Freescale Semiconductor

Document Number: 924-76395
Rev. 1.6, 10/2009

1.MX51 VPU Application Programming
Interface Windows Embedded CE 6.0

Reference Manual

1 Introduction

This section presents general information about the i.MX51
Video Processing Unit (VPU).

1.1 Overview

Thei.MX51 Video Processing Unit (VPU) isahigh
performance multi-standard video decoder and encoder
engine that performs multiple standard decoding and
encoding operations. The VVPU codecisfully compliant with
H.264 BP/MP/HPR, VC-1 SPIMP/AP, MPEG-4 SP/ASP
except GMC, Divx(Xvid), MPEG-1/2 and MJPEG decoding
and encoding. The VPU supports up to HD (1920x1088)
decoding and SD (720x576) encoding. It can encode or
decode multiple video clips with multiple standards
simultaneously. A block diagram of thei.MX51 VPU is
shown in Figure 1.

The VPU connects with the system through the 32-bit
AMBA3APB busfor system control and the 64-bit AMBA3
AXI for data throughput. The VPU also takes advantage of
on-chip memories to achieve high performance.

Most video hardware blocks in the VPU are optimally
designed for shared usage between different video standards,

© Freescale Semiconductor, Inc., 2009. All rights reserved.

11
12
1.3.

21
2.2

31
32
33

4.1
4.2.
4.3.
4.4.

Contents
Introduction. 1
OVEIVIBW .. o 1
MainFeaturesc.covviii i 2
Programmability 4
HogtInterface iiiin.. 6
Hogt Interface Overview 6
API-Based VPU Control 7
i.MX51 VPU Driver APl Reference 8
APl Features ... 8
TypeDefinitions 9
API Definitions oo 36
VPUControl ... 71
VPU Initidlization 71
Encoder Control 74
Decoder Controlccovvvnein.n. 80
Example Applications 91
freescale"

semiconductor

Introduction

which providesultralow power and low gate count with powerful performance. Asshownin Figure 1, the
VPU has a 16-bit DSP core, the BIT processor, which controls the internal video codec operations.

For smple and efficient control of the VPU by the host processor, the VPU provides a set of registers
called the host interface registers. Most commands and responses between the host processor and the VPU
are transmitted through the host interface registers. Stream data and some output picture data are directly
accessed by the host processor and the VPU. For amore comprehensive way of controlling the VPU, aset
of API functions are provided that includes all of the required operations from the host processor side.

Bitstream
< APB3bus). n‘:‘;'zge Coef Packing/
tables Unpacking real-time-clock reset controller
BIT
Processor Core 8KB Data Mem
MV
Pred 12KB
Program Mem. sub-block
Host Macroblock access
interface "Iﬁleﬁ—n peri. bus | | AXTbus | CABAC Sequencer control
interface interface unit

| Internal Peripheral Bus |

< AXlbus >(AXI Internal Arbiter]
Pre- Motion deblock / P°§t'r w/
processor > Estimation Inter- Intra- Coefficient. overlap P -
w/ rotator, prediction prediction Buffer smoothing rota?org’
mirror - filter .
mirror
Local Mem i
= Residual | [Reconstruction |
¢ v i
AVC MPEG VCA1
Transform/ Transform/ r:gggn Transform/
Quant. Quant. P Quant.

Figure 1. i.MX51 VPU Block Diagram

1.2 Main Features

The VPU isfully compliant with H.264 BP/MP/HP, VC-1 SPIMP/AP, MPEG-4 SP/ASP except GMC,
Divx (Xvid) and MPEG-1/2 and MJPEG. Image sizes up to HD (1920x1088 or 2048x1024) are supported
for decoding and up to SD (720x576) are supported for encoding. The VPU supports various error
resilience tools and also supports multiple decoding and full duplex multi-party-call smultaneously. The

i.MX51 VPU Application Programming Interface Windows Embedded CE 6.0 Reference Manual

2 Freescale Semiconductor

Introduction

VPU provides programmability, flexibility and ease of upgrade in decoding and encoding or host interface
because all of the controls in the decoding and encoding process and host interface are implemented as
firmware in the programmable BIT processor.
The detailed features of the VPU are as follows:
» Encoding
— [£32, £16] 1/2 and 1/4-pel accuracy motion estimation
— 16x16, 16x8, 8x16 and 8x8 block sizes
— Configurable block sizes
— Only one reference frame for motion estimation
— Unrestricted motion vector
— Prediction
— MPEG-4 AC/DC prediction
— H.264/AVC intra-prediction
— H.263 Annex J, K (RS=0 and ASO=0), and T
— Error resilience tools

