
Freescale Semiconductor

© Freescale Semiconductor, Inc., 2009. All rights reserved.

1 Introduction
This section presents general information about the i.MX51
Video Processing Unit (VPU).

1.1 Overview
The i.MX51 Video Processing Unit (VPU) is a high
performance multi-standard video decoder and encoder
engine that performs multiple standard decoding and
encoding operations. The VPU codec is fully compliant with
H.264 BP/MP/HP, VC-1 SP/MP/AP, MPEG-4 SP/ASP
except GMC, Divx(Xvid), MPEG-1/2 and MJPEG decoding
and encoding. The VPU supports up to HD (1920×1088)
decoding and SD (720×576) encoding. It can encode or
decode multiple video clips with multiple standards
simultaneously. A block diagram of the i.MX51 VPU is
shown in Figure 1.

The VPU connects with the system through the 32-bit
AMBA3 APB bus for system control and the 64-bit AMBA3
AXI for data throughput. The VPU also takes advantage of
on-chip memories to achieve high performance.

Most video hardware blocks in the VPU are optimally
designed for shared usage between different video standards,

Document Number: 924-76395
Rev. 1.6, 10/2009

Contents
1. Introduction . 1

1.1. Overview . 1
1.2. Main Features . 2
1.3. Programmability . 4

2. Host Interface . 6
2.1. Host Interface Overview . 6
2.2. API-Based VPU Control . 7

3. i.MX51 VPU Driver API Reference 8
3.1. API Features . 8
3.2. Type Definitions . 9
3.3. API Definitions . 36

4. VPU Control . 71
4.1. VPU Initialization . 71
4.2. Encoder Control . 74
4.3. Decoder Control . 80
4.4. Example Applications . 91

i.MX51 VPU Application Programming
Interface Windows Embedded CE 6.0
Reference Manual

i.MX51 VPU Application Programming Interface Windows Embedded CE 6.0 Reference Manual

2 Freescale Semiconductor

Introduction

which provides ultra low power and low gate count with powerful performance. As shown in Figure 1, the
VPU has a 16-bit DSP core, the BIT processor, which controls the internal video codec operations.

For simple and efficient control of the VPU by the host processor, the VPU provides a set of registers
called the host interface registers. Most commands and responses between the host processor and the VPU
are transmitted through the host interface registers. Stream data and some output picture data are directly
accessed by the host processor and the VPU. For a more comprehensive way of controlling the VPU, a set
of API functions are provided that includes all of the required operations from the host processor side.

Figure 1. i.MX51 VPU Block Diagram

1.2 Main Features
The VPU is fully compliant with H.264 BP/MP/HP, VC-1 SP/MP/AP, MPEG-4 SP/ASP except GMC,
Divx (Xvid) and MPEG-1/2 and MJPEG. Image sizes up to HD (1920×1088 or 2048×1024) are supported
for decoding and up to SD (720×576) are supported for encoding. The VPU supports various error
resilience tools and also supports multiple decoding and full duplex multi-party-call simultaneously. The

BIT
Processor Core

Bitstream
Packing/

Unpacking

12KB
Program Mem.

8KB Data Mem

AXI bus
interface

Internal peri. bus
interface

 Internal Peripheral Bus

Motion
Estimation Inter-

prediction
Intra-

prediction

AC/DC
prediction

MPEG
Transform/

Quant.

AVC
Transform/

Quant.

Pre-
processor
w/ rotator,

mirror

Macroblock
Sequencer

Coefficient.
Buffer

deblock /
overlap

smoothing
filter

Host
interface

APB3
interface

APB3 bus

AXI Internal ArbiterAXI bus

Residual

Local Mem

Reconstruction

CABAC

MV
Pred

Post-
processor w/

deringing,
rotator,
mirror

reset controller

sub-block
access
control

unit

real-time-clock
Coef
tables

VC-1
Transform/

Quant.

i.MX51 VPU Application Programming Interface Windows Embedded CE 6.0 Reference Manual

Freescale Semiconductor 3

Introduction

VPU provides programmability, flexibility and ease of upgrade in decoding and encoding or host interface
because all of the controls in the decoding and encoding process and host interface are implemented as
firmware in the programmable BIT processor.

The detailed features of the VPU are as follows:

• Encoding

— [±32, ±16] 1/2 and 1/4-pel accuracy motion estimation

— 16×16, 16×8, 8×16 and 8×8 block sizes

— Configurable block sizes

— Only one reference frame for motion estimation

— Unrestricted motion vector

— Prediction

– MPEG-4 AC/DC prediction

– H.264/AVC intra-prediction

— H.263 Annex J, K (RS=0 and ASO=0), and T

— Error resilience tools

– MPEG-4 resync marker and data-partitioning with RVLC (fixed number of
bits/macroblocks between macroblocks)

– CIR (Cyclic Intra Refresh)

– Bit-rate control (CBR and VBR)

— Up to 4:2:2 format for MJPEG encoder

— 48×32 pixel minimum encoding image size (48 pixels horizontal and 32 pixels vertical)

• Decoding

— H.264

– Fully compatible with the ITU-T Recommendation H.264 specification in BP/MP and HP

– CABAC/CAVLC

– Variable block size—16×16, 16×8, 8×16, 8×8, 8×4, 4×8 and 4×4

– Error detection, concealment and error resilience tools

— VC1

– All VC-1 profile features—SMPTE Proposed SMPTE Standard for Television: VC-1
Compressed Video Bitstream format and Decoding Process

– Simple/Main/Advanced Profile

– Multi-resolution (dynamic resolution) is not processed inside the video decoder

— MPEG-4

– Simple/Advanced Simple profile except GMC

– H.263 Baseline Profile

– Divx version 3.x to 6.x

– Xvid

— MPEG-2

i.MX51 VPU Application Programming Interface Windows Embedded CE 6.0 Reference Manual

4 Freescale Semiconductor

Introduction

– Fully compatible with ISO/IEC 13182-2 MPEG2 specification in main profile

– I,P and B frame

– Field coded picture (interlaced) and fame coded picture

— RV-8/9/10

– Fully compatible with RV-8/9/10 except re-sampling feature

— MJPEG

– Baseline ISO/IEC 10918-1 JPEG compliance

– JFIF 1.02 input format with up to 3 components

– 8-bit samples for each component

– Support up to 4:4:4

— 64×64 pixel minimum decoding size; 16×16 pixels is supported for MJPG decode

• Value added features

— MPEG-2 partial acceleration

— De-ringing

— Pre/Post rotator/mirror

— Built-in de-blocking filter for MPEG-2/MPEG-4 and Divx

• Programmability

— 16-bit DSP processor dedicated to processing bitstream and controlling the codec hardware

— General purpose registers and interrupt for communication to and from a host processor

• Performance

— All video decoder standards up to 1920×1088 @ 30 fps at 133 MHz

— All video encoder standards up to 720×480 @ 30 fps (720×576 @ 25 fps) at 66 MHz

— MJPEG decoder (4:4:4) supports 32 M pixel per second and the image size is up to 8196×8196
@ 133 MHz

— MJPEG encoder (4:2:2) supports 64 M pixel per second and the image size is up to 8196×8196
@ 133 MHz

— MJPG decoder on 4:2:0 supports 64 M pixel per second @ 133MHz

— MJPG encoder on 4:2:0 supports 85.3 M pixel per second @ 133MHz

• Interrupt

— Interrupt from and to external host processor or interrupt controller

1.3 Programmability
The VPU has an internal DSP called the BIT processor which controls the internal hardware blocks for
video decoder operations. The operation of the BIT processor is determined by the dedicated microcode
called the BIT firmware. The VPU has a complete set of BIT firmware codes as well as a complete set of
VPU control functions, called the VPU API. Therefore, application developers do not need to manage
codec-specific issues on host processor.

i.MX51 VPU Application Programming Interface Windows Embedded CE 6.0 Reference Manual

Freescale Semiconductor 5

Introduction

1.3.1 Frame-Based Processing
The BIT processor completes decoding operations on a frame-by-frame basis, which allows low level
independency of VPU operations to the host processor. While frame operations are running, there is no
need for communication between the host processor and the VPU. Therefore, the VPU does not burden
the host processor during decoder operations.

After issuing a picture processing command, the host application performs its own operations until it is
ready for the next picture processing operation or until it receives an interrupt from VPU informing the
host processor of completion of the picture processing.

1.3.2 Program Memory Management
The VPU has its own program memory to load BIT firmware for supporting application-specific
operations. In order to use this internal memory efficiently, the BIT firmware has a dynamic re-loading
scheme, which enables the VPU to have a small amount of program memory.

For example, if a MPEG-2 decoder operation is running on the VPU, then the VPU program memory is
filled by the MPEG-2 decoder firmware in the VPU. If a H.264 decoder operation is newly issued, then
the BIT processor automatically loads the H.264 decoder firmware from the SDRAM to program memory.

Because of the frame-based operation of VPU, the maximum rate of this dynamic reloading operation is
approximately 30 times per second in a single instance decoder case. Since the amount of BIT firmware
for one decoder standard is smaller than 16 Kytes, this is not a large burden for the VPU operations in
performance and memory bandwidth.

1.3.3 Multi-Instances

The VPU supports multiple instances which can be helpful for multi-channel decoder applications. In
order to support this multi-instance operation, the BIT processor uses an internal context parameter set for
each decoder instance. When creating a new instance and starting a picture processing operation, a set of
context parameters is created and updated automatically within the VPU. This internal context
management scheme allows different decoder tasks running on the host processor to control VPU
operations independently with their own instance numbers.

When creating a new instance, an application task receives a new handle specifying an instance if a new
handle is available on the VPU. All the subsequent operations for the given application task are handled
separately by the VPU using this task-specific handle. When writing a VPU driver, this handle can be
regard as a device-ID or a port-ID of the VPU for each task. Since the VPU can only perform one picture
processing task at a time, the application task should check if the VPU is ready before starting a new
picture operation. An application can easily terminate a single task on the VPU by calling a function for
closing a certain instance.

i.MX51 VPU Application Programming Interface Windows Embedded CE 6.0 Reference Manual

6 Freescale Semiconductor

Host Interface

2 Host Interface
This section presents a general description of the host interfaces provided for a host processor to control
the i.MX51 VPU.

2.1 Host Interface Overview
This section presents an overview of the host interfaces.

2.1.1 Communication Models
The VPU requires a dedicated path for exchanging data and/or messages between the host processor and
the VPU. The VPU uses shared memory for exchanging data between the host processor and the VPU.
This shared memory is accessible through the ABMA host bus. Bitstream data and frame data are
exchanged using this shared memory space.

Independent of data exchange path, a dedicated path for messages between the host processor and the VPU
is provided using a set of VPU registers called the host interface registers. All commands and responses
between the host processor and the VPU are exchanged through these registers as shown in Figure 2.

Figure 2. Data and Message Exchange Between Host and VPU

All of the bitstream and picture data is accessed directly by the host processor and the VPU. The related
information about the data transfer as well as command and responses is exchanged through the host
interface. The host interface of the VPU uses a set of registers accessible from the host processor. Some of
these host registers are used for exchanging actual command and responses and other registers are used to
give information about the internal status of VPU to host processor. Firmware running on the BIT
processor is well-optimized for a given set of commands and responses.

 H ost SW : VP U A P I

VPU F irm ware

V P U H ost In te r face F u n ct ion s (V P U A P I)

Co
m

m
a

n
d

R
es

po
n

se

VP U
En c
L ib:

M P EG 4
SP

VP U
D e cr
L ib:

M P EG4
ASP

V P U
En c
L ib:

H .264
BP

V P U
D ec
L ib :

H .264
M P

V P U Sy st em M an ager

...

H ost P rogram . I /F Func.

O S Independent B ase Func .
S et fo r V P U driv er

V P U S ystem M anager

H os t I/F w ith C M D/R S P,
In ternal C ontrol , u-C ode
R e-loading , M anage
C odec Lib , init/D e- init, e tc

VP U H ost In t er face

V P U C odec L ibrary

S et of E ncoder & D ecoder
Libraries for various v ideo
codec s tandards , inc lud ing
on -the -f ly pre /pos t
proces s ing func tions s uch
as deb loc k ing /deringing ,
ro tation , etc .

i.MX51 VPU Application Programming Interface Windows Embedded CE 6.0 Reference Manual

Freescale Semiconductor 7

Host Interface

2.1.2 Data Handling
All of the pixel data or stream data transactions are performed by the host processor or the VPU through
the shared memory space in the SDRAM. In order to assure safe transactions between the host processor
and the VPU, all the required information is stored in the host interface registers. Generally, these
transactions are one-directional transactions—the host or VPU writes the data and the other reads the data
on a single data buffer. Therefore, transactions are easily and safely controlled using a pair of read and
write pointers.

As well as the common data buffers in shared memory, the BIT processor requires a certain amount of
memory for processing, called the working buffer. The working buffer can only be accessed by the VPU.
In addition, the frame buffers used in picture decoding are managed by the VPU exclusively, which ensures
safe decoding in the VPU.

For proper streaming, the available free space in the decoder stream buffer can be accessed using the buffer
read pointer, write pointer and buffer size. A set of APIs is provided for this purpose that can be called by
the application at anytime.

2.1.3 Host Interface Registers
A set of commands is provided for controlling codec operations on a frame-by-frame basis as well as the
corresponding responses. The host interface registers can be partitioned into three categories as follows:

• BIT processor control registers—Update or show BIT processor status to the host processors. Most
of these registers are used for initializing the BIT processor during boot-up.

• BIT processor global registers—Store all the global variables which are reserved even while an
active instance is changed. All the buffer addresses and some global options are safely stored in
these registers.

• BIT processor command I/O registers—Overwritten or updated whenever a new command is
transmitted from the host processor. All the commands with input arguments and all the
corresponding responses with return values are handled using these registers.

In addition, command I/O registers are used in a pre-defined way for each command to control the VPU.

2.2 API-Based VPU Control
Host applications generally control the VPU through a set of pre-defined APIs by sending a command and
corresponding arguments to the VPU. After receiving an interrupt from the VPU, signalling the
completion of the requested operation, the host application acquires the results as shown in Figure 3.

Each API definition includes the requested command as well as the input and output data structure. The
given command from the API function is always written on a dedicated I/O register, but the input and
output data structure is transmitted through a set of command I/O registers that contain the input arguments

i.MX51 VPU Application Programming Interface Windows Embedded CE 6.0 Reference Manual

8 Freescale Semiconductor

i.MX51 VPU Driver API Reference

and output results. Therefore, application developers do not need know the details of the host register
definitions and usage.

Figure 3. Software Control Model of VPU from Host Application

3 i.MX51 VPU Driver API Reference

3.1 API Features
A set of API functions is provided to efficiently control the VPU. The VPU API covers all functions of the
i.MX51 VPU. This API-based approach speeds up the development process of application software.
Important features of the API for the i.MX51 VPU are summarized in the following sections.

3.1.1 Simple Software Control
The i.MX51 VPU API provides a simple way to control the i.MX51 VPU and avoid errors in application
software. The host application does not need to know the details of the i.MX51 VPU internal operations.
For example, in order to initialize the VPU, an application simply calls an API for initialization,
vpu_Init(), and no additional information is required for calling this API. The vpu_Init() API performs
all the required steps for initializing the i.MX51 VPU. When issuing a picture decoder operation, the
application simply changes some variables included in the well-defined input data structure.

SDRAM

Firmware on VPU

Host
Application

Shared Buffer
(Bit-stream Buffers,
Frame Buffers , etc.)

VPU
Host I/F

Reg

D
at

a

C
M

D
/

R
S

P

C&M
API¡̄s

VPU Buffer
(Work Buffer, u-Code Buffers .

Parameter Buffers , etc.)

API Calls with Args

Return Codes with Output Info.

INTERRUPT

VPU
System
Manager

VPU
Codec
Library

D
at

a

D
at

a

i.MX51 VPU Application Programming Interface Windows Embedded CE 6.0 Reference Manual

Freescale Semiconductor 9

i.MX51 VPU Driver API Reference

3.1.2 Handling Multi-Instances
The i.MX51 VPU supports multiple instances for decoding and encoding at the same time, which can be
used in multiple decoding and encoding and multi-party call applications. To support multi-instance
operations, the i.MX51 VPU API provides a full set of functions for handling the instances with ease.
When opening a new instance, an application receives a handle specifying the new instance, if a new
handle is available at that time. The operations for a given instance are separately controlled using the
corresponding handle. An application can easily terminate a single task on the VPU by calling a function
for closing a certain instance.

3.1.3 Frame-Based Codec Processing
The i.MX51 VPU completes decoding and encoding operation on a frame-by-frame basis, which enables
low level independency of VPU operations on the host processor. While frame processing operation are
running, there is no need for communication between the host processor and the VPU. Therefore, the VPU
does not burden the host processor during decoding and encoding operations.

3.2 Type Definitions
This section describes the types and structures used in the VPU API.

3.2.1 Type Definitions
This section describes the common data types used in the VPU API functions.

3.2.1.1 Uint8

typedef unsigned char Uint8;

Description

8-bit unsigned integer type used for declaring pixel data

3.2.1.2 Uint16
typedef unsigned short Uint16;

Description

16-bit unsigned integer type

3.2.1.3 Uint32
typedef unsigned int Uint32;

Description

32-bit unsigned integer type used for declaring unsigned variables with wide ranges such as the size of a
buffer

i.MX51 VPU Application Programming Interface Windows Embedded CE 6.0 Reference Manual

10 Freescale Semiconductor

i.MX51 VPU Driver API Reference

3.2.1.4 PhysicalAddress
typedef Uint32 PhysicalAddress;

Description

Represents physical addresses that are recognizable by the VPU. In general, the VPU hardware does not
know about the virtual address space that is set and handled by the host processor. The virtual addresses
are translated into physical addresses by the Memory Management Unit (MMU). Data buffer addresses,
such as input bitstream buffer or frame buffer, are given to VPU as an address in the physical address
space.

3.2.1.5 CodStd

typedef enum {
STD_AVC,
STD_VC1,
STD_MPEG2,
STD_MPEG4,
STD_H263,
STD_DIV3,
STD_MJPG,
STD_RV

} CodStd;

Description

Enumeration for declaring code standard type variables. The following video standards are supported by
the VPU:

• AVC (H.264) BP/MP/HP

• VC-1 SP/MP/AP

• MPEG-2, MPEG-1

• MPEG4 SP/ASP

• H.263 Profile 3

• Divx3

• RealVideo 8/9/10

NOTE
The MPEG-1 decoder operation is handled as a special case of the MPEG-2
decoder. The RealVideo 8/9/10 decoder is only available for licensed
customers.

3.2.1.6 RetCode

typedef enum {
RETCODE_SUCCESS,
RETCODE_FAILURE,
RETCODE_INVALID_HANDLE,
RETCODE_INVALID_PARAM,
RETCODE_INVALID_COMMAND,
RETCODE_ROTATOR_OUTPUT_NOT_SET,

i.MX51 VPU Application Programming Interface Windows Embedded CE 6.0 Reference Manual

Freescale Semiconductor 11

i.MX51 VPU Driver API Reference

RETCODE_ROTATOR_STRIDE_NOT_SET,
RETCODE_INVALID_FRAME_BUFFER,
RETCODE_INSUFFICIENT_FRAME_BUFFERS,
RETCODE_INVALID_STRIDE,
RETCODE_WRONG_CALL_SEQUENCE,
RETCODE_CALLED_BEFORE,
RETCODE_NOT_INITIALIZED,
RETCODE_FAILURE_TIMEOUT,
RETCODE_BUSY,
RETCODE_IDLE,
RETCODE_REPORT_BUF_NOT_SET

} RetCode;

Description

Enumeration for declaring the return codes from API function calls. The meaning of each return code is
the same for all API functions, but the reason of non-successful return might be different. Details of the
reasons for the return code are described in Section 3.3, “API Definitions.” Table 1 shows the basic
meaning of each return code.

Table 1. Return Codes

Code Description

RETCODE_SUCCESS Operation successful

RETCODE_FAILURE Operation not successfully; this value is returned when an
un-recoverable decoder error occurs such as a header parsing error

RETCODE_INVALID_HANDLE Given handle for current API function call is invalid, for example, not
initialized yet or improper function call for the given handle

RETCODE_INVALID_PARAM Given argument parameters (for example, input data structure) is invalid
(not initialized yet or not valid anymore)

RETCODE_INVALID_COMMAND Given command is invalid, for example, undefined or not allowed in the
given instance

RETCODE_ROTATOR_OUTPUT_NOT_SET Rotator output buffer is not allocated even though rotation is enabled

RETCODE_ROTATOR_STRIDE_NOT_SET Rotator stride is not provided even though rotation is enabled

RETCODE_INVALID_FRAME_BUFFER Certain frame buffer pointers are invalid (not initialized yet or not valid)

RETCODE_INSUFFICIENT_FRAME_BUFFERS Given numbers of frame buffers are not enough for the operations of the
given handle. This return code is only received when calling the
DecRegisterFrameBuffer() function

RETCODE_INVALID_STRIDE Given stride is invalid (for example, 0, not a multiple of 8 or smaller than
the picture size). This return code is only allowed in API functions which
set stride

RETCODE_WRONG_CALL_SEQUENCE Current API function call is invalid considering the allowed sequences
between API functions (for example, missing one crucial function call
before this function call)

RETCODE_CALLED_BEFORE Multiple calls of current API function for a given instance are invalid

RETCODE_NOT_INITIALIZED VPU is not initialized yet. Before calling any API functions, the
initialization API function, vpu_Init(), should be called

i.MX51 VPU Application Programming Interface Windows Embedded CE 6.0 Reference Manual

12 Freescale Semiconductor

i.MX51 VPU Driver API Reference

3.2.1.7 CodecCommand
typedef enum {

ENABLE_ROTATION,
DISABLE_ROTATION,
ENABLE_MIRRORING,
DISABLE_MIRRORING,
SET_MIRROR_DIRECTION,
SET_ROTATION_ANGLE,
SET_ROTATOR_OUTPUT,
SET_ROTATOR_STRIDE,
DEC_SET_SPS_RBSP,
DEC_SET_PPS_RBSP,
ENABLE_DERING,
DISABLE_DERING,
DEC_SET_REPORT_BUFSTAT,
DEC_SET_REPORT_MBINFO,
DEC_SET_REPORT_MVINFO,
DEC_SET_REPORT_USERDATA,
ENC_GET_SPS_RBSP,
ENC_GET_PPS_RBSP,
ENC_PUT_MP4_HEADER,
ENC_PUT_AVC_HEADER,
ENC_GET_VOS_HEADER,
ENC_GET_VO_HEADER,
ENC_GET_VOL_HEADER,
ENC_SET_INTRA_MB_REFRESH_NUMBER,
ENC_ENABLE_HEC,
ENC_DISABLE_HEC,
ENC_SET_SLICE_INFO,
ENC_SET_GOP_NUMBER,
ENC_SET_INTRA_QP,
ENC_SET_BITRATE,
ENC_SET_FRAME_RATE,
ENC_SET_REPORT_MBINFO,
ENC_SET_REPORT_MVINFO,
ENC_SET_REPORT_SLICEINFO

} CodecCommand;

RETCODE_FAILURE_TIMEOUT Hardware is already busy with another operation and unavailable for
current API calling or something is wrong with the VPU

RETCODE_BUSY VPU is busy with some operation

RETCODE_IDLE VPU is idle

RETCODE_REPORT_BUF_NOT_SET The VPU supports information reporting for MV/MB/SLICE/frame buffer
status/user data. In this case, the host application must allocate buffers
to save this information. These buffers can be in the virtual memory in the
user space. If these buffers are not allocated, but the corresponding
report is enabled, this error is returned. If the host application does not
use these reports, not to enable the report feature.

Table 1. Return Codes (continued)

Code Description

i.MX51 VPU Application Programming Interface Windows Embedded CE 6.0 Reference Manual

Freescale Semiconductor 13

i.MX51 VPU Driver API Reference

Description

Special enumeration type for configuration commands from the host processor to the VPU. Most of these
commands are called occasionally (not periodically) for changing the VPU operation configuration.
Details of these commands are presented in Section 3.3.3.9, “vpu_EncGiveCommand().”

3.2.1.8 MirrorDirection
typedef enum {

MIRDIR_NONE,
MIRDIR_VER,
MIRDIR_HOR,
MIRDIR_HOR_VER

} MirrorDirection;

Description

Enumeration type for representing the mirroring direction

3.2.1.9 Mp4HeaderType

typedef enum {
VOL_HEADER,
VOS_HEADER,
VIS_HEADER

} Mp4HeaderType;

Description

Special enumeration type for MPEG-4 top-level header classes such as visual sequence header, visual
object header and video object layer header

3.2.1.10 AvcHeaderType

typedef enum {
SPS_RBSP,
PPS_RBS

} AvcHeaderType;

Description

Special enumeration type for AVC parameter sets such as sequence parameter set and picture parameter set

3.2.1.11 EncHandle
typedef EncInst * EncHandle;

Description

Dedicated type for encoder handles returned when an encoder instance is opened. An encoder instance can
be referred to by the corresponding handle. EncInst is a type managed internally by the API and the
application does not need to use it.

i.MX51 VPU Application Programming Interface Windows Embedded CE 6.0 Reference Manual

14 Freescale Semiconductor

i.MX51 VPU Driver API Reference

3.2.1.12 DecHandle
typedef DecInst * DecHandle;

Description

Dedicated type for decoder handles returned when a decoder instance is opened. A decoder instance can
be referred to by the corresponding handle. DecInst is a type managed internally by API and the
application does not need to use it.

3.2.2 Data and Structure Definitions
This section describes the data and structure definitions used in the VPU API functions.

3.2.2.1 FrameBuffer

typedef struct {
PhysicalAddress bufY;
PhysicalAddress bufCb;
PhysicalAddress bufCr;
PhysicalAddress bufMvCol;

} FrameBuffer;

Description

Data structure for representing frame buffer pointers for each color component

bufY Address for Y component in the physical address space

bufCb Address for Cb component in the physical address space

bufCr Address for Cr component in the physical address space

bufMvCol Address for co-located motion vector buffers in the physical address space

The host application must allocate contiguous physical memory from the SDRAM space for the
components using this data structure. All four addresses must be 8-byte aligned. One pixel value of a
component occupies one byte and the frame data is in YCbCr 4:2:0 format for H.264, H.264 and MPEG-4
codecs. The sizes of the Cb and Cr buffers are 1/4 the size of the Y buffer size for H.264, H.263 and
MPEG-4 codecs. For MJPEG, the frame data format can be YCbCr 4:2:0, 4:2:2 horizontal, 4:2:2 vertical,
4:4:4 and 4:0:0 and the sizes of the Cb and Cr buffers vary. The co-located motion vector is only required
for B-frame decoding in MPEG-2, AVC MP/HP, MPEG-4 ASP, VC-1 MP/AP, RealVideo 8/9/10, and so
on.

