST% $LCF%

Arguments

General Command-Line Options

General Command-Line Options
All the options are passed to the linker unless othe

Please see '-help usage' for details about the meani

rwise noted.

ng of this help.

Targeting DSP56F80x/DSP56F82x Controllers

For More Information: www.freescale.com

307

Freescale Semiconductor, Inc.

Command-Line Tools

Arguments
-help [keyword[,...]] global; for this tool;
display help
usage show usage information
[no] spaces insert blank lines between options in
printout
all show all standard options

[no] normal

[no] obsolete
[no] ignored
[no]l deprecated
[no]lmeaningless

[no] compatible

opt [ion] =name

search=keyword

group=keyword

tool=keywordl[, ...

all
this

other|skipped
both

-version
-timing
-progress

-v [erbose]

-search

HHHAHHFHHFHAFHFHFHFHFHHHFHFHFHFHFHHFHFHF

show
show

only standard options

obsolete options

show ignored options

show deprecated options

show options meaningless for this
target

show compatibility options

show help for a given option;
'name’',

maximum length 63 chars

show help for an option whose name
or help
contains

for

'keyword' (case-sensitive);
for ‘'keyword', maximum length 63 chars
show help for groups whose names contain
'keyword' (case-sensitive); for 'keyword'
maximum length 63 chars

categorize groups of options by tool;
default

show all options available in this tool
show options executed by this tool
default

show options passed to another tool

show options used in all tools

global; for this tool;

show version, configuration,and build date
global; collect timing statistics

global; show progress and version

global; verbose information; cumulative;
implies -progress

global; search access paths for source
files

specified on the command line; may specify
object code and libraries as well; this
option provides the IDE's 'access paths'

308

Targeting DSP56F80x/DSP56F82x Controllers

For More Information: www.freescale.com

Freescale Semiconductor, Inc.

Command-Line Tools
Arguments

- [no]wraplines
-maxerrors max

-maxwarnings max

-msgstyle keyword
mpw

std

gcc

IDE

parseable

- [no] stderr

HHHHHFHHFHHHHFHFHHHFHFHFH A

functionality

global; word wrap messages; default
specify maximum number of errors to
print, =zero

means no maximum; default is 0

specify maximum number of warnings to
print, zero means no maximum; default is 0
global; set error/warning message style
use MPW message style

use standard message style; default

use GCC-like message style

use CW IDE-like message style

use context-free machine-parseable message
style

global; use separate stderr and
stdout streams;

if using -nostderr, stderr goes
to stdout Compiler

Preprocessing, Precompiling, and Input File Control Options

-c
- [no] codegen
- [no] convertpaths

-cwd keyword

H H H HHHHHHHHH

global; compile only, do not link

global; generate object code

global; interpret #include filepaths
specified for a foreign operating system;
i.e., <sys/stat.h> or <:sys:stat.h>; when
enabled,

'/' and ':' will separate directories and
cannot be used in filenames (note: this is
not a problem on Win32, since these
characters are already disallowed in
filenames; it is safe to leave the option
'on'); default
specify #include searching semantics:

before
searching any access paths, the path
specified by this option will be searched
proj # Dbegin search in current working directory;
default
source # begin search in directory of source file
explicit # no implicit directory; only search '-I' or
'-ir' paths
include # begin search in directory of referencing
file
Targeting DSP56F80x/DSP56F82x Controllers 309

For More Information: www.freescale.com

Freescale Semiconductor, Inc.

Command-Line Tools
Arguments

-D+ | -d[efine
name [=value]
- [noldefaults

-dis[assemble]

cased; define symbol
specified, else '1!
global; passed to linker;

same as '-[no]lstdinc'; default
global; passed to all tools;
disassemble files to stdout

'name' to 'value' if

-E global; cased; preprocess source files
-EP global; cased; preprocess and strip out
line
directives

-enc [oding]

[nolascii

[nol autodetect |
[nolmultibyte
[no]lmb

keyword

specify default source encoding; compiler
will automatically detect UTF-8 header or
UCS-2/UCS-4 encodings regardless of setting
ASCII; default

scan file for multibyte encoding (slower)

[nolascii ASCII;

[no]l system use system locale
[no] UTF [8] -8] UTF-8

[no]l SJIS | shift-JIS

[no]l Shift-JIS |

[no]l shiftJIs

[no] EUC [JP| -JP] EUC-JP

[no] ISO[2022JP|
-2022-JP]

HHHFHHFHHFHFAHHFHEHFEHHHFHFEHFHHFHHFHFHFHFHHFH

IS0-2022-JP

-ext extension # global; specify extension for generated
object
files; with a leading period ('.'), appends
extension; without, replaces source file's
extension; for 'extension', maximum length 14
chars; default is none

-gccinc [ludes] # global;adopt GCC #include semantics:add '-

I’ paths to system list if '-I-' is not
specified, and search directory of
referencing file first for #includes (same
as'-cwd include')

-i- | -I- # global; change target for '-I'
access paths to
the system list; implies '-cwd explicit';
while compiling, user paths then system
paths
are searched when using

Targeting DSP56F80x/DSP56F82x Controllers

For More Information: www.freescale.com

Freescale Semiconductor, Inc.

Command-Line Tools

code

-I+ | -ip
-include file
-ir path

- [no]l keepobj [ects]

-MM

-MD

-MMD

-make
-nofail

-nolink

-noprecompile

-nosyspath

-o filel|dir

-P

Arguments
'#include "..."; only
system paths are searched with '#include
< Lot

global; cased; append access path to current
include list(see '-gccincludes' and '-I-'
prefix text file or precompiled header onto
all source files
global; append a recursive access path to
current #include list
global; keep object files generated after
invoking linker; if disabled, intermediate
object files are temporary and deleted after
link stage; objects are always kept when
compiling
global; cased; scan source files for
dependencies and emit Makefile, do not
generate object code
global; cased; like -M, but do not list
system
include files
global; cased; like -M, but write dependency
map to a file and generate object code
global;cased; like -MD, but do not list
system include files
global;scan source files for dependencies and
emit Makefile, do not generate object
#continue working after errors in earlier files
global; compile only, do not link
do not precompile any files based on the
filename extension
global; treat #include <...> like #include
#"..."; always search both user and system
path lists
specify output filename or directory for
object
file(s) or text output, or output filename
for linker if called
global; cased; preprocess and send output to
file; do not generate code

HHEHHFEHEFEHF A HHEHEH R

-precompile file|di#generate precompiled header from source;

write

header to 'file' if specified, or put header
in 'dir'; if argument is "", write header to
source-specified location; if neither is

defined, header filename is derived from

Targeting DSP56F80x/DSP56F82x Controllers 311

For More Information: www.freescale.com

Freescale Semiconductor, Inc.

Command-Line Tools
Arguments

source filename; note: the driver can tell
whether to precompile a file based on its
extension; '-precompile file source' then is
the same as '-c -o file source!'
global; preprocess source files
specify options affecting the preprocessed
output
emit file/line breaks; default
[no] 1line emit #line directives, else comments
[no] full [path] emit full path of file, else base filename
[no] pragma # keep #pragma directives, else strip them;
default
keep comments, else strip them
keep whitespace, else strip it

-preprocess
-ppopt keywordl[, ...

[no] break

H H H H— HHHHH

[no comment]
[no] space

-prefix file prefix text file or precompiled header

onto all

source files

global; cased; passed to all tools;

disassemble and send output to file

global; use standard system include paths
(specified by the environment variable
$MWCIncludes%); added after all system '-I'
paths; default

cased; undefine symbol 'name'

-S

H H H H H H HHH

- [no] stdinc

H o H H H*

-U+ | -ulndefine] name

-ansi keyword # specify ANSI conformance options,
overriding the given settings
off # same as '-stdkeywords off', '-enum min',
and '-strict off'; default
on|relaxed # same as '-stdkeywords on', '-enum min',
and '-strict on'
strict # same as '-stdkeywords on', '-enum int',
and '-strict on'
#
-ARM on|off # check code for ARM (Annotated C++ Reference
Manual) conformance; default is off
-bool on|off # enable C++ 'bool' type, 'true' and 'false'
constants; default is off
-char keyword # set sign of 'char'
signed # chars are signed; default
unsigned # chars are unsigned
312 Targeting DSP56F80x/DSP56F82x Controllers

For More Information: www.freescale.com

Freescale Semiconductor, Inc.

Command-Line Tools
Arguments

#
-Cpp_exceptions on|off # passed to linker;
enable or disable C++ exceptions; default

is
on
-dialect | -lang keyword # passed to linker;
specify source language
c # treat source as C always
C++ # treat source as C++ always
ec++ # generate warnings for use of C++ features
outside Embedded C++ subset (implies
'dialect cplus')
‘dialect cplus’)
c99 # compile with c99 extensions
#
-enum keyword # specify word size for enumeration types
min # use minimum sized enums; default
int # use int-sized enums
#
-for scoping on|off # control legacy (non-standard) for-scoping

behavior; when enabled, varaibles

declared in ‘for’ loops are visible

to the enclosing scope; when disabled,
such variables are scoped to the loop

only; default is off
-fl[ag] pragma # specify an ‘on/off’ compiler #pragma;
‘-flag foo’ is the same as ‘#pragma
foo on’
‘-flag no-foo’ is the same as ‘#pragma
foo off’; use ‘-pragma’ option
for other cases
-inline keywordl[, ...] # specify inline options
on|smart # turn on inlining for 'inline'
functions;
default
none |of £ # turn off inlining
auto # auto-inline small functions (without
'inline' explicitly specified)
noauto # do not auto-inline; default
all # turn on aggressive inlining: same as
'-inline on, auto'
deferred # defer inlining until end of compilation
#unit; this allows inlining of functions in
Dboth directions
level=n # cased; inline functions up to 'n' levels
Targeting DSP56F80x/DSP56F82x Controllers 313

For More Information: www.freescale.com

Freescale Semiconductor, Inc.