— MPEG-4 resync marker and data-partitioning with RVLC (fixed number of
bits/macrobl ocks between macroblocks)

— CIR (Cyclic Intra Refresh)
— Bit-rate control (CBR and VBR)
— Upto 4:2:2 format for MIPEG encoder
— 48x32 pixel minimum encoding image size (48 pixels horizontal and 32 pixels vertical)
» Decoding
— H.264
— Fully compatible with the ITU-T Recommendation H.264 specification in BP/MP and HP
— CABAC/CAVLC
— Variable block size—16x16, 16x8, 8x16, 8x8, 8x4, 4x8 and 4x4
— Error detection, concealment and error resilience tools
— VC1

— All VC-1 profile features—SMPTE Proposed SMPTE Standard for Television: VC-1
Compressed Video Bitstream format and Decoding Process

— Simple/Main/Advanced Profile

— Multi-resolution (dynamic resolution) is not processed inside the video decoder
— MPEG-4

— Simple/Advanced Simple profile except GMC
H.263 Baseline Profile

— Divx version 3.x to 6.x

— Xvid
— MPEG-2

i.MX51 VPU Application Programming Interface Windows Embedded CE 6.0 Reference Manual

Freescale Semiconductor 3

Introduction

— Fully compatible with ISO/IEC 13182-2 MPEG2 specification in main profile
— |,Pand B frame
— Field coded picture (interlaced) and fame coded picture
— RV-8/9/10
— Fully compatible with RV-8/9/10 except re-sampling feature
— MJIPEG
— Baseline ISO/IEC 10918-1 JPEG compliance
— JFIF 1.02 input format with up to 3 components
— 8-bit samples for each component
Support up to 4:4:4
— 64x64 pixel minimum decoding size; 16x16 pixelsis supported for MJIPG decode
» Value added features
— MPEG-2 partial acceleration
— De-ringing
— Pre/Post rotator/mirror
— Built-in de-blocking filter for MPEG-2/MPEG-4 and Divx
* Programmability
— 16-bit DSP processor dedicated to processing bitstream and controlling the codec hardware
— General purpose registers and interrupt for communication to and from a host processor
* Performance
— All video decoder standards up to 1920x1088 @ 30 fps at 133 MHz
— All video encoder standards up to 720x480 @ 30 fps (720x576 @ 25 fps) at 66 MHz

— MJPEG decoder (4:4:4) supports 32 M pixel per second and theimage sizeis up to 8196x8196
@ 133 MHz

— MJPEG encoder (4:2:2) supports 64 M pixel per second and theimage sizeis up to 8196x8196
@ 133 MHz

— MJPG decoder on 4:2:0 supports 64 M pixel per second @ 133MHz

— MJPG encoder on 4:2:0 supports 85.3 M pixel per second @ 133MHz
* Interrupt

— Interrupt from and to external host processor or interrupt controller

1.3 Programmability

The VPU has aninternal DSP called the BIT processor which controls the internal hardware blocks for
video decoder operations. The operation of the BIT processor is determined by the dedicated microcode
caled the BIT firmware. The VPU has acomplete set of BIT firmware codes aswell as a complete set of
VPU control functions, called the VPU API. Therefore, application developers do not need to manage
codec-specific issues on host processor.

i.MX51 VPU Application Programming Interface Windows Embedded CE 6.0 Reference Manual

4 Freescale Semiconductor

Introduction

1.3.1 Frame-Based Processing

The BIT processor completes decoding operations on a frame-by-frame basis, which allows low level
independency of VPU operations to the host processor. While frame operations are running, there is no
need for communication between the host processor and the VPU. Therefore, the VPU does not burden
the host processor during decoder operations.

After issuing a picture processing command, the host application performs its own operations until it is
ready for the next picture processing operation or until it receives an interrupt from VPU informing the
host processor of completion of the picture processing.