3.2.2.2 Rect

typedef struct {
Uint32 left;
Uint32 top;
Uint32 right;
Uint32 bottom;

} Rect;

Description

Data structure for representing a rectangular window in a frame

i.MX51 VPU Application Programming Interface Windows Embedded CE 6.0 Reference Manual

Freescale Semiconductor 15

i.MX51 VPU Driver API Reference

left Horizontal pixel offset of top-left corner of rectangle from top-left corner of a frame

top Vertical pixel offset of top-left corner of rectangle from top-left corner of a frame

right Horizontal pixel offset of bottom-right corner of rectangle from top-left corner of a frame

bottom Vertical pixel offset of bottom-right corner of rectangle from top-left corner of a frame

This structure is provided to the host application to specify a display window for the H.264 cropping
option. Each value is offset from the top-left corner of the frame; therefore, all values are positive.

3.2.2.3 EncHeaderParam
typedef struct {

PhysicalAddress buf;
int size;
int headerType;

} EncHeaderParam;

Description

Structure used for adding a header syntax layer to the encoded bit stream. The parameter headerType is the
input parameter to the VPU and the other two parameters are returned from the VPU after completing the
requested operation. If the encoder dynamic buffer allocation option is enabled as well as the stream buffer
reset option, the parameters buf and size are also input parameters. In this case, the host application must
allocate the contiguous physical buffer to save the encoded header syntax and pass its physical base
address and size to the VPU. Otherwise the encoded header syntax is saved in the bit stream buffer passed
to the VPU while calling vpu_EncOpen() to open encoder instance.

3.2.2.4 EncParamSet

typedef struct {
Uint32 *paraSet;
int sizeInByte;

} EncParamSet;

Description

Structure used when the host processor requires SPS or PPS data from an encoder instance. The resulting
SPS or PPS data is used in an application as a type of out-of-band information. The size of the buffer
pointed to by paraSet should be large enough to save SPS and/or PPS data. The proposed size is not smaller
than 100 bytes and is a multiple of 8-byte. The size of returned SPS and/or PPS data is saved in sizeInByte.

3.2.2.5 EncMp4Param
typedef struct {

int mp4_dataPartitionEnable;
int mp4_reversibleVlcEnable;
int mp4_intraDcVlcThr;
int mp4_hecEnable;
int mp4_verid;

} EncMp4Param;

i.MX51 VPU Application Programming Interface Windows Embedded CE 6.0 Reference Manual

16 Freescale Semiconductor

i.MX51 VPU Driver API Reference

Description

Data structure for configuring MPEG4-specific parameters in encoder applications

mp4_dataPartitionEnable 0 = disable, 1 = enable

mp4_reversibleVlcEnable 0 = disable, 1 = enable

mp4_intraDcVlcThr Value of intra_dc_vlc_thr in MPEG-4 part 2 standard, valid range is 0–7

mp4_hecEnable 0 = disable, 1 = enable

mp4_verid Value of MPEG-4 part 2 standard version ID, version 1 and 2 are allowed

3.2.2.6 EncH263Param

typedef struct {
int h263_annexJEnable;
int h263_annexKEnable;
int h263_annexTEnable;

} EncH263Param;

Description

Data structure for configuring H.263-specific parameters in encoder applications

h263_annexJEnable 0 = disable, 1 = enable

h263_annexKEnable 0 = disable, 1 = enable

h263_annexTEnable 0 = disable, 1 = enable

3.2.2.7 EncAvcParam
typedef struct {

int avc_constrainedIntraPredFlag;
int avc_disableDeblk;
int avc_deblkFilterOffsetAlpha;
int avc_deblkFilterOffsetBeta;
int avc_chromaQpOffset;
int avc_audEnable;
int avc_fmoEnable;
int avc_fmoSliceNum;
int avc_fmoType;
int avc_fmoSliceSaveBufSize;

} EncAvcParam;

Description

Data structure for configuring AVC-specific parameters in encoder applications

avc_constrainedIntraPredFlag Constrained_intra_pred_flag in picture parameter set
0 = disable, 1 = enable

avc_disableDeblk Disable_deblocking_filter_idc in slice header
0 = enable, 1 = disable, 2 = disable deblocking filter at slice boundaries

avc_deblkFilterOffsetAlpha slice_alpha_c0_offset_div2 in slice header, range is –6 to 6

avc_deblkFilterOffsetBeta slice_beta_offset_div2 in slice header, range is –6 to 6

i.MX51 VPU Application Programming Interface Windows Embedded CE 6.0 Reference Manual

Freescale Semiconductor 17

i.MX51 VPU Driver API Reference

avc_chromaQpOffset chroma_qp_index_offset in picture parameter set, range is –12 to 12

avc_audEnable Enable or disable encode H.264 Access Unit Delimiter (AUD) RBSP
used to simplify the detection of the picture boundary
0 = disable, 1 = enable and the encoder generates AUD RBSP at the
start of every picture

avc_fmoEnable Not used on the i.MX51 since FMO encoding is not supported

avc_fmoSliceNum Not used on the i.MX51 since FMO encoding is not supported

avc_fmoType Not used on the i.MX51 since FMO encoding is not supported

avc_fmoSliceSaveBufSize Not used on the i.MX51 since FMO encoding is not supported

3.2.2.8 EncMjpgParam
typedef struct {

int mjpg_sourceFormat;
int mjpg_restartInterval;
int mjpg_thumbNailEnable;
int mjpg_thumbNailWidth;
int mjpg_thumbNailHeight;
Uint8 * mjpg_hufTable;
Unit8 * mjpg_qMatTable;

} EncMjpgParam;

Description

Data structure for configuring MJPEG-specific parameters in encoder applications

mjpg_sourceFormat Chroma format. The format means chrominance size of source image and can
be a value between 0 and 4:
0 = 4:2:0, 1 = 4:2:2 horizontal, 2 = 4:2:2 vertical, 3 = 4:4:4, 4 = 4:0:0

mjpg_restartInterval Value for representing interval of restart marker in Mbytes

mjpg_thumbNailEnable 0 = disable, 1 = enable and the encoder enables thumbnail encoding

mjpg_thumbNailWidth Variable representing the width of the thumbnail to be encoded in pixels. This
variable can be between 0 and source image width, must be over a specific value
and must be a multiple of the value shown in Table 2.

Table 2. mjpg_thumbNailWidth and mjpg_thumbNailHeight Values

Format Value

4:2:0 16

4:2:2 16

2:2:4 8

4:4:4 8

4:0:0 8

i.MX51 VPU Application Programming Interface Windows Embedded CE 6.0 Reference Manual

18 Freescale Semiconductor

i.MX51 VPU Driver API Reference

mjpg_thumbNailHeight Variable representing the height of the thumbnail to be encoded in pixels. This
variable can be between 0 and source image height, must be over a specific
value and be a multiple of the value shown in Table 2.

mjpg_hufTable Variable representing a pointer to an address in the Huffman table. The Huffman
table coefficients are saved in pre-defined format as shown in Table 3.

Table 3. Huffman Table Format

Offset
Address 0 1 2 3 Description

0x000 Y_DCBits[3] Y_DCBits[2] Y_DCBits[1] Y_DCBits[0] Luminance DC
BitLength

… … … … …

0x00C Y_DCBits[15] Y_DCBits[14] Y_DCBits[13] Y_DCBits[12]

0x010 Y_DCValue[3] Y_DCValue[2] Y_DCValue[1] Y_DCValue[0] Luminance DC
HuffValue

… … … … …

0x018 Y_DCValue[11] Y_DCValue[10] Y_DCValue[9] Y_DCValue[8]

0x01C 0 0 0 0

0x020 Y_ACBits[3] Y_ACBits[2] Y_ACBits[1] Y_ACBits[0] Luminance AC
BitLength

… … … … …

0x02C Y_ACBits[15] Y_ACBits[14] Y_ACBits[13] Y_ACBits[12]

0x030 Y_ACValue[3] Y_ACValue[2] Y_ACValue[1] Y_ACValue[0] Luminance AC
HuffValue

… … … … …

0x0D0 0 0 Y_ACValue[161] Y_ACValue[160]

0x0D4 0 0 0 0

0x0D8 C_DCBits[3] C_DCBits[2] C_DCBits[1] C_DCBits[0] Chrominance
DC BitLength

… … … … …

0x0E4 C_DCBits[15] C_DCBits[14] C_DCBits[13] C_DCBits[12]

0x0E8 C_DCValue[3] C_DCValue[2] C_DCValue[1] C_DCValue[0] Chrominance
DC HuffValue

… … … … …

0x0F0 C_DCValue[11] C_DCValue[10] C_DCValue[9] C_DCValue[8]

0x0F4 0 0 0 0

0x0F8 C_ACBits[3] C_ACBits[2] C_ACBits[1] C_ACBits[0] Chrominance
AC BitLength

… … … … …

0x104 C_ACBits[15] C_ACBits[14] C_ACBits[13] C_ACBits[12]

0x108 C_ACValue[3] C_ACValue[2] C_ACValue[1] C_ACValue[0] Chrominance
AC HuffValue

… … … … …

0x1A8 0 0 C_ACValue[161] C_ACValue[160]

i.MX51 VPU Application Programming Interface Windows Embedded CE 6.0 Reference Manual

Freescale Semiconductor 19

i.MX51 VPU Driver API Reference

mjpg_qMatTable Variable representing a pointer to an address in the Q-Matrix. The Q-Matrix
coefficients are saved in pre-defined formats shown in Table 4.

3.2.2.9 EncSliceMode

typedef struct {
int sliceMode;
int sliceSizeMode;
int sliceSize;

} EncSliceMode;

Description

Structure used for declaring encoder slice mode and its options. This structure value is ignored for a
MJPEG encoder.

sliceMode 0 = One slice per picture, 1 = Multiple slices per picture.
If sliceMode is set to 1, in normal MPEG-4 mode, the resync-marker and packet
header are inserted between the slice boundaries. In short video header with
Annex K = 0, the GOB header is inserted at every GOB layer start. In short video
header with Annex K = 1, multiple slices are generated. In AVC mode, multiple
slice layer RBSP is generated. If sliceMode is set to 0, no corresponding
information is generated for each encoder.

sliceSizeMode Size of a generated slice when sliceMode = 1, 0 means sliceSize is define by
amount of bits, and 1 means sliceSize is defined by the number of Mbytes in a
slice. This parameter is ignored when sliceMode = 0 or in short video header
mode with Annex K = 0.

sliceSize Size of a slice in bits or Mbytes specified by sliceSizeMode. This parameter is
ignored when sliceMode = 0 or in short video header mode with Annex K = 0.

Table 4. Q Matrix Format

Offset
Address

0 1 2 3 Description

0x000 Y_QMat[3] Y_QMat[2] Y_QMat[1] Y_QMat[0] Luminance Q
Matrix

… … … … …

0x03C Y_QMat[63] Y_QMat[62] Y_QMat[61] Y_QMat[60]

0x040 C_BQMat[3] C_BQMat[2] C_BQMat[1] C_BQMat[0] Chrominance Q
Matrix for Cb

… … … … …

0x07C C_BQMat[63] C_BQMat[62] C_BQMat[61] C_BQMat[60]

0x080 C_RQMat[3] C_RQMat[2] C_RQMat[1] C_RQMat[0] Chrominance Q
Matrix for Cr

… … … … …

0x0BC C_RQMat[63] C_RQMat[62] C_RQMat[61] C_RQMat[60]

i.MX51 VPU Application Programming Interface Windows Embedded CE 6.0 Reference Manual

20 Freescale Semiconductor

i.MX51 VPU Driver API Reference

3.2.2.10 EncOpenParam
typedef struct {

CodStd bitstreamFormat;
PhysicalAddress bitstreamBuffer;
Uint32 bitstreamBufferSize;
Uint8 *virt_bitstreamBuffer;
int picWidth;
int picHeight;
Uint32 frameRateInfo;
int bitRate;
int initialDelay;
int vbvBufferSize;
int enableAutoSkip;
int gopSize;
EncSliceMode slicemode;
int intraRefresh;
int rcIntraQp;
int dynamicAllocEnable;
int ringBufferEnable;
int interleavedCbCr;
union {

EncMp4Param mp4Param;
EncH263Param h263Param;
EncAvcParam avcParam;
EncMjpgParam mjpgParam;

} EncStdParam;
int userQpMax;
Uint32 userGamma;
int RcIntervalMode;
int MbInterval;

} EncOpenParam;

Description

Data structure for parameters when an encoder instance is opened

bitstreamFormat Standard type of bitstream in encoder operation: STD_MPEG4, STD_H263,
STD_AVC or STD_MJPG, as defined in Section 3.2.1.5, “CodStd.”

bitstreamBuffer Start address of bit stream buffer into which encoder places the bitstream. This
address must be 4 byte-aligned.

bitstreamBufferSize Size in bytes of a buffer pointed to by bitstreamBuffer. This value must be a
multiple of 1024. The maximum size is 16383×1024 bytes.

virt_bitstreamBuffer Virtual start address of the bit stream buffer where the encoder places bit streams.
This virtual address corresponds to the physical address of bitstreamBuffer.

picWidth Width of a picture to be encoded in pixels

picHeight Height of a picture to be encoded in pixels

frameRateInfo The 16 least significant bits, [15:0], is a numerator and 16 most significant bits,
[31:16], is a denominator for calculating the frame rate. The numerator is clock
ticks per second, and the denominator is clock ticks between frames minus 1. The
frame rate can be defined by (numerator/(denominator + 1)), which equals
(frameRateInfo & 0xffff) /((frameRateInfo >> 16) + 1).

i.MX51 VPU Application Programming Interface Windows Embedded CE 6.0 Reference Manual

Freescale Semiconductor 21

i.MX51 VPU Driver API Reference

For example, a frameRateInfo value of 30 represents 30 frames/sec, and the value
0x3e87530 represents 29.97 frames/sec.
This value is meaningless for H.264 because the frame rate is determined by the
container. So the frame rate of an encoded stream may be different from
frameRateInfo.

bitRate Target bit rate in kbps. If 0, there is no rate control and pictures are encoded with
a quantization parameter equal to quantParam in EncParam.

initialDelay Time delay (in ms) for the bit stream to reach initial occupancy of the vbv buffer
from zero level. This value is ignored if rate control is disabled. The value 0 means
the encoder does not check for reference decoder buffer delay constraints.

vbvBufferSize vbv_buffer_size in bits. This value is ignored if rate control is disabled or
initialDelay is 0. The value 0 means the encoder does not check for reference
decoder buffer size constraints.

enableAutoSkip 0 = automatic skip disabled, 1 = automatic skip enabled. Automatic skip is when
the encoder skips frame encoding when generated bitstream so far is too big
considering the target bitrate. This parameter is ignored if rate control is not used
(bitRate = 0).

gopSize GOP size. 0 = only first picture is I, 1 = all I pictures, 2 = IPIP, 3 = IPPIPP, and so
on. The maximum value is 32,767, but in practice, a smaller value should be
chosen by the application for proper error concealment. This value is ignored for
STD_MJPG.

slicemode Parameter for slice mode

intraRefresh 0 = Intra MB refresh is not used. Otherwise = at least N MBs in every P-frame are
encoded as intra MBs. This value is ignored in for STD_MJPG.

rcIntraQp Quantization parameter for I frame. The allowed values are –1 or corresponding
available range. When this value is –1, the quantization parameter for I frames is
automatically determined by the VPU. In MPEG4/H.263 mode, the range is 1–31;
in H.264 mode, the range is from 0–51. This is ignored for STD_MJPG.

dynamicAllocEnable 0 = disable, 1 = enable
When this field is set, dynamic buffer allocation is enabled under buffer reset
mode for encoder operation, so that the buffer start address specified in the
EncOpenParam, bitstreamBuffer, is ignored in picture encoding. In this case, the
picture buffer start address should be specified in the EncParam,
picStreamBufferAddr, at every call of vpu_EncStartOneFrame(). When this
field is not set, the picture buffer start address given by bitstreamBuffer, is used
for encoder operations, even though buffer reset mode is enabled.

ringBufferEnable 0 = disable, 1 = enable
This flag enables the streaming mode for the current encoder instance. Two
streaming modes, packet-based streaming with ring-buffer (buffer-reset mode)
and frame-based streaming with line buffer (buffer-flush mode) can be configured
using this flag.

i.MX51 VPU Application Programming Interface Windows Embedded CE 6.0 Reference Manual

22 Freescale Semiconductor

i.MX51 VPU Driver API Reference

When this field is set, packet-based streaming with ring-buffer is used. When this
field is not set, frame-based streaming with line-buffer is used.

interleavedCbCr 0 = non-interleaved chroma YUV input format that the CbCr data is inputted into
separate frame buffers.
1 = interleaved chroma YUV input format that the CbCr data is inputted into one
chroma buffer.
For interleaved Cb/Cr map, the base address for the Cr is ignored because the base
address for the Cb is used to store or load the interleaved Cb/Cr samples.

mp4Param Parameters for MPEG-4 part 2 Visual

h263Param Parameters for ITU-T H.263

avcParam Parameters for AVC

mjpgParam Parameters for MJPEG

userQpMax Sets the maximum quantized step parameter for encoding. 0 = disables this setting
and the VPU uses the default maximum quantized step depending on the mode.
For MPEG-4/H.263, the allowed maximum value is 31, so the available values are
from 1 to 31. In H.264 mode, the allowed maximum value is 51, so the available
values are from 1 to 51.

userGamma Smoothing factor in the estimation. A value for gamma is factor×32768, where the
value for factor must be between 0 and 1. If the smoothing factor is close to 0, Qp
changes slowly. If the smoothing factor is close to 1, Qp changes quickly. The
default Gamma value is 0.75×32768.

RcIntervalMode Encoder rate control mode setting. The host sets the bitrate control mode
according to the required case. The default value is 1.
0 = normal mode rate control
1 = FRAME_LEVEL rate control
2 = SLICE_LEVEL rate control
3 = USER DEFINED MB LEVEL rate control

MbInterval User defined Mbyte interval value. The default value is 2 macroblock rows. For
example, if the resolution is 720×470, then the two macroblock row is
2×(720/16) = 90. This value is used only when the RcIntervalMode is 3.

3.2.2.11 EncReportBufSize
typedef struct {

int mbInfoBufSize;
int mvInfoBufSize;
int sliceInfoBufSize;

} EncReportBufSize;

Description

Data structure for returning the size of the buffer to save the corresponding report information. The buffer
must be allocated with the size for the specific information to enable the report. For example, if the host
application wants to get the MB information of the current encoding, vpu_EncGetInitialInfo() returns the
necessary buffer size. Then host application must allocate a virtual buffer of this size and call

i.MX51 VPU Application Programming Interface Windows Embedded CE 6.0 Reference Manual

Freescale Semiconductor 23

i.MX51 VPU Driver API Reference

vpu_EncGiveCommand() with the ENC_SET_REPORT_MBINFO command to register the base
address of the allocated virtual buffer. The driver saves the reported information into this buffer.

mbInfoBufSize Buffer size for MB information

mvInfoBufSize Buffer size for motion vector information

sliceInfoBufSize Buffer size for slice information

3.2.2.12 EncInitialInfo

typedef struct {
int minFrameBufferCount;
EncReportBufSize reportBufSize;

} EncInitialInfo;

Description

Data structure for parameters of vpu_EncGetInitialInfo() which are needed for the minimum required
buffer count in host applications and the necessary size of the buffers that are used to save the
corresponding information. This returned value is used to allocate frame buffers in
vpu_EncRegisterFrameBuffer().

minFrameBufferCount Minimum required buffer count in host applications. This returned value is used
to allocate frame buffers in vpu_EncRegisterFrameBuffer()

reportBufSize Data report requested buffer size information

3.2.2.13 EncParam

typedef struct {
FrameBuffer * sourceFrame;
int forceIPicture;
int skipPicture;
int quantParam;
PhysicalAddress picStreamBufferAddr;
int picStreamBufferSize;

} EncParam;

Description

Data structure for configuring one frame encoding

sourceFrame Frame buffer containing source image to be encoded

forceIPicture If this value is 0, the picture type is determined by the VPU according to the
various parameters such as encoded frame number and GOP size.
If this value is 1, the frame is encoded as an I-picture regardless of the frame
number or GOP size, and I-picture period calculation is reset to the initial state.
For MPEG-4 and H.263, I-picture is sufficient for decoder refresh. For H.264
mode, the picture is encoded as an Instantaneous Decoding Refresh (IDR) picture.
This value is ignored if skipPicture = 1.

skipPicture If this value is 0, the encoder encodes the picture as normal.
If this value is 1, the encoder ignores sourceFrame and generates a skipped

i.MX51 VPU Application Programming Interface Windows Embedded CE 6.0 Reference Manual

24 Freescale Semiconductor

i.MX51 VPU Driver API Reference

picture. In this case, the reconstructed image is a duplication of the previous
picture. The skipped picture is encoded as P-type regardless of GOP size.

quantParam This value is used for all quantization parameters in case of VBR (no rate control).
The range of value is 1–31 for MPEG-4 and 0–51 for H.264. When rate control is
enabled, this field is ignored.

picStreamBufferAddr Start address of a picture stream buffer under line-buffer mode and dynamic buffer
allocation. This variable represents the start of a picture stream for encoded
output. In buffer-reset mode, an application might use multiple picture stream
buffers for the best performance. Using this variable, an application re-registers
the start position of the picture stream while issuing a picture encoding operation.
This start address of this buffer must be 8-byte aligned, and its size is specified by
picStreamBufferSize. In packet-based streaming with ring-buffer, this variable is
ignored. This variable is only meaningful when both line-buffer mode and
dynamic buffer allocation are enabled.

picStreamBufferSize Byte size of a picture stream chunk. This variable represents byte size of a picture
stream buffer and is crucial in line-buffer mode because encoder output can be
corrupted if this size is smaller than any picture encoded output. Therefore, this
value should be big enough for storing multiple picture streams with average size.
In packet-based streaming with ring-buffer, this variable is ignored. This variable
specifies the picture stream buffer size for encoded output in line-buffer mode.

3.2.2.14 EncOutputInfo

typedef struct {
PhysicalAddress bitstreamBuffer;
Uint32 bitstreamSize;
int bitstreamWrapAround;
int picType;
int numOfSlices;
ReportInfo mbInfo;
ReportInfo mvInfo;
ReportInfo sliceInfo;

} EncOutputInfo;

Description

Data structure for reporting the results of picture encoding operations

bitstreamBuffer Physical address of the starting point of a newly encoded picture stream. If
dynamic buffer allocation is enabled in line-buffer mode, this value is identical to
the picture stream buffer address specified by the host application.

bitstreamSize Byte size of the encoded bitstream

bitstreamWrapAround Flag for bitstream buffer wrap-around. If this flag is set a larger buffer is required.

picType Coded picture type. In H.263 and MPEG4, 0 = I picture, and 1 = P picture. In
AVC, 0 = IDR picture and 1 = Non-IDR picture.

numOfSlices Number of slices included in a newly encoded picture. When sliceReport in
EncOpenParam is 0, this value is invalid.

i.MX51 VPU Application Programming Interface Windows Embedded CE 6.0 Reference Manual

Freescale Semiconductor 25

i.MX51 VPU Driver API Reference

mbInfo Parameter to save the MB reporting

mvInfo Parameter to save the MV reporting

sliceInfo Parameter to save the slice reporting

3.2.2.15 SearchRamParam
typedef struct {

PhysicalAddress searchRamAddr;
int SearchRamSize;

} SearchRamParam;

Description

Structure used when host processor sets ME search RAM start address. SearchRamSize is calculated by:

SearchRamSize = ((picWidth + 15) & ~15) × 36 + 2048

This amount of memory space should be reserved by the host application for ME operations.

3.2.2.16 DecParamSet

typedef struct {
Uint32 * paraSet;
int sizeInByte;

} DecParamSet;

Description

Structure used when the host processor requires to send SPS data or PPS data. paraSet is the base address
of the buffer that contains the SPS and/or SPS data. The buffer size should be adjusted to a multiple of 8
bytes before being passed to the API, so sizeInByte is the real size of the SPS and/or PPS data. The SPS
data or PPS data is used in real applications as a type of out-of-band information.