Command-Line Tools
Arguments

#deep; level 0 is the same as '-inline on';

for 'n', range 0 - 8
[no] bottomup # inline bootom-up, starting from
leaves of the call graph rather
than the top-level funcion; default
#
-iso_templates on|off #enable ISO C++ template parser (note: this
requires a different MSL C++ library);
default is off
- [nolmapcr # reverse mapping of '\n' and '\r' so that
'\n'==13 and '\r'==10 (for Macintosh MPW
compatability)
-msext keyword # [dis]lallow Microsoft VC++ extensions
on # enable extensions: redefining macros,
allowing XXX::yyy syntax when declaring
method yyy of class XXX,
allowing extra commas,
ignoring casts to the same type,
treating function types with equivalent
parameter lists but different return
types
as equal,
allowing pointer-to-integer
conversions,
and various syntactical differences
off # disable extensions; default on non-x86
targets
#
- [no]multibyte [aware] # enable multi-byte character encodings for
source text, comments, and strings
-once # prevent header files from being processed more
than once
-pragma # define a pragma for the compiler such as
"#pragma ..."
-r [equireprotos] # require prototypes
-relax pointers # relax pointer type-checking rules
-RTTI on|off # select run-time typing information (for C++);
default is on
-som # enable Apple's Direct-to-SOM implementation
-som_env_check # enables automatic SOM environment and new
allocation checking; implies -som
-stdkeywords on|off # allow only standard keywords; default is off
-str[ings] keyword[,...] # specify string constant options
[no]l reuse # reuse strings; equivalent strings are the
same object; default
314 Targeting DSP56F80x/DSP56F82x Controllers

For More Information: www.freescale.com

Freescale Semiconductor, Inc.

Command-Line Tools

Arguments
[no] pool # pool strings into a single data object
[no] readonly # make all string constants read-only
#
-strict on|off # specify ANSI strictness checking; default is
off
-trigraphs on|off # enable recognition of trigraphs; default is off
-wchar_t on|off # enable wchar t as a built-in C++ type; default
is on
Optimizer Options
Note that all options besides '-opt
off|on|all|space|speed|level=..."' are
for backwards compatibility; other optimization options may be
superceded
by use of '-opt level=xxx'.
-0 # same as '-02'
-O+keywordl[, .. .] # cased; control optimization; you may combine
options as in '-04,p'
0 same as '-opt off!’
1 same as '-opt level=1"
2 same as '-opt level=2"
3 same as '-opt level=3'
4 same as '-opt level=4'
P same as '-opt speed!'
s same as '-opt space'
-opt keywordl[, ...] specify optimization options
off |none suppress all optimizations; default
on same as '-opt level=2"
all|full same as '-opt speed, level=4'
[no] space optimize for space

[no] speed
1[evel] =num

optimize for speed
set optimization level:
level 0: no optimizations

level 1: global register allocation,
peephole, dead code elimination

level 2: adds common subexpression
elimination and copy propagation

HHHAHHFHHFHAFHHFEHFEHHHFHFHHFHHFHFHFHHH

level 3: adds loop transformations,

Targeting DSP56F80x/DSP56F82x Controllers 315

For More Information: www.freescale.com

Freescale Semiconductor, Inc.

Command-Line Tools

Arguments
strength reduction, loop-invariant code
motion
#
level 4: adds repeated common
subexpression elimination and
loop-invariant code motion
; for 'mum', range 0 - 4; default is 0
[nolcse # common subexpression elimination
[no] commonsubs #
[no] deadcode # removal of dead code
[no] deadstore # removal of dead assignments
[no]lifetimes # computation of variable lifetimes
[no] loop [invariants] # removal of loop invariants

[no]l prop [agation]
[no] strength #

[no] dead

display|dump

H H H H H H

propagation of constant and copy assignments
strength reduction;

reducing multiplication
by an index variable into addition

same as '-opt [noldeadcode' and '-opt
[no] deadstore’

display complete list of active
optimizations

[no] segchardata
[no] asmout

[no]l peep
[no]NDelay

[no] sched

[no] REP

[no] cmp32

[no] rodata

for this tool;

specify hardware DO loops
for this tool;

segregate character data
for this tool;

assembly file output
for this tool;

active peepholer;
for this tool;

adjust for delayed load of N register;
for this tool;

activate scheduler
for this tool;

specify REP instruction
for this tool;

emit 32-bit compare;
for this tool;

write constant data to .rodata section;

316

Targeting DSP56F80x/DSP56F82x Controllers

For More Information: www.freescale.com

Freescale Semiconductor, Inc.

Command-Line Tools
Arguments

Debugging Control Options

[no]l cmdline

[nolerr [or] |
[no]liserr [or]
all
[nolpragmas |
[nolillpragmas
[no]l empty [decl]
[no]possible |
[no]unwanted
[no]lunusedarg
[no]unusedvar
[no]unused
[no] extracomma |
[no] comma
[nolpedantic |
[no] extended
[nolhidevirtual |
[nolhidden[virtuall]
[no]limplicit [conv]

HHHFHHFHHFHFHHHFHHFEHHHFHFHFHFHFHHFHFHF

turn on all warnings,

-g # global; cased; generate debugging information;
same as '-sym full'
-sym keywordl[, ...] # global; specify debugging options
off # do not generate debugging information;
default
on # turn on debugging information
full [path] # store full paths to source files
#
C/C++ Warning Options
-w[arn[ings]] # global; for this tool;
keywordl[, ...] # warning options
off passed to all tools;
turn off all warnings
on passed to all tools;

turn on most warnings
passed to all tools;

command-line driver/parser warnings
passed to all tools;

treat warnings as errors
require prototypes
illegal #pragmas

empty declarations
possible unwanted effects

unused arguments
unused variables
same as -w [nolunusedarg, [no]unusedvar
extra commas
pedantic error checking

hidden virtual functions

implicit arithmetic conversions
‘warn impl float2int,

impl signedunsigned’
[no]limpl int2float # implicit integral to floating
conversions
[no]limpl float2int # implicit floating to integral
conversions

Targeting DSP56F80x/DSP56F82x Controllers

317

For More Information: www.freescale.com

Freescale Semiconductor, Inc.

Command-Line Tools
Arguments

[no] impl_signed unsigned

[no]notinlined
[no]l largeargs

[no] structclass

[no]padding
[no]lnotused

[nolmissingreturn
[no]lunusedexpr
[no]l ptrintconv
[no]l anyptrintconv
[no]undef [macro]
[no]l filecaps

[nol sysfilecaps

[no] tokenpasting
display|dump

implicit signed/unsigned conversions

'inline' functions not inlined
passing large arguments to unprototyped
functions
#inconsistent use of
'struct’
padding added between struct members
#iresult of non-void-returning function
not used
return without a value in a
non-void-returning function
#use of expressions as statements
#without side effects
lossy conversions from pointers to
#integers, and
vice versa
#any conversions from pointers to integers
#tuse of undefined macros in #if/#elif
#conditionals
#incorrect capitalization used in
#include™...”
#incorrect capitalization used in
#include<...>
#token not formed by ## operator
display list of active warnings

H H H H H

'class' and

H*+ H

H+ H*

#

Linker

Command-Line Linker Options

-dis[assemble]

-L+ | -1 path

-1lr path

global;
link;
global;
is to

implies '-nostdlib'

cased;

(see

disassemble object code and do not

add library search path; default
search current working directory and
'-defaults') ;

search paths have global scope over the
command line and are searched in the order

given

#

#

#

#

then system directories
#

#

#

global;

like '-1",

but add recursive library

318

Targeting DSP56F80x/DSP56F82x Controllers

For More Information: www.freescale.com

Freescale Semiconductor, Inc.

Command-Line Tools
Arguments

-l+file

- [no]ldefaults
-nofail

- [nol stdlib

HHHHHHHHHHFHFHH A

search path

cased; add a library by searching access paths
for file named lib<file>.<ext> where <ext> is
a typical library extension; added before
system libraries (see '-defaults')

global; same as -[nolstdlib; default

continue importing or disassembling after
errors in earlier files

global; use system library access paths
(specified by $MWLibraries%) and add system
libraries (specified by %$MWLibraryFiles%) ;
default

global; cased; disassemble and send output to
file; do not link; implies '-nostdlib’'

- [noldead[strip]
-force_active

symbol[, ...]

-keep[local] on]|off

-m[ain] symbol

-map [keyword[,...]]
closure
unused

-sortbyaddr
-srec

-sreceol keyword
mac
dos

unix

-sreclength length

HHHHHFHFHFHHFHFHEHFHF ST HFHE

enable dead-stripping of unused code; default
specify a list of symbols as undefined; useful
to force linking of static libraries

keep local symbols (such as relocations and
output segment names) generated during link;
default is on
set main entry point for application or shared
library; use '-main ""' to specify no entry
point; for 'symbol', maximum length 63 chars;
default is 'FSTART '
generate link map file
calculate symbol closures
list unused symbols

sort S-records by address; implies '-srec'

generate an S-record file; ignored when
generating static libraries

set end-of-line separator for S-record file;

implies '-srec'
Macintosh ('\r')
DOS ('\r\n'); default

Unix ('\n")

specify length of S-records (should be a
multiple of 4); implies '-srec'; for
'length', range 8 - 252; default is 64

Targeting DSP56F80x/DSP56F82x Controllers 319

For More Information: www.freescale.com

Freescale Semiconductor, Inc.

Command-Line Tools

Arguments
-usebyteaddr # use byte address in S-record file; implies
'-srec'
-o file # specify output filename

-application # global; generate an application; default
-library # global; generate a static library

-Cpp_exceptions on|off # enable or disable C++ exceptions;
default is on
-dialect | -lang keyword # specify source language
c # treat source as C++ unless its
extension is
'.¢', '.h', or '.pch'; default
C++ # treat source as C++ always
#

-g # global; cased; generate debugging information;
same as '-sym full'

-sym keywordl[, ...] # global; specify debugging options
off # do not generate debugging information;
default
on # turn on debugging information
full [path] # store full paths to source files
#
Warning Options
320 Targeting DSP56F80x/DSP56F82x Controllers

For More Information: www.freescale.com

Freescale Semiconductor, Inc.