1.3.2 Program Memory Management

The VPU hasits own program memory to load BIT firmware for supporting application-specific
operations. In order to use thisinternal memory efficiently, the BIT firmware has a dynamic re-loading
scheme, which enables the VPU to have a small amount of program memory.

For example, if a MPEG-2 decoder operation is running on the VPU, then the VPU program memory is
filled by the MPEG-2 decoder firmware in the VPU. If aH.264 decoder operation is newly issued, then
the BIT processor automatically |oads the H.264 decoder firmwarefrom the SDRAM to program memory.

Because of the frame-based operation of VPU, the maximum rate of this dynamic reloading operation is
approximately 30 times per second in a single instance decoder case. Since the amount of BIT firmware
for one decoder standard is smaller than 16 Kytes, thisis not alarge burden for the VPU operationsin
performance and memory bandwidth.

1.3.3 Multi-Instances

The VPU supports multiple instances which can be helpful for multi-channel decoder applications. In
order to support this multi-instance operation, the BIT processor uses an internal context parameter set for
each decoder instance. When creating a new instance and starting a picture processing operation, a set of
context parameters is created and updated automatically within the VPU. Thisinternal context
management scheme allows different decoder tasks running on the host processor to control VPU
operations independently with their own instance numbers.

When creating a new instance, an application task receives anew handle specifying an instance if anew
handleis available on the VPU. All the subsequent operations for the given application task are handled
separately by the VPU using this task-specific handle. When writing aV PU driver, this handle can be
regard as adevice-ID or aport-1D of the VPU for each task. Since the VPU can only perform one picture
processing task at atime, the application task should check if the VPU isready before starting a new
picture operation. An application can easily terminate a single task on the VPU by calling a function for
closing a certain instance.

i.MX51 VPU Application Programming Interface Windows Embedded CE 6.0 Reference Manual

Freescale Semiconductor 5

Host Interface

2 Host Interface

This section presents a general description of the host interfaces provided for a host processor to control
thei.MX51 VPU.

2.1 Host Interface Overview

This section presents an overview of the host interfaces.

211 Communication Models

The VPU requires a dedicated path for exchanging data and/or messages between the host processor and
the VPU. The VPU uses shared memory for exchanging data between the host processor and the VPU.
This shared memory is accessible through the ABMA host bus. Bitstream data and frame data are
exchanged using this shared memory space.

Independent of data exchange path, adedicated path for messages between the host processor and the VPU
isprovided using a set of VPU registers called the host interface registers. All commands and responses
between the host processor and the VPU are exchanged through these registers as shown in Figure 2.

HostSW: VPU API

Host Program. I/F Func.

VPU Host Interface Functions(VPU API)

OS Independent Base Func .
Set for VPU driver

Command

Response

VPU Firmware
VPU System Manager

VPU Host Interface 'I

VPU System Manager

Host I/F with CMD/RSP,
Internal Control, u-Code
Re-loading, Manage
Codec Lib, init/De-init, etc

VPU Codec Library

Set of Encoder & Decoder

VPU VPU VPU . . : -

Enc Decr Dec Libraries for various video

Lib: Lib: Lib: codec standards, including
MPEG4 MPEG4 H.264 on-the-fly pre/post

sp ASP MP processing functions such

as deblocking /deringing ,
rotation, etc.

Figure 2. Data and Message Exchange Between Host and VPU

All of the bitstream and picture data is accessed directly by the host processor and the VPU. The related
information about the data transfer as well as command and responses is exchanged through the host
interface. The host interface of the VPU uses a set of registers accessible from the host processor. Some of
these host registers are used for exchanging actual command and responses and other registers are used to
give information about the internal status of VPU to host processor. Firmware running on the BIT
processor iswell-optimized for a given set of commands and responses.

i.MX51 VPU Application Programming Interface Windows Embedded CE 6.0 Reference Manual

6 Freescale Semiconductor

Host Interface

2.1.2 Data Handling

All of the pixel data or stream data transactions are performed by the host processor or the VPU through
the shared memory space in the SDRAM. In order to assure safe transactions between the host processor
and the VPU, al the required information is stored in the host interface registers. Generally, these
transactions are one-directional transactions—the host or VPU writes the data and the other reads the data
on asingle data buffer. Therefore, transactions are easily and safely controlled using a pair of read and
write pointers.