3.2.2.17 DecOpenParam

typedef struct {
CodStd bitstreamFormat;
PhysicalAddress bitstreamBuffer;
Uint8 *virt_bitstreamBuffer;
int bitstreamBufferSize;
int mp4DeblkEnable;
int reorderEnable;
int filePlayEnable;
int picWidth;
int picHeight;
int dynamicAllocEnable;
int streamStartByteOffset;
int mjpg_thumbNailDecEnable;
PhysicalAddress psSaveBuffer;
int psSaveBufferSize;
int interleavedCbCr;
int mp4Class;

} DecOpenParam;

i.MX51 VPU Application Programming Interface Windows Embedded CE 6.0 Reference Manual

26 Freescale Semiconductor

i.MX51 VPU Driver API Reference

Description

Data structure used to open a new decoder instance

bitstreamFormat Standard type of bitstream decoder operation as defined in Section 3.2.1.5,
“CodStd.”

bitstreamBuffer Start physical address of the bit stream buffer from which the decoder
retrieves the next bitstream. This address must be 8 byte-aligned. This
variable is not valid in file-play mode with dynamic buffer allocation
because, the bitstream buffer is dynamically re-allocated for multiple
buffering.

virt_bitstreamBuffer Start virtual address of the bit stream buffer from which the decoder can
retrieve the next bitstream. The virtual address corresponds to physical
address of bitstreamBuffer.

bitstreamBufferSize Size in bytes of a buffer pointed to by bitstreamBuffer. This value must be
a multiple of 1024. The maximum size is 16383×1024 bytes. This variable
is not valid in file-play mode with dynamic buffer allocation because in this
case, the bitstream buffer size is specified by the variable chunkSize.

mp4DbkEnable 0 = disable, 1 = enable
When this field is set in MPEG4 and H.263 (post-processing) modes, the
decoder applies MPEG-4 deblocking filter output to the host application.

reorderEnable 1 = enables display buffer reordering when decoding H.264 streams. In
H.264 mode, the output decoded picture is re-ordered if pic_order_cnt_type
is 0 or 1 and the decoder must delay the output display for re-ordering.
However, some applications (such as video telephony) do not require such
display delay. The host may set this flag to 0 to disable output display buffer
reordering. Then the BIT processor does not re-order the output buffer when
pic_order_cnt_type is 0 or 1. If pic_order_cnt_type is 2 or in MPEG4 or
H.263 modes, this flag is ignored because output display buffer reordering
is not allowed.

filePlayEnable 0 = disable, 1 = enable and file-play mode is enabled for decoder
operations. File-play mode means applications provide the chunk size and
reset the write pointer at each frame processing.

picWidth Horizontal picture size read from the file format header used for codecs for
which the picture size is not available in the bitstream, for example
Divx3.11.

picHeight Vertical picture size read from the file format header used for codecs for
which the picture size is not available in the bitstream, for example
Divx3.11.

dynamicBuffAllocEnable 1 = dynamic buffer allocation enabled under file-play mode for decoder
operations. When enabled, the buffer start address specified in
bitstreamBuffer is ignored in decoder operations and the picture buffer start
address is specified in DecParam: picStreamBufferAddr, at every call of
vpu_DecStartOneFrame.

i.MX51 VPU Application Programming Interface Windows Embedded CE 6.0 Reference Manual

Freescale Semiconductor 27

i.MX51 VPU Driver API Reference

0 = disable, picture buffer start address given by bitstreamBuffer is used in
decoder operation, even though file-play mode is enabled.

streamStartByteOffset Start byte offset of the stream buffer. Since the VPU has an internal
limitation that the stream buffer start address must be 8-byte aligned, the
host application may be required to copy the stream data to an 8-byte
aligned buffer. This offset allows this overhead to be saved. This offset
should be between 0 and 7.

mjpg_thumbNailDecEnable 0 = disable, 1 = enable and the MJPEG decoder decodes a thumbnail image.
This variable is only valid in STD_MJPG mode.

psSaveBuffer Start address of the PS (SPS/PPS) save buffer which the decoder saves PS
(SPS/PPS) RBSP. This address must be 8 byte-aligned. This variable is only
valid for H.264 decoder mode.

psSaveBufferSize Size in bytes of a buffer pointed to by psSaveBuffer. This value must be a
multiple of 1024. The maximum size is 65565×1024 bytes. This variable is
only valid when decoding H.264 streams.

interleavedCbCr 0 = non-interleaved chroma output format where the CbCr data is written
into separate frame buffers.
1 = interleaved chroma output format where the CbCr data is written into
one chroma buffer. For interleaved mode, the base address for the Cr is
meaningless because the base address for the Cb is used to store or load the
interleaved Cb/Cr samples.

mp4Class Parameter used to distinguish the subclass of MPEG4:
0 = MPEG-4; 1 = DivX 5.0 or higher; 2 = Xvid; 5 = DivX 4.0
This variable is only valid when decoding an MPEG-4 stream. The VPU
regards MPEG4, Divx4 and Divx higher, Xvid as same codec. If the
upstream processing does not tell the exact subclass type, use MPEG-4, but
it is highly encouraged to set the correct subclass type.

3.2.2.18 DecReportBufSize
typedef struct {

int mbInfoBufSize;
int mvInfoBufSize;
int frameBufStatBufSize;
int userDataBufSize;

} DecReportBufSize;

Description

Data structure for returning the size of the buffer to save the corresponding report information. This buffer
must be allocated with the return size for the specific information to enable the report. For example, if the
host application requires the MB information of the current encoding, vpu_DecGetInitialInfo returns the
necessary buffer size. Then the host application allocates a virtual buffer with this size and calls
vpu_DecGiveCommand with the DEC_SET_REPORT_MBINFO command to register the base address
of the allocated virtual buffer. The driver saves the reported information into this buffer.

mbInfoBufSize Buffer size for Mb information

i.MX51 VPU Application Programming Interface Windows Embedded CE 6.0 Reference Manual

28 Freescale Semiconductor

i.MX51 VPU Driver API Reference

mvInfoBufSize Buffer size for motion vector information

frameBufStatBufSize Buffer size for current frame buffer status

userDataBufSize Buffer size for decoded user data

3.2.2.19 DecInitialInfo
typedef struct {

int picWidth;
int picHeight;
Uint32 frameRateInfo;
Uint32 picCropEnable;
Rect picCropRect;
int mp4_dataPartitionEnable;
int mp4_reversibleVlcEnable;
int mp4_shortVideoHeader;
int h263_annexJEnable;
int minFrameBufferCount;
int frameBufDelay;
int normalSliceSize;
int worstSliceSize;
int mjpg_thumbNailEnable;
int mjpg_sourceFormat;
int profile;
int level;
int interlace;
int direct8x8Flag;
int vc1_psf;
int aspectRateInfo;
int constraint_set_flag[4];
DecReportBufSize reportBufSize;

} DecInitialInfo;

Description

Data structure to get information necessary to start decoding

picWidth Horizontal picture size in pixels. This width value is used when allocating
decoder frame buffers. In some cases, this returned value, the display picture
width declared on the stream header, should be modified before allocating
the frame buffers. When the picture width is not a multiple of 16, the picture
width for buffer allocation should be re-calculated from the declared display
width as:
picBufWidth = ((picWidth + 15)/16) × 16,
where picBufWidth is the horizontal picture buffer width. When picWidth
is a multiple of 16, picWidth = picBufWidth.

picHeight Vertical picture size in pixels. This height value is used when allocating
decoder frame buffers. In some cases, this returned value, the display picture
height declared on the stream header, should be modified before allocating
the frame buffers. When the picture height is not a multiple of 16, the picture
height for buffer allocation should be re-calculated from the declared
display height as:
picBufHeight = ((picHeight + 15)/16) × 16,

i.MX51 VPU Application Programming Interface Windows Embedded CE 6.0 Reference Manual

Freescale Semiconductor 29

i.MX51 VPU Driver API Reference

where picBufHeight is the vertical picture buffer height. When picHeight is
a multiple of 16, picHeight = picBufHeight.

frameRateInfo The 16 least significant bits, [15:0] is a numerator and 16 most significant
bits [31:16], is a denominator for calculating the frame rate. The numerator
is the clock ticks per second, and the denominator is the clock ticks between
frames minus 1. So the frame rate can be defined by
(numerator/(denominator + 1)), which equals to (frameRateInfo & 0xffff)
/((frameRateInfo >> 16) + 1).
For example, the value of 30 for frameRateInfo represents 30 frames/sec,
and the value of 0x3e87530 represents 29.97 frames/sec.

picCropEnable Indicates if picCropRect is valid. If picCropEnable = 0,the picCropRect
should be ignored. picCropEnable = 1, there is cropping rectangle
information picCropRect.

picCropRect Picture cropping rectangle information. If picCropEnable = 0, this field is
invalid. This structure specifies the cropping rectangle information only for
a H.264 decoder. The size and position of the cropping window in a full
frame buffer is presented in this structure. This structure is only valid for
H.264 decoder mode.

mp4_dataPartitionEnable 0 = disable, 1 = enable

mp4_reversibleVlcEnable 0 = disable, 1 = enable

mp4_shortVideoHeader 0 = disable, 1 = enable

H263_annexJEnable 0 = disable, 1 = enable

minFrameBufferCount Minimum number of frame buffers required for decoding. The application
must allocate at least this number of frame buffers and register those number
of buffers to the VPU using vpu_DecRegisterFrameBuffer() before
decoding pictures.

frameBufDelay Maximum display frame buffer delay for buffering decoded picture reorder.
The VPU may delay decoded picture displays for display reordering H.264
mode, when pic_order_cnt_type is 0 or 1 and for B-frame handling in VC-1
decoder. (By default, some H.264 encoder set pic_order_cnt_type to 0 or 1,
but in BP applications, this setting is not actually used in practice.)

normalSliceSize Recommended size of buffer to save slice in normal case. This value is
determined by a quarter of the memory size of one raw YUV image in
Kbytes.

worstSliceSize Recommended size of buffer used to save slice in worst case. This value is
determined by half of the memory size for one raw YUV image in Kbytes.

mjpg_thumbNailEnable 0 = disable, 1 = enable and the stream which is decoded as thumbnail.

mjpg_sourceFormat The chroma format of encoded image of the stream. The format defines the
chrominance size of the source image and can be a value between 0 and 4.
0 = 4:2:0, 1 = 4:2:2 horizontal, 2 = 4:2:2 vertical, 3 = 4:4:4, 4 = 4:0:0

i.MX51 VPU Application Programming Interface Windows Embedded CE 6.0 Reference Manual

30 Freescale Semiconductor

i.MX51 VPU Driver API Reference

profile Profile of decoded stream and used as follows.
H.264—profile_idc
Vc1—0–2 (SMTPE reserved), 3 (advanced profile)
MP2—3'b101: Simple, 3'b100: Main, 3'b011: SNR Scalable, 3'b10:
Spatially Scalable, 3'b001: High
MP4—8'b00000000: SP, 8'b00010001: ASP Real Video: 8 (version 8), 9
(version 9), 10 (version 10)

level Level of decoded stream and used as follows.
H.264—level_idc
Vc1—level
MP2—4'b1010: Low, 4'b1000: Main, 4'b0110: High 1440, 4'b0100: High
MP4—4'b0000: L0, 4'b0001: L1, 4'b0010: L2, 4'b0011: L3, and so on
Real Video—N/A (real video does not have level information)

interlace 1 = decoded stream may be decoded into progressive or interlace frame
Otherwise, decoded stream is progressive frame

Direct8x8Flag Direct_8x8_inference_flag in H.264 SPS

vc1_psf Only available in VC1 mode and indicates the value of the progressive
segmented frame

aspectRateInfo 0 = aspect ratio information is not present.
[H.264]—if aspectRateInfo [31:16] is 0, aspectRateInfo [7:0] is
aspect_ratio_idc. Otherwise, AspectRatio is Extended_SAR.
sar_width = aspectRateInfo [31:16]
sar_height = aspectRateInfo [15:0]
[VC-1]—Aspect Width = aspectRateInfo [31:16],
Aspect Height = aspectRateInfo [15:0]
[MP4]—This value is index of Table 6-12 in ISO/IEC 14496-2
[MP2]—This value is index of Table 6-3 in ISO/IEC 13818-2 This value is
determined by half of the memory size for one raw YUV image in Kbytes.

Constraint_set_flag Syntax element in H.264 used to make level. Ignored in other standards.

3.2.2.20 DecAvcSliceBufInfo

typedef struct {
PhysicalAddress sliceSaveBuffer;
int sliceSaveBufferSize;

} DecAvcSliceBufInfo;

Description

Data structure used when host application transfers H.264 decoder slice save buffer information

sliceSaveBuffer Start address of slice save buffer which the decoder can save slice RBSP. This
address must be 8 byte-aligned. This variable is only valid for H.264 decoder.

sliceSaveBufferSize Size in bytes of a buffer pointed by sliceSaveBuffer. This value must be a multiple
of 1024. The maximum size is 65535×1024 bytes. This variable is only valid for
H.264 decoder.

i.MX51 VPU Application Programming Interface Windows Embedded CE 6.0 Reference Manual

Freescale Semiconductor 31

i.MX51 VPU Driver API Reference

3.2.2.21 DecBufInfo
typedef struct {

DecAvcSliceBufInfo avcSliceBufInfo;
} DecBufInfo;

Description

Data structure used when the host application transfers additional buffer information except frame buffer

avcSliceBufInfo Start address and size of slice save buffer which the decoder can save slice RBSP.
This variable is only valid for H.264 decoder.

3.2.2.22 DecParam
typedef struct {

int prescanEnable;
int prescanMode;
int iframeSearchEnable;
int skipframeMode;
int skipframeNum;
int chunkSize;
int picStartByteOffset;
PhysicalAddress picStreamBufferAddr;

}DecParam;

Description

Data structure for picture decoding options

prescanEnable 0 = disable, 1 = enable
If this option is enabled, the decoder performs scanning stream buffers to check
whether a full picture stream exists or not. If there is no full picture stream,
decoding picture is not initiated. This option is provided to prevent the decoder
from hanging. When multiple picture decoding is needed, for example, for the first
picture decoding with display reordering enabled, pre-scan does not prevent
decoder hanging. So in this cases, it is recommended to disable this option.

prescanMode Operation mode of decoder after pre-scan detects a full picture stream
0 = Start decoding, 1 = Returns without decoding
If this option is enabled, the decoder returns without picture decoding even though
there is a full picture stream in the stream buffer. This option is provided for
general usage of pre-scan option as a useful tool for stream buffer check.

iframeSearchEnable 0 = disable, 1 = enable and the decoder performs skipping frame decoding until
decoder meets an I (IDR) frame. If there is no I frame in the stream, the decoder
waits for a I (IDR) frame. If skipframeNum is n, the decoder seeks the (n + 1)th I
(IDR) frame. When decoder meets an EOS (End Of Sequence) code during
I-Search, the decoder returns –1 (0xFFFF). If this option is enabled,
prescanEnable, prescanMode and skipframeMode options are ignored.

skipframeMode Skip frame function enable and operation mode:
0 = skip frame disable
1 = skip frame enabled (skip frames but I (IDR) frame)

i.MX51 VPU Application Programming Interface Windows Embedded CE 6.0 Reference Manual

32 Freescale Semiconductor

i.MX51 VPU Driver API Reference

2 = skip frame enabled (skip any frames)
If this option enabled, the decoder skip decoding as many as skipframeNum
frames. If skipframNum is 1, the prescan function is enabled and prescanMode is
0. After the decoder skips frames, the decoder returns decoded index –2 (0xFFFE)
when decoder does not have any frames displayed. When decoder meets EOS
(End Of Sequence) code during frame skip, the decoder returns –1 (= 0xFFFF). If
this option is enabled, prescanEnable and prescanMode options are ignored.

skipframeNum Number of skip frames. If the iframeSearchEnable option is enabled, this number
is the number of skipping I (IDR) frame. If the iframeSearchEnable option is
disabled and the skipframeMode option is enabled, this number is the number of
skipping frames. When this number is 0, the skipframeMode option is disabled.

picStartByteOffset Start byte offset of the picture stream buffer. Since the VPU has an internal
limitation that stream buffer start address must be 4-byte aligned, the host may be
required to copy the stream data to a separate 8-byte aligned buffer. This offset
allows this overhead to be saved. This offset should be between 0 and 3.

chunkSize Byte size of a picture stream to be decoded. This variable represents the byte size
of a picture stream, and can be read from file container header field. This variable
is crucial in file-play mode operation. In packet-based streaming with ring-buffer,
this variable is ignored. When this number is 0, skipframeMode option is disabled.

picStreamBufferAddr Physical address of the start address of the picture stream buffer in file-play mode
This variable represents the start of a picture stream to be decoded. In file-play
mode, the application might use multiple picture stream buffers for the best
performance. Using this variable, the application can re-register the start position
of the picture stream while issuing a picture decoding operation. The start address
of this buffer must be 8-byte aligned, and its size is specified in the variable,
chunkSize. This variable is only meaningful when both file-play mode and
dynamic buffer allocation are enabled.

3.2.2.23 DecOutputInfo

typedef struct {
int indexFrameDisplay;
int indexFrameDecoded;
int picType;
int numOfErrMBs;
int hScaleFlag;
int vScaleFlag;
int prescanresult;
int notSufficientPsBuffer;
int notSufficientSliceBuffer;
int decodingSuccess;
int interlacedFrame;
int mp4PackedPBframe;
int h264Npf;
int pictureStructure;
int topFieldFirst;
int repeatFirstField;
union {

i.MX51 VPU Application Programming Interface Windows Embedded CE 6.0 Reference Manual

Freescale Semiconductor 33

i.MX51 VPU Driver API Reference

int mp2_progressiveFrame;
int vc1_repeatFrame;

};
int fieldSequence;
ReportInfo mbInfo;
ReportInfo mvInfo;
ReportInfo frameBufStat;
ReportInfo userData;
int decPicHeight;
int decPicWidth;
Rect decPicCrop;

} DecOutputInfo;

Description

Data structure to get information resulting from decoding a frame

indexFrameDisplay Frame buffer index of a picture to be displayed among frame buffers which were
registered using vpu_DecRegisterFrameBuffer(). Frame data to be displayed
is stored into the frame buffer specified by this index. When a delay in display
does not exist, this index always is the same as indexFrameDecoded. But if not,
(for example, display reordering in AVC or B-frames in VC-1), this index is not
the same value with indexFrameDecoded. If the decoder cannot provide a
display output at the beginning of sequence decoding with different display
order, this index always has –2 (0xFFFE) or –3 (0xFFFD) depending on the
decoder skip option. And at the end of sequence decoding, if there is no more
output for display, this value has –1 (0xFFFF). By checking this index, the host
application can easily know whether sequence decoding has finished or not.

indexFrameDecoded Frame buffer index of decoded picture among frame buffers which were
registered using vpu_DecRegisterFrameBuffer(). A decoded frame during
current picture decoding operation is stored into the frame buffer specified by
this index. If decoder meets EOS or skip, the decoder return –1 (0xFFFF) to
represent that no decoded output is generated. –2 means no real decoding
operation due to meeting a header error. Because of delays in display, the return
value of –1 does not mean end of decoding. In order to check the end of
decoding, the host application should refer to indexFrameDisplay.

picType Picture type of the current decoded picture. This value has different meaning in
different codec standard.
For VC1 SP/MP: 0 = I picture, 1 = P picture, 2 = BI picture, 3 = B picture,
4 = SKIPPED picture.
In VC1 AP interlacing, picType contains two fields picture type information.
Bit[2:0] is for the second field, and bit[5:3] is for first field. The respective value
has same meaning as SP/MP case described above. For example, 0 - 000_000:
both first and second field are I picture and 1 - 000_001: first field is I picture
and second field is P picture.
In other codec cases: 0 = I picture, 1 = P picture, 2 = B picture

numOfErrMBs Number of erroneous macroblocks while decoding a picture

i.MX51 VPU Application Programming Interface Windows Embedded CE 6.0 Reference Manual

34 Freescale Semiconductor

i.MX51 VPU Driver API Reference

hScaleFlag Flag for reduced resolution output in horizontal direction. For VC1 decoding,
the resulting picture width from the decoder may be half the decoded picture
width. In this case, this flag is set, and the host application should scale up the
picture by two times in the horizontal direction to get proper display output.

vScaleFlag Flag for reduced resolution output in vertical direction. For VC1 decoding, the
resulting picture height from the decoder may be half the decoded picture
height. In this case, this flag is set, and the host application should scale up this
picture by two times in the vertical direction to get proper display output.

prescanResult 0 = incomplete picture stream, 1 = full picture stream exists, 2 = pre-scan
disabled
If the application enables pre-scan mode for running a picture decoding task,
then it should check this flag first. If this flag is equal to 0, all the other output
information has no meaning and the application should ignore all output
information. Only if prescanResult is greater than 0 is the other output
information meaningful for the application.

notSufficientPsBuffer Flag that represents whether PS (SPS/PPS) save buffer is sufficient to decode
the current picture. The VPU does not get the last part of the current picture
stream because of buffer overflow. The host must close the current instance
because the picture streams cannot be decoded properly because of loss of
SPS/PPS data.

notSufficientSliceBuffer Flag that represents whether slice save buffer is sufficient to decode the current
picture. The VPU does not get the last part of the current picture stream, and
macroblock errors are issues because of buffer overflow. The host can continue
decoding the remaining pictures of the current input stream without closing the
current instance, even though several pictures can be error-corrupted.

decodingSuccess 0 = incomplete finish of decoding process, = complete finish of decoding
process
This variable means that the decoding process is finished completely. If stream
has errors in the picture header syntax or the first slice header syntax of H.264
stream, The VPU does not initiate the MB decoding routine and returns
immediately. In this case, the VPU returns 0 which means incomplete finish of
decoding process.

interlacedFrame 0 = progressive frame which consists of one frame picture
1 = interlaced frame which consists of two field picture (top field and bottom
field);
This variable indicates that the frame is the interlaced frame. If this value is set,
the host application may use a de-interlacing filter to enhance image quality.

mp4PackedPBframe 0 = normal frame chunk data, 1 = packed PB frame chunk data.
This variable indicates that the frame chunk data is a packed PB frame chunk.
If this value is set, the host application must re-use this chunk in the next
decoding command. This variable is only valid for MPEG-4 file-play mode.

h264Npf When a Non-Paired Field (NPF) occurs in the display picture, this flag indicate
that a top or bottom field is absent.

i.MX51 VPU Application Programming Interface Windows Embedded CE 6.0 Reference Manual

Freescale Semiconductor 35

i.MX51 VPU Driver API Reference

0 = no NPF
1 = only bottom field of picture is absent
2 = only top field of picture is absent
3 = all field (top/bottom) of picture is absent

pictureStructure Variable that indicates whether that the decoded picture is progressive or
interlaced picture. The value of pictureStructure is used as below.
H.264—FieldPicFlag,
Vc1—FCM (Progressive 0, 2 Frame interlace, 3 Field interlaced)
MP2—picture structure (TopField: 1, BotField: 2, Frame: 3)
MP4—N/A
Real Video—N/A

topFieldFirst When the decoded picture is a field picture, if this value is 1, the top field is
decoded first, then the bottom field is decoded. If this value is 0, the decoding
order is bottom field first and then the top field. The topFieldFirst is used by the
post processing for de-interlacing.

repeatFirstField Variable that means repeat first field is used during the display process

mp2_progressiveFrame Variable used to indicate progressive_frame in picture coding extension in MP2

vc1_repeatFrame For VC1, this variable means RPTFRM (Repeat Frame Count) is used during
the display process

fieldSequence Variable used to indicate field_sequence in picture coding extension in MP2

mbInfo Parameter to save the MB reporting if enabling the MB information reporting

mvInfo Parameter to save the MV reporting if enabling the MV information reporting

frameBufStat Parameter to save the current frame buffer status information if the frame buffer
status reporting is enabled

userData Parameter to save the decoded user data if the user data reporting is enabled

decPicHeight Picture height in the pixel of the frame with the index of indexFrameDisplay. So
host application needs to use this information in the case that the decoded
stream has changed resolution.

decPicWidth Picture height of the frame with the index of indexFrameDisplay. For MJPEG
decoding, decPicHeight and decPicWidth are the size of the decoded rotator
frame saved in the rotation frame buffer registered by the
SET_ROTATOR_OUTPUT command. The VPU supports the changed
resolution decoding. The VPU only supports the changed resolution not larger
than the original size. For example, the changed sequence of VGA > QVGA >
VGA is supported

decPicCrop Cropping information for H.264 changed resolution decoding. This parameter
is valid only for H.264.

i.MX51 VPU Application Programming Interface Windows Embedded CE 6.0 Reference Manual

36 Freescale Semiconductor

i.MX51 VPU Driver API Reference

3.2.2.24 VPUMemAlloc
typedef struct {

ULONG PhysAdd;
ULONG VirtAdd;

UINT Reserved;
} VPUMemAlloc;

Description

Data structure used when the host application allocates physically continuous memory for the VPU

PhysAdd Physical base address of the buffer allocated by driver if allocating successfully

VirtAdd Virtual base address corresponds to the PhysAdd that host application can access

Reserved Used by driver internally

3.3 API Definitions
This section provides a description of the i.MX51 VPU API definitions.

3.3.1 Overview
This section provides an overview of the VPU API definitions. The basic API architecture is presented as
well as the operation flow of both decoder and encoder based VPU API functions.

3.3.1.1 Basic Architecture

The i.MX51 VPU API has the following three basic categories:

• Control API—API functions for general control of the VPU such as initialization

• Decoder API—API functions for VPU decoding operations

• Encoder API—API functions for VPU encoding operations

The i.MX51 VPU API functions are based on a frame-by-frame picture processing scheme. To run a
picture decoder or encoder, the application calls a API function and after completion the processing, the
application can check the results of the picture processing.

To support multi-instance decoding and encoding, the i.MX51 VPU API functions use a handle for specify
a certain instance. The handle for each instance is provided when the application creates a new decoder or
encoder instance. If the application wants to give a command to a specific instance, the corresponding
handle is used in every API function call for that instance.

3.3.1.2 Decoder Operation Flow

To decode a bitstream, the application completes the following steps:

1. Open a decoder instance using vpu_DecOpen()

2. To provide the proper amount of bitstream, get the bitstream buffer address using
vpu_DecGetBitstreamBuffer()

i.MX51 VPU Application Programming Interface Windows Embedded CE 6.0 Reference Manual

Freescale Semiconductor 37

i.MX51 VPU Driver API Reference

3. After transferring the decoder input stream, inform the amount of bits transferred into the
bitstream buffer using vpu_DecUpdateBitstreamBuffer()

4. Before starting a picture decoder operation, get the crucial parameters for decoder operations such
as picture size, frame rate, required frame buffer size using vpu_DecGetInitialInfo()

5. Using the returned frame buffer requirement, allocate the proper size of the frame buffers and
convey this data to the i.MX51 VPU using vpu_DecRegisterFrameBuffer()

6. Start a picture decoder operation picture-by-picture using vpu_DecStartOneFrame()

7. Wait for the completion of the picture decoder operation interrupt event

8. Check the results of the decoder operation using vpu_DecGetOutputInfo()

9. After displaying nth frame buffer, clear the buffer display flag using vpu_DecClrDispFlag()

10. If there is more bitstream to decode, go to Step 6, otherwise e go to the next step

11. Terminate the sequence operation by closing the instance using vpu_DecClose()

i.MX51 VPU Application Programming Interface Windows Embedded CE 6.0 Reference Manual

38 Freescale Semiconductor

i.MX51 VPU Driver API Reference

The decoder operation flow is shown in Figure 4.

Figure 4. Decoder Operation Flow

VPU_In it()

VPU_Dec
Open()

VPU_DecGetStream
Buffer() & VPU _D ec

UpdateStreamBuffer()

VPU_Dec
GetIn itialIn fo()

VPU_Dec
StartOneFrame()

Busy?
GetHostCm d
=DEC_END?

Lack of
Bitstream?