Command-Line Tools
Arguments

-wl[arn[ings]] global; warning options

keyword[, .. .]
off turn off all warnings
on turn on all warnings

[nolerr[or] | treat warnings as errors
[no] iserr [or]

display|dump

#

#

#

#

[no]l cmdline # command-line parser warnings

#

#

display list of active warnings
#

-show keywordl[, ...] # specify disassembly options
only |none # as in '-show none' or, e.g.,
'-show only,code,data’
all # show everything; default
[nolcode | [noltext # show disassembly of code sections; default
[no] comments # show comment field in code; implies '-show
code'; default
[no] extended # show extended mnemonics; implies '-show
code'; default
[no]ldata # show data; with '-show verbose', show hex
dumps of sections; default
[noldebug | [nolsym # show symbolics information; default
[no] exceptions # show exception tables; implies '-show data';
default
[no]l headers # show ELF headers; default
[no] hex # show addresses and opcodes in code
disassembly; implies '-show code'; default
[no]lnames # show symbol table; default
[no]lrelocs # show resolved relocations in code and
relocation tables; default
[no] source # show source in disassembly; implies '-show
code'; with '-show verbose', displays
entire source file in output, else shows
only four lines around each function;
default
[no]l xtables # show exception tables; default
[no] verbose # show verbose information, including hex dump
of program segments in applications;
default
#
Targeting DSP56F80x/DSP56F82x Controllers 321

For More Information: www.freescale.com

Freescale Semiconductor, Inc.

Command-Line Tools
Arguments

Assembler

- [no] case # identifiers are case-sensitive; default
- [no] debug # generate debug information
- [nolmacro_expand # expand macro in listin output
- [nolassert_nop # add nop to resolve pipeline dependency; default
- [nolwarn nop # emit warning when there is a pipeline
dependency
- [nolwarn_stall # emit warning when there is a hardware stall
- [no] legacy # allow legacy DSP56800 instructions (imply
data/prog 16)
- [no]l debug_workaround # Pad nop workaround debuggin issue in some
implementation; default
-data keyword # data memory compatibility
16 # 16 bit; default
24 # 24 bit
#
-prog keyword # program memory compatibility
16 # 16 bit; default
19 # 19 bit
21 # 21 bit
#
322 Targeting DSP56F80x/DSP56F82x Controllers

For More Information: www.freescale.com

Freescale Semiconductor, Inc.

14

Libraries and Runtime
Code

You can use a variety of libraries with the CodeWarrior™ IDE. The libraries include
ANSI-standard libraries for C, runtime libraries, and other code. This chapter explains
how to use these libraries for DSP56800 development.

With respect to the Metrowerks Standard Library (MSL) for C, this chapter is an
extension of the MSL C Reference. Consult that manual for general details on the
standard libraries and their functions.

This chapter contains the following sections:
* MSL for DSP56800

¢ Runtime Initialization

MSL for DSP56800

This section explains the Metrowerks Standard Library (MSL) modified for use with
DSP56800. CodeWarrior IDE for DSP56800 includes the source and project files for
MSL so that you can modify the library if necessary.

Using MSL for DSP56800

CodeWarrior IDE for DSP56800 includes a version of the Metrowerks Standard
Library (MSL). The MSL is a C library you can use in your embedded projects. All of
the sources necessary to build MSL are included in CodeWarrior IDE for DSP56800,
along with the project file and targets for different MSL configurations. If you already
have a version of CodeWarrior IDE installed on your computer, the CodeWarrior
installer adds the new files needed for building versions of MSL for DSP56800.

Do not modify any of the source files that support MSL.

Targeting DSP56F80x/DSP56F82x Controllers 323

For More Information: www.freescale.com

Freescale Semiconductor, Inc.

Libraries and Runtime Code
MSL for DSP56800

Console and File I/O

DSP56800 Support provides standard C calls for I/O functionality with full ANSI/
ISO standard I/O support with host machine console and file I/O for debugging
sessions (Host I/O) through the JTAG port in addition to such standard C calls such as
memory functions malloc() and free().

A minimal "thin" printf via "console_write" and "fflush_console" is provided in
addition to standard 1/0O.

See the MSL C Reference manual (Metrowerks Standard Library).

MSL Configurations for DSP56800

There are two DSP56800 MSL libraries available. Both support standard C calls with
optional I/O functionality. One library has a minimal print£ function providing
console output using debugger. The other library has full ANSI/ISO standard I/O
support, including host machine console and file I/O for debugging sessions. The
memory functions malloc () and free () are also supported for both libraries.

The two provided DPS56800 MSL libraries are:

MSL C 56800.lib

This library provides standard C library support without standard I/O. A minimal
"thin" printf£ is provided but other stdio is stripped out in order to maximize
performance. The print £ sends characters to the CodeWarrior console window via
the debugger. Use this library when you need minimal print £ support for
debugging and saving space.

MSL C 56800 host I/0.lib

This library adds ANSI/ISO standard I/O support through the debugger. The standard
C library I/O is supported, including stdio.h, sdderr.h, and stdin.h. Use this
library when you want to perform stdio calls, including CodeWarrior console
stdout/stdin, and host machine file I/O, for debugging.

Host File Location

Files are created with fopen on the host machine as shown in Table 14.1.

324

Targeting DSP56F80x/DSP56F82x Controllers

For More Information: www.freescale.com

Freescale Semiconductor, Inc.

Libraries and Runtime Code
MSL for DSP56800

Table 14.1 Host File Creation Location

fopen filename parameter host creation location
filename with no path target project file folder
full path location of full path

Binary and Text Files

stdio call fopen can open files as text or binary, depending on the open mode. For
DSP56800 host I/0 file operations, subsequent stdio calls treat the file as text or
binary depending on how the file was originally opened with fopen.

NOTE You must decide whether to open the file as text or binary.

Binary and text files are handled differently because DSP56800 char (character) is 16-
bits and x86 host char is 8-bits.

e Text file I/O operations are 1-to-2 mapping.
¢ Binary file I/O operations are 1-to-1 mapping.

Files are created with fopen on the host machine as shown in Table 14.2.

Table 14.2 Host File Creation Location

file opened as host elements target elements
text 8-bit 16-bit
binary 16-bit 16-bit

Text File I/O

DSP56800 host I/0 does 16-bit to 8-bit mapping for host text files. The host text file is
handled as 8-bit elements with conversion to 16-bit elements on the target side.

For example, if you open the host file with the fopen mode "w", the file opens as
new text file or a truncated existing text file of the file name. When fwrite is called,
the host file writes the DSP56800 buffer of 16-elements of the host file as 8-bit
elements.

Targeting DSP56F80x/DSP56F82x Controllers 325

For More Information: www.freescale.com

Freescale Semiconductor, Inc.

Libraries and Runtime Code
MSL for DSP56800

Binary File I/O

DSP56800 host I/0 does 16-bit to 16-bit mapping for binary files. The host binary file
is handled as 16-bit elements.

Allocating Stacks and Heaps for the
DSP56800

Stationery linker command files (LCF) define heap, stack, and BSS locations. LCFs
are specific to each target board. When you use M56800 stationery to create a new
project, CodeWarrior automatically adds the LCF to the new project.

See “ELF Linker” for general LCF information. See each specific target LCF in
Stationery for specific LCF information.

Definitions

Stack

The stack is a last-in-first-out (LIFO) data structure. Items are pushed on the stack and
popped off the stack. The most recently added item is on top of the stack. Previously
added items are under the top, the oldest item at the bottom. The "top" of the stack
may be in low memory or high memory, depending on stack design and use. M56800
uses a 16-bit-wide stack.

Heap

Heap is an area of memory reserved for temporary dynamic memory allocation and
access. MSL uses this space to provide heap operations such as malloc. M56800

does not have an operating system (OS), but MSL effectively synthesizes some OS
services such as heap operations.

BSS

BSS is memory space reserved for uninitialized data. The compiler will put all
uninitialized data here. The stationery init code zeroes this area at startup. See the
56824_init. c (startup) code example code in this chapter for general information
and the stationery init code files for specific target implementation details.

NOTE Instead of accessing the original Stationery files themselves (in the
Stationery folder), create a new project using Stationery (see

326

Targeting DSP56F80x/DSP56F82x Controllers

For More Information: www.freescale.com

Freescale Semiconductor, Inc.

Libraries and Runtime Code
Runtime Initialization

“Creating a Project”) which will make copies of the specific target
board files such as the LCF.

Variables defined by Stationery Linker Command Files

Each Stationery LCF defines variables which are used by runtime code and MSL. You
can see how the values for these variables are calculated by examining any of the
Stationery LCFs.

See Table 14.3 for the variables defined in each Stationery LCF.

Table 14.3 LCF Variables and Address

Variables Address

_stack_addr The start address of the stack

_heap_size The size of the heap

_heap_addr The start address of the heap

_heap_end The end address of the heap

_bss_start Start address of memory reserved for uninitialized
variables

_bss_end End address of BSS

Additional Information and Specific Target
Implementation Details

See each Stationery specific target board LCF for additional comments and
implementation details. Perform a search for the variable name for quick access.

Depending on the target, implementation will be different between LCFs. For
example, for targets using Host I/O, considerably more heap size is allocated in the
LCE

Runtime Initialization

The default init function is the bootstrap or glue code that sets up the DSP56800
environment before your code executes. This function is in the init file for each
board-specific stationery project. The routines defined in the init file performs other

Targeting DSP56F80x/DSP56F82x Controllers 327

For More Information: www.freescale.com

Freescale Semiconductor, Inc.

Libraries and Runtime Code
Runtime Initialization

tasks such as clearing the hardware stack, creating an interrupt table, and retrieving the
stack start and exception handler addresses.

The default code in the init function also sets the addressing mode in the modifier
register (M01) to OxFFFF.

The final task performed by the init function is to call the main () function.

The starting point for a program is set in the Entry Point field in the M56800 Linker
Settings panel.

When creating a project from R5.1 stationery, the init code is specific to the
DSP56800 board. See the startup folder in the new project folder for the init code.