Aswell asthe common data buffersin shared memory, the BIT processor requires a certain amount of
memory for processing, called the working buffer. The working buffer can only be accessed by the VPU.
In addition, the frame buffersused in picture decoding are managed by the VPU exclusively, which ensures
safe decoding in the VPU.

For proper streaming, the avail able free space in the decoder stream buffer can be accessed using the buffer
read pointer, write pointer and buffer size. A set of APIsis provided for this purpose that can be called by
the application at anytime.

213 Host Interface Registers

A set of commands is provided for controlling codec operations on aframe-by-frame basis as well asthe
corresponding responses. The host interface registers can be partitioned into three categories as follows:

* BIT processor control registers—Update or show BIT processor statusto the host processors. Most
of these registers are used for initializing the BIT processor during boot-up.

» BIT processor global registers—Store all the global variables which are reserved even while an
active instance is changed. All the buffer addresses and some global options are safely stored in
these registers.

» BIT processor command I/O registers—Overwritten or updated whenever a new command is

transmitted from the host processor. All the commands with input arguments and all the
corresponding responses with return values are handled using these registers.

In addition, command 1/O registers are used in a pre-defined way for each command to control the VPU.

2.2 APIl-Based VPU Control

Host applications generally control the VPU through a set of pre-defined APIs by sending acommand and
corresponding arguments to the VPU. After receiving an interrupt from the VPU, signalling the
completion of the requested operation, the host application acquires the results as shown in Figure 3.

Each API definition includes the requested command as well as the input and output data structure. The
given command from the API function is always written on a dedicated 1/O register, but the input and
output data structureistransmitted through aset of command I/O registersthat contain the input arguments

i.MX51 VPU Application Programming Interface Windows Embedded CE 6.0 Reference Manual

Freescale Semiconductor 7

i.MX51 VPU Driver API Reference

and output results. Therefore, application developers do not need know the details of the host register

definitions and usage.

(Bit-stream Buffers,
Frame Buffers, etc.)

API Calls with Args
Host C&M
Application APIljs
Return Codes with Output Info
INTERRUPT ‘5 CL‘
e
: ©
Firmware on VPU
< VPU VPU VPU
S Codec System Host I/F
Library Manager Reg
]]
H H
1 D s 1 D s
Shared Buffer VPU Buffer

SDRAM

(Work Buffer, u-Code Buffers.
Parameter Buffers, etc.)

Figure 3. Software Control Model of VPU from Host Application

3 i.MX51 VPU Driver API Reference

3.1 API Features

A set of API functionsis provided to efficiently control the VPU. The VPU API coversall functions of the
i.MX51 VPU. This API-based approach speeds up the development process of application software.
Important features of the API for thei.MX51 VPU are summarized in the following sections.

3.1.1 Simple Software Control

Thei.MX51 VPU API provides asimple way to control thei.MX51 VPU and avoid errorsin application
software. The host application does not need to know the details of the i.MX51 VPU internal operations.
For example, in order to initialize the VPU, an application smply callsan API for initialization,
vpu_Init(), and no additional information is required for calling this API. The vpu_lnit() API performs
all the required stepsfor initializing the i.MX51 VPU. When issuing a picture decoder operation, the
application simply changes some variables included in the well-defined input data structure.

i.MX51 VPU Application Programming Interface Windows Embedded CE 6.0 Reference Manual

Freescale Semiconductor

i.MX51 VPU Driver API Reference

3.1.2 Handling Multi-Instances

Thei.MX51 VPU supports multiple instances for decoding and encoding at the same time, which can be
used in multiple decoding and encoding and multi-party call applications. To support multi-instance
operations, thei.MX51 VPU API provides afull set of functions for handling the instances with ease.
When opening a new instance, an application receives a handle specifying the new instance, if a new
handleis available at that time. The operations for a given instance are separately controlled using the
corresponding handle. An application can easily terminate a single task on the VPU by calling afunction
for closing a certain instance.

3.1.3 Frame-Based Codec Processing

Thei.MX51 VPU completes decoding and encoding operation on a frame-by-frame basis, which enables
low level independency of VPU operations on the host processor. While frame processing operation are

running, thereisno need for communication between the host processor and the VPU. Therefore, the VPU
does not burden the host processor during decoding and encoding operations.