ClearHostC ommand()

VPU_Dec
GetBitstreamB uffer()

Cmd= FillB sBufMulti()

Cmd = NON E?

VPU_Dec
UpdateBitstreamBuffer()

VPU_Dec
GetOutputInfo()

No

Exit ?

FrameIdx = 0?

SetMixerDecOut()

WaitM ixerIn t()

No

No

Yes

U pdate
Frame Buffer Index

VPU_Dec
C lose()

End

Yes

Yes

No

N o

Yes

No

Yes

Yes

LastInstance ?
No

Yes

Optional for M ult iD ec

VPU_Dec
R eg isterFrameBuffer()

i.MX51 VPU Application Programming Interface Windows Embedded CE 6.0 Reference Manual

Freescale Semiconductor 39

i.MX51 VPU Driver API Reference

3.3.1.3 MJPEG Decoding Operation Flow

The operation flow is different for a MJPEG bitstream because MJPEG decoding supports larger
resolution. To save the physical buffer, the host application does not need to call
vpu_DecRegisterFrameBuffer to register the frame buffers because MJPEG decoding does not use a
reference buffer. Instead, MJPEG decoding uses the same method as rotator decoding for other codecs to
decode an image. Before calling vpu_DecStartOneFrame(), the host application sends a
SET_ROTATOR_STRIDE command to set the stride, and then sends a SET_ROTATOR_OUTPUT
command to set the physical addresses of YCbCr components of output frame to save the decoded image.
If the host application calls the vpu_DecRegisterFrameBuffer, the function does nothing and returns
success. Another difference is that the MJPEG decoder does not need to call vpu_DecClrDispFlag to
clear the display flag of frame buffer because there is no frame buffer in the MJPEG decoder.

3.3.1.4 Encoder Operation Flow

To encode a bitstream, the application completes the following steps:

1. Open a encoder instance using vpu_EncOpen()

2. Before starting a picture encoder operation, get crucial parameters for encoder operations such as
required frame buffer size using vpu_EncGetInitialInfo()

3. Using the returned frame buffer requirement, allocate size of frame buffers and convey this
information to the VPU using vpu_EncRegisterFrameBuffer()

4. Generate high-level header syntaxes using vpu_EncGiveCommand()

5. Start picture encoder operation picture-by-picture using vpu_EncStartOneFrame()

6. Wait the completion of picture encoder operation interrupt event

7. After encoding a frame is complete, check the results of encoder operation using
vpu_EncGetOutputInfo()

8. If there are more frames to encode, go to Step 4, otherwise go to the next step

9. Terminate the sequence operation by closing the instance using vpu_EncClose()

i.MX51 VPU Application Programming Interface Windows Embedded CE 6.0 Reference Manual

40 Freescale Semiconductor

i.MX51 VPU Driver API Reference

The encoder operation flow is shown in Figure 5.

Figure 5. Encoder Operation Flow

VPU_In it()

VPU _En c
Op en()

VPU _En c
GetIn itialIn fo()

VPU _En c
StartOn eFrame()

Busy?

GetHostCm d
=ENC _END?

VPU _En c
GetOu tp ut In fo()

Pro cess Stream & Up d ate
F rame Bu ffer In dex

Yes

N o

No

F illYu vImag e()

F ram eIdx = 0? SetMixerD ecOu t()

WaitM ixerIn t()

No

Yes

GetHostCm d
=ENC _END?ClearHo stCo mman d()

VPU _En c
Close()

End

Yes

No

VPU_En c
GiveCo mman d()

VPU_En c
Reg isterF rameBu ffer()

i.MX51 VPU Application Programming Interface Windows Embedded CE 6.0 Reference Manual

Freescale Semiconductor 41

i.MX51 VPU Driver API Reference

3.3.2 Control API
The following sections describe the control API functions.

3.3.2.1 vpu_Init()

Prototype

RetCode vpu_Init(void);

Parameter

None

Return Value

RETCODE_SUCCESS VPU initialized successfully

RETCODE_CALLED_BEFORE Function call is invalid because multiple calls of the current API
function for a given instance are not allowed. In this case, The VPU
has been already initialized, and this function call is meaningless.

RETCODE_FAILURE VPU initialization unsuccessful

Description

This function initializes the VPU hardware and proper data structures/resources. The application must call
this function only once before using the VPU.

3.3.2.2 vpu_Deinit()

Prototype

RetCode vpu_Deinit(void);

Parameter

None

Return Value

RETCODE_NOT_INITIALIZED VPU not initialized before calling this function. The application
should initialize VPU by calling vpu_Init() before calling this
function.

RETCODE_SUCCESS VPU deinitialized successfully

RETCODE_FAILURE VPU deinitialized unsuccessfully

Description

This function deinitializes the VPU hardware and releases the resources that are allocated in the vpu_Init()
function. The application must call this function before exiting.

i.MX51 VPU Application Programming Interface Windows Embedded CE 6.0 Reference Manual

42 Freescale Semiconductor

i.MX51 VPU Driver API Reference

3.3.2.3 vpu_IsBusy()

Prototype

RetCode vpu_IsBusy(void);

Parameter

None

Return Value

RETCODE_NOT_INITIALIZED VPU not initialized before calling this function. The application
should initialize VPU by calling vpu_Init() before calling this
function.

RETCODE_BUSY VPU hardware is busy processing a frame

RETCODE_IDLE VPU hardware is idle

RETCODE_FAILURE Operation unsuccessful

Description

This function tells the application if decoder or encoder frame processing is completed or not at any time.

3.3.2.4 vpu_GetVersionInfo()

Prototype

RetCode vpu_GetVersionInfo(Unit32 *versionInfo);

Parameter

versionInfo [output] The 16 most significant bits are the product ID and the 16
least significant bets are the firmware version ID.

Return Value

RETCODE_SUCCESS Version information acquired successfully

RETCODE_FAILURE Current firmware does not contain any version information

RETCODE_NOT_INITIALIZED VPU not initialized before calling this function. The application
should initialize VPU by calling vpu_Init() before calling this
function.

Description

This function provides the version information running on the system to the application.

3.3.2.5 vpu_AllocPhysMem()

Prototype

RetCode vpu_AllocPhysMem(Uint32 cbSize, VPUMemAlloc *pmemalloc);

Parameter

cbSize [input] Number of bytes to allocate

i.MX51 VPU Application Programming Interface Windows Embedded CE 6.0 Reference Manual

Freescale Semiconductor 43

i.MX51 VPU Driver API Reference

pmemalloc [output] Pointer to a VPUMemAlloc that stores the physical/virtual
address of the memory allocation

Return Value

RETCODE_SUCCESS Allocation successful

RETCODE_FAILURE Allocation failed

Description

This function allocates physically contiguous memory and the corresponding virtual memory in user
space. When the application calls this function, the driver allocates physically contiguous memory and
reserves a region of pages in the virtual address space for the host application.

3.3.2.6 vpu_FreePhysMem()

Prototype

RetCode vpu_FreePhysMem(VPUMemAlloc* pmemalloc);

Parameter

pmemalloc [input] Pointer to a VPUMemAlloc that stores the allocated
physical/virtual address of the memory

Return Value

RETCODE_SUCCESS Deallocation successful

RETCODE_FAILURE Deallocation failed

Description

This function frees the physical memory allocated by vpu_AllocPhysMem back to the system.

3.3.2.7 vpu_GetPhysAddrFromVirtAddr()

Prototype

RetCode vpu_GetPhysAddrFromVirtAddr(void* lpvAddress, Uint32 cbSize, PhysicalAddress*
lppAddress);

Parameter

lpvAddress [input] Pointer to a virtual memory to be translated

cbSize [input] Number of bytes to be translated

lppAddress [output] Pointer to physical memory corresponding to the lpvAddress

Return Value

RETCODE_SUCCESS Address retrieved successfully

RETCODE_FAILURE Address retrieval failed

RETCODE_NOT_INITIALIZED VPU not initialized before calling this function. The application
should initialize VPU by calling vpu_Init() before calling this
function.

i.MX51 VPU Application Programming Interface Windows Embedded CE 6.0 Reference Manual

44 Freescale Semiconductor

i.MX51 VPU Driver API Reference

Description

This function retrieves the physical address of the given virtual address. To improve the performance, the
VPU may use the display memory directly as frame buffers. The virtual memory address of the display
memory can only be retrieved by the DirectDraw interface, but the VPU must access physically contiguous
memory as the frame buffers. This function allows the host application to get the physical memory address
from the virtual memory address.

3.3.2.8 vpu_Reset()

Prototype

RetCode vpu_Reset(CodecHandle handle, int index);

Parameter

handle [input] Encoder/decoder handle obtained from vpu_EncOpen()/vpu_DecOpen()

index [input] Index of instance to reset

Return Value

RETCODE_SUCCESS: VPU reset successfully

RETCODE_FAILURE VPU reset failed

RETCODE_INVALID_PARAM Given argument parameter, index, is invalid, which means the index is
larger than the maximum index value, 4

RETCODE_INVALID_HANDLE Given handle for current API function call, handle, is invalid

Description

This function resets the instance specified by the handle or index. The host application uses this function
in two ways:

• Call with handle parameter. If handle is given, the index parameter is ignored. After call, all context
of handle instance is lost and cannot be used again. Therefore, the host must call vpu_DecClose()
to release the resources. In order to use this instance again, host must re-open the instance.

• Call with index parameter. This method is for the special case in which the application exists
without instance closed, the resources need to be released and the host knows the instance index.

In normal operation, it is encouraged to reset the VPU with a specified handle. Resetting the VPU with an
index parameter is not recommended.

3.3.3 Encoder API
The following sections describe the encoder API functions.

3.3.3.1 vpu_EncOpen()

Prototype

RetCode vpu_EncOpen (EncHandle * pHandle, EncOpenParam * pOpenParam);

i.MX51 VPU Application Programming Interface Windows Embedded CE 6.0 Reference Manual

Freescale Semiconductor 45

i.MX51 VPU Driver API Reference

Parameter

pHandle [output] Pointer to EncHandle type variable which specifies instance for an
application. If no instance is available, a null handle is returned.

pOpenParam [input] Pointer to a EncOpenParam type structure which describes the parameters
for the new encoder instance.

Return Value

RETCODE_SUCCESS New encoder instance opened successfully

RETCODE_FAILURE New encoder instance not opened successfully. If there is no free
instance available, this value is returned in the function call.

RETCODE_INVALID_PARAM Given argument parameter, pOpenParam, is invalid—it has a null
pointer or contains improper values for some member variables.

RETCODE_NOT_INITIALIZED VPU not initialized before calling this function. The application
must initialize VPU by calling vpu_Init() before calling this
function.

RETCODE_FAILURE_TIMEOUT This value might mean that the hardware is busy with another
operation and unavailable for the current API call.

Description

To start a new encoder operation, the application must open a new instance for this encoder operation. By
calling this function, the application gets a handle specifying a new encoder instance. Because the i.MX51
VPU supports multiple instances of codec operations, the application needs this kind of handle for the all
running codec instances. Once the application received a handle, the application uses this handle to
represent the target instances for all subsequent encoder-related operations.

3.3.3.2 vpu_EncClose()

Prototype

RetCode vpu_EncClose(EncHandle handle);

Parameter

handle [input] Encoder handle obtained from vpu_EncOpen()

Return Value

RETCODE_SUCCESS Encoder instance closed successfully

RETCODE_INVALID_HANDLE Given handle for current API function call, handle, is invalid. This
return code might be returned if handle has not been obtained by
vpu_EncOpen(), for example a decoder handle, or if handle is of an
instance which has been closed.

RETCODE_FAILURE_TIMEOUT The value might mean that the hardware is busy with an other
operation and unavailable for the current API call.

i.MX51 VPU Application Programming Interface Windows Embedded CE 6.0 Reference Manual

46 Freescale Semiconductor

i.MX51 VPU Driver API Reference

Description

This function is called by the application to close an instance when the application completes the encoding
operations and wants to release this instance for other processing. After completion of this function call,
the instance referred to by handle is free. Once the application closes an instance, the application cannot
call any further encoder-specific function with this handle before re-opening a new instance with the same
handle.

3.3.3.3 vpu_EncGetBitstreamBuffer()

Prototype

RetCode vpu_EncGetBitstreamBuffer(EncHandle handle, PhysicalAddress * pRdptr,
PhysicalAddress * pWrptr, Uint32 * size);

Parameter

handle [input] Encoder handle obtained from vpu_EncOpen()

pRdptr [output] Stream buffer read pointer for the current encoder instance

pWrptr [output] Stream buffer write pointer for the current encoder instance

size [output] Variable specifying the available space in the bitstream buffer
for the current encoder instance

Return Value

RETCODE_SUCCESS Required information for encoder stream buffer received successfully

RETCODE_INVALID_HANDLE Given handle for current API function call, handle, is invalid. This
return code might be returned if handle has not been obtained by
vpu_EncOpen(), for example a decoder handle, or if handle is of an
instance which has been closed.

RETCODE_INVALID_PARAM Given argument parameters, pRdptr, pWrptr or size, are invalid—it
has a null pointer or contains improper values for some member
variables.

Description

After encoding a frame, the application must get the bitstream from the encoder using the bitstream
location and maximum size. The application gets this information by calling this function.

3.3.3.4 vpu_EncUpdateBitstreamBuffer()

Prototype

RetCode vpu_EncUpdateBitstreamBuffer(EncHandle handle, Uint32 size);

Parameter

handle [input] Encoder handle obtained from vpu_EncOpen()

size [input] Variable specifying the amount of bits to get from the bitstream
buffer for the current encoder instance

i.MX51 VPU Application Programming Interface Windows Embedded CE 6.0 Reference Manual

Freescale Semiconductor 47

i.MX51 VPU Driver API Reference

Return Value

RETCODE_SUCCESS Putting new stream data completed successfully

RETCODE_INVALID_HANDLE Given handle for current API function call, handle, is invalid. This
return code might be returned if handle has not been obtained by
vpu_EncOpen(), for example a decoder handle, or if handle is of an
instance which has been closed.

RETCODE_INVALID_PARAM Given argument parameter, size, is invalid—it is larger than the value
obtained from vpu_EncGetBitstreamBuffer()

Description

The application must let encoder know how much bitstream has been transferred from the address obtained
from vpu_EncGetBitstreamBuffer(). By giving the size as an argument, the API automatically handles
pointer wrap-around and updates the read pointer.

3.3.3.5 vpu_EncGetInitialInfo()

Prototype

RetCode vpu_EncGetInitialInfo(EncHandle handle, EncInitialInfo * pInitialInfo);

Parameter

handle [input] Encoder handle obtained from vpu_EncOpen()

pInitialInfo [output] Pointer to a EncInitialInfo type structure which describes
the parameters required before starting encoder operations

Return Value

RETCODE_SUCCESS Receiving the initial parameters completed successfully

RETCODE_FAILURE There is an error getting the configuration information for the
encoder

RETCODE_INVALID_HANDLE Given handle for current API function call, handle, is invalid. This
return code might be returned if handle has not been obtained by
vpu_EncOpen(), for example a decoder handle, or if handle is of an
instance which has been closed.

RETCODE_INVALID_PARAM The given argument parameter, pInitialInfo, is invalid—it has a null
pointer or contains improper values for some member variables.

RETCODE_CALLED_BEFORE Function call is invalid because multiple calls of the current API
function for a given instance are not allowed. The encoder initial
information has already been received, so this function call is
meaningless and not allowed.

RETCODE_FAILURE_TIMEOUT There is an time-out error in the function and the driver did not
receive an interrupt after sending the initial command to the VPU

RETCODE_CALLED_BEFORE Function has been called before

i.MX51 VPU Application Programming Interface Windows Embedded CE 6.0 Reference Manual

48 Freescale Semiconductor

i.MX51 VPU Driver API Reference

Description

Before starting an encoder operation, the application must allocate the frame buffers according to the
information obtained from this function. This function returns the required parameters for
vpu_EncRegisterFrameBuffer(), which is followed by this function call.

3.3.3.6 vpu_EncRegisterFrameBuffer()

Prototype

RetCode vpu_EncRegisterFrameBuffer (EncHandle handle, FrameBuffer * pBuffer, int num, int
stride);

Parameter

handle [input] Encoder handle obtained from vpu_EncOpen()

pBuffer [input] Pointer to a FrameBuffer type structure which describes the
frame buffer pointer parameters for the current encoder instance

num [input] Number of frame buffers

stride [input] Stride value of the given frame buffers

The distance between a pixel in a row and the corresponding pixel in the next row is called stride. The
value of stride must be a multiple of 8. The address of the first pixel in the second row does not necessarily
coincide with the value next to the last pixel in the first row. In other words, stride can have values greater
than the picture width in pixels. The application should not set a stride value smaller than the picture width.
For the Y component, the application must allocate at least a space of size (frame height × stride), and for
Cb or Cr components, (frame height/2 × stride/2). For MJPEG encoding, the address of the frame buffer
is not necessary. Only the stride value is necessary which is used as the source image stride.

Return Value

RETCODE_SUCCESS Registering the frame buffers completed successfully

RETCODE_FAILURE There is an error in registering the frame buffer for the encoder

RETCODE_INVALID_HANDLE Given handle for current API function call, handle, is invalid. This
return code might be returned if handle has not been obtained by
vpu_EncOpen(), for example a decoder handle, or if handle is of an
instance which has been closed.

RETCODE_WRONG_CALL_SEQUENCE

Current API function call is invalid considering the allowed sequences
between API functions. In this case, the application may have called
this function before successfully calling vpu_EncGetInitialInfo().
This function should be called after successfully calling
vpu_EncGetInitialInfo().

RETCODE_INVALID_FRAME_BUFFER

Argument pBuffer is invalid and is not initialized or is not valid.

i.MX51 VPU Application Programming Interface Windows Embedded CE 6.0 Reference Manual

Freescale Semiconductor 49

i.MX51 VPU Driver API Reference

RETCODE_INSUFFICIENT_FRAME_BUFFERS

Given number of frame buffers, num, is not enough for the encoder
operations of the given handle. num should be greater than or equal to
the value of minFrameBufferCount obtained from
vpu_EncGetInitialInfo().

RETCODE_INVALID_STRIDE Given argument stride is invalid—it is 0 or is not a multiple of 8

RETCODE_CALLED_BEFORE Function call is invalid because multiple calls of the current API
function for a given instance are not allowed. The encoder initial
information has already been received, so this function call is
meaningless and not allowed.

RETCODE_FAILURE_TIMEOUT

There is an time-out error in the function and the driver did not receive
an interrupt after sending the initial command to the VPU

Description

This function registers frame buffers requested by vpu_EncGetInitialInfo(). The frame buffers pointed
to by pBuffer are managed internally within the VPU. These include reference frames, reconstructed
frames, and so on. The application must not change the contents of the array of frame buffers during the
life time of the instance, and num must not be less than minFrameBufferCount obtained by
vpu_EncGetInitialInfo().

3.3.3.7 vpu_EncStartOneFrame()

Prototype

RetCode vpu_EncStartOneFrame (EncHandle handle, EncParam * pParam);

Parameter

handle [input] Encoder handle obtained from vpu_EncOpen()

pParam [input] Pointer to a EncParam type structure which describes picture
encoding parameters for the current encoder instance

Return Value

RETCODE_SUCCESS Encoding a new frame started successfully. This return value does not
mean that encoding a frame completed successfully.

RETCODE_FAILURE There is an error in starting one frame encoding operation

RETCODE_INVALID_HANDLE Given handle for current API function call, handle, is invalid. This
return code might be returned if handle has not been obtained by
vpu_EncOpen(), for example a decoder handle, or if handle is of an
instance which has been closed.

RETCODE_WRONG_CALL_SEQUENCE

Current API function call is invalid considering the allowed sequences
between API functions. In this case, the application may have called
this function before successfully calling

i.MX51 VPU Application Programming Interface Windows Embedded CE 6.0 Reference Manual

50 Freescale Semiconductor

i.MX51 VPU Driver API Reference

vpu_EncRegisterFrameBuffer(). This function should be called
after successfully calling vpu_EncRegisterFrameBuffer().

RETCODE_INVALID_PARAM The given argument parameter, pParam, is invalid—it has a null
pointer or contains improper values for some member variables.

RETCODE_INVALID_FRAME_BUFFER

sourceFrame in the input structure EncParam is invalid—
sourceFrame is not valid even though picture-skip is disabled

Description

This function starts encoding one frame. Returning from this function does not mean the completion of
encoding one frame, but it just initiates encoding one frame. This function should be followed by
vpu_EncGetOutputInfo() with the same encoder handle. Before that, the application can not call another
API function except for vpu_IsBusy(), vpu_EncGetBitstreamBuffer(), and
vpu_EncUpdateBitstreamBuffer().

3.3.3.8 vpu_EncGetOutputInfo()

Prototype

RetCode vpu_EncStartOneFrame(EncHandle handle, EncOutputInfo * pInfo);

Parameter

handle [input] Encoder handle obtained from vpu_EncOpen()

pInfo [output] Pointer to a EncOutputInfo type structure which describes
picture encoding results for the current encoder instance

Return Value

RETCODE_SUCCESS Output information of current frame encoding received successfully

RETCODE_FAILURE There is an error in getting the output information after one frame
encoding command

RETCODE_INVALID_HANDLE Given handle for current API function call, handle, is invalid. This
return code might be returned if handle has not been obtained by
vpu_EncOpen(), for example a decoder handle, or if handle is of an
instance which has been closed.

RETCODE_WRONG_CALL_SEQUENCE

Current API function call is invalid considering the allowed sequences
between API functions. In this case, the application may have called
this function before successfully calling vpu_EncStartOneFrame().
This function should be called after successfully calling
vpu_EncStartOneFrame().

RETCODE_INVALID_PARAM The given argument parameter, pInfo, is invalid—it has a null pointer
or contains improper values for some member variables.

i.MX51 VPU Application Programming Interface Windows Embedded CE 6.0 Reference Manual

Freescale Semiconductor 51

i.MX51 VPU Driver API Reference

Description

This function gets the information about the encoding output. The application can know about picture type,
the address and size of the generated bitstream, the number of generated slices, the end addresses of the
slices, and the macroblock bit position information. The host application calls this function after frame
encoding is finished, and before starting the further processing. vpu_EncStartOneFrame() and
vpu_EncGetOutputInfo() must be matched and must be called in the same thread.

3.3.3.9 vpu_EncGiveCommand()

Prototype

RetCode vpu_EncGiveCommand (EncHandle handle, CodecCommand cmd, void * pParam);

Parameter

handle [input] Encoder handle obtained from vpu_EncOpen()

cmd [input] Variable specifying the command of CodecComand type

pParam [input/output] Pointer to a command-specific data structure which
describes picture I/O parameters for the current encoder instance

Return Value

RETCODE_INVALID_COMMAND Given argument, cmd, is invalid—it is undefined or not allowed in
the current instance

RETCODE_INVALID_HANDLE Given handle for current API function call, handle, is invalid. This
return code might be returned if handle has not been obtained by
vpu_EncOpen(), for example a decoder handle, or if handle is of
an instance which has been closed.

RETCODE_FRAME_NOT_COMPLETE

Frame decoding or encoding operation is not complete, so the
given API function call cannot be performed this time. A frame
encoding or decoding operation should be completed by calling
vpu_EncGetOutputInfo() or vpu_DecGetOutputInfo(). Even
though the result of the current frame operation is not necessary,
the application should call vpu_EncGetOutputInfo() or
vpu_DecGetOutputInfo() to proceed this function call.

i.MX51 VPU Application Programming Interface Windows Embedded CE 6.0 Reference Manual

52 Freescale Semiconductor

i.MX51 VPU Driver API Reference

Description

This function is provided to give applications a certain level of freedom for reconfiguring encoder
operations after creating an encoder instance. The options which can be changed dynamically while
encoding a video sequence as well as some command-specific return codes are shown in Table 5.

Table 5. Encoder Commands

Command Description

ENABLE_ROTATION This command enables rotation of the post-rotator. pParam is ignored. This command returns
RETCODE_SUCCESS.

DISABLE_ROTATION This command disables rotation of the post-rotator. pParam is ignored. This command returns
RETCODE_SUCCESS.

ENABLE_MIRRORING This command enables mirroring of the post-rotator. pParam is ignored. This command returns
RETCODE_SUCCESS.

DISABLE_MIRRORING This command disables mirroring of the post-rotator. pParam is ignored. This command
returns RETCODE_SUCCESS.

SET_MIRROR_DIRECTION This command sets the mirror direction of the post-rotator. pParam is a pointer to
MirrorDirection. *pParam should be one of the following:
 • MIRDIR_NONE—No mirroring
 • MIRDIR_VER—Vertical mirroring
 • MIRDIR_HOR—Horizontal mirroring
 • MIRDIR_HOR_VER—Both directions
Return values are as follows:
RETCODE_SUCCESS Given mirroring direction is valid
RETCODE_INVALID_PARAM Given argument parameter, pParam, is invalid so given

mirroring direction is invalid

SET_ROTATION_ANGLE This command sets the counter-clockwise angle for post-rotation. pParam a pointer to an
integer which represents rotation angle in degrees. Rotation angle should be 0, 90, 180, or
270. Return values are as follows:
RETCODE_SUCCESS Given rotation angle is valid
RETCODE_INVALID_PARAM Given argument parameter, pParam, is invalid so given

rotation angle is invalid
Note: Rotation angle can not be changed after sequence initialization, because it might cause
problems in handling frame buffers.

ENC_GET_SPS_RBSP pParam is a pointer to an EncParamSet type structure. The first variable, paraSet, is a physical
address where the generated stream is located, and size is the size of the stream in bytes.
Return values are as follows:
RETCODE_SUCCESS SPS successfully generated and available at the received

buffer pointer
RETCODE_INVALID_COMMAND Given argument, cmd, is invalid—it is undefined or not

allowed in the current instance. In this case, current
instance might not be an AVC (H.264) encoder instance.

RETCODE_INVALID_PARAM Given argument, pParam, is invalid—it has a null pointer
or contains improper values for some member variables.

i.MX51 VPU Application Programming Interface Windows Embedded CE 6.0 Reference Manual

Freescale Semiconductor 53

i.MX51 VPU Driver API Reference

ENC_GET_PPS_RBSP pParam is a pointer to an EncParamSet type structure. Return values are as follows:
RETCODE_SUCCESS PPS successfully generated and available at the received

buffer pointer
RETCODE_INVALID_COMMAND Given argument, cmd, is invalid—it is undefined or not

allowed in the current instance. In this case, current
instance might not be an AVC (H.264) encoder instance.