Listing 14.1 Sample Initialization File (DSP56803EVM)

/*
56803_init.c

Metrowerks, a Freescale Company
sample code

*/

#include "DSP56F803 init.h"

extern _rom to ram;
extern _data size;
extern data RAM addr;
extern _data ROM_addr;
extern _bss size;
extern bss addr;

asm void init M56803 ()

{

bfset # 32bit compares, omr //
//

move #-1,x0

move x0,m01 // set the m reg to linear addressing
328 Targeting DSP56F80x/DSP56F82x Controllers

For More Information: www.freescale.com

Freescale Semiconductor, Inc.

Libraries and Runtime Code
Runtime Initialization

move hws, 1la
move hws, 1la

// init registers

move #0,rl
move rl,x:IPR
move rl,x:COPCTL

// initialize compiler environment
CALLMAIN:

// setup stack

// clear the hardware stack

move # stack addr,ro0 // get stack start address

nop

move r0,xX:<mrl5 // set frame pointer to main stack top
move r0, sp // set stack pointer too

move #0,rl

move rl,x: (r0)

// setup the PLL (phase locked loop)

move #pllcr init,x:PLLCR // set lock detector on and choose core
//clock
move #plldb init,x:PLLDB // set to max freq
move #wait lock,x0 // set x0 with timeout value
// timeout handles simulator case
pll test lock: // loop until PLL is locked
// or we reach timeout limit
decw x0 // decrement our timeout value
tstw x0 // test for zero
beg pll timeout // 1f timed-out, proceed anyway
brclr

#pllsr_init,x:PLLSR,pll_test_lock
pll timeout:

// pll locked
move #pllcr proceed, x:PLLCR

// set lock detector on, choose

Targeting DSP56F80x/DSP56F82x Controllers

329

For More Information: www.freescale.com

Freescale Semiconductor, Inc.

Libraries and Runtime Code
Runtime Initialization

move
move

x:PLLSR, x0
x0,x:PLLSR

// PLL clock
// clear pending clkgen interrupts

// setup exception handler and interrupt levels

move
push

bfset
bfclr

M56803_int Addr,rl
rl

#$0100, sr
#$0200, st

// xrom-to-xram option

move
tstw
beqg

move
move
move

do
move
move

-# rom to ram,x0
r0

end rom2ram

data size,r2

data ROM addr,r3
data RAM addr,rl

r2,end rom2ram
x:(r3)+,x0
x0,x: (rl)+

end_rom2ram:

// clear bss always

move
move
move
do
move
nop

#0,x0

bss size,r2

bss addr,rl
r2,end bss clear
x0,x: (rl)+

end bss_clear:

// call main()

// address

// establish exception handler

// enable all levels of interrupts
// allow IPL 0 interrupts

// check for option

// set data size

// src address -- XROM data start
// dest address -- xRAM data
// start

// copy for r2 times
// fetch value at address r3
// stash value at address ril

// set x0 to zero

// set bss size

// dest address -- bss data start
// do for r2 times

// stash zero at address

move #M56803_argc,yo0 // pass parameters to main()
move #M56803 argv, r2
330 Targeting DSP56F80x/DSP56F82x Controllers

For More Information: www.freescale.com

g |

Freescale Semiconductor, Inc.

Libraries and Runtime Code
Runtime Initialization

move #M56803_arge, r3
jsr main // call the users program
jsr fflush
debug
rts
}
The startup folder includes the following:
e Stack setup
e PLL setup
¢ Exception handler and interrupt setup
* BSS zeroing
* Static initialization
e Jump to main
NOTE The original general-purpose runtime init code (FSTART) remains
in the M56800 support library to provide compatibility for older
projects. The MSL runtime project is: CodeWarrior\56800
Support\msl1\MSL C\DSP_56800\Project\
MSL C 56800.mcp See project group runtime: init, file
FSTART.c.
Targeting DSP56F80x/DSP56F82x Controllers 331

For More Information: www.freescale.com

Freescale Semiconductor, Inc.

Libraries and Runtime Code
Runtime Initialization

332 Targeting DSP56F80x/DSP56F82x Controllers

For More Information: www.freescale.com

Freescale Semiconductor, Inc.

15
Troubleshooting

This chapter explains common problems encountered when using the CodeWarrior™
IDE for DSP56800, and their possible solutions.

Troubleshooting Tips

This chapter contains the following sections:
* The Debugger Crashes or Freezes When Stepping Through a REP Statement
* "Can’t Locate Program Entry On Start" or "Fstart.c Undefined"

* When Opening a Recent Project, the CodeWarrior IDE Asks If My Target Needs
To Be Rebuilt

¢ "Timing values not found in FLASH configuration file. Please upgrade your
configuration file. On-chip timing values will be used which may result in
programming errors”

* IDE Closes Immediately After Opening

* Errors When Assigning Physical Addresses With The Org Directive
* The Debugger Reports a Plug-in Error

* Windows Reports a Failed Service Startup

¢ No Communication With The Target Board

¢ Downloading Code to DSP Hardware Fails

¢ The CodeWarrior IDE Crashes When Running My Code

¢ The Debugger Acts Strangely

* Problems With Notebook Computers

If you are having trouble with CodeWarrior Development Studio for Freescale 56800
and this section does not help you, e-mail technical support at:
support@metrowerks.com

Targeting DSP56F80x/DSP56F82x Controllers 333

For More Information: www.freescale.com

Freescale Semiconductor, Inc.

Troubleshooting
Troubleshooting Tips

The Debugger Crashes or Freezes When
Stepping Through a REP Statement

Due to the nature of DSP56800 instruction pipeline, do not set a breakpoint on a REP
statement in the debugger. Doing so may cause the REP instruction to enter an infinite
loop and freeze or crash the IDE.

"Can’t Locate Program Entry On Start" or
"Fstart.c Undefined"

By default, the CodeWarrior stationery defines the entry point of program execution as
FSTART . The entry point is edited in the project target settings by selecting Edit >
M56800 Settings from the menu bar of the Metrowerks CodeWarrior window and then
M56800 Linker from the Target Settings panel. If the entry point is changed and not
updated in the sources, linker errors are generated for undefined sources.

The FSTART.c program is defined in the MSL and may also generate errors if the
CodeWarrior IDE cannot find the MSL path due to access path errors within a
DSP56800 project.

When Opening a Recent Project, the
CodeWarrior IDE Asks If My Target Needs
To Be Rebuilt

If you open a recent project file and then select Project > Debug from the menu bar of
the Metrowerks CodeWarrior window, the dialog box shown in Figure 15.1 appears:

Figure 15.1 Rebuild Alert

Metrowerks Code' arrior

Target "M56800" may need to be rebuilt.

Q Codearrior cannot determine if target "W36500" needs
ta be rebuitt. Before running this target, do you want to
check to see if it needs to be rebuilt and to build it if ¢

does?
Daon't Build | Cancel |

334

Targeting DSP56F80x/DSP56F82x Controllers

For More Information: www.freescale.com

Freescale Semiconductor, Inc.

Troubleshooting
Troubleshooting Tips

This dialog box informs you that the software determines if your object code needs to
be rebuilt. If you have made no changes since the last build, the CodeWarrior IDE
does not change your object file when you select the Build option.

"Timing values not found in FLASH
configuration file. Please upgrade your
configuration file. On-chip timing values
will be used which may result in
programming errors"

This indicates you have an old flash configuration file that does not include timing
information. If you continue to use this file, it could result in programming errors and
a shorter life for the flash memory.

To upgrade your flash configuration file, replace the existing flash configuration file
with the flash configuration file from the M56800 Support.

The flash configuration file is located in the following directory:

CodeWarrior\M56800 Support\initialization

IDE Closes Immediately After Opening

There may be a conflict with another version of the CodeWarrior IDE on your system.
Running the regservers.bat file in the Met rowerks/Bin directory usually
resolves this problem when there are different versions of the CodeWarrior IDE
installed on the same computer.

Errors When Assigning Physical
Addresses With The org Directive

You cannot use the ORG directive with the CodeWarrior IDE DSP56800 assembler to
specify physical addresses for program (P:) and data (X:) memory.

The Debugger Reports a Plug-in Error

When the CodeWarrior IDE debugger reports a plug-in error, a dialog box appears that
reads “Embedded DSP Plug-in Error. Can’t connect to board.” If you see this dialog
box, check the following:

Targeting DSP56F80x/DSP56F82x Controllers 335

For More Information: www.freescale.com

Freescale Semiconductor, Inc.

Troubleshooting
Troubleshooting Tips

* Verify that the hardware cards are installed and seated properly.
¢ Verify that all of the cables are connected properly.

* Verify that power is being supplied to the DSP hardware.

Windows Reports a Failed Service Startup

When the Windows Service Control Manager reports a failed service startup, the
message box shown in Figure 15.2 appears:

Figure 15.2 Service Control Manager Message Box

i Service Control Manager [%]

& At least one service or driver falled during system slartup. Uze Event Wiewer to examing the event log for details.

If you see the above message box, check the following:

» Ensure that you have not selected a conflicting address for use with the DSP
hardware. The Resources Manager can help you determine whether or not there is
a conflict.

¢ Check input/output addresses according to the operating system you are using:
Windows 98

1. To access the Resources Manager, open the Control Panel and click the Device
Manager tab.

2. Click Properties to display the Computer Properties window.

3. Click the View Resources tab in the Computer Properties window.

4. Click the Input/Output radio button to view all active input/output addresses.
Windows NT
1. To access the Resources Manager, select Start > Programs > Administrative Tools
> Windows NT Diagnostics.
2. Click the Resources tab in the Windows NT Diagnostics window.

3. Click /O Port at the bottom of the tab to view all currently active input/output
addresses.

336 Targeting DSP56F80x/DSP56F82x Controllers

For More Information: www.freescale.com

Freescale Semiconductor, Inc.

Troubleshooting
Troubleshooting Tips

No Communication With The Target Board

If you are unable to establish communication with the target DSP hardware, check the
following:

* Verify that the hardware boards are properly connected to the computer. Follow
the installation instructions in “Getting Started”.