3.2 Type Definitions
This section describes the types and structures used in the VPU API.

3.2.1 Type Definitions
This section describes the common data types used in the VPU API functions.

3.2.1.1 Uint8
typedef unsigned char Uint8;
Description
8-bit unsigned integer type used for declaring pixel data

3.2.1.2 Uint16

typedef unsigned short U nt16;
Description
16-bit unsigned integer type

3.2.1.3 Uint32
typedef unsigned int U nt32;
Description

32-bit unsigned integer type used for declaring unsigned variables with wide ranges such asthe size of a
buffer

i.MX51 VPU Application Programming Interface Windows Embedded CE 6.0 Reference Manual

Freescale Semiconductor 9

i.MX51 VPU Driver API Reference

3.2.1.4

PhysicalAddress

typedef U nt32 Physical Address;

Description

Represents physical addresses that are recognizable by the VPU. In general, the VPU hardware does not
know about the virtual address space that is set and handled by the host processor. The virtual addresses
are trandated into physical addresses by the Memory Management Unit (MMU). Data buffer addresses,
such as input bitstream buffer or frame buffer, are given to VPU as an address in the physical address

space.

3.2.1.5

CodStd

typedef enum {

STD_AVC,
STD_VC1,
STD_MPEG2,
STD_MPEG4,
STD H263,
STD DI V3,
STD_MIPG,
STD_RV

} CodStd:;

Description

Enumeration for declaring code standard type variables. The following video standards are supported by

the VPU:

* AVC (H.264) BF/MP/HP
« VC-1SP/IMP/AP

* MPEG-2, MPEG-1

» MPEG4 SP/ASP

* H.263 Profile 3

e Divx3

* RealVideo 8/9/10

3.2.1.6

NOTE

The MPEG-1 decoder operation ishandled as aspecial case of the MPEG-2
decoder. The RealVideo 8/9/10 decoder is only available for licensed
customers.

RetCode

typedef enum {

RETCODE_SUCCESS,

RETCODE_FAI LURE,

RETCODE_| NVALI D_HANDLE,
RETCODE_| NVALI D_PARAM
RETCODE_| NVALI D_COVVAND,
RETCODE_ROTATOR OUTPUT_NOT_SET,

i.MX51 VPU Application Programming Interface Windows Embedded CE 6.0 Reference Manual

10

Freescale Semiconductor

i.MX51 VPU Driver API Referen

RETCCDE_ROTATOR_STRI DE_NOT_SET,
RETCODE_| NVALI D_FRAME_BUFFER,
RETCCDE_| NSUFFI CI ENT_FRAVE_BUFFERS,

RETCODE_| NVALI D_STRI DE,

RETCODE_WRONG CALL_SEQUENCE,

RETCODE_CALLED_BEFORE,

RETCODE_NOT_I NI Tl ALI ZED,
RETCODE_FAI LURE_TI MEOUT,

RETCCDE_BUSY,
RETCODE_| DLE,

RETCODE_REPORT_BUF_NOT_SET

} Ret Code;
Description

ce

Enumeration for declaring the return codes from API function calls. The meaning of each return codeis
the same for al API functions, but the reason of non-successful return might be different. Details of the
reasons for the return code are described in Section 3.3, “API Definitions.” Table 1 shows the basic

meaning of each return code.

Table 1. Return Codes

Code

Description

RETCODE_SUCCESS

Operation successful

RETCODE_FAILURE

Operation not successfully; this value is returned when an
un-recoverable decoder error occurs such as a header parsing error

RETCODE_INVALID_HANDLE

Given handle for current API function call is invalid, for example, not
initialized yet or improper function call for the given handle

RETCODE_INVALID_PARAM

Given argument parameters (for example, input data structure) is invalid
(not initialized yet or not valid anymore)

RETCODE_INVALID_COMMAND

Given command is invalid, for example, undefined or not allowed in the
given instance

RETCODE_ROTATOR_OUTPUT_NOT_SET

Rotator output buffer is not allocated even though rotation is enabled

RETCODE_ROTATOR_STRIDE_NOT_SET

Rotator stride is not provided even though rotation is enabled

RETCODE_INVALID_FRAME_BUFFER

Certain frame buffer pointers are invalid (not initialized yet or not valid)