RETCODE_INVALID_PARAM Given argument, pParam, is invalid—it has a null pointer
or contains improper values for some member variables.

ENC_PUT_MP4_HEADER pParam is a pointer to an EncHeaderParam structure, where buf is a physical address pointing
to the generated stream location, and size is the size of the generated stream in bytes.
headerType is a type of header that the application wants to generate and has values such as
VOL_HEADER, VOS_HEADER, or VO_HEADER. Return values are as follows:
RETCODE_SUCCESS Requested header syntax successfully inserted
RETCODE_INVALID_COMMAND Given argument, cmd, is invalid—it is undefined or not

allowed in the current instance. In this case, current
instance might not be an MPEG-4 encoder instance.

RETCODE_INVALID_PARAM Given argument, pParam, is invalid—it has a null pointer
or contains improper values for some member variables.

ENC_PUT_AVC_HEADER pParam is a pointer to an EncHeaderParam structure, where buf is a physical address pointing
the generated stream location and size is the size of generated stream in bytes. headerType
is a type of header that the application wants to generate and has values such as SPS_RBSP
or PPS_RBSP. Return values are as follows:
RETCODE_SUCCESS Requested header syntax successfully inserted
RETCODE_INVALID_COMMAND Given argument, cmd, is invalid—it is undefined or not

allowed in the current instance. In this case, current
instance might not be an AVC (H.264) encoder instance.

RETCODE_INVALID_PARAM Given argument, pParam or headerType, is invalid—it has
a null pointer or contains improper values for some
member variables

ENC_GET_VOS_HEADER Tells the encoder to generate a video object sequence (VOS) header stream based on the
information provided when opening the instance for external usage (for example, out-of-band
transmission). The generated stream is in RBSP format and big endian. Return values are as
follows:
RETCODE_SUCCESS VOS header information encoded successfully
RETCODE_INVALID_COMMAND Given argument, cmd, is invalid—it is undefined or not

allowed in the current instance. In this case, current
instance might not be an MPEG-4 encoder instance.

RETCODE_INVALID_PARAM Given argument, pParam, is invalid—it has a null pointer
or contains improper values for some member variables.

RETCODE_FAILURE Command failed to executed due to unexpected errors

ENC_GET_VO_HEADER Tells the encoder to generate a visual object (VO) header stream based on the information
provided when opening the instance for external usage (for example, out-of-band
transmission). The generated stream is in RBSP format and big endian. Return values are as
follows:
RETCODE_SUCCESS VO header information encoded successfully
RETCODE_INVALID_COMMAND Given argument, cmd, is invalid—it is undefined or not

allowed in the current instance. In this case, current
instance might not be an MPEG-4 encoder instance.

RETCODE_INVALID_PARAM Given argument, pParam, is invalid—it has a null pointer
or contains improper values for some member variables.

RETCODE_FAILURE Command failed to executed due to unexpected errors

Table 5. Encoder Commands (continued)

Command Description

i.MX51 VPU Application Programming Interface Windows Embedded CE 6.0 Reference Manual

54 Freescale Semiconductor

i.MX51 VPU Driver API Reference

ENC_GET_VOL_HEADER Tells the encoder to generate a video object layer (VOL) header stream based on the
information provided when opening the instance for external usage (for example, out-of-band
transmission). The generated stream is in RBSP format and big endian. Return values are as
follows:
RETCODE_SUCCESS VOL header information encoded successfully
RETCODE_INVALID_COMMAND Given argument, cmd, is invalid—it is undefined or not

allowed in the current instance. In this case, current
instance might not be an MPEG-4 encoder instance.

RETCODE_INVALID_PARAM Given argument, pParam, is invalid—it has a null pointer
or contains improper values for some member variables.

RETCODE_FAILURE Command failed to executed due to unexpected errors

ENC_SET_INTRA_MB_
REFRESH_NUMBER

pParam is a pointer to an integer which represents the intra refresh number. The intra refresh
number should be between 0 and the macroblock number of the encoded picture. Return
values are as follows:
RETCODE_SUCCESS Requested header syntax successfully inserted

ENC_ENABLE_HEC pParam is ignored. Return values are as follows:
RETCODE_SUCCESS Requested header syntax successfully inserted
RETCODE_INVALID_COMMAND Given argument, cmd, is invalid—it is undefined or not

allowed in the current instance. In this case, current
instance might not be an MPEG-4 encoder instance.

ENC_DISABLE_HEC pParam is ignored. Return values are as follows:
RETCODE_SUCCESS Requested header syntax successfully inserted
RETCODE_INVALID_COMMAND Given argument, cmd, is invalid—it is undefined or not

allowed in the current instance. In this case, current
instance might not be an MPEG-4 encoder instance.

ENC_SET_SLICE_INFO pParam is a pointer to an EncSliceMode structure, where sliceMode enables a multi slice
structure, sliceSizeMode represents the mode of calculating one slicesize, and sliceSize is the
size of one slice. Return values are as follows:
RETCODE_SUCCESS Requested header syntax successfully inserted
RETCODE_INVALID_PARAM Given argument parameter, pParam (EncSliceMode), is

invalid—it has a null pointer or contains improper values for
some member variables

ENC_SET_GOP_NUMBER pParam is a pointer to an integer which represents the GOP number. Return values are as
follows:
RETCODE_SUCCESS Requested header syntax successfully inserted
RETCODE_INVALID_PARAM pParam is invalid—the given values for gopsize is an

improper value

ENC_SET_INTRA_QP pParam is a pointer to an integer which represents constant I frame QP. Constant I frame QP
should be between 1 and 31 for MPEG-4, and between 0 and 51 for AVC (H.264). Return
values are as follows:
RETCODE_SUCCESS Requested header syntax successfully inserted
RETCODE_INVALID_COMMAND Given argument, cmd, is invalid—it is undefined or not

allowed in the current instance. In this case, current
instance might not be an encoder instance.

RETCODE_INVALID_PARAM Given argument parameter, pParam(QP value), is
invalid—it has a null pointer or the given value for
constance I frame QP is an improper value

Table 5. Encoder Commands (continued)

Command Description

i.MX51 VPU Application Programming Interface Windows Embedded CE 6.0 Reference Manual

Freescale Semiconductor 55

i.MX51 VPU Driver API Reference

ENC_SET_BITRATE pParam is a pointer to an integer which represents the bitrate. The bitrate should be between
0 and 32767. Return values are as follows:
RETCODE_SUCCESS Requested header syntax successfully inserted
RETCODE_INVALID_COMMAND Given argument, cmd, is invalid—it is undefined or not

allowed in the current instance. In this case, current
instance might not be an encoder instance.

RETCODE_INVALID_PARAM The given argument parameter, pParam (Bitrate value), is
invalid—it has a null pointer or the given value for bitrate is
an improper value

ENC_SET_FRAME_RATE pParam is a pointer to an integer which represents the frame rate value. The frame rate should
be greater than 0. Return values are as follows:
RETCODE_SUCCESS Requested header syntax inserted successfully
RETCODE_INVALID_COMMAND Given argument, cmd, is invalid—it is undefined or not

allowed in the current instance. In this case, the current
instance might not be an encoder instance.

RETCODE_INVALID_PARAM Given argument, pParam, is invalid—it has a null pointer
or contains improper values for some member variables

ENC_SET_REPORT_
MBINFO

pParam is a pointer to a type of ReportInfo. This command enables/disables the MB
information report. If the host application enables the MB information report, the buffer used to
save the MB information and its size must be set with the correct values that returns in
vpu_EncGetIntialInfo(). The reported MB information is saved into the buffer set by this
command. If the MB information report option is enabled, Slice Boundary and Qp are reported
using 1byte as follows:
Bit 7: Reserved
Bit 6: Slice Boundary. Whenever new slice header is decoded, this bit field is toggled
Bits 5:0: Macroblock Qp value
Return values are as follows:
RETCODE_SUCCESS Requested settings set successfully
RETCODE_INVALID_PARAM Given parameters, buffer pointer or buffer size, is

invalid—invalid parameter pointer or the buffer size is smaller
than the required size.

RETCODE_REPORT_BUF_NOT_SET
Pointer to the MB information buffer is invalid

Table 5. Encoder Commands (continued)

Command Description

i.MX51 VPU Application Programming Interface Windows Embedded CE 6.0 Reference Manual

56 Freescale Semiconductor

i.MX51 VPU Driver API Reference

3.3.4 Decoder API
The following sections describe the decoder API functions.

3.3.4.1 vpu_DecOpen()

Prototype

RetCode vpu_DecOpen(DecHandle * pHandle, DecOpenParam * pOpenParam);

Parameter

pHandle [output] Pointer to a DecHandle type variable which specifies each
instance for an application

pOpenParam [input] Pointer to a DecOpenParam type structure which describes
the required parameters for creating a new decoder instance

ENC_SET_REPORT_
MVINFO

pParam is a pointer to a type of ReportInfo. This command enables/disables the MV
information report. If the host application enables the MV information report, the buffer used to
save the MV information and its size must be set with the correct values that returns in
vpu_EncGetIntialInfo(). The reported MV information is saved into the buffer set by this
command. If the MV information option is enabled, Motion Vector information is reported using
4 bytes as follows:
Bit 31: Intra Flag (1: intra, 0 inter)
Bits 30:16: X value of motion vector
Bits 16:0: Y value of motion vector
Return values are as follows:
RETCODE_SUCCESS Requested settings set successfully
RETCODE_INVALID_PARAM Given parameters, buffer pointer and buffer size, are

invalid—invalid parameter pointer or the buffer size is smaller
than the required size.

RETCODE_REPORT_BUF_NOT_SET
Pointer to the MV information buffer is invalid

ENC_SET_REPORT_
SLICEINFO

pParam is a pointer to a type of ReportInfo. This command enables/disables the SliceInfo
information report. If the host application enables the Slice information report, the buffer used
to save the SliceInfo information and its size must be set with the correct values that returns in
vpu_EncGetIntialInfo(). The reported SliceInfo information is saved into the buffer set by this
command. If the SliceInfo information option is enabled, Slice information is reported using
8 bytes as follows:
Bits 63:48: Reserved.
Bits 47:32: Last macroblock index of a slice (zero based-index)
Bits 31:0: Total number of bits used for encoding a slice
Return values are as follows:
RETCODE_SUCCESS Requested settings set successfully
RETCODE_INVALID_PARAM This means the given parameters, buffer pointer and buffer

size, are invalid—invalid parameter pointer or the buffer size
is smaller than the required size.

RETCODE_REPORT_BUF_NOT_SET
Pointer to the SliceInfo buffer is invalid

Table 5. Encoder Commands (continued)

Command Description

i.MX51 VPU Application Programming Interface Windows Embedded CE 6.0 Reference Manual

Freescale Semiconductor 57

i.MX51 VPU Driver API Reference

Return Value

RETCODE_SUCCESS New decoder instance created successfully

RETCODE_FAILURE New decoder instance not opened successfully. If there is no free
instance available, this value is returned in the function call.

RETCODE_INVALID_PARAM Given argument parameter, pOpenParam, is invalid—it has a null
pointer or contains improper values for some member variables.

RETCODE_NOT_INITIALIZED VPU not initialized before calling this function. The application
must initialize VPU by calling vpu_Init() before calling this
function.

RETCODE_FAILURE_TIMEOUT VPU is busy with another task or there is something wrong with the
VPU. In normal operation, the API call should not return a
RETCODE_FAILURE_TIMEOUT value. If the application
receives this value, the VPU internal function may be corrupted.

Description

To decode, the application must open the decoder. By calling this function, the application receives a
handle by which the application can refer to a decoder instance. Because the VPU is a multiple instance
codec, the application requires this kind of handle. Once the application receives a handle, the application
must pass the handle to all subsequent decoder-related functions.

3.3.4.2 vpu_DecClose()

Prototype

RetCode vpu_DecClose(DecHandle handle);

Parameter

handle [input] Decoder handle obtained from vpu_DecOpen()

Return Value

RETCODE_SUCCESS Current decoder instance closed successfully

RETCODE_INVALID_HANDLE Given handle for current API function call, handle, is invalid. This
return code might be caused if handle has not been obtained by
vpu_DecOpen() or if handle is of an instance which has been
closed.

RETCODE_FAILURE_TIMEOUT VPU is busy with another task or there is something wrong with the
VPU. In normal operation, the API call should not return a
RETCODE_FAILURE_TIMEOUT value. If the application
receives this value, the VPU internal function may be corrupted.

Description

When the application is finished decoding a sequence and wants to release this instance for other
processing, the application should close this instance. After completion of this function call, the instance
referred to by handle is free. Once the application closes an instance, the application cannot call any further
decoder-specific function with this handle before re-opening a new decoder instance with the same handle.

i.MX51 VPU Application Programming Interface Windows Embedded CE 6.0 Reference Manual

58 Freescale Semiconductor

i.MX51 VPU Driver API Reference

3.3.4.3 vpu_DecGetInitialInfo()

Prototype

RetCode vpu_DecGetInitialInfo(DecHandle handle, DecInitialInfo * pInfo);

Parameter

handle [input] Decoder handle obtained from vpu_DecOpen()

pInfo [output] Pointer to a DecInitialInfo data structure

Return Value

RETCODE_SUCCESS Required information of the stream data to be decoded received
successfully

RETCODE_FAILURE: There is an error in getting the configuration information for the
decoder

RETCODE_INVALID_HANDLE Given handle for current API function call, handle, is invalid. This
return code might be caused if handle has not been obtained by
vpu_DecOpen() or if handle is of an instance which has been
closed.

RETCODE_INVALID_PARAM Given argument parameter, pInfo, is invalid—it has a null pointer or
contains improper values for some member variables.

RETCODE_FAILURE_TIMEOUT VPU is busy with another task or there is something wrong with the
VPU. In normal operation, the API call should not return a
RETCODE_FAILURE_TIMEOUT value. If the application
receives this value, the VPU internal function may be corrupted.

RETCODE_WRONG_CALL_SEQUENCE

Current API function call is invalid considering the allowed
sequence between API functions. In this case, the application might
call this function before successfully putting the bitstream into the
buffer data by calling vpu_DecUpdateBitstreamBuffer(). In order
to perform this functions call, the bitstream data including the
sequence level header should be transferred into the bitstream buffer
before calling vpu_DecGetInitialInfo().

RETCODE_CALLED_BEFORE Function call is invalid because multiple calls of the current API
function for a given instance are not allowed. The decoder initial
information has been already received, so this function call is
meaningless and not allowed.

Description

The application must pass the address of a DecInitialInfo structure, where the decoder stores the
information such as picture size, number of necessary frame buffers, and so on. For details, see the
definition of the DecInitialInfo data structure in Section 3.2.2.19, “DecInitialInfo.” This function should
be called after creating a decoder instance and before starting frame decoding. The application must
provide sufficient amount of bitstream to the decoder by calling vpu_DecUpdateBitstreamBuffer() so
bitstream buffer does not empty before this function returns.

i.MX51 VPU Application Programming Interface Windows Embedded CE 6.0 Reference Manual

Freescale Semiconductor 59

i.MX51 VPU Driver API Reference

In file-play mode with MPEG-4 or H.264, vpu_DecGetInitialInfo() operates only with sequence level
header syntaxes which might be much smaller than the 256 byte minimum transfer unit. If the application
cannot ensure to feed enough data for the stream, the application can use the forced escape option using
vpu_DecSetEscSeqInit().

3.3.4.4 vpu_DecSetEscSeqInit()

Prototype

RetCode vpu_DecSetEscSeqInit(DecHandle handle, int escape);

Parameter

handle [input] Decoder handle obtained from vpu_DecOpen()

escape [input] Flag to enable or disable forced escape from SEQ_INIT

Return Value

RETCODE_SUCCESS Force escape flag successfully provided to the BIT processor

RETCODE_INVALID_HANDLE Given handle for current API function call, handle, is invalid. This
return code might be caused if handle has not been obtained by
vpu_DecOpen() or if handle is of an instance which has been
closed.

RETCODE_FAILURE_TIMEOUT VPU is busy with another task or there is something wrong with the
VPU. In normal operation, the API call should not return a
RETCODE_FAILURE_TIMEOUT value. If the application
receives this value, the VPU internal function may be corrupted.

Description

This is a special function to provide a way of escaping the VPU hanging during DEQ_SEQ_INIT. When
this flag is set to 1 and the stream buffer becomes empty, the VPU automatically terminates the
DEC_SEQ_INIT operation. If the target application ensures that a high layer header syntax is periodically
sent through the channel, the application does not need this option. however, if the target application
cannot ensure that a high layer header syntax is periodically sent through the channel (such as file-play
mode), this function is useful to avoid the VPU hanging because of crucial errors in the header syntax.

NOTE
This flag is applied to all decoder instances together; therefore, it is
recommended to reset this flag to 0 after successfully finishing the sequence
initialization.

3.3.4.5 vpu_DecGetBitstreamBuffer()

Prototype

RetCode vpu_DecGetBitstreamBuffer(DecHandle handle, PhysicalAddress * pRdptr,
PhysicalAddress * pWrptr, Uint32 * size);

Parameter

handle [input] Decoder handle obtained from vpu_DecOpen()

i.MX51 VPU Application Programming Interface Windows Embedded CE 6.0 Reference Manual

60 Freescale Semiconductor

i.MX51 VPU Driver API Reference

pRdptr [output] Stream buffer read pointer for the current decoder instance

pWrptr [output] Stream buffer write pointer for the current decoder instance

size [output] Variable specifying the available space in the bitstream buffer
for the current decoder instance

Return Value

RETCODE_SUCCESS Required information for the decoder stream buffer received
successfully

RETCODE_INVALID_HANDLE Given handle for current API function call, handle, is invalid. This
return code might be caused if handle has not been obtained by
vpu_DecOpen() or if handle is of an instance which has been closed.

RETCODE_INVALID_PARAM Given argument parameter, pRdptr, pWrptr or size, is invalid—it has
a null pointer or given values for some member variables have
improper values.

Description

Before decoding a bitstream, the application must give the bitstream data to the decoder. First, the
application must know where bitstream can be placed and the maximum size. The application received this
information from this function. For the VPU, using the data from this function is more efficient than
providing an arbitrary bitstream buffer to the decoder.

NOTE
The given size is the total sum of the free space in the ring buffer. So when
the application downloads a bitstream of this given size, Wrptr can reach the
end of the stream buffer. In this case, the application should wrap-around
Wrptr to the beginning of the stream buffer and download the remaining
bits. If not, the decoder operation can fail.

3.3.4.6 vpu_DecUpdateBitstreamBuffer()

Prototype

RetCode vpu_DecUpdateBitstreamBuffer(DecHandle handle, Uint32 size);

Parameter

handle [input] Decoder handle obtained from vpu_DecOpen()

size [input] Variable specifying the amount of bits transferred into the
bitstream buffer for the current decoder instance

Return Value

RETCODE_SUCCESS Putting new stream data completed successfully

RETCODE_INVALID_HANDLE Given handle for current API function call, handle, is invalid. This
return code might be caused if handle has not been obtained by
vpu_DecOpen() or if handle is of an instance which has been
closed.

i.MX51 VPU Application Programming Interface Windows Embedded CE 6.0 Reference Manual

Freescale Semiconductor 61

i.MX51 VPU Driver API Reference

RETCODE_INVALID_PARAM The given argument parameter, size, is invalid—it is larger than the
value obtained from vpu_DecGetBitstreamBuffer() or larger than
the available space in the bitstream buffer.

RETCODE_FAILURE_TIMEOUT VPU is busy with another task or there is something wrong with the
VPU. In normal operation, the API call should not return a
RETCODE_FAILURE_TIMEOUT value. If the application
receives this value, the VPU internal function may be corrupted.

Description

The application must let decoder know how much bitstream has been transferred to the address obtained
from vpu_DecGetBitstreamBuffer(). By giving the size as argument, the API automatically handles
pointer wrap-around and write pointer update.

3.3.4.7 vpu_DecRegisterFrameBuffer()

Prototype

RetCode vpu_DecRegisterFrameBuffer(DecHandle handle, FrameBuffer * pBuffer, int num, int
stride, DecBufInfo * pBufInfo);

Parameter

handle [input] Decoder handle obtained from vpu_DecOpen()

pBuffer [input] Pointer to a FrameBuffer type structure which describes the
frame buffer pointer parameters for the current decoder instance

num [input] Number of frame buffers

stride [input] Stride value of the given frame buffers

pBufInfo [input] Pointer to a DecBufInfo type structure which describes the
additional work buffers. sliceSaveBuffer is only declared by this
structure

Return Value

RETCODE_SUCCESS Registering the frame buffer information completed successfully

RETCODE_INVALID_HANDLE Given handle for current API function call, handle, is invalid. This
return code might be caused if handle has not been obtained by
vpu_DecOpen() or if handle is of an instance which has been
closed.

RETCODE_FAILURE_TIMEOUT VPU is busy with another task or there is something wrong with the
VPU. In normal operation, the API call should not return a
RETCODE_FAILURE_TIMEOUT value. If the application
receives this value, the VPU internal function may be corrupted.

RETCODE_WRONG_CALL_SEQUENCE

Current API function call is invalid considering the allowed
sequence between API functions. In this case, the application might
have called this function before successfully calling
vpu_DecGetInitialInfo().

i.MX51 VPU Application Programming Interface Windows Embedded CE 6.0 Reference Manual

62 Freescale Semiconductor

i.MX51 VPU Driver API Reference

RETCODE_INVALID_FRAME_BUFFER

pBuffer is invalid—it is not initialized or is not valid anymore

RETCODE_INSUFFICIENT_FRAME_BUFFERS

Given number of frame buffers, num, is not enough for the decoder
operations of the given handle. num should be greater than or equal
to the value requested by vpu_DecGetInitialInfo().

RETCODE_INVALID_STRIDE The given argument stride is invalid—it is smaller than the decoded
picture width, or is not a multiple of 8.

RETCODE_CALLED_BEFORE Function call is invalid because multiple calls of the current API
function for a given instance are not allowed. The decoder initial
information has been already received, so this function call is
meaningless and not allowed.

Description

This function is used for registering frame buffers with the information from vpu_DecGetInitialInfo().
The frame buffers pointed to by pBuffer are managed internally within the VPU. These include reference
frames, reconstructed frame, and so on. The application must not change the contents of the array of frame
buffers during the life time of the instance, and num must not be less than minFrameBufferCount obtained
from vpu_DecGetInitialInfo(). In MJPG decoding, the host application can skip this function call
because there is no reference frame concept.

3.3.4.8 vpu_DecStartOneFrame()

Prototype

RetCode vpu_DecStartOneFrame(DecHandle handle, DecParam *pParam);

Parameter

handle [input] Decoder handle obtained from vpu_DecOpen()

pParam [input] Pointer to a DecParam type structure that describes the
picture decoding parameters for the current encoder instance

Return Value

RETCODE_SUCCESS Decoding a new frame started successfully. This return value does
not mean that decoding a frame completed successfully.

RETCODE_INVALID_HANDLE Given handle for current API function call, handle, is invalid. This
return code might be caused if handle has not been obtained by
vpu_DecOpen() or if handle is of an instance which has been
closed.

RETCODE_FAILURE_TIMEOUT VPU is busy with another task or there is something wrong with the
VPU. In normal operation, the API call should not return a
RETCODE_FAILURE_TIMEOUT value. If the application
receives this value, the VPU internal function may be corrupted.

i.MX51 VPU Application Programming Interface Windows Embedded CE 6.0 Reference Manual

Freescale Semiconductor 63

i.MX51 VPU Driver API Reference

RETCODE_WRONG_CALL_SEQUENCE

Current API function call is invalid considering the allowed
sequence between API functions. The application might have called
this function before successfully calling
vpu_DecRegisterFrameBuffer(). This function should be called
after successfully calling vpu_DecRegisterFrameBuffer ().

Description

This function starts decoding one frame. Returning from this function does not mean the completion of
decoding one frame, but it just initiates decoding one frame. The host application should wait for the
VPU_INT_PIC_RUN_NAME. If this event is signaled, then vpu_DecGetOutputInfo() is called to get
the decoded output information. Every call of this function should be matched with
vpu_DecGetOutputInfo() with the same handle. Before that, the application can not call other API
functions except for vpu_IsBusy(), vpu_DecGetBitstreamBuffer(), and
vpu_DecUpdateBitstreamBuffer().

When the application uses pre-scan mode, there is only a very small chance that the decoder may hang.
For the VC-1 decoder, pre-scan mode is not supported. Do not use prescan mode for MPEG4 decoding or
in file-play mode.

3.3.4.9 vpu_DecGetOutputInfo()

Prototype

RetCode vpu_DecGetOutputInfo(DecHandle handle, DecOutputInfo * pInfo);

Parameter

handle [input] Decoder handle obtained from vpu_DecOpen()

pInfo [output] Pointer to a DecOutputInfo type structure which describes the
picture decoding results for the current decoder instance

Return Value

RETCODE_SUCCESS Receiving the output information of current frame completed
successfully

RETCODE_INVALID_HANDLE Given handle for current API function call, handle, is invalid. This
return code might be caused if handle has not been obtained by
vpu_DecOpen() or if handle is of an instance which has been closed.
Also, this value is returned when vpu_DecStartOneFrame() is
matched with vpu_DecGetOutputInfo() with different handles.

RETCODE_WRONG_CALL_SEQUENCE

Current API function call is invalid considering the allowed sequence
between API functions. vpu_DecStartOneFrame() with the same
handle might not have been called before calling this function

RETCODE_INVALID_PARAM Given argument parameter, pInfo, is invalid—it has a null pointer or
contains improper values for some member variables.

i.MX51 VPU Application Programming Interface Windows Embedded CE 6.0 Reference Manual

64 Freescale Semiconductor

i.MX51 VPU Driver API Reference

Description

The application received the output information of the decoder by calling this function after the
VPU_INT_PIC_RUN_NAME event is signaled. The output information includes the frame buffer
information containing the reconstructed image. The host application calls this function after the frame
decoding is finished and before starting further processing.

NOTE
If pre-scan mode is enabled, the application should check prescanResult. If
the value of prescanResult = 0, the other output information is meaningless.
vpu_DecStartOneFrame() and vpu_DecGetOutputInfo() must be
matched and called in the same thread.