» If you are using the Freescale ADS hardware with the ISA bus interface, ensure
that you select the correct I/O address for the ISA card. If you have another
device attempting to use this address, you must reconfigure that device to use
another address or disable that device.

* Verify that all the hardware boards have power:
— A green LED lights up on both the ADS and EVM boards.

— Ared LED and a yellow LED illuminate on the Domain Technologies SB-
56K Emulator.

* Verify that all target settings are correct.

Downloading Code to DSP Hardware Fails

If you are unable to download code to the target DSP hardware, verify that the
communications to the target hardware are working correctly.

The CodeWarrior IDE Crashes When
Running My Code

Use one of the samples provided with CodeWarrior IDE for DSP56800 to verify that
your system is working correctly.

The Debugger Acts Strangely

Sometimes DSP hardware can become corrupted and unusable, even after a soft reset.
If the debugger has problems executing code, you might have to perform a hard reset
of the DSP hardware.

To reset the EVM board, follow these steps:

1. Disconnect the power cable from the board.

2. Wait at least 5 seconds.

Targeting DSP56F80x/DSP56F82x Controllers 337

For More Information: www.freescale.com

Freescale Semiconductor, Inc.

Troubleshooting
Troubleshooting Tips

3. Reconnect the power supply to the EVM board. This reconnection step resets the
board and clears its RAM.

To reset the ADS board, follow these steps:

1. Disconnect the power cable from the ADS board.
2. Wait at least 5 seconds.

3. Reconnect the power supply to the ADS board. This reconnection step resets the
board and clears its RAM.

Problems With Notebook Computers

If you experience any problems downloading using the parallel port interface while
using a notebook computer, ensure that the parallel port is set in bidirectional mode.

On Dell Latitudes, the ECP setting in CMOS has not emitted enough voltage through
the parallel port. Increasing the ECP value may solve this problem.

How to make Parallel Port Command
Converter work on Windows® 2000
Machines

If you encounter problems connecting to your Windows® 2000 machine using the
parallel port command converter, check the following settings:
1. Verify LPT Port number matches the parallel port:
a. Launch CCS.
b. Seclect File > Configure.
c. Ensure that the LPT port is set to parallel port and correct LPT number.
d. Click Save.
2. Verify “Enable legacy Plug and Play” is enabled for the parallel port:
a. Access the Device Manager.
b. Access the LPT port settings window.
Click the Properties button.

d. In the Properties window, click the Enable Legacy Plug and Play box.

338

Targeting DSP56F80x/DSP56F82x Controllers

For More Information: www.freescale.com

Freescale Semiconductor, Inc.

Troubleshooting
Troubleshooting Tips

3. Verify the parallel port is set for “fast bi-directional transfer”:
a. Access the BIOS settings.

b. Set the parallel port for fast bi-directional transfers (EEP or ECP) instead of
just bi-directional.

Targeting DSP56F80x/DSP56F82x Controllers 339

For More Information: www.freescale.com

Freescale Semiconductor, Inc.

Troubleshooting
Troubleshooting Tips

340 Targeting DSP56F80x/DSP56F82x Controllers

For More Information: www.freescale.com

Freescale Semiconductor, Inc.

A

Porting Issues

This appendix explains issues relating to successfully porting code to the most current
version of the CodeWarrior Development Studio for Freescale 56800/E Hybrid
Controllers. This appendix lists issues related to successfully porting sources from the
Suite56™ toolset and differences that occur between the CodeWarrior IDE and the
Suite56 tools.

This appendix contains the following sections:
* Converting the DSP56800 Projects from Previous Versions
¢ Removing “illegal object_c on pragma directive” Warning
e Setting-up Debugging Connections
* Using XDEF and XREF Directives
* Using the ORG Directive

Converting the DSP56800 Projects from
Previous Versions

When you open older projects in the CodeWarrior IDE, the IDE automatically
prompts you to convert your existing project (Figure A.1). Your old project will be
backed up if you need to access that project file at a later time. The CodeWarrior IDE
cannot open older projects if you do not convert them.

Targeting DSP56F80x/DSP56F82x Controllers 341

For More Information: www.freescale.com

Freescale Semiconductor, Inc.

Porting Issues
Removing “illegal object_c on pragma directive” Warning

Figure A.1 Project Conversion Dialog

Convert Project 1 |

Project 'zample.mep” needs to be converted. Some target settings need
to be updated to the cument werzion,

Some preference panels have changed and the target zettings need to
be updated to the new format. The project will be backed up az
"zample.ald. mop®. Do pouw want bo convert the project?

[~ Usze For All Femaining Projects

(] I Cahcel |

Removing “illegal object_c on pragma
directive” Warning

If after porting a project to DSP56800 7.x, you get a warning that says illegal
object ¢ on pragma directive, you need to remove it. To remove this
warning:

1. Open the project preference and go to the C/C++ Preprocessor.

2. Remove the line #pragma objective con from the prefix text field.

Setting-up Debugging Connections

In the DSP56800 7.x, debugging connections to the hardware or simulator are made
using the Remote Debugging panel.

Older versions of the DSP56800 connected using other settings.

If you open a project created using a previous version of the CodeWarrior IDE, you
must now set up the debugging connections using the new settings.

For more information on the Remote Debugging panel, see “Remote Debugging.”

Using XDEF and XREF Directives

The XDEF and XREF directives are not used with the CodeWarrior assembler. Use
the GLOBAL directive to make symbols visible outside of a section.

342 Targeting DSP56F80x/DSP56F82x Controllers

For More Information: www.freescale.com

Freescale Semiconductor, Inc.

Porting Issues
Using the ORG Directive

Using the ORG Directive

Memory space and location counters cannot be updated with the ORG directive. You
must use the linker command file to specify exact memory addresses rather than in the
assembler. For example, if you declare:

ORG P:50020
SECTION myISR 20
rti

ENDSEC

SECTION myISR 30
jsr foot

rti

ENDSEC

You would need to change your ORG directive to:
ORG P:
and your linker command file would be changed as follows:
MEMORY {
.text (RWX) : ORIGIN 0x1000, LENGTH = 0x0

.data (RW) : ORIGIN = 0x2000, LENGTH = 0x0
.text2 (RWX) : ORIGIN = 0x20, LENGTH = 0x0

}

SECTIONS ({
.location specific_code
{
= 0x20;
* (myISR_20.text)
= 0x30;
* (myISR_30.text)
} > .text2

.main_application

{

.text)
.rtlib.text)
fp_engine.text)
user.text)

} o> .text

*(
*(
*(
*(

.main_application data

{

Targeting DSP56F80x/DSP56F82x Controllers 343

For More Information: www.freescale.com

Freescale Semiconductor, Inc.

Porting Issues
Using the ORG Directive

(.data)
(fp_state.data)
(rtlib.data)
(rtlib.bss.1lo)
(.bss)

} > .data

* %k 3k F *

344 Targeting DSP56F80x/DSP56F82x Controllers

For More Information: www.freescale.com

Freescale Semiconductor, Inc.

DSP56800x New Project

Wizard

This appendix explains the high-level design of the new project wizard.

Overview

The DSP56800x New Project Wizard supports the DSP56800x processors listed in

Table B.1.

Table B.1 Supported DSP56800x Processors for the New Project Wizard

DSP56800 DSP56800E
DSP56F801 (60 MHz) DSP56852
DSP56F801 (80 MHz) DSP56853
DSP56F802 DSP56854
DSP56F803 DSP56855
DSP56F805 DSP56857
DSP56F807 DSP56858
DSP56F826 MC56F8322
DSP56F827 MC56F8323
MC56F8345
MC56F8346
MC56F8356
MC56F8357
MC56F8365
MC56F8366

Targeting DSP56F80x/DSP56F82x Controllers

For More Information: www.freescale.com

345

Freescale Semiconductor, Inc.

DSP56800x New Project Wizard
Overview

Table B.1 Supported DSP56800x Processors for the New Project Wizard

DSP56800 DSP56800E
MC56F8367

MC56F8122

MC56F8123

MC56F8145

MC56F8146

MC56F8147

MC56F8155

MC56F8156

MC56F8157

MC56F8165

MC56F8166

MC56F8167

Wizard rules for the DSP56800x New Project Wizard are described in the following
sub-sections:

* Page Rules
* Resulting Target Rules
* Rule Notes

Click on the following link for details about the DSP56800x New Project Wizard
Graphical User Interface:

* DSP56800x New Project Wizard Graphical User Interface

346 Targeting DSP56F80x/DSP56F82x Controllers

For More Information: www.freescale.com

Freescale Semiconductor, Inc.

DSP56800x New Project Wizard
Overview

Page Rules

The page rules governing the wizard page flow for the simulator and the different
processors are shown in the Table B.2, Table B.3, Table B.4, and Table B.5.

Table B.2 Page Rules for the Simulator, DSP56F801 (60 and 80 MHz) and

DSP56F802

Target Selection
Page

Next Page

Next Page

any simulator

DSP56F801 60 MHz

DSP56F801 80 MHz

DSP56F802

Program Choice Page Finish Page

Table B.3 Page Rules for the DSP56F803, DSP56F805, DSP56F807, DSP56F826,

and DSP56F827

Target Selection
Page

Next Page

Next Page Next Page

DSP56F803

DSP56F805

DSP56F807

DSP56F826

DSP56F827

Program
Choice Page

External/Internal Finish Page
Memory Page

Targeting DSP56F80x/DSP56F82x Controllers

347

For More Information: www.freescale.com

Freescale Semiconductor, Inc.

DSP56800x New Project Wizard

Overview

Table B.4 Page Rules for the DSP56852, DSP56853, DSP56854, DSP56855,
DSP56857, and DSP56858

Target Selection
Page

Next Page

Next Page

DSP56852

DSP56853

DSP56854

DSP56855

DSP56857

DSP56858

Program
Choice Page

Finish Page

348

Targeting DSP56F80x/DSP56F82x Controllers

For More Information: www.freescale.com

Freescale Semiconductor, Inc.