RETCODE_INSUFFICIENT_FRAME_BUFFERS

Given numbers of frame buffers are not enough for the operations of the
given handle. This return code is only received when calling the
DecRegisterFrameBuffer() function

RETCODE_INVALID_STRIDE

Given stride is invalid (for example, 0, not a multiple of 8 or smaller than
the picture size). This return code is only allowed in API functions which
set stride

RETCODE_WRONG_CALL_SEQUENCE

Current API function call is invalid considering the allowed sequences
between API functions (for example, missing one crucial function call
before this function call)

RETCODE_CALLED_BEFORE

Multiple calls of current API function for a given instance are invalid

RETCODE_NOT_INITIALIZED

VPU is not initialized yet. Before calling any API functions, the
initialization API function, vpu_lInit(), should be called

i.MX51 VPU Application Programming Interface Windows Embedded CE 6.0 Reference Manual

Freescale Semiconductor

11

i.MX51 VPU Driver API Reference

Table 1. Return Codes (continued)

Code Description
RETCODE_FAILURE_TIMEOUT Hardware is already busy with another operation and unavailable for
current API calling or something is wrong with the VPU
RETCODE_BUSY VPU is busy with some operation
RETCODE_IDLE VPU is idle
RETCODE_REPORT_BUF_NOT_SET The VPU supports information reporting for MV/MB/SLICE/frame buffer

status/user data. In this case, the host application must allocate buffers
to save this information. These buffers can be in the virtual memory in the
user space. If these buffers are not allocated, but the corresponding
report is enabled, this error is returned. If the host application does not
use these reports, not to enable the report feature.

3.2.1.7 CodecCommand

typedef enum {
ENABLE_ROTATI CON,
DI SABLE_ROTATI ON,
ENABLE_M RRORI NG,
DI SABLE_M RRORI NG,
SET_M RROR_DI RECTI ON,
SET_ROTATI ON_ANGLE,
SET_ROTATOR_OUTPUT,
SET_ROTATOR_STRI DE,
DEC_SET_SPS_RBSP,
DEC_SET_PPS_RBSP,
ENABLE_DERI NG,
DI SABLE_DERI NG,
DEC_SET_REPORT_BUFSTAT,
DEC_SET_REPORT_MBI NFO,
DEC_SET_REPORT_MI NFO,
DEC_SET_REPORT_USERDATA,
ENC_GET_SPS_RBSP,
ENC_GET_PPS_RBSP,
ENC_PUT_MP4_HEADER,
ENC_PUT_AVC HEADER,
ENC_GET_VOS_HEADER,
ENC_GET_VO HEADER,
ENC_GET_VOL_HEADER,
ENC_SET_I NTRA_MB_REFRESH NUVBER,
ENC_ENABLE_HEC,
ENC_DI SABLE_HEC,
ENC_SET_SLI CE_I NFQ,
ENC_SET_GOP_NUMBER,
ENC_SET_I NTRA_QP,
ENC_SET_BI TRATE,
ENC_SET_FRAME_RATE,
ENC_SET_REPORT_MBI NFO,
ENC_SET_REPORT_MI NFQ,
ENC_SET_REPCORT_SLI CEl NFO

} CodecCommand;

i.MX51 VPU Application Programming Interface Windows Embedded CE 6.0 Reference Manual

12 Freescale Semiconductor

i.MX51 VPU Driver API Reference

Description

Specia enumeration type for configuration commands from the host processor to the VPU. Most of these
commands are called occasionally (not periodically) for changing the VPU operation configuration.
Details of these commands are presented in Section 3.3.3.9, “vpu_EncGiveCommand().”

3.2.1.8 MirrorDirection

typedef enum {

M RDI R_NONE,

M RDI R_VER,

M RDI R_HOR,

M RDI R_HOR_VER
} MrrorDirection;

Description
Enumeration type for representing the mirroring direction

3.2.1.9 Mp4HeaderType

typedef enum {
VOL_HEADER,
VOS_HEADER,
VI S_HEADER
} Mp4dHeader Type;

Description

Specia enumeration type for MPEG-4 top-level header classes such as visual sequence header, visual
object header and video object layer header

3.2.1.10 AvcHeaderType

typedef enum {
SPS_RBSP,
PPS_RBS

} AvcHeader Type;

Description
Specia enumeration typefor AV C parameter sets such as sequence parameter set and picture parameter set