3.3.4.10 vpu_DecBitBufferFlush()

Prototype

RetCode vpu_DecBitBufferFlush(DecHandle handle);

Parameter

handle [input] Decoder handle obtained from vpu_DecOpen()

Return Value

RETCODE_SUCCESS Receiving the output information of the current frame completed
successfully

RETCODE_FAILURE_TIMEOUT VPU is busy with another task or there is something wrong with the
VPU. In normal operation, the API call should not return a
RETCODE_FAILURE_TIMEOUT value. If the application
receives this value, the VPU internal function may be corrupted.

RETCODE_INVALID_HANDLE Given handle for current API function call, handle, is invalid. This
return code might be caused if handle has not been obtained by
vpu_DecOpen() or if handle is of an instance which has been
closed. Also, this value is returned when
vpu_DecStartOneFrame() is matched with
vpu_DecGetOutputInfo() with different handles.

RETCODE_WRONG_CALL_SEQUENCE

Current API function call is invalid considering the allowed
sequence between API functions. vpu_DecRegisterFrameBuffer()
with the same handle might not have been called before calling this
function.

Description

The application flushes the bitstream in the decoder bitstream buffer without decoding by calling this
function. If the bitstream buffer is flushed, the read and write pointers of the bitstream buffer of each
instance are set to the bitstream buffer start address.

i.MX51 VPU Application Programming Interface Windows Embedded CE 6.0 Reference Manual

Freescale Semiconductor 65

i.MX51 VPU Driver API Reference

3.3.4.11 vpu_DecClrDispFlag()

Prototype

RetCode vpu_DecClrDispFlag(DecHandle handle, int index);

Parameter

handle [input] Decoder handle obtained from vpu_DecOpen()

index [input] Frame buffer index to be cleared

Return Value

RETCODE_SUCCESS Receiving the output information of the current frame completed
successfully

RETCODE_INVALID_HANDLE Given handle for current API function call, handle, is invalid. This
return code might be caused if handle has not been obtained by
vpu_DecOpen() or if handle is of an instance which has been closed.
Also, this value is returned when vpu_DecStartOneFrame() is
matched with vpu_DecGetOutputInfo() with different handles.

RETCODE_WRONG_CALL_SEQUENCE

Current API function call is invalid considering the allowed sequence
between API functions. vpu_DecRegisterFrameBuffer() with the
same handle might not have been called before calling this function.

RETCODE_INVALID_PARAM Given argument parameter, index, is invalid—it has improper values

Description

The application clears the display flag of each frame buffer by calling this function after creating a decoder
instance. If the display flag of the frame buffer is cleared, the frame buffer can be used in the decoding
process. Therefore, the application controls displaying a buffer by clearing the display flag which is set by
the VPU at every display index output process.

3.3.4.12 vpu_DecGiveCommand()

Prototype

RetCode vpu_DecGiveCommand(DecHandle handle, CodecCommand cmd, void * pParam);

Parameter

handle [input] Decoder handle obtained from vpu_DecOpen()

cmd [input] Variable specifying the given command of CodecComand
type

pParam [input/output] Pointer to a command-specific data structure which
describes picture I/O parameters for the current decoder instance

Return Value

RETCODE_INVALID_COMMAND Given argument, cmd, is invalid—it is undefined or not allowed in
the current instance

i.MX51 VPU Application Programming Interface Windows Embedded CE 6.0 Reference Manual

66 Freescale Semiconductor

i.MX51 VPU Driver API Reference

RETCODE_INVALID_HANDLE Given handle for current API function call, handle, is invalid. This
return code might be caused if handle has not been obtained by
vpu_DecOpen() or if handle is of an instance which has been
closed.

RETCODE_FAILURE_TIMEOUT VPU is busy with another task or there is something wrong with
the VPU. In normal operation, the API call should not return a
RETCODE_FAILURE_TIMEOUT value. If the application
receives this value, the VPU internal function may be corrupted.

Description

This function is provided to give applications a certain level of freedom for reconfiguring decoder
operations after creating a decoder instance. The options which can be changed dynamically while
decoding a video sequence as well as some command-specific return codes are shown in Table 6.

Table 6. Decoder Commands

Command Description

ENABLE_ROTATION Enables rotation of the post-rotator. pParam is ignored. Returns RETCODE_SUCCESS.

DISABLE_ROTATION Disables rotation of the post-rotator. pParam is ignored. Returns RETCODE_SUCCESS.

ENABLE_MIRRORING Enables mirroring of the post-rotator. pParam is ignored. Returns RETCODE_SUCCESS.

DISABLE_MIRRORING Disables mirroring of the post-rotator. pParam is ignored. Returns RETCODE_SUCCESS.

SET_MIRROR_DIRECTION Sets the mirror direction of the post-rotator. pParam is a pointer to MirrorDirection. *pParam
should be one of the following:
 • MIRDIR_NONE—No mirroring
 • MIRDIR_VER—Vertical mirroring
 • MIRDIR_HOR—Horizontal mirroring
 • MIRDIR_HOR_VER—Both directions
Return values are as follows:
RETCODE_SUCCESS Given mirroring direction is valid
RETCODE_INVALID_PARAM Given argument parameter, pParam, is invalid so given

mirroring direction is invalid

SET_ROTATION_ANGLE Sets the counter-clockwise angle for post-rotation. pParam a pointer to an integer which
represents rotation angle in degrees. The rotation angle should be 0, 90, 180, or 270. Return
values are as follows:
RETCODE_SUCCESS Given rotation angle is valid
RETCODE_INVALID_PARAM Given argument parameter, pParam, is invalid so given

rotation angle is invalid

SET_ROTATOR_OUTPUT Sets the rotator output buffer address. pParam a pointer to a structure representing the physical
addresses of the YCbCr components of the output frame. For storing the rotated output for a
display, at least one more frame buffer should be allocated. When multiple display buffers are
required, the application changes the buffer pointer of the rotated output at every frame by
issuing this command. Return values are as follows:
RETCODE_SUCCESS Given frame buffer pointer is valid
RETCODE_INVALID_PARAM Given argument parameter, pParam, is invalid so given frame

buffer pointer is invalid

i.MX51 VPU Application Programming Interface Windows Embedded CE 6.0 Reference Manual

Freescale Semiconductor 67

i.MX51 VPU Driver API Reference

SET_ROTATOR_STRIDE Sets the stride size of the frame buffer containing rotated output. pParam is the stride value of
the rotated output. Return values are as follows:
RETCODE_SUCCESS Given stride value is valid
RETCODE_INVALID_PARAM Given argument parameter, pParam, is invalid so given stride

value is invalid. The stride value must be greater than 0 and a
multiple of 8.

DEC_SET_SPS_RBSP Applies the SPS stream to the decoder received from a certain out-of-band reception scheme.
The stream should be in RBSP format and big endian. pParam is a pointer to a DecParamSet
structure. paraSet is an array of 32 bits which contains SPS RBSP, and size is the size of the
stream in bytes. Return values are as follows:
RETCODE_SUCCESS Transferring a SPS RBSP to a decoder completed

successfully
RETCODE_INVALID_COMMAND Given argument, cmd, is invalid—it is undefined or not

allowed in the current instance. In this case, the current
instance might not be an AVC (H.264) decoder instance.

RETCODE_INVALID_PARAM Given argument, pParam, is invalid—it has a null pointer or
contains improper values for some member variables.

DEC_SET_PPS_RBSP Applies the PPS stream to the decoder received from a certain out-of-band reception scheme.
The stream should be in RBSP format and big endian. pParam is a pointer to a DecParamSet
structure. paraSet is an array of 32 bits which contains PPS RBSP, and size is the size of the
stream in bytes. Return values are as follows:
RETCODE_SUCCESS Transferring a PPS RBSP to decoder completed

successfully
RETCODE_INVALID_COMMAND Given argument, cmd, is invalid—it is undefined or not

allowed in the current instance. In this case, current
instance might not be an AVC (H.264) decoder instance.

RETCODE_INVALID_PARAM Given argument, pParam, is invalid—it has a null pointer or
contains improper values for some member variables.

ENABLE_DERING Enables the VPU internal dering operation. Returns RETCODE_SUCCESS.

DISABLE_DERING Disables the VPU internal dering function. Returns RETCODE_SUCCESS.

DEC_SET_REPORT_
BUFSTAT

Enables/disables the frame buffers status report function. If the host application requires the
frame buffer status information, it enables the function by setting this command with the
allocated buffer from the user space with the correct size returned from vpu_DecGetIntialInfo().
The returned frame buffer status information is saved into this buffer after calling
vpu_DecGetOutputInfo(). Each frame buffer can be used for display, for reference or not used.
The decoder reports the frame buffer status of each frame using 4 bits as follows:
Bit 3 set = Not used
Bit 2 set = Display
Bit 1 set = Reference
Bit 0 set = Not used
For example, if the value of the frame buffer status is 6, then the frame buffer is used for
reference and display. If the value is 4, the frame buffer is used for display and is not used for
reference.
In H.264, bit field definition is as follows:
Bit 3 set = Not used
Bit 2 set = Display
Bit 1 set = Out (Frame is in DPB buffer)
Bit 0 set = Reference

Table 6. Decoder Commands (continued)

Command Description

i.MX51 VPU Application Programming Interface Windows Embedded CE 6.0 Reference Manual

68 Freescale Semiconductor

i.MX51 VPU Driver API Reference

DEC_SET_REPORT_
MBINFO

Enables/disables the MB information report function. If the host application requires the MB
information, it enables the function by setting this command with the allocated buffer from the
user space with the correct size returned from vpu_DecGetIntialInfo(). The returned MB
parameter is saved into this buffer after calling vpu_DecGetOutputInfo(). If this option is
enabled, error flag, Slice Boundary and Qp are reported using 8 bits as follows:
Bit 7: Error Map. If error is detected in macroblock decoding, this bit field is set to 1
Bit 6: Slice Boundary. Whenever new slice header is decoded, this bit field is toggled
Bits 5:0: Macroblock Qp value
Return values are as follows:
RETCODE_SUCCESS Operation completed successfully
RETCODE_INVALID_PARAM Given argument parameter, param is invalid—it has a null

pointer or addr in DecReportInfo is a null pointer when
enable is 1.

DEC_SET_REPORT_
MVINFO

This command enables/disables the Motion Vector (MV) information report function. If the host
application requires the MV information, it enables the function by setting this command with the
allocated buffer from the user space with the correct size returned from vpu_DecGetIntialInfo().
The returned MV information is saved into this buffer after calling vpu_DecGetOutputInfo(). If
this option is enabled, the decoder reports a MV for P picture and two motion vectors for B
picture. The MV information is reported using 4 bytes as follows:
bit 31: Intra Flag (1: intra, 0 inter)
[30:16] :X value of motion vector
[16:0] : Y value of motion vector
Return values are as follows:
RETCODE_SUCCESS Operation completed successfully
RETCODE_INVALID_PARAM Given argument parameter, param. is invalid—it has a null

pointer or addr in DecReportInfo is a null pointer when
enable is 1.

Table 6. Decoder Commands (continued)

Command Description

i.MX51 VPU Application Programming Interface Windows Embedded CE 6.0 Reference Manual

Freescale Semiconductor 69

i.MX51 VPU Driver API Reference

Figure 6 shows the user data report structure where each of the 16 possible users are designated #0 User,
#1 User, and so on. The data of the first user, #0 User, is the #0 User Data and the size of this data is
#0 User Data Size. The User Data Size for users #0–15 is the size in bytes of the #0–15 User Data,
excluding the zero padding (0 Padding) that is between each user data. The User Data Size is used to
calculate the offset from the base, userDataBufBase, to the data for each user.

For example:

#1 User Data = userDataBufBase + 8×17 + #0 User Data Size + 0 Padding

DEC_SET_REPORT_
USERDATA

This command enables/disables the user data report function. If the host application requires
the user data information, it enables the function by setting this command with the allocated
buffer from the user space with the correct size returned from vpu_DecGetIntialInfo(). The
returned user data information is saved into this buffer after calling vpu_DecGetOutputInfo().
The user data buffer full interrupt is issued if the user data buffer size is not large enough to save
the user data during frame decoding. If the interrupt is issued, the decoder waits until the host
clears the interrupt and restarts the user data by writing at the beginning of userDataBufAddr if
the interrupt is cleared.
If the user data report mode is 1, the decoder does not issue the interrupt and reports buffer size
amount of user data. The size and address of the user data buffer, userDataBufSize and
userDataBufAddr, should be multiple of 8. userDataBufSize does not include user data type and
user data size as shown in Figure 6, Therefore, the host should allocate
8 × 17 + userDataBufSize bytes for the user data memory.
To avoid complex implementation and considering that in most cases the user data size not
large, the user data report mode is hard-coded as 1. If the user buffer size is too small to save
all user data during frame decoding, the userDataBufFull in ReportInfo is set to indicate that the
user data buffer overflowed. Figure 7 and Figure 8 show these two cases.
According to codec standard, the user data type is set as follows:
For H.264 (For more details see the Annex D in the H.264 spec):
4: user_data_registered_itu_t_t35
5: user_data_unregistered
For VC1:
31: Sequence level user data
30: Entry-point level user data
29: Frame level user data
28: Field level user data
27: Slice level user data
For MP2:
0: Sequence user data
1: GOP user data
2: Picture user data
For MP4:
0: VOS user data
1: VIS user data
2: VOL user data
3: GOV user data
Return values are as follows:
RETCODE_SUCCESS Operation completed successfully
RETCODE_INVALID_PARAM Given argument parameter, param is invalid—it has a null

pointer or addr in DecReportInfo is a null pointer when
enable is 1.

Table 6. Decoder Commands (continued)

Command Description

i.MX51 VPU Application Programming Interface Windows Embedded CE 6.0 Reference Manual

70 Freescale Semiconductor

i.MX51 VPU Driver API Reference

Where the size of the 0 Padding for each user is:

0 padding = (8 - (User Data Size% 8))%8

For example, the 0 padding for User #0 = (8 - (#0 User Data Size% 8))%8

Figure 6. User Data Report Structure

Figure 7. Normal Case: Amount of User Data is Less than Buffer Size

TotalUserDataSize

External Memory

TotalUserDataNum

4 bytes

#0 User Data Size#0 User Data Type

#1 User Data Size#1 User Data Type

Reserved

Reserved

#15 User Data Size#15 User Data Type

Reserved

0 Padding

#0 User Data
#1 User Data

userDataBuf Base

userDataBuf Base + 8*17

User Data #2 ~ #14

Reserved

OverflowFlag

User Data
Buffer

User Data
80bytes

In case of
“ User Data < Buffer”

SaveUserData

1
00

 b
y

te
s

Data copying w ill be processed after
picture decoding is terminated .

i.MX51 VPU Application Programming Interface Windows Embedded CE 6.0 Reference Manual

Freescale Semiconductor 71

VPU Control

Figure 8. User Data Overflow Case

4 VPU Control
This section describes the VPU control scheme based on the API functions and includes some practical
programming issues.

4.1 VPU Initialization
When the host processor enables the VPU for the first time, the following initialization process should be
performed. These operations are completed by calling a single API function, vpu_Init().

• Disable the BIT processor by setting BIT_CODE_RUN (BASE + 0x000) = 0

• Write the BIT processor microcode to the SDRAM accessible by the VPU during run-time

• Download the first N Kbytes of microcode to the BIT processor code memory

• Set the BIT processor buffer pointers, working buffer, parameter buffer and code buffer

• Set the stream buffer control options and the frame buffer endian mode

• Enable interrupt and reset registers

• Enable the BIT processor by setting BIT_CODE_RUN register = 1

• Wait until vpu_IsBusy() returns RETCODE_IDLE

Detailed information about each of these initialization steps and some programming tips are presented in
the following sections.

4.1.1 Version Check of BIT Processor Microcode

The application can check the version information of the BIT processor microcode during runtime. The
version number of microcode is a 32-bit value. The 16 most significant bits are the internal product
number, and the 16 least significant bits are the version number specified by the following rule:

• Bits 15:12 = Major revision

• Bits 11:8 = Minor revision

• Bits 7:0 = Revision patches

In case of

“User Data > Buffer”

User Data
Buffer User Data

120bytes10
0

 b
yt

e
s

User Data
100bytes

User Data
20bytes

SaveUserData

SaveUserDataINT

Data copying will be done by ISR to
prevent user data buffer overflow .

Data copying will be processed after
picture decoding is terminated .

i.MX51 VPU Application Programming Interface Windows Embedded CE 6.0 Reference Manual

72 Freescale Semiconductor

VPU Control

This version number can have a value from 0.0.0 to 15.15.255. A dedicated command,
vpu_GetVersionInfo(), is used for this version check and is supported after initialization.

4.1.2 BIT Processor Enable and Disable
The BIT processor has a dedicated register that activates or deactivates the BIT processor during run-time,
BIT_CODE_RUN (BASE + 0x000). During initialization, the BIT processor program memory is updated
and some configuration registers for controlling VPU operations are also set. During this process, the BIT
processor should be disabled. After finishing the initialization process, the host processor enables the BIT
processor. Then the BIT processor starts its own internal initialization process and is ready for operation.

4.1.3 BIT Processor Data Buffer Management
The BIT processor requires a certain amount of SDRAM space for its codec operations. This dedicated
memory space includes memory space for the BIT processor microcode, internal work buffer, parameter
buffers, and so on. The size of each sub-buffer as follows:

#define CODE_BUF_SIZE (128*1024) // byte size of Code buffer
#define WORK_BUF_SIZE (256*1024) // byte size of Work Buffer
#define PARA_BUF_SIZE (8*1024) // byte size of Parameter Buffer

In the VPU API, the initialization function only receives the start address of this internal buffer as an
argument. Therefore, the total sum of the VPU processing buffer space starting from the start address
should be dedicated memory space for the VPU and no other process should access this memory space
while the VPU is enabled. It is highly recommended for the host processor to reserve the specified size of
the dedicated buffer for the BIT processor and call vpu_Init() with the start address of the reserved
memory. The start addresses of internal buffer partitions, code buffer, work buffer and parameter buffer,
are calculated inside of the vpu_Init() function and the calculated start addresses are set in the host
interface.

In addition to the above sub-buffers, the VPU requires buffers for saving SPS/PPS and SLICE RBSP when
decoding a H.264 stream. In general, 5 Kbytes is sufficient for the SPS/PPS save buffer and a quarter of
the raw YUV image size is sufficient for the SLICE save buffer. If the VPU requires more buffer space to
decode a H.264 stream, the VPU reports a buffer overflow.

4.1.4 BIT Processor Microcode Management
The BIT processor has its own program memory inside of the VPU, but the content of this program
memory is dynamically updated according to the required codec standard. The advantage of this dynamic
microcode reloading is the reduction of program memory size. This advantage is meaningful because the
BIT processor generally requires many sets of microcode to support several codec standards in duplex
mode. Generally speaking, it seldom happens that the codec standard is changed in the middle of a codec
application. So dynamic reloading for changing the codec is not a burden in cycle consumption. In the
worst case, the dynamic code reloading happens once per picture processing, but considering the amount
of maximum reloaded code, it is not a large burden to the VPU cycle consumption.

i.MX51 VPU Application Programming Interface Windows Embedded CE 6.0 Reference Manual

Freescale Semiconductor 73

VPU Control

Since the dynamic reloading is completed by the VPU itself, the host processor only needs to copy the
given microcode to the reserved code buffer before initializing the VPU. Of course, the first loading of the
microcode to the BIT processor program memory should be completed separately by the host processor.

4.1.5 Stream Buffer Management
The stream buffer is a shared buffer between the host processor and the VPU for exchanging stream data.
There are two different streaming schemes for decoding: ring-buffer and line-buffer. The ring-buffer
scheme is used for host applications to reserve a fixed size of memory space and use it during codec
operations. On the other hand, the line buffer scheme is used for host application to allocate a stream buffer
dynamically and use it frame-by-frame.

The host processor also can choose the endian option of the stream buffer and can enable or disable the
buffer full/empty check option. All these options for stream buffer data management are stored in a
dedicated host interface register, BIT_BITSTREAM_CTRL, and are referenced by the BIT processor
during run-time.

For decoding, the VPU provides both streaming options. But sometimes multiple-instance decoding may
require a different streaming option for each decoder instance. For example, while playing a local video
file, the application might need to decode a digital video broadcast. In this case, the different types of
streaming mode can be helpful for the application design and the different streaming option is applied to
each decoder instance independently.

4.1.5.1 Ring-Buffer Scheme (Packet Mode)

The ring-buffer scheme is preferred in packet-based video communication and streaming applications. In
packet-based streaming based on a ring-buffer, the read and write pointers automatically wrap around at
the boundaries. When the application downloads a new chunk of the bitstream, the application should
check the available space in the bitstream buffer. Even though the available space can easily be calculated
from the read pointer, write pointer and buffer size, the VPU API provides a dedicated function for
providing the buffer read pointer, buffer write pointer and the available space in the stream buffer,
vpu_DecGetBitStreamBuffer(). Based on the returned value from this API function, the application
downloads a new chunk of bitstream data whose size should be smaller than the available buffer space.
The amount of bits transferred into the stream buffer should be notified to the VPU using
vpu_DecUpdateBitStreamBuffer().

4.1.5.2 Line-Buffer Scheme (File-Play Mode)

The line-buffer based streaming scheme is suitable for local file-play applications where a picture stream
is completely separated by file container structures. For decoding, the line-buffer based streaming scheme
is only allowed if the application always sends the stream data for only one frame. This means, when the
line-buffering scheme, or file-play mode, is enabled, the VPU resets the read pointer to the start address
of the bitstream buffer.

File-play mode is used when an application allocates the bitstream buffer dynamically as dynamic buffer
allocation is only allowed when file-play mode is enabled. As well as this dynamic buffer allocation
option, the byte offset of each dynamically allocated stream buffer can be used to avoid unnecessary

i.MX51 VPU Application Programming Interface Windows Embedded CE 6.0 Reference Manual

74 Freescale Semiconductor

VPU Control

stream copies because of the 8-byte alignment restriction in the VPU. By providing a byte offset between
zero and three, the host application can avoid the overhead of coping the stream to an 8-byte aligned input
stream buffer.

The application does not need to use two dedicated APIs, vpu_DecGetBitStreamBuffer() and
vpu_DecUpdateBitStreamBuffer().The start address and the size of bitstream buffer is provided as an
argument of vpu_DecStartOneFrame() to the VPU frame-by-frame.

4.1.6 Interrupt Signaling Management
To achieve maximum efficiency in VPU control, the VPU IP provides interrupt signaling for completion
of a requested operation as well as stream buffer empty/full. For some commands with a quick return,
interrupt signaling is not helpful so interrupt signaling is not provided.

The VPU provides interrupt signaling for the following commands:

• BIT_RUN_COMPLETE—BIT processor initialization complete after setting BIT_CODE_RUN

• DEC_SEQ_INIT—Decoder sequence initialization complete

• DEC_SEQ_END—Decoder sequence termination complete

• DEC_PIC_RUN—Decoder picture processing complete

• DEC_SET_FRAME_BUF—Decoder frame buffer registration complete

• DEC_PARA_SET—External header syntax transfer to decoder complete

• DEC_BUF_FLUSH—Flushing decoder stream buffer complete

DEC_SEQ_INIT and DEC_PIC_RUN can cause the VPU to stall when the input bitstream is not large
enough. So enabling the bitstream buffer-empty interrupt with these two interrupts, avoids unnecessary
cycle consumptions in the host application. Each interrupt is easily enabled or disabled by writing 0 or 1
to the corresponding bit field of interrupt enable register. When an interrupt is signaled, the application
checks the source of the interrupt by checking the value of interrupt reason register. When interrupt
signaling is not easily applicable, these interrupt can be replaced by a polling scheme by reading the BIT
processor busy-flag.

NOTE
Only the DEC_PIC_RUN interrupt is used by applications. The other
interrupts are used internally by the API or not supported.

4.2 Encoder Control

4.2.1 Creating an Encoder Instance
After initialization of the VPU, an application creates an encode instance and acquires a handle for
specifying that encoder instance as the first step to run an encoder operation. This is accomplished using
a single API function called vpu_EncOpen().

i.MX51 VPU Application Programming Interface Windows Embedded CE 6.0 Reference Manual

Freescale Semiconductor 75

VPU Control

When creating a new encoder instance, the application specifies the internal features of the encoder
instance through the EncOpenParam structure. This structure includes the following information about the
new encoder instance:

• Bitstream buffer address and size—Physical address of the bitstream buffer start and its size

• Codec standard—Video codec standard such as H.263, MPEG-4, H.264 or MJPEG

• Picture size—Picture width and height

• Target frame rate and bitrate with Video Buffer Verifier (VBV) model parameters, initialDelay and
vbvBufferSize—VBV mode parameters are optional even when rate control is enabled

• Gop size—Frequency of periodic intra (or IDR) pictures in the encoded stream output

• Slice enable/disable, slice size mode and slice size—Slice mode enable or disable as well as the
slice size and size mode (number of bits or number of Mbytes in each slice)

• Output report such as sliceReport, mbReport and qpReport, and so on. qpReport option is only
supported in H.263/MPEG-4 encoders—Informative output data such as slice boundary, MB
boundary in encoded bitstream

• Miscellaneous options such as enableAutoSkip and intraRefresh—Enable auto-skipping of
pictures when the output bit count is large enough as well as enable intra-refresh for error
robustness and the number of intra MB in a non-intra picture

• Ring buffer mode enable, allows streaming mode setting for each encoder instance
independently—Application decides whether a ring-buffer based streaming scheme is used or not.
When this option is disabled, a frame-based streaming scheme is used with a line-buffer scheme

• Dynamic buffer allocation enable—Application allocates the picture stream buffer dynamically by
enabling dynamic buffer allocation only if ring-buffer mode is disabled. If dynamic buffer
allocation is disabled, the address and size of the bitstream buffer is used in picture encoding. If
dynamic buffer allocation is enabled, the address and the size of picture stream buffer is
dynamically given by the application while issuing the picture encoding operation.

• Intra quantization step—Intra Qstep value is configurable by specifying this value greater than 0.
Even if rate control is enabled, the VPU encoder uses this fixed quantization step for all I-frames.
This intra quantization step is re-configurable after creating an instance dynamically.