DSP56800x New Project Wizard

Overview

Table B.5 Page Rules for the MC56F8322, MC56F8323, MC56F8345, MC56F8346,
MC56F8356, and MC56F8357

Target
Selection
Page

Next Page

Next Page

Next Page if
Processor
Expert Not
Selected

Next Page

MC56F8322

MC56F8323

MC56F8345

MC56F8346

MC56F8356

MC56F8357

MC56F8365

MC56F8366

MC56F8367

MC56F8122

MC56F8123

MC56F8145

MC56F8146

MC56F8147

MC56F8155

MC56F8156

MC56F8157

MC56F8165

MC56F8166

MC56F8167

Program
Choice Page

Data Memory
Model Page

External/Internal
Memory Page

Finish Page

Targeting DSP56F80x/DSP56F82x Controllers

For More Information: www.freescale.com

349

Freescale Semiconductor, Inc.

DSP56800x New Project Wizard
Overview

Resulting Target Rules

The rules governing possible final project configurations are shown in Table B.6.

Table B.6 Resulting Target Rules

Target Possible Targets

56800 Simulator Target with Non-HostlO Library and Target with Host IO
Library

56800E Simulator Small Data Model and Large Data Model

DSP5680x External Memory and/or Internal Memory with pROM-to-
xRAM Copy

DSP5682x External Memory and/or Internal Memory with pROM-to-
XxRAM Copy

DSP5685x (Small Data Model and Small Data Model with HSST) or
(Large Data Model and Large Data Model with HSST)

MC56F831xx (Small Data Model and Small Data Model with HSST) or
(Large Data Model and Large Data Model with HSST)

MC56F832x Small Data Model or Large Data Model

MC56F834x (Small Data Memory External and/or Small Data Memory

Internal with pROM-to-xRAM Copy) or (Large Data Memory
External and/or Large Data Memory Internal with pROM-to-
xRAM Copy)

350 Targeting DSP56F80x/DSP56F82x Controllers

For More Information: www.freescale.com

Freescale Semiconductor, Inc.

DSP56800x New Project Wizard
DSP56800x New Project Wizard Graphical User Interface

Rule Notes

Additional notes for the DSP56800x New Project Wizard rules are:

* The DSP56800x New Project Wizard uses the DSP56800x EABI Stationery for
all projects. Anything that is in the DSP56800x EABI
Stationery will be in the wizard-created projects depending on the wizard
choices.

e The DSP56800x EABI Stationery has all possible targets, streamlined and tuned
with the DSP56800x New Project Wizard in mind.

* The DSP56800x New Project Wizard creates the entire simulator project with all
the available targets in context of “Stationery as documentation and example.”

DSP56800x New Project Wizard
Graphical User Interface

This section describe the DSP56800x New Project Wizard graphical user interface.
The subsections in this section are:

* Invoking the New Project Wizard

* New Project Dialog Box

* Target Pages

* Program Choice Page

¢ Data Memory Model Page

e External/Internal Memory Page

* Finish Page

Targeting DSP56F80x/DSP56F82x Controllers 351

For More Information: www.freescale.com

g |

Freescale Semiconductor, Inc.

DSP56800x New Project Wizard
DSP56800x New Project Wizard Graphical User Interface

Invoking the New Project Wizard

To invoke the New Project dialog box, from the Metrowerks CodeWarrior menu bar,
select File>New (Figure B.1).

Figure B.1 Invoking the DSP56800x New Project Wizard

i Metrowerks CodeWarrior _ ||:||1|

File Edit Wew Search Project Debug Processor Expert Window Help

haaAmoeNsEEN

Chrl+-ShifE+M
Qpen... Chrl+0
Find and Open File... Ctrl+D
Close ChHl
SavE ChHHS
Siave Al L o e i
Save i5,.,
Save s Copy A5,
Rewverk, ..
Open Workspace

Close Warkspace
Save Workspace
Save Workspace As. ..

Impaort Components, ..
Close Catalog

Imnporkt Project. .,
Expork Praject, . .

Page Setup,..
Brint. .. Chrl+F

Cpen Recent

Exit

352

Targeting DSP56F80x/DSP56F82x Controllers

For More Information: www.freescale.com

g |

Freescale Semiconductor, Inc.

DSP56800x New Project Wizard
DSP56800x New Project Wizard Graphical User Interface

New Project Dialog Box

After selecting File>New from the Metrowerks CodeWarrior menu bar, the New
project Dialog Box (Figure B.2) appears. In the list of stationeries, you can select
either the “DSP56800x New Project Wizard” or any of the other regular stationery.

Figure B.2 New Project Dialog Box

New x|
Project | File | Object
8 DSPEES00: EAEI Stationery Praject name:
8 D SPSRE00% Examnples Stationerny Ithe_proien:t
D SPEEE00x New Project YWizard

WS Empty Project Laocation:
o5 M akefile Imparter Wizard T . .
Aany_projects_foldersthe_proje Set .
‘@ Processor Expert Exarmples Stationerny I _I
W8 Processor Expert Stationern fadd Tiargets to Project:

Froject:

]:8 I Cancel
Targeting DSP56F80x/DSP56F82x Controllers 353

For More Information: www.freescale.com

Freescale Semiconductor, Inc.

DSP56800x New Project Wizard
DSP56800x New Project Wizard Graphical User Interface

Target Pages

When invoked, the New Project Wizard first shows a dynamically created list of
supported target families or simulators and processors. Each DSP56800x family is

associated with a subset of supported processors (Figure B.3, Figure B.4, Figure B.5,
Figure B.6, and Figure B.7).

Figure B.3 DSP56800x New Project Wizard Target Dialog Box (DSP56F80x)
5P 56800% New Project Wizard - Target x|

Select family and then processon for this project...

| DSP5E200= Family | Frocessor
DSPAEFE0 DSPSEFS0_EBOkHz
DSPSEFE2: DSPSEFS01_B0kMHz
[5P5ES5x [5PSEFE02
MCREFET e [5PSEFE03
MCREFE 3 [5SPSEFE05s
Simulators DSPREFE07

& Back I Nent » I Cancel

354 Targeting DSP56F80x/DSP56F82x Controllers

For More Information: www.freescale.com

g |

Freescale Semiconductor, Inc.

DSP56800x New Project Wizard
DSP56800x New Project Wizard Graphical User Interface

Figure B.4 DSP56800x New Project Wizard Target Dialog Box (DSP56F82x)

Select family and then processon for this project...
DSPRES00: Family | Proceszsor
DS PEEFE0. DSPEEFE2E
DS PEEFE2: DSPREFE2T
[D'5P5EESEx
MCREFST ux
MCREFE3ux
Simulators
< Back I Ment » I Cancel
Targeting DSP56F80x/DSP56F82x Controllers 355

For More Information: www.freescale.com

g |

Freescale Semiconductor, Inc.

DSP56800x New Project Wizard
DSP56800x New Project Wizard Graphical User Interface

Figure B.5 DSP56800x New Project Wizard Target Dialog Box (DSP5685x)

DSP56300x New Project Wizard - Target N 5[

Select family and then processon for this project...

DSPRES00: Family | Proceszsor

DSPEEFS0: DSPREES2
DSPEEFE2: D5SP56EE53
LIS PAESGx D5PAEE54
MCREFST ux D5PAEER5
MCREFE3ux D5PREEAT
Simulators DSPaESRS

< Back I Ment » I Cancel

356 Targeting DSP56F80x/DSP56F82x Controllers

For More Information: www.freescale.com

g |

Freescale Semiconductor, Inc.

DSP56800x New Project Wizard
DSP56800x New Project Wizard Graphical User Interface

Figure B.6 DSP56800x New Project Wizard Target Dialog Box (MC56F8322x)

DSP56300x New Project Wizard - Target]

Select family and then processon for this project...

DSPRES00: Family Proceszsor
DSPEEFS0: MCEEFE322
DSPEEFE2: MCEEFE323
D'5P5EESEx MCHEFE345
MCREFST ux MCHEFS346
ML MCHEFE347
Simulators MCEEFE355
MCEEFE35E
MCEEFE35T
MCEEFE3E5
MCEEFE3ER
MCEEFE3E7

]

< Back I Ment » I Cancel

Targeting DSP56F80x/DSP56F82x Controllers

For More Information: www.freescale.com

357

g |

Freescale Semiconductor, Inc.

DSP56800x New Project Wizard
DSP56800x New Project Wizard Graphical User Interface

Figure B.7 DSP56800x New Project Wizard Target Dialog Box (Simulators)

DSP56300+ New Project Wizard - Targek) ﬂ

Select family and then processon for this project....

DSPRES00: Family | Processor
[SPSEFE0: DSPRES00_simulator
D SPEEFE2: DSPRES00E _ simlatar
[5P5ES5x

M CREFE3ux

Simulators

¢ Back I Mest » I Cancel

One target family and one target processor must be selected before continuing to the
next wizard page.

NOTE Depending on which processor you select, different screens will
appear according to the “Page Rules” on page 347.

If you choose the simulator, then the DSP56800x New Project Wizard - Program
Choice page appears (see “Program Choice Page” on page 358.)

Program Choice Page

If you chose either of the simulators, then Figure B.8 appears and you can now choose
what sort of main() program to include in the project.

358

Targeting DSP56F80x/DSP56F82x Controllers

For More Information: www.freescale.com

g |

Freescale Semiconductor, Inc.

DSP56800x New Project Wizard
DSP56800x New Project Wizard Graphical User Interface

Figure B.8 DSP56800x New Project Wizard - Target Choice

DSP56800x New Project Wizard - Program Choice |

Select the example main(] program for this project...

— Program

™ Simple Mixed Assembly and C
" Simple Azsembly
" Blank

< Back I Mest » I Cancel

When you click Next, the Wizard jumps to the appropriate page determined by the
“Page Rules” on page 347.

Targeting DSP56F80x/DSP56F82x Controllers 359

For More Information: www.freescale.com

Freescale Semiconductor, Inc.

DSP56800x New Project Wizard
DSP56800x New Project Wizard Graphical User Interface

Data Memory Model Page

If you select a DSP56800E processor (56F83xx or 5685x family), then the Data
Memory Model page appears (Figure B.9) and you must select either the Small Data
Model (SDM) or Large Data Model (LDM).