• Video standard specific parameters—Specify standard-specific parameters for each video codec
standard such as error resilience tools in MPEG-4, Annexes in H.263, deblocking and FMO
parameters in H.264, source chroma format and thumbnail parameters and table coefficients in
MJPEG and so on.

Using these options, the application receives a well optimized output for the requirements of the target
application. Some output information options such as sliceReport, mbReport, qpReport, and so on, help
application developers satisfy the constraints for target applications.

For example, for a fixed packet size, an application might need to insert one slice to a certain amount of
bits. If the slice size is given by the number of bits, it does not ensure that the output slice size is smaller
than the given size because of the variable length characteristics of the encoding process. Therefore, the
application divides the slice into two packets which causes an inefficiency in the packetization. To achieve
an easy packetization, the application sets the slice size to (packet_size – N) with a certain margin of N,
which allows the output slice size to be less than the packet size. Then the application easily adds a slice
into a packet by referring to the slice boundary information provided by the VPU as encoder output.

i.MX51 VPU Application Programming Interface Windows Embedded CE 6.0 Reference Manual

76 Freescale Semiconductor

VPU Control

MJPEG can be encoded with various YUV format such as 4:4:4 by setting source format variable. 4:0:0,
4:2:0, 4:2:2 horizontal/vertical and 4:4:4 formats are supported in the i.MX51 MJPEG encoder. The
i.MX51 VPU also supports encoding using a user defined Huffman Table and Q matrix. To encode using
a user defined Huffman Table and Q matrix, the host must save the coefficients in a pre-defined format and
set the pointer to the area.

After creating an encoder instance with these parameters, the application cannot change these parameters.
If the application wants to change any of these basic parameters, it should close this instance and re-create
another encoder instance with new initial parameters. However, the application may need to change some
of these initial parameters depending on the target application environment. Using the dynamic
configuration command, the VPU API enables the application to configure part of these initial parameters
dynamically. For details, refer to Section 3.3.3.9, “vpu_EncGiveCommand().”

The API function, vpu_EncOpen(), does not require any operations on the VPU side but declares all of
the internal parameters used in later stages as well as the bitstream buffer information.

4.2.2 Configuring VPU for Encoder Instance

4.2.2.1 Sequence Initialization

After registering all of the required information for the new encoder instance, the host application
configures the VPU to support the new encoder instance. This procedure is completed by setting the
encoder related information in the VPU host interface registers and giving a command, ENC_SEQ_INIT,
to the VPU for initiating the internal configuration operation in the VPU.

This process is mainly completed by an API function, vpu_EncGetInitialInfo(), and this function return
a crucial output parameter for encoder operations, the minimum number of frame buffers. Normally, this
process does not require much time, and it should be done only once at the beginning of each encoder
instance. Therefore, it is not recommended to use an interrupt signal for this function, but interrupt
signaling is allowed after completion of this operation by enabling the corresponding bit on interrupt
enable register.

4.2.2.2 Registering Frame Buffers

The configuration process is completed by registering the frame buffers to the VPU for picture encoding
operations. In this final stage of configuration, the parameter returned from vpu_EncGetInitialInfo(), the
minimum number of frame buffers, has an important meaning. This parameter means that the application
should reserve at least the same number of frame buffers to the VPU for proper encoding operation. For
MJPEG, the frame buffer is not necessary, because MJPEG does not need motion compensation.
Therefore, only the frame buffer stride is transferred to the VPU in this stage. The stride value is used as
the stride of the source image frame buffer.

4.2.2.3 Generating High-Level Header Syntaxes

Automatic header syntax generation (such as VOL in MPEG-4, SPS/PPS in AVC) is not supported.

When the encoder instance has been opened by calling vpu_EncGetInitialInfo(), the application
generates the high-level header syntaxes such as VOS/VO/VOL headers in MPEG-4 and SPS/PPS in AVC

i.MX51 VPU Application Programming Interface Windows Embedded CE 6.0 Reference Manual

Freescale Semiconductor 77

VPU Control

from the VPU using vpu_EncGiveCommand(). These high-level syntaxes can also be used directly for
negotiation in the transport protocol layer of the application.

There are two possible methods for generating these header syntaxes: by PARA_BUF or by the stream
buffer. The recommended way for generating the header syntaxes is to use the ENC_PUT_AVC/MP4
_HEADER command by the stream buffer. If the application uses this set of commands, the resulting
header syntaxes are stored into the bitstream buffer according to the given endian setting.

If DecBufReset is enabled, the output header syntaxes are written to the bitstream buffer starting from the
base address of the bitstream buffer. If the application does not read out each header syntax one-by-one,
they are overwritten by the following header syntaxes. If the application wants to read out a set of header
syntaxes (such as VOS/VO/VOL or SPS/PPS), then the application should disable DecBufReset and
enable the DecBufFlush bit. After completing the generation of the last header syntax, the application can
read out a cascaded set of header syntaxes together.

The other method for generating header syntaxes, by PARA_BUF, is used when the application wants to
generate header syntaxes in the middle of encoding. It can be accomplished using
ENC_GET_XXX_HEADER for MPEG-4, and ENC_GET_XXX_RBSP for AVC. Regardless of the
streaming mode, this command generates header syntaxes successfully, but the endian setting is always
big endian. So for little endian systems, an endian conversion should be performed.

4.2.3 Running Picture Encoder on VPU

4.2.3.1 YUV Input Loading

Before running a picture encoder operation, the host application should provide a 4:2:0 or 4:2:2 vertical
formatted input YUV image with a pre-defined size for H.263, MPEG-4 and H.264. The host should
provide 4:2:0, 4:2:2 vertical/horizontal, 4:4:4 or 4:0:0 formatted input YUV for MJPEG. If the input image
is coming from an external video input device, such as a CMOS sensor, the VPU idles while waiting for
completion of the receiving input picture. To avoid this idling, use a dual buffering scheme for the input
image so that the encoder does not spend any cycles idling before starting operation.

4.2.3.2 Initiating Picture Encoding

When activating picture encoding operations, the application provides the following information to the
VPU:

• Source frame address—Base address of each component of input YUV picture

• Quantization step—for the current picture which is ignored when rate control is enabled

• Forced frame skip and forced I-picture options—Forced frame skip is skipping the current frame
encoding unconditionally and force I-picture is encoding current frame as I-frame unconditionally

• Source format—The VPU supports 4:2:2 vertical format source image. The source image is
converted to 4:2:0 format automatically

After providing this information to the VPU, the host processor initiates a picture encoding operation by
sending a ENC_PIC_RUN command to the VPU.

i.MX51 VPU Application Programming Interface Windows Embedded CE 6.0 Reference Manual

78 Freescale Semiconductor

VPU Control

These processes can be performed by calling a single API function, vpu_EncStartOneFrame() with the
EncParam structure. This API function initiates a picture encoding operation. Return from this API does
not mean that picture encoding is completed, only that the encoding operation began successfully.

The quantization step size given to the VPU with ENC_PIC_RUN is only meaningful when the rate
control option is disabled. This additional feature is provided to support application-specific VBR encoder
operations.

The forced frame skip option is used when encoding a new picture is not allowed temporarily. Automatic
frame skipping in the VPU rate control is used for limiting the output amount of the bitstream under the
given target bit-rate. Also, the forced frame skip can be used by the application when encoding a picture
is problematic under certain external situations, for example, if the channel condition is temporarily
unacceptable and transmitting the encoded stream is impossible. Then the application can suspend the
encoder operation for a while using this forced frame skip option.

The forced I-frame option is used when the remote receiver side reports an error during decoder operation.
Even though a certain error concealment or error robustness scheme might be implemented on the decoder
side, the best way to recover from a decoder error is to send an I-frame. Using this forced I-frame option,
the application can achieve error-recovery of the remote receiver side very effectively.

4.2.3.3 Completion of Picture Encoding

Picture encoder operation takes a certain amount of time and the application can be completing other tasks
while waiting for the completion of picture encoding operation, such as packetization of the encoded
stream for transmission. The application can use two different type of schemes for detecting completion
of the picture encoding operation: polling a status register or interrupt signaling. When the application is
using a polling scheme, the application checks the BusyFlag register of the BIT processor. Calling
vpu_IsBusy() gives the same result.

Interrupt signaling can be the most efficient way to check the completion of a given command. An
interrupt signal for the ENC_PIC_RUN command is mapped on bit 3 of the interrupt enable register.
Therefore, the application can use this dedicated interrupt signal from the VPU to determine the
completion of the picture encoder operation.

4.2.3.4 Encoder Stream Handling

When the encoder stream buffer is large enough to store any size of picture stream, the encoder does not
need to retrieve any bitstream data during the picture encoder operation. After the encoder operation is
complete, the host application reads the encoded bitstream according to the requirements of packetization.

When the encoder stream buffer is not large enough to store a complete picture stream, the encoder
buffer-full occurs and until this buffer-full situation is resolved, the encoder task running on the VPU is
stalled. Therefore, while the picture is encoding, the application should continue reading out the encoded
bitstream from stream buffer to avoid this stalling.

When using a ring-buffer scheme with a limited size of encoder stream buffer, stream reading during
encoder operation is recommended. Using two dedicated functions, vpu_EncGetBitStreamBuffer() and
vpu_EncUpdateBitStreamBuffer(), the application can easily handle the read pointer while accessing
the encoder bitstream buffer. If the ring-buffer option is disabled with a stream buffer large enough to store

i.MX51 VPU Application Programming Interface Windows Embedded CE 6.0 Reference Manual

Freescale Semiconductor 79

VPU Control

one encoded picture data, the host can wait to read the encoded bitstream at the end of each picture
encoding. In this case, the application can safely complete other tasks while the picture encoding is running
on the VPU. The vpu_EncGetBitStreamBuffer() and vpu_EncUpdateBitStreamBuffer() functions
have no meaning when the application uses the frame-based streaming option.

4.2.3.5 Acquiring Encoder Results

When picture encoding is complete, the host application retrieves the encoded output such as the encoded
picture type, number of slices, and so on. According to the input parameter settings of the picture encoding,
the slice boundary and MB boundary information can also be acquired from the VPU. For H.263/MPEG-4
decoding, the MB Qstep information can be acquired from the VPU. This encoder output information is
generally placed on the parameter buffer with pre-defined formats (for the predefined formats of the output
information, refer to the i.MX51 Applications Processor Reference Manual). Therefore, the application
can read out this information directly from the parameter buffer using the base address of each data
structure.

The VPU API provides a function for retrieving the output results of the picture encoder,
VPU_EncGetOutputInfo(), which has a output data structure that includes the following information:

• Start address of encoded picture and its size

• Number of slices in the encoded picture

• Slice boundary information in the encoded bitstream

• MB boundary information in the encoded bitstream

• Application-specific information for packetization such as MB Qstep information

Some packetization schemes, such as Real-time Transfer Protocol (RTP), require some internal
information of encoded picture depending on the codec standard.

The slice information is useful for packet-based applications which have limitations of the slice start in the
video packet. The slice information is also useful for implementing slice re-ordering on the application
side such as Arbitrary Slice Ordering (ASO) in the H.264 standard.

The VPU API includes a constraint on using the encoder initiation function and the encoder result
acquisition. When using the VPU API, the application should always use these two functions as a pair.
This means that without calling the result acquisition function, vpu_EncGetOutputInfo(), the next
picture encoding operation is not initiated by calling vpu_EncStartOneFrame(). Most VPU commands
are not allowed unless the application calls VPU_EncGetOutputInfo() after completion of the picture
encoding operation. This constraint is used to protect the encoded results from being overwritten from
another thread by mistake in a multi-instance environment. Therefore, the application should regard the
vpu_EncGetOutputInfo() function as a releasing command of the VPU from the current picture encoding
operation.

4.2.4 Terminating an Encoder Instance
When the application finishes with the encoder operation and terminates an encoder instance, the
application releases the handle of this instance to inform the VPU that this instance is terminated by giving
the SEQ_END command to the VPU. This can be accomplished by calling vpu_EncClose() function.

i.MX51 VPU Application Programming Interface Windows Embedded CE 6.0 Reference Manual

80 Freescale Semiconductor

VPU Control

4.2.5 Dynamic Configuration Commands
While running sequential picture encoding operations, the application may need to give special commands
to the VPU such as rotating the input pictures before encoding, inserting a high layer header syntaxes, and
so on. The VPU API provides a set of commands to support the following special requests from the host
application:

• Rotate and mirror source frame before encoding

• Extract high layer header syntaxes such as VOS/VO/VOL in MPEG-4 and SPS/PPS in H.264 for
external use

• Insert high layer header syntaxes such as VOS/VO/VOL in MPEG-4 and SPS/PPS in H.264

• Change encoder parameters such as bitrate, frame rate, GOP number, slice mode and so on
dynamically between picture encoding operations

4.3 Decoder Control

4.3.1 Creating a Decoder Instance
After initialization of the VPU, the next step to run a decoder operation is to create a decoder instance and
acquire a handle for specifying that decoder instance. This is accomplished using a single API function,
vpu_DecOpen().

When creating a new decoder instance, the application specifies the internal features of this decoder
instance through the DecOpenParam structure. This structure includes the following information about the
new decoder instance:

• Bitstream buffer address and size—Physical address of bitstream buffer start address and its size

• Codec standard—Video codec standard such as H.263, MPEG-4, H.264 or VC-1

• MPEG-4 deblocking filter enable—Enable or disable MPEG-4 deblocking filter option

• ReorderEnable—Enable or disable H.264 display reordering option, this option is ignored for other
decoder standards. It should usually be set to 1.

• File-play mode enable and picture size information—Enable or disable frame-based streaming
option for local file-play mode. The application allocates the picture stream buffer dynamically by
enabling dynamic buffer allocation. If dynamic buffer allocation is disabled, the address and size
of the bitstream buffer is used in picture decoding. If dynamic buffer allocation is enabled, the
address and the size of the picture stream buffer is given dynamically by the application while
enabling the picture decoding operation. Using the start byte-offset, the host application eliminates
the limitation for 8-byte alignment of the bitstream buffer.

• Picture size information—Picture size information is used only if file-play mode is enabled. This
information can be read from the file-format and is generally included in stream header itself.
Therefore, it is not necessary to give this information for file-play mode. But this field is available
for general usage of file-play mode. The given picture size information is ignored when the
bitstream includes the decoded picture size.

• SPS/PPS RBSP save buffer address and size—Physical address and size of buffer for SPS and PPS

i.MX51 VPU Application Programming Interface Windows Embedded CE 6.0 Reference Manual

Freescale Semiconductor 81

VPU Control

• Enable thumbnail decoding of MJPEG—Enable thumbnail decoding. If the host enables thumbnail
decoding, the decoded output is s thumbnail

For decoding, most information is acquired from the input stream, so there are few required parameters for
creating a decoder instance. The VPU API function, VPU_DecOpen(), does not require any operations on
the VPU side but declares all the internal parameters to be used in later stage as well as the bitstream buffer
information.

4.3.1.1 AVC Display Reordering

The AVC-specific display reordering option should be used carefully, because it drastically varies the
behavior of the AVC decoder. In principle, this option should always be enabled because the flag for this
option is embedded in the header syntax. According to the options in the header, the required frame buffer
size is automatically determined by the VPU.

When creating a decoder instance for H.264, the application should decide if display reordering is used.
In principle, this bit field should be set to 1, because the display reordering option is enabled or disabled
automatically according to the values of the corresponding header fields. But in practice, there are too
many streams which do not actually use display reordering but display reordering option is enabled.

Display reordering generally requires many more decoder buffers, a much longer delay, and some complex
constraints in decoder operations. When display reordering is not used even though the display reordering
option is enabled on the baseline profile stream, sometimes it would be helpful for application to force the
VPU decoder to ignore this option. This flag is provided for this case.

When this option is disabled, the minimum number of frame buffers is reference frame number + 2.
Whenever one frame decoding is complete, a display (or decoded) output is provided from the VPU, so
the decoder operation is the same as a normal decoder operation.

But when this option is enabled, the minimum number of frame buffers is
MAX(reference frame number, 16) + 2 for the worst case. After decoding one frame, the VPU cannot
provide a display output because display order can be different from the decoding order. In the worst case,
the first display output is provided from the VPU after decoding 17 frames. Because of this characteristic
of display reordering, the VPU AVC decoder always decodes display delay + 1 frames during the first call
of the picture decoding when display reordering is enabled in the stream.

In practice, there are many streams which do not use display reordering, but the flag in the header is
enabled. In this case, the host application must allocate unnecessarily more frame buffers and apply large
delays. Considering this practical cases, this option for forced-disable of display reordering is provided in
the VPU API.

4.3.2 Configuring VPU for Decoder Instance

4.3.2.1 Feeding Bitstream into Stream Buffer

For the decoder, sequence initialization performs parsing of high level header syntaxes such as
VOS/VO/VOL in MPEG-4 and SPS/PPS in H.264 for reading out decoder configurations. To start
sequence initialization, the application fills the decoder stream buffers with enough bitstream data. In some

i.MX51 VPU Application Programming Interface Windows Embedded CE 6.0 Reference Manual

82 Freescale Semiconductor

VPU Control

applications, the host applications can not guarantee that those kinds of header syntaxes are placed at the
beginning of the bitstream. In this case, until the VPU successfully receives all of the required information
from the input stream, the application should keep feeding the input data stream to the decoder bitstream
buffer.

In file-play mode for MPEG-4 and H.264, vpu_DecGetInitialInfo() operates only with sequence level
header syntaxes (VOS/VO/VOL headers or SPS/PPS), which might be much smaller than the 512 byte
minimum transfer unit. Because of the start-codes in these codec standards, reinsertion of the header data
does not cause any problems while decoding the first picture. So the application can also use dynamic
buffer allocation with the same buffer start address for the first picture decoding.

In file-play mode of VC-1, SEQ_META, FRAME_META and chunk data should be fed into the stream
buffer before calling vpu_DecGetInitialInfo(). Inserting only the SEQ_META information is not allowed
in this case because the VC-1 MP standard does not use start-codes. For dynamic allocation, the VPU
decoder does not use the new buffer start-address, but instead uses the previous buffer pointer updated by
vpu_DecGetInitialInfo() because of this limitation. For the second picture decoding, FRAME_META
and a chunk of data placed at a different buffer can be used in dynamic allocation.

To feed the input bitstream, the host application should know the available space in the bitstream buffer.
This is determined using the read pointer, write pointer and stream buffer size because the stream buffer
operates as a ring-buffer. Getting the available space in the stream buffer, the application can directly
download the decoder input stream to the bitstream buffer. After completing the stream download, the
application informs the amount of downloaded stream data by updating the stream write pointer.

The VPU API provides an API function to get the stream read pointer, write pointer and available space,
vpu_DecGetBitstreamBuffer(). Updating the write pointer is accomplished using the API function,
vpu_DecUpdateBitstreamBuffer().

4.3.2.2 Sequence Initialization

After creating a new instance and feeding the input bitstream to the stream buffer, the application gives the
DEC_SEQ_INIT command to the VPU to get the decoder configuration information from the bitstream.
After parsing the header syntaxes, the decoder returns the following crucial information about the decoder
configuration:

• Picture size—Picture width and height

• Frame rate—Decoder frame rate

• Picture cropping rectangle information—Information about H.264 decoder picture cropping
rectangle which is the offset of top-left point and bottom-right point from the origin of frame buffer

• Minimum number of frame buffers

• MPEG-4 option information—Enable or disable MPEG-4 error resilience options such as data
partitioned or Reversible VLC as well as short video header mode

• Frame buffer delay for display reordering—The number of frame delays for supporting display
reordering in H.264 decoder

• Annex-J (Deblocking) option indication—This flag indicates whether the deblocking option of the
H.263 decoder is enabled or disabled. When the external post-deblocking filter is used for H.263,

i.MX51 VPU Application Programming Interface Windows Embedded CE 6.0 Reference Manual

Freescale Semiconductor 83

VPU Control

this flag is used to avoid repetition of the H.263 in-loop deblocking filter and external
post-deblocking filter

• Number of returned next decoded index after decoding one frame—The number of returned
indexes which are used in next decoding after decoding one frame

• Estimated slice save buffer sizes—The size of the slice save buffer. The VPU reports two different
sizes: recommended and worst-case

• MJPEG thumbnail enable information—This flag indicates whether thumbnail image of MJPEG
exists or not. When thumbnail does not exist in the stream, the VPU returns failure if the host
application enables the thumbnail decoding option

• MJPEG image YUV format—Image YUV format. The host must allocate frame buffer by this
value

The picture size acquired from the bitstream might not be a multiple of 16×16. However, to perform the
decoder operation properly, frame buffer size should be a multiple of 16×16. Therefore, the returned size
is modified to be a multiple of 16×16 after a ceiling operation. Using the picture size and the minimum
number of frame buffers, the application reserves frame buffers and provides them to the VPU before
starting the picture decoding operation.

The frame buffer delay is an H.264-specific parameter for supporting display reordering. If the application
supports display reordering and reordering requires five additional frame buffers, for example, then the
first display output comes out from decoder after decoding the 6th frame. Theoretically, the maximum
delay for display reordering is a 16-frames.

The VPU API provides a function to handle the DEC_SEQ_INIT operations, vpu_DecGetInitialInfo().
Completion of this function is signaled by a dedicated interrupt or by polling the BusyFlag.

An important issue in SEQ_INIT operation is error-handling because any errors in the high layer header
syntaxes cause serious problems in decoding operations. Generally, many marker bits are added to the
header syntaxes to assist error detection. When header syntaxes included in the stream have crucial errors,
or when header syntaxes are not received for a long time, the VPU can be stuck on this task and no other
instances can run on the VPU. Therefore, the VPU API provides a special function which is used in this
situation, called vpu_SetSeqInitEsc(). When this function is called and the stream buffer is empty, the
VPU automatically terminates the SEQ_INIT operation. Then the host application decides whether to
close this instance or retry SEQ_INIT after running a different codec instance. After escaping from this
situation, it is highly recommend to reset the internal ESCAPE flag by calling the vpu_SetSeqInitEsc()
function again. This flag affects all the decoder instances performing a DEC_SEQ_INIT operation.

4.3.2.3 Registering Frame Buffers

This configuring process is completed by registering the frame buffers to the VPU for picture decoding
operations. In this final stage of configuration, the parameter returned from vpu_DecGetInitialInfo(), the
minimum number of frame buffer, has an important meaning. This parameter means that the application
should reserve at least the same number of frame buffers to the VPU for proper decoding operation.

The size of the frame buffers is calculated from the picture width and height. When both the picture width
and height are a multiple of 16, the picture size is the size as the frame buffers. If both the picture width

i.MX51 VPU Application Programming Interface Windows Embedded CE 6.0 Reference Manual

84 Freescale Semiconductor

VPU Control

and height are not a multiple of 16, the application should apply a ceiling operation to the picture width or
picture height to get the smallest multiple of 16 larger than picture width or picture height.

In addition to registering the frame buffers to the VPU, the slice save buffer is also registered in this step.
The recommended buffer size is given by calling vpu_DecGetInitialInfo().

For MJPEG decoder, registering the frame buffers is not necessary. The MJPEG decoder uses rotation
decoding. If vpu_DecRegisterFrameBuffer() is called, no operations are performed.

4.3.3 Running Picture Decoder On VPU

4.3.3.1 Initiating Picture Decoding

When activating a picture decoding operation, the application provides the following information to the
VPU:

• Pre-scan Enable—Enable or disable pre-scan option for checking whether full picture stream exists
in the stream buffer

• Pre-scan Mode—Specify decoder operation mode after pre-scan

• I-Frame Search Enable—Enable or disable I-(IDR for H.264) frame search option

• Frame Skip Mode—Enable or disable skipping bitstream for the next frame decoding

• picStreamBufferAddr and picStartByteOffset—Start address of the picture stream buffer to be
decoded in file-play mode and the byte offset of the actual start bytes of the picture data

• chunkSize—Byte size of the picture stream to be decoded which is read from the file-container
information

After providing these parameters to the VPU, the application starts the picture decoding operation by
sending a DEC_PIC_RUN command.

The pre-scan option is a special option for scanning the bitstream buffer to check if a full picture stream
exists in the stream buffer. This option allows the application to determine whether the bitstream empty
and decoder stalls or not before running the actual decoder operation. When this option is enabled and
there is not a full picture stream in the decoder buffer, the DEC_PIC_RUN command does not initiate the
picture decoding operation and returns immediately. Then the application decides whether to retry the
picture decoding after feeding more bitstream data or to handle other tasks for a while.

The pre-scan mode is also given as an option for general usage of the pre-scan operation. When this flag
is set to 0 and there is at least one full picture stream in the stream buffer, the decoder operation is
automatically initiated. On the contrary, when this flag is set to 1, the DEC_PIC_RUN command returns
immediately with a return code representing whether a full picture stream exists or not. In this case, no
picture decoding is initiated. To run picture decoding in this case, the application resets this flag to 0 and
re-sends the DEC_PIC_RUN command.

When display reordering in H.264 is enabled, the first decoded output is only available after decoding
many frames. To avoid this, a constraint is added to the H.264 decoder that requires the decoder to fill all
the reordering display buffers at the first time of picture decoding. That means, if the frame buffer delay
received from the stream header is five, the H.264 decoder should decode six frames at once at the first
DEC_PIC_RUN operation. Then, the picture decoding always provides a picture output to be displayed.

i.MX51 VPU Application Programming Interface Windows Embedded CE 6.0 Reference Manual

Freescale Semiconductor 85

VPU Control

In this scenario, the pre-scan might cause problems, because it is designed for the case of one picture
decoding. So when display reordering is enabled, it is recommend that the first DEC_PIC_RUN be
performed with pre-scan disabled.

To support display reordering in H.264 mode, a special parameter is used to flush the stored decoder output
from the display reorder buffer without picture decoding. This option is designed for flushing out the
decoded picture not yet displayed at the end of the decoding video sequence. When the display reordering
option is enabled and the reordering frame buffer stores five decoded pictures, the first display output is
available after the 6th frame decoding. Therefore, at the end of the stream decoding, there are five decoded
pictures which are not displayed yet even though there is no more available bitstream data to decode. In
this case, the application may ignore these five non-displayed pictures or display them by setting the
dispReorderBuf parameter to 1 and sending the DEC_PIC_RUN command until the VPU returns the
decoded picture index of –1.