Figure B.9 DSP56800x New Project Wizard - 56800E Data Memory Model Page

DSP563004 New Project Wizard - 56800E Data Memao ll

Select the data memory model For thiz SEB00E project...

Mermony
' Small Data Model [SDME

" Large D ata Model [LOM]

< Back I Mest » I Cancel

When you click Next, the Wizard jumps to the appropriate page determined by the
“Page Rules” on page 347.

360 Targeting DSP56F80x/DSP56F82x Controllers

For More Information: www.freescale.com

Freescale Semiconductor, Inc.

DSP56800x New Project Wizard
DSP56800x New Project Wizard Graphical User Interface

External/Internal Memory Page

Depending on the processor that you select, the External/Internal Memory page may
appear (Figure B.10) and you must select either external or internal memory.

NOTE Multiple memory targets can be checked.

Figure B.10 DSP56800x New Project Wizard - External/Internal Memory Page
zl
Select one or mare memaony configurations for this project.

V¥ Esternal Memary

Iv Internal Memory with pROM-to-sFdM copy

Cancel |

< Back

When you click Next, the Wizard jumps to the appropriate page determined by the
“Page Rules” on page 347.

Targeting DSP56F80x/DSP56F82x Controllers 361

For More Information: www.freescale.com

g |

Freescale Semiconductor, Inc.

DSP56800x New Project Wizard
DSP56800x New Project Wizard Graphical User Interface

Finish Page
When you click the Finish button on the Finish Page (Figure B.11), the project

creation process start.

NOTE All target choices end on this page.

Figure B.11 DSP56800x New Project Wizard - Finish Page

DSP56800x Mew Project Wizard - Finish x|

Click Finizh to create the project...

Cancel |

< Back

362 Targeting DSP56F80x/DSP56F82x Controllers

For More Information: www.freescale.com

Freescale Semiconductor, Inc.

Index

Symbols
.elf file, loading 256

A

__abs 174
Access Paths panel 73
access permission flags 278, 293
__add 176
Add Files command 58
add_hfm_unit flash debugger command 262
adding assembly language 166
addr 290
after 294
align 290
alignall 291
alignment 280
Allocating Memory and Heaps for DSP56800 326
Allow DO Instructions option 91
Allow Rep Instructions checkbox 91
Application option, of Project Type pop-up menu 76
asm keyword 165
assembly language 163
create output option 91
statements, adding 166
AT keyword for ROM location 285
Auto-clear previous breakpoint on new breakpoint
release 98, 102

B

back-end compiler See compiler
bean inspector window 109, 114, 115
bean selector window 108, 113-114
bool size 144
bootstrap code 327
breakpoints 62,228, 229
Bring Up To Date command 38
Build Extras panel 73
Build System 38
build targets

setting in project 53

C

C/C++ warnings panel 81-84
calling assembly functions from C code 168
calling conventions for DSP 149
Case Insensitive Identifiers checkbox 86
changing 161
Changing Target Settings 71
char size 144
code

compiling 57

deadstripping unused 161

editing 58

navigation 61
code and data storage for DSP 155-156
CodeWarrior

compiler architecture 38, 39

components 39

debugging for DSP 215

getting started 19

introduction 13

tools, listed 39

troubleshooting 333

tutorial 41, 41-67

using the debugger 58

using the IDE 41
CodeWarrior IDE 14

installing 25

installing and registering 20

introduction 13
CodeWarrior IDE Target Settings Panels 73
command converter server 216, 224
commands

Add Files 58

Bring Up To Date 38

Compile 37

Enable Debugger 39

M56800 Settings 59

Make 39

Preprocess 39
comments for linker command file 281
communications with target board, problems 337
Compile command 37
compiler

architecture 38, 39

Targeting DSP56F80x/DSP56F82x Controllers

For More Information: www.freescale.com

363

Freescale Semiconductor, Inc.

back-end for DSP 143
intermediate representation (IR) 38
plug-in modules, explained 39
support for inline assembly 163
See also C Compilers Reference
compiling 37
code 57
See also IDE User Guide
compress 294
Console 324
Console and File /O 324
converting CodeWarrior projects 341
core tools, tutorial 41-67
CPU types overview window 122
Create Assembly Output checkbox 91
creating labels for DSP56800 Assembly 167
Custom Keywords settings panel 73
Cycle/Instruction Count 253

D

Data Visualization 267
data, deadstripping unused 161
deadstripping
prevention 278, 282
deadstripping unused code and data 161
debug information, generating 56
debugger
command converter server 216, 224
fill memory 240, 242
Kill command 67
load/save memory 238, 240
OnCE features 244
operating 224,231
problems with behavior 337
save/restore registers 242-244
setting preferences 59
setting up for Flash programming 263
system level connect 257
toolbar 61
using 58
Debugger Settings panel 73
debugging 39, 215
connecting to a loaded target 257
flash memory 261
per file 56
projects 60
target settings 215,216

watchpoint status 245
See also IDE User Guide
Debugging a loaded target 257
defining an inline assembly function 166
definition
BSS 326
heap 326
stack 326
development tools 39
dialog boxes
fill memory 240, 242
load/save memory 238, 240
save/restore registers 242-244
Directive
XDEF 342
directories, installation 25
Disable Deadstripping checkbox 94
_ div 192
_ div_ls 192
DO instructions, allowing 91
Domain Technologies SB-56K
installing 28
double size 144
downloading code, problems 337
DSP
code and data storage 155-156
installing hardware 25
linker 161
DSP hardware
system requirements 19
DSP56800
calling conventions 145
fixed-point formats 145
floating-point formats 144
integer formats 144
stack frame 149
DSP56800E simulator 252

E
editing
code 37
project contents 58
source files 58
See also IDE User Guide
editor, of IDE 58
ELF Disassembler settings panel 87
Show Addresses and Object Code checkbox 89

Targeting DSP56F80x/DSP56F82x Controllers

For More Information: www.freescale.com

364

Freescale Semiconductor, Inc.

Show Code Modules checkbox 88
Show Comments checkbox 89
Show Data Modules checkbox 89
Show Debug Info checkbox 89
Show Headers checkbox 88
Show Relocations checkbox 88
Show Source Code checkbox 89
Show Symbol and String Tables checkbox 88
Use Extended Mnemonics checkbox 89
Verbose Info checkbox 88

Enable Debugger command 39

enabling the debugger 56

Exporting and importing panel options to XML Files 72

expressions, in LCF 283
__extract_h 189
_extract_l 189

F

F 282

failed service startup in Windows 336

File Mappings panel 73

fill memory dialog box 240, 242

fixed type 145

fixed__ 145

181

__fixed2long 182

__fixed2short 183

fixed-point formats, for DSP 56800 145
fixed 145
long fixed 145
short fixed 145

fixed-point formats, for DSP 56800short fixed 145

flash configuration file format 102

flash debugger commands
add_hfm_unit 262
set_hfm_base 262
set_hfm_config_base 262
set_hfm_erase_mode 263
set_hfm_verify_erase 263
set_hfm_verify_program 263
set_hfmclkd 261, 262

flash memory debugging 261

Flash ROM
debugger configuration 263
initializing variables in P or X memory 285
programming tips 265
ROM to RAM copy 285-287

float size 144
floating-point formats, for DSP 56800 144
Force Active Symbols text box 96
force_active 279, 282,292
format, flash configuration file 102
fractional arithmetic 171

equation for converting 172
Freescale Documentation 17
FSTART

troubleshooting entry point 334
fstart 327

G

Generate ELF Symbol Table checkbox 95
Generate Link Map checkbox 93
Generate Listing File checkbox 86
Generate S-Record File checkbox 95
Generate Symbolic Info checkbox 92
generating debug info 56

GLOBAL directive 342

GLOBAL directive, assembly function definitions 169

Global Optimizations settings panel 73
global variables
linker command file 282

H

hardware breakpoints
watchpoints 245
heap size 287

I

IDE
using 41
IDE, CodeWarrior 14
IDE, installing 25
IDE, installing and registering 20
implied fractional value 171
include 292
inline assembler
for DSP 163-188
inline assembly
defining functions 166
function-level 164
instructions 165
statement-level 165
syntax 164

Targeting DSP56F80x/DSP56F82x Controllers

For More Information: www.freescale.com

365

Freescale Semiconductor, Inc.

Inline Assembly Language, general notes 163
installation directories 25
installed beans overview window 124
installing
SB-56K Emulator 28
installing and registering the CodeWarrior IDE 20
installing the CodeWarrior IDE 25
Instruction Scheduling checkbox 90
int size 144
__int2fixed 183
integer formats, for DSP56800 144
integral types, in LCF 282
intrinsic functions
absolute/negate 174
__abs 174
_L_negate 175
__negate 174
addition/subtraction 176
__add 176
_L_add 177
_L_sub 178
__sub 177
control 180
__stop 180
conversion 181
__fixed2int 181
__fixed2long 182
__fixed2short 183
__int2fixed 183
__labs 184
__long2fixed 185
__short2fixed 185
copy 187
__memcpy 187
__strcpy 188
deposit/extract 189
__extract_h 189
__extract_] 189
_L_deposit_h 190
_L_deposit_1 191
division 192
__div 192
__div_1s 192
multiplication/MAC 194
_L_mac 198
_L_msu 199
_L_mult 199
_mac_r 194

__msu_r 195
_ mult 196
__mult_r 197
normalization 202
_ norm_1 202
__norm_s 203
rounding 204
__round 204
shifting 205
_L_shl 208
_L_shr 209
_L_shr_r 210
__shl 205
__shr 206
__shr_r 207
multiplication/MAC
L mult_Is 200
introduction
to CodeWarrior 13
introduction to the CodeWarrior IDE 13

J

JTAG chain, debug other chips 260
JTAG initialization file 259
JTAG initialization file with a generic device 260