In file-play mode, the decoder refers the start address of the picture stream from picStreamBufferAddr
given with the DEC_PIC_RUN command or BitStreamBuffer given with the DEC_SEQ_INIT command
depending on the dynamicBuffAllocEnable setting. When dynamicBuffAllocEnable is set, the stream
buffer information, BitStreamBuffer, specified during DEC_SEQ_INIT is ignored. The size of the picture
stream always refers chuckSize given with the DEC_PIC_RUN command.

It is necessary for the application to read this chunk size from the file format header for every frame
processing. The application might use dual or multiple picture stream buffers for speed optimization or
might also use dynamic allocation for better memory management with the dynamicBuffAllocEnable
option. In file-play mode, the application can achieve higher efficiency of stream buffering and memory
management with dynamic buffer allocation.

NOTE
There might be empty chunks whose chunk size equals zero. These empty
chunks should be removed in the file format parser because they might
cause improper operations in the VPU.

The VPU API provides an API for handling all these complex operations, vpu_DecStartOneFrame(),
which initiates the picture decoding operation and returns as soon as picture decoding has started on the
VPU. Completion of picture decoding is checked using a different method.

4.3.3.2 Frame Skipping Option

When a decoder error is detected, the application might want to hide the corrupted decoder output. Even
though error concealment is applied to that decoder output, some applications would like to the freeze
display instead of showing the corrupted picture. This output-hiding operation should continue until the
decoder meets the next I (or IDR) frame. Considering AV synchronization, skipping one frame can be a
good way to hide a sequence of pictures without affecting the audio decoding operation.

The frame skipping option is supported for the picture decoding command. As well as skip enable or
disable, the skipping option of detecting an I (or IDR in H.264)-frame can be chosen by the application.
So when an error is detected during picture decoding and the application would like to hide the
error-defected pictures, the application can achieve this using the picture skipping option with I-frame
detection enabled. By setting skipframeMode of DecParam to 1, the application easily performs skipping

i.MX51 VPU Application Programming Interface Windows Embedded CE 6.0 Reference Manual

86 Freescale Semiconductor

VPU Control

of non-intra (or non-IDR) frames. While the application enables one frame skipping by setting
skipframeNum of DecParam to 1, pre-scan is automatically enabled and therefore, the frame skip result is
translated to a pre-scan result. While doing one frame skip, the application can detect the results of the
frame skipping by checking prescanresult of DecOutputInfo.

This frame skip feature can be used by the application when the system performance is temporarily
degraded and video decoding is significantly delayed. In this case, it is recommended for the application
to use the I-(IDR in H.264 case) frame detect option. Using this option, the application can only decode
I-(or IDR) frame properly without displaying error-defected frame output.

Multi-frame skipping is also supported by setting skipframeNum of DecParam greater than 1. But
multi-frame skipping is not recommended in normal usage because it may cause problems with AV
synchronization.

In file-play mode, frame skipping can be easily achieved in the application side by referring the file format
header syntax. Therefore, it is not required to support this feature in the frame-based streaming case. But
in the random access case, the I-frame search option can be useful when the keyframe information in the
file container is incorrect.

4.3.3.3 I-Frame Search for Random Access and Trick Mode

When a media player application is designed, trick modes and random access may be desirable features.
To achieve these operations the application, decoder should support a feature for searching the I-frame in
the middle of the decoder bitstream.

The I-frame search option is accomplished by setting the iframeSearchEnable of DecParam. The number
of I-frames skipped is also set by setting skipframeNum of DecParam. (The same skipframeNum of
DecParam is used for specifying the skipped frame number in frame skipping and I-search; however, the
meaning of this value is somewhat different.) If skipframeNum = N, all the intermediate frames before the
(N+1)th next I-frame are skipped. This multiple I-frame skipping might be used for high speed playback
such as fast forward. By increasing the number N, the application can increase the speed of the fast
forward. This kind of fast forward operation depends on the frequency of the I-(IDR) frames in the decoder
input bitstream. Therefore, this type of trick mode can be applicable to applications specifying the
maximum interval between I-frames.

Random access is generally supported with a form of slide-bar in a graphic user interface of a player. For
supporting this random access, an I-(or IDR in H.264) frame search operation is needed because decoding
intermediate inter-frames causes visual artifacts on displayed pictures. As well as I-frame search
functionality, random access also requires a buffer-reset scheme that does not cause unexpected artifacts
in the decoded output. The steps of random access for the video decoder are as follows:

1. Freeze the display and reset the decoder bit-stream buffer

2. Read the bitstream from the new file read pointer and transfer it into the decoder

3. Enable I-Search and run the picture decoding operation

4. If the buffer empty interrupt is signaled, feed more bitstream and wait for decoding completion

5. If decoding completion is detected, read the decoder results and resume display

Resetting the bitstream buffer in Step 1 can be accomplished by calling vpu_DecBitBufferFlush().
Starting the decoder operation with I-frame search can also be accomplished by calling

i.MX51 VPU Application Programming Interface Windows Embedded CE 6.0 Reference Manual

Freescale Semiconductor 87

VPU Control

vpu_DecStartOneFrame() with iframeSearchEnable of DecParam set to 1. The number of skipped
frames specified by skipframeNum of DecParam is given by 1 in random access operation. When an
interrupt of decoder completion or non-busy state of the BIT processor is detected, the I-frame is searched
and decoded.

When the application uses the I-frame search option, the decoder should skip many bits in the decoder
stream buffer. Therefore, the pre-scan option can be meaningless when used simultaneously with the
I-search. In the VPU firmware; therefore, the pre-scan option is automatically disabled and settings for the
pre-scan option are ignored. The application should handle stream buffer filling until the end of the
I-search operation. Larger stream units are recommended in this case; otherwise, too many stream buffer
empty interrupts might occur from the VPU side.

4.3.3.4 Decoder Stream Handling

When the decoder stream buffer includes a full picture stream, the host application does not need to worry
about streaming in the middle of the decoder operation. Using the pre-scan option, the application can
determine the status of the bitstream buffer in advance. If there is no full picture in the stream buffer, the
application might feed more stream data to the stream buffer and start the picture decoding operation.

The VPU API provides an API function to get the stream read pointer, write pointer and available space
in one function call, vpu_DecGetBitstreamBuffer(). The application can get the information about the
available space in the stream buffer using this API and transfer an amount of stream data to the stream
buffer which is less than or equal to the available size. When transferring the stream data, the application
should take care of the end of the stream buffer to avoid unexpected data corruption. When transferring
stream data to the stream buffer and the write pointer reaches the end of the stream buffer, the application
should wrap the write pointer around to the beginning of the stream buffer and then continue downloading
to avoid data corruption.

Updating the write pointer is accomplished using, vpu_DecUpdateBitstreamBuffer(). The write pointer
wrap-around and updating of the write pointer is done by this API function by providing the downloaded
stream size. Before updating the write pointer, the host application must finish transferring the stream data
to the stream buffer. If not, a mismatch in access time may cause problems in the decoder operation.

In file-play mode, the two APIs for streaming are meaningless because the VPU always assumes the
bitstream buffer is flushed at the end of every picture decoding operation. The application only needs to
feed the stream buffer with one frame stream and then call vpu_DecStartOneFrame().

4.3.3.5 Completion of Picture Decoding

Picture decoder operations take a certain amount of time, and the application can complete other tasks
while waiting for the completion of the picture decoding operation, such as display processing of the
previously decoded output. The application can use two different schemes for detecting the completion of
the picture decoding operation: polling a status register or waiting for an interrupt signal. When the
application uses the polling scheme, the application checks the BusyFlag Register of the BIT processor.
Calling vpu_IsBusy() gives the same result.

Interrupt signaling can be the most efficient way to check the completion of a given command. An
interrupt signal for the DEC_PIC_RUN command is mapped to bit 3 of the interrupt enable register. So

i.MX51 VPU Application Programming Interface Windows Embedded CE 6.0 Reference Manual

88 Freescale Semiconductor

VPU Control

the application can easily determine the completion of the picture decoder operation from this dedicated
interrupt signal from the VPU.

4.3.3.6 Acquiring Decoder Results

When picture decoding is complete, the host application retrieves the decoded output, such as the display
frame index, decoded frame index, decoded frame picture type, number of error concealed MBs, Pre-scan
result, and so on. The VPU API provides a function for retrieving the output results of the picture decoder,
vpu_DecGetOutputInfo().

The VPU API includes a constraint on using the decoder initiation function and decoder result acquisition.
When using the VPU API, the application should always use these two functions as a pair. This means that
without calling the result acquisition function, vpu_DecGetOutputInfo(), the next picture decoding
operation is not initiated by calling vpu_DecStartOneFrame(). This constraint is used to protect the
decoded results from being overwritten from other thread by mistake in multi-instance environment.
Therefore, the application should regard vpu_DecGetOutputInfo() function as a releasing command of
the VPU from the current picture decoding operation.

Reading Display Output

The display frame index, indexFrameDisplay, is used to represent the frame buffer number where the
display output picture is stored. It always equals the frame buffer index to be displayed and it can be
different from the decoded picture index when display ordering control is enabled, such as display
reordering of H.264, B-frame in VC-1, and so on.

At the beginning of sequence decoding, even after decoding several frames, there is no display output from
decoder because of the order of display. For H.264 reordering, in worst case, the first display output can
come out after the 17th frame decoding. Therefore, at times there is no proper display buffer index. In this
case, the VPU decoder returns a negative frame buffer index for indexFrameDisplay of –3 or –2 depending
on the frame skip option. Only at the end of sequence decoding is this value equal to –1 and the application
can terminate the current decoder instance without any loss in picture display. Table 7 shows the display
output status based on the indexFrameDisplay values.

Reading Decoded Output

The decoded frame index, indexFrameDecoded, is an optional output to the host application. This index
is used to represent the frame buffer number where the decoded picture is stored. Usually, the host

Table 7. indexFrameDisplay Values

indexFrameDisplay
Value

Display Output Status

Non-negative value Output index value points to the frame buffer index of the display output

–1 Signals the end of sequence decoding, there is no more display output when the stream end
is signaled to the VPU

–2 There is temporarily no display output because of the frame-skip option

–3 There is temporarily no display output even without any action by the host application. Usually,
this value occurs when an IDR picture is received for H.264 display-reordering mode

i.MX51 VPU Application Programming Interface Windows Embedded CE 6.0 Reference Manual

Freescale Semiconductor 89

VPU Control

application does not need to worry about this index. The display index, indexFrameDisplay, is sufficient
to handle the output of the VPU decoder. Under this situation, this value is equal to –2 (0xFFFE) to
represent that there is no decoded frame at this time. This negative decoded index is also used when picture
decoding is skipped because of a skip option or picture header error.

When there are not enough frame buffers to be written with decoded image data, this value is equal to –1
(0xFFFF). In this situation, the application re-calls vpu_DecStartOneFrame() after clearing the display
flag by calling vpu_DecClrDispFlag().

When display ordering control is enabled for H.264 display reordering, VC-1 B-frame, and so on, at the
end of sequence decoding, the host application needs to flush out the decoded frames for display. During
this flushing operation, no actual decoding operations are performed. Under this situation, this value is
equal to –1 (0xFFFF) to represent that there is no decoded frame this time. This negative decoded index is
also used when picture decoding is skipped because of skip option or picture header error.

Reading Pre-Scan Result

The pre-scan result flag represents whether a full picture stream is included in the bitstream buffer before
picture decoding. When this flag is equal to 0, the decoding operation is not performed because there is no
full picture stream in the stream buffer. If application enables pre-scan and sets pre-scan mode to 0
(decoding a picture when full picture stream exists), the application should check this output parameter
first to determine whether a decoding operation is performed or not.

When pre-scan result is 0 and the stream buffer is full and the current stream buffer is too small to store a
full picture stream. To avoid dead-lock, the host application should disable the pre-scan option and re-run
the picture decoding operation.

Display Cropping in H.264

The display cropping option in H.264 forces the host application to display part of the frame buffers. The
information about the cropping window is provided by SPS. In SPS, four offset values of cropping
rectangles are presented, and these four offset values are given by the picCropRect structure to the host
application. Using these four offset values, the host application can easily detect the position of the target
output window. When display cropping is off, the cropping window size is 0.

Next Decoded Frame Index

The next decoded frame index, indexNextFrameDecoded[3], is an optional output to the host application.
This indexes are used to represent the frame buffer index which is used in the next
VPU_DecStartOneFrame() call. The application might not stop calling VPU_DecStartOneFrame() to
protect display corruption, if some of these indexes are not displayed yet.

When display ordering control is enabled for H.264 display reordering, VC-1 B-frame, and so on, at the
end of sequence decoding, the host application needs to flush out the decoded frames for display. During
this flushing operation, no actual decoding operations are performed. Under this situation, this value might
be ignored.

i.MX51 VPU Application Programming Interface Windows Embedded CE 6.0 Reference Manual

90 Freescale Semiconductor

VPU Control

Reading Lack of Additional Work Buffer

The VPU reports the status of the PS (SPS/PPS) save buffer and slice save buffer after it decodes one
frame. If the VPU reports lack of PS save buffer, the VPU can not properly decode the remaining input
stream; therefore, it is best to close current instance in this situation. If the VPU reports lack of slice save
buffer, the VPU can choose to either close and reopen the current instance or continue picture decoding
regardless of display corruption until the next I-frame.

4.3.3.7 Management of Displaying Buffers Decoded

The VPU has flags to indicate if the frame buffer is displayed or not internally. The flag is set after the
VPU returns the display frame index automatically and the VPU never uses the buffer for which the
display flag is set. Before starting the decoding process, the VPU checks if there is a frame buffer available
and returns immediately if there is no frame buffer to be written with decoded image with a current
decoded index of –1. The host application clears the flag after completion of displaying the frame buffers
by calling vpu_DecClrDispFlag().

4.3.3.8 Escape from Decoder Hang

Even when pre-scan is used, it is still possible for an application to experience decoder hanging because
of a stream error or lack of available stream at the end of sequence decoding. In the middle of picture
decoding, decoder hanging is signaled to the application through the decoder buffer empty interrupt if this
interrupt is enabled, and the application can avoid decoder hanging by putting more bitstream data to
stream buffer.

In some extraordinary cases and at the end of sequence decoding, the application avoids decoder hanging
by means of garbage insertion or sending an end-of-stream command to the VPU decoder. this is
accomplished by calling vpu_DecUpdateStreamBuffer() with size of 0. As soon as the VPU detects this
setting, the VPU terminates the current picture decoding with error concealment if applicable.

4.3.4 Terminating a Decoder Instance

4.3.4.1 Stream End and Last Picture in Stream Buffer

After the host application meets the end of stream and sends all of the stream data in the stream buffer, the
host application must determine when the last picture output is coming out. If there is no display delay,
this task is simple. But if display delay exists (reordering of the decoded pictures for display), this task
might be difficult for the host application.

In the VPU API, a flag that indicates the end-of-stream is used. After sending the last byte of the stream
data to bitstream buffer, the host application sets this flag and calls the vpu_DecStartOneFrame()
function. After the last display output picture has come out, the decoded picture index is changed to –1.
When the host application receives this index, host application detects the end of the sequence processing.

When the display delay exists (display reordering option in H.264, B-frames in other codecs), the host
application gets the buffered decoder output frame even after finishing actual decoding operation. In this
case, the host application calls the VPU_DecStartOneFrame() as usual. Until the delayed display output
frames are completely flushed out, the VPU decoder provides the frame index of the newly displayed

i.MX51 VPU Application Programming Interface Windows Embedded CE 6.0 Reference Manual

Freescale Semiconductor 91

VPU Control

output to the host application. And if there is no more available output, the VPU decoder returns a frame
index of –1.

4.3.4.2 Closing Current Instance

When the application finishes the last picture decoding operation and terminates a decoder instance, the
application releases the handle of this instance and inform the VPU that this instance is terminated by
giving the SEQ_END command to the VPU. This can be accomplished by calling the vpu_DecClose()
function.

4.3.5 Dynamic Configuration Commands
While running sequential picture decoding operations, application may need to give a special command to
the VPU. The VPU API provides a set of commands to support the following special requests from the
host application:

• Rotate and mirror output frame before decoding

• Apply SPS and PPS from the external out-of-band protocol

• Specify the frame buffer address for the MPEG-4 deblocking filtered output

4.4 Example Applications
An example application can be found under WINCE600\SUPPORT_PDK1_6\APP\VPU after the i.MX51 BSP is
installed. This application gives an example of how to use the decoder and encoder API to control the VPU
hardware to implement an encoder and decoder. The readme.txt file under
WINCE600\SUPPORT_PDK1_6\APP\VPU\ENCTEST and WINCE600\SUPPORT_PDK1_6\APP\VPU\DECTEST contains
detailed information about how to build and run the example applications.

Document Number: 924-76395
Rev. 1.6
10/2009

Information in this document is provided solely to enable system and software

implementers to use Freescale Semiconductor products. There are no express or

implied copyright licenses granted hereunder to design or fabricate any integrated

circuits or integrated circuits based on the information in this document.

Freescale Semiconductor reserves the right to make changes without further notice to

any products herein. Freescale Semiconductor makes no warranty, representation or

guarantee regarding the suitability of its products for any particular purpose, nor does

Freescale Semiconductor assume any liability arising out of the application or use of

any product or circuit, and specifically disclaims any and all liability, including without

limitation consequential or incidental damages. “Typical” parameters which may be

provided in Freescale Semiconductor data sheets and/or specifications can and do

vary in different applications and actual performance may vary over time. All operating

parameters, including “Typicals” must be validated for each customer application by

customer’s technical experts. Freescale Semiconductor does not convey any license

under its patent rights nor the rights of others. Freescale Semiconductor products are

not designed, intended, or authorized for use as components in systems intended for

surgical implant into the body, or other applications intended to support or sustain life,

or for any other application in which the failure of the Freescale Semiconductor product

could create a situation where personal injury or death may occur. Should Buyer

purchase or use Freescale Semiconductor products for any such unintended or

unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor

and its officers, employees, subsidiaries, affiliates, and distributors harmless against all

claims, costs, damages, and expenses, and reasonable attorney fees arising out of,

directly or indirectly, any claim of personal injury or death associated with such

unintended or unauthorized use, even if such claim alleges that Freescale

Semiconductor was negligent regarding the design or manufacture of the part.

How to Reach Us:

Home Page:
www.freescale.com

Web Support:
http://www.freescale.com/support

USA/Europe or Locations Not Listed:
Freescale Semiconductor, Inc.
Technical Information Center, EL516
2100 East Elliot Road
Tempe, Arizona 85284
1-800-521-6274 or
+1-480-768-2130
www.freescale.com/support

Europe, Middle East, and Africa:
Freescale Halbleiter Deutschland GmbH
Technical Information Center
Schatzbogen 7
81829 Muenchen, Germany
+44 1296 380 456 (English)
+46 8 52200080 (English)
+49 89 92103 559 (German)
+33 1 69 35 48 48 (French)
www.freescale.com/support

Japan:
Freescale Semiconductor Japan Ltd.
Headquarters
ARCO Tower 15F
1-8-1, Shimo-Meguro, Meguro-ku
Tokyo 153-0064
Japan
0120 191014 or
+81 3 5437 9125
support.japan@freescale.com

Asia/Pacific:
Freescale Semiconductor China Ltd.
Exchange Building 23F
No. 118 Jianguo Road
Chaoyang District
Beijing 100022
China
+86 10 5879 8000
support.asia@freescale.com

For Literature Requests Only:
Freescale Semiconductor

Literature Distribution Center
1-800 441-2447 or
+1-303-675-2140
Fax: +1-303-675-2150
LDCForFreescaleSemiconductor

@hibbertgroup.com

Freescale are trademarks or registered trademarks of Freescale
Semiconductor, Inc. in the U.S. and other countries. All other product or
service names are the property of their respective owners. ARM is the
registered trademark of ARM Limited. ARMnnn is the trademark of ARM Limited.

© Freescale Semiconductor, Inc., 2009. All rights reserved.

	i.MX51 VPU Application Programming Interface Windows Embedded CE 6.0 Reference Manual
	1 Introduction
	1.1 Overview
	1.2 Main Features
	1.3 Programmability
	1.3.1 Frame-Based Processing
	1.3.2 Program Memory Management
	1.3.3 Multi-Instances

	2 Host Interface
	2.1 Host Interface Overview
	2.1.1 Communication Models
	2.1.2 Data Handling
	2.1.3 Host Interface Registers

	2.2 API-Based VPU Control

	3 i.MX51 VPU Driver API Reference
	3.1 API Features
	3.1.1 Simple Software Control
	3.1.2 Handling Multi-Instances
	3.1.3 Frame-Based Codec Processing

	3.2 Type Definitions
	3.2.1 Type Definitions
	3.2.1.1 Uint8
	3.2.1.2 Uint16
	3.2.1.3 Uint32
	3.2.1.4 PhysicalAddress
	3.2.1.5 CodStd
	3.2.1.6 RetCode
	3.2.1.7 CodecCommand
	3.2.1.8 MirrorDirection
	3.2.1.9 Mp4HeaderType
	3.2.1.10 AvcHeaderType
	3.2.1.11 EncHandle
	3.2.1.12 DecHandle

	3.2.2 Data and Structure Definitions
	3.2.2.1 FrameBuffer
	3.2.2.2 Rect
	3.2.2.3 EncHeaderParam
	3.2.2.4 EncParamSet
	3.2.2.5 EncMp4Param
	3.2.2.6 EncH263Param
	3.2.2.7 EncAvcParam
	3.2.2.8 EncMjpgParam
	3.2.2.9 EncSliceMode
	3.2.2.10 EncOpenParam
	3.2.2.11 EncReportBufSize
	3.2.2.12 EncInitialInfo
	3.2.2.13 EncParam
	3.2.2.14 EncOutputInfo
	3.2.2.15 SearchRamParam
	3.2.2.16 DecParamSet
	3.2.2.17 DecOpenParam
	3.2.2.18 DecReportBufSize
	3.2.2.19 DecInitialInfo
	3.2.2.20 DecAvcSliceBufInfo
	3.2.2.21 DecBufInfo
	3.2.2.22 DecParam
	3.2.2.23 DecOutputInfo
	3.2.2.24 VPUMemAlloc

	3.3 API Definitions
	3.3.1 Overview
	3.3.1.1 Basic Architecture
	3.3.1.2 Decoder Operation Flow
	3.3.1.3 MJPEG Decoding Operation Flow
	3.3.1.4 Encoder Operation Flow

	3.3.2 Control API
	3.3.2.1 vpu_Init()
	3.3.2.2 vpu_Deinit()
	3.3.2.3 vpu_IsBusy()
	3.3.2.4 vpu_GetVersionInfo()
	3.3.2.5 vpu_AllocPhysMem()
	3.3.2.6 vpu_FreePhysMem()
	3.3.2.7 vpu_GetPhysAddrFromVirtAddr()
	3.3.2.8 vpu_Reset()

	3.3.3 Encoder API
	3.3.3.1 vpu_EncOpen()
	3.3.3.2 vpu_EncClose()
	3.3.3.3 vpu_EncGetBitstreamBuffer()
	3.3.3.4 vpu_EncUpdateBitstreamBuffer()
	3.3.3.5 vpu_EncGetInitialInfo()
	3.3.3.6 vpu_EncRegisterFrameBuffer()
	3.3.3.7 vpu_EncStartOneFrame()
	3.3.3.8 vpu_EncGetOutputInfo()
	3.3.3.9 vpu_EncGiveCommand()

	3.3.4 Decoder API
	3.3.4.1 vpu_DecOpen()
	3.3.4.2 vpu_DecClose()
	3.3.4.3 vpu_DecGetInitialInfo()
	3.3.4.4 vpu_DecSetEscSeqInit()
	3.3.4.5 vpu_DecGetBitstreamBuffer()
	3.3.4.6 vpu_DecUpdateBitstreamBuffer()
	3.3.4.7 vpu_DecRegisterFrameBuffer()
	3.3.4.8 vpu_DecStartOneFrame()
	3.3.4.9 vpu_DecGetOutputInfo()
	3.3.4.10 vpu_DecBitBufferFlush()
	3.3.4.11 vpu_DecClrDispFlag()
	3.3.4.12 vpu_DecGiveCommand()

	4 VPU Control
	4.1 VPU Initialization
	4.1.1 Version Check of BIT Processor Microcode
	4.1.2 BIT Processor Enable and Disable
	4.1.3 BIT Processor Data Buffer Management
	4.1.4 BIT Processor Microcode Management
	4.1.5 Stream Buffer Management
	4.1.5.1 Ring-Buffer Scheme (Packet Mode)
	4.1.5.2 Line-Buffer Scheme (File-Play Mode)

	4.1.6 Interrupt Signaling Management

	4.2 Encoder Control
	4.2.1 Creating an Encoder Instance
	4.2.2 Configuring VPU for Encoder Instance
	4.2.2.1 Sequence Initialization
	4.2.2.2 Registering Frame Buffers
	4.2.2.3 Generating High-Level Header Syntaxes

	4.2.3 Running Picture Encoder on VPU
	4.2.3.1 YUV Input Loading
	4.2.3.2 Initiating Picture Encoding
	4.2.3.3 Completion of Picture Encoding
	4.2.3.4 Encoder Stream Handling
	4.2.3.5 Acquiring Encoder Results

	4.2.4 Terminating an Encoder Instance
	4.2.5 Dynamic Configuration Commands

	4.3 Decoder Control
	4.3.1 Creating a Decoder Instance
	4.3.1.1 AVC Display Reordering

	4.3.2 Configuring VPU for Decoder Instance
	4.3.2.1 Feeding Bitstream into Stream Buffer
	4.3.2.2 Sequence Initialization
	4.3.2.3 Registering Frame Buffers

	4.3.3 Running Picture Decoder On VPU
	4.3.3.1 Initiating Picture Decoding
	4.3.3.2 Frame Skipping Option
	4.3.3.3 I-Frame Search for Random Access and Trick Mode
	4.3.3.4 Decoder Stream Handling
	4.3.3.5 Completion of Picture Decoding
	4.3.3.6 Acquiring Decoder Results
	4.3.3.7 Management of Displaying Buffers Decoded

	4.3.3.8 Escape from Decoder Hang
	4.3.4 Terminating a Decoder Instance
	4.3.4.1 Stream End and Last Picture in Stream Buffer
	4.3.4.2 Closing Current Instance

	4.3.5 Dynamic Configuration Commands

	4.4 Example Applications