K

keep_section 279, 282,293
Kill command 67

L

_L_add 177
_L_deposit_h 190
_L_deposit_1 191
_L_mac 198
_L_msu 199
_L_mult 199
_L_mult_Is 200
_L_negate 175
_L_shl 208
_L_shr 209
_L_shr r 210
labels, M56800 assembly 167
__labs 184
libraries

MSL for DSP 323

Targeting DSP56F80x/DSP56F82x Controllers

For More Information: www.freescale.com

366

Freescale Semiconductor, Inc.

support for DSP 323
using MSL 323
Library option, of Project Type pop-up menu 76
linear addressing 328
link order 161
linker
for DSP 161
link order 161
settings 92
linker command files
access permission flags 278, 293
addr 290
after 294
align 290
alignall 291
alignment 280
arithmetic operations 281
comments 281
compress 294
deadstripping prevention 282
expressions 283
file selection 284
force_active 292
function selection 284
heap size 287
include 292
integral types 282
keep_section 293
memory 278, 293-295
memory attributes 278
object 284, 295
ref_include 295
sections 279, 295
sizeof 297
stack size 287
symbols 282
variables 282
writeb 298
writeh 298
writew 299
writing data 288
Linker pop-up menu 75
linking 39
See also IDE User Guide
List Unused Objects checkbox 93
load/save memory dialog box 238, 240
loading .elf file 256
long double size 144

long fixed type 145
long size 144
__long2fixed 185
longfixed__ 145
_L_sub 178

M

MO1 328
M56800 Assembler settings panel 85-87
Case Insensitive Identifiers checkbox 86
Generate Listing File checkbox 86
Prefix File 87
M56800 Linker
Disable Deadstripping checkbox 94
Force Active Symbols text box 96
Generate ELF Symbol Table checkbox 95
Generate Symbolic Info checkbox 92
List Unused Objects checkbox 93
Show Transitive Closure checkbox 94
Store Full Path Names checkbox 93
M56800 Linker option, in Linker pop-up menu 75
M56800 Linker settings panel 92
Generate Link Map checkbox 93
Generate S-Record File checkbox 95
Max Record Length field 95
S-Record EOL Character list menu 96
Suppress Warning Messages checkbox 95
M56800 Processor settings panel 90-91
Allow DO Instructions 91
Allow Rep Instructions checkbox 91
Create Assembly Output checkbox 91
Instruction Scheduling checkbox 90
Make Strings Read-Only checkbox 91
M56800 Settings command 59
M56800 Target Settings 55, 59
Use Flash Config File option 264
M56800 Target Settings panel 98
M56800 Target settings panel
Output File Name 76
Project Type 76
M56800 Target settings panels 75
__mac_r 194
Make command 39
Make Strings Read-Only checkbox 91
makefiles 37
__memcpy 187
memory 293-295

Targeting DSP56F80x/DSP56F82x Controllers

For More Information: www.freescale.com

367

Freescale Semiconductor, Inc.

P 278
X 278
memory map window 121, 122
memory, viewing 232-237
Metrowerks Standard Library (MSL)
for DSP 323
using 323
modifier register 328
modulo addressing 328
__msu_r 195
__mult 196
_ mult_r 197

N

navigating code 61

__negate 174

New Project window 50

New window 47

None option
in Post-Linker pop-up menu 75
in Pre-Linker pop-up menu 75

non-volatile registers 146, 158

_ norm_l 202

__norm_s 203

number formats, for DSP 143, 145

o

OBIJECT 284
object 284,295
OnCE debugger features 244
operating the debugger 224, 231
optimizing

page O register assignment 157
ORG directive 169

memory space location 169
Output Directory field 75
overview, target settings 70

P

P memory 278
P memory, viewing 233-237
page O register assignment 157
non-volatile registers 157
volatile registers 157
panels
C/C++ warnings 81-84

remote debug options 102, 104
remote debugging 96-98
peripherals usage inspector window 125
plug-in error 335
porting issues 341
Post-Linker option 75
Prefix File 87
Prefix File field 87
Pre-Linker pop-up menu 75
Preprocess command 39
preprocessing 39
See also IDE User Guide
Processor Expert
beans 107-109
code generation 106-107
menu 109-112
overview 105-112
page 107
tutorial 126-142
Processor Expert interface 105-142
Processor Expert windows 113-125
bean inspector 114,115
bean selector 113-114
CPU types overview 122
installed beans overview 124
memory map 121, 122
peripherals usage inspector 125
resource meter 123
target CPU 116-120
Project Files versus Makefiles 37
project stationery 46, 50
Project Type pop-up menu 76
Project window 51
projects
debugging 60
editing contents of 58
stationery 46, 50
protocols, setting 59

R

rebuild alert 334
REF_INCLUDE 282
ref_include 279,282, 295
references 17

Freescale Documentation 17
register details window 237,255
register values 229,231

Targeting DSP56F80x/DSP56F82x Controllers

For More Information: www.freescale.com

368

Freescale Semiconductor, Inc.

registers
display contents 63, 64, 65
function parameters 145
non-volatile 146
special-purpose 63, 64, 65
stack pointer 150
volatile 146
regservers.bat 335
remote debug options panel 102, 104
remote debugging panel 96-98
rep instruction
problems in debugger 334
REP instructions, allowing 91
resource meter window 123
Restoring Target Settings 72
ROM to RAM copy 285-287
__round 204
runtime
ROM to RAM copy 286
runtime initialization 327

S

Sample Initialization File 328
save/restore registers dialog box 242-244
Saving new target settings

stationery files 72
SB-56K Emulator, installing 28
SECTION mapping, in assembly language 169
sections 279,295
segment location specifier 296
set_hflkd flash debugger command 261, 262
set_hfm_base flash debugger command 262
set_hfm_config_base flash debugger command 262
set_hfm_erase_mode flash debugger command 263
set_hfm_verify_erase flash debugger command 263
set_hfm_verify_program flash debugger command 263
setting

a build target 75

breakpoints 62

debugger preferences 59
settings panels

Access Paths 73

Build Extras 73

C/C++ warnings 81-84

Custom Keywords 73

Debugger Settings 73

ELF Disassembler 87

File Mappings 73
Global Optimizations 73
M56800 Assembler 85-87
M56800 Linker 92
M56800 Processor 90-91
M56800 Target 75
M56800 Target Settings 98
remote debug options 102, 104
remote debugging 96-98
Source Trees 73
Settings window 53
__shl 205
short double size 144
short fixed type 145
short size 144
_ short2fixed 185
Show Addresses and Object Code checkbox 89
Show Code Modules checkbox 88
Show Comments checkbox 89
Show Data Modules checkbox 89
Show Debug Info checkbox 89
Show Headers checkbox 88
Show Relocations checkbox 88
Show Source Code checkbox 89
Show Symbol and String Tables checkbox 88
Show Transitive Closure checkbox 94
__shr 206
__shr_r 207
signed char size 144
simulator 252
sizeof 297
source files
editing 58
Source Trees settings panel 73
special-purpose registers 63, 64, 65
S-record 95
S-Record EOL Character list box 96
S-Record, Max Record Length field 95
stack frame, for DSP56800 149
stack pointer register 150
stack size 287
statement-level inline assembly 165
stationery
saving new target settings 72
__stop 180
storage of code and data for DSP 155-156

Targeting DSP56F80x/DSP56F82x Controllers

369

For More Information: www.freescale.com

Freescale Semiconductor, Inc.

Store Full Path Names checkbox 93
__strcpy 188

__sub 177

Suite56 toolset 341

support, web page 39

Suppress Warning Messages checkbox 95
symbols, in LCF 282

syntax, inline assembly language 164
system level connect 257

system requirements
for DSP hardware 19

T

target CPU window 116-120
Target Name field 74
target settings
overview 70
Target Settings panel
Linker 75
Output Directory field 75
Post-Linker 75
Pre-Linker 75
Target Name 74
Target Settings panels
Access Paths 73
Build Extras 73
Custom Keywords 73
Debugger Settings 73
File Mappings 73
Global Optimizations 73
M56800 Linker 92
M56800 Processor 90-91
M56800 Target Settings 98
M56800 Target settings 75
Source Trees 73
Target Settings window 53, 71
Troubleshooting
Parallel Port Converter on Windows 2000 338
troubleshooting 333-338
communications with target board 337
downloading code 337
entry point errors 334
FSTART 334
ORG and memory addresses 335
plug-in error 335
rebuild alert 334
rep instruction and breakpoints 334

tutorial, core tools 41-67
tutorial, Processor Expert 126-142

U

unsigned char size 144
unsigned int size 144
unsigned long size 144
unsigned short size 144
unused code and data, deadstripping 161
Use Extended Mnemonics checkbox 89
Use Flash Config File checkbox 264
using

the CodeWarrior debugger 58

the CodeWarrior IDE 41
using comments in M56800 assembly 167

Vv

values, register 229, 231
variables, in LCF 282
Variables, Stationery Linker Command Files 327
Verbose Info checkbox 88
viewing memory 232-237
volatile registers 146, 158
page O register assignment 157

A\

watchpoint status 245

watchpoints 229

web site 17

Windows
failed service startup error 336

windows
bean inspector 109, 114, 115
bean selector 108, 113-114
CPU types overview 122
installed beans overview 124
memory map 121, 122
peripherals usage inspector 125
Processor Expert 113-125
register details 237, 255
resource meter 123
target CPU 116-120

writeb 288,298

writeh 288,298

writew 288, 299

Targeting DSP56F80x/DSP56F82x Controllers

For More Information: www.freescale.com

370

Freescale Semiconductor, Inc.

X

X memory 278
X memory, viewing 232-233
XDEEF directive 342
XML files
exporting and importing panel options 72
XREF directive 342

Targeting DSP56F80x/DSP56F82x Controllers 371

For More Information: www.freescale.com

Freescale Semiconductor, Inc.

Targeting DSP56F80x/DSP56F82x Controllers 372

For More Information: www.freescale.com

Freescale Semiconductor, Inc.

Targeting DSP56F80x/DSP56F82x Controllers 373

For More Information: www.freescale.com

Freescale Semiconductor, Inc.

Targeting DSP56F80x/DSP56F82x Controllers 374

For More Information: www.freescale.com