3.2.1.11 EncHandle
typedef Enclnst * EncHandl e;
Description

Dedicated type for encoder handles returned when an encoder instance is opened. An encoder instance can
be referred to by the corresponding handle. Enclnst is a type managed internally by the API and the
application does not need to use it.

i.MX51 VPU Application Programming Interface Windows Embedded CE 6.0 Reference Manual

Freescale Semiconductor 13

i.MX51 VPU Driver API Reference

3.2.1.12 DecHandle
typedef Declnst * DecHandl e;
Description

Dedicated type for decoder handles returned when a decoder instance is opened. A decoder instance can
be referred to by the corresponding handle. Declnst is a type managed internally by APl and the
application does not need to use it.

3.2.2 Data and Structure Definitions
This section describes the data and structure definitions used in the VPU API functions.

3.2.2.1 FrameBuffer

typedef struct {
Physi cal Address buf;
Physi cal Address buf Cb;
Physi cal Address buf Cr;
Physi cal Address buf M/Col ;
} FraneBuffer;

Description

Data structure for representing frame buffer pointersfor each color component

bufY Addressfor Y component in the physical address space

bufCb Address for Cb component in the physical address space

bufCr Address for Cr component in the physical address space

bufMvCol Address for co-located motion vector buffersin the physical address space

The host application must allocate contiguous physical memory from the SDRAM space for the
components using this data structure. All four addresses must be 8-byte aligned. One pixel value of a
component occupies one byte and the frame dataisin Y CbCr 4:2:0 format for H.264, H.264 and MPEG-4
codecs. The sizes of the Cb and Cr buffers are 1/4 the size of the Y buffer size for H.264, H.263 and
MPEG-4 codecs. For MJPEG, the frame data format can be Y CbCr 4:2:0, 4:2:2 horizontal, 4:2:2 vertical,
4:4:4 and 4:0:0 and the sizes of the Cb and Cr buffers vary. The co-located motion vector isonly required
for B-frame decoding in MPEG-2, AVC MP/HP, MPEG-4 ASP, VC-1 MP/AP, Real Video 8/9/10, and so
on.

3.2.2.2 Rect
typedef struct {
Unt32 left;
U nt 32 top;
Ui nt32 right;
Ui nt 32 bottom
} Rect;
Description

Data structure for representing a rectangular window in aframe

i.MX51 VPU Application Programming Interface Windows Embedded CE 6.0 Reference Manual

14 Freescale Semiconductor

i.MX51 VPU Driver API Reference

left Horizontal pixel offset of top-left corner of rectangle from top-left corner of aframe

top Vertical pixel offset of top-left corner of rectangle from top-left corner of aframe

right Horizontal pixel offset of bottom-right corner of rectangle from top-left corner of aframe
bottom Vertical pixel offset of bottom-right corner of rectangle from top-left corner of aframe

This structure is provided to the host application to specify a display window for the H.264 cropping
option. Each value is offset from the top-left corner of the frame; therefore, al values are positive.

3.2.2.3 EncHeaderParam

typedef struct {
Physi cal Address buf;
int size;
int header Type;

} EncHeader Par am

Description

Structure used for adding aheader syntax layer to the encoded bit stream. The parameter header Typeisthe
input parameter to the VPU and the other two parameters are returned from the VPU after completing the
requested operation. If the encoder dynamic buffer allocation option is enabled aswell asthe stream buffer
reset option, the parameters buf and size are also input parameters. In this case, the host application must
allocate the contiguous physical buffer to save the encoded header syntax and pass its physical base
address and size to the VPU. Otherwise the encoded header syntax is saved in the bit stream buffer passed
to the VPU while calling vpu_EncOpen() to open encoder instance.

3.2.24 EncParamSet

typedef struct {
U nt 32 *par aSet ;
int sizelnByte;
} EncPar anfet ;

Description

Structure used when the host processor requires SPS or PPS data from an encoder instance. The resulting
SPS or PPS datais used in an application as a type of out-of-band information. The size of the buffer

pointed to by paraSet should belarge enough to save SPS and/or PPS data. The proposed sizeisnot smaller
than 100 bytes and isamultiple of 8-byte. The size of returned SPS and/or PPS datais saved in sizelnByte.

3.2.2.5 EncMp4Param

typedef struct {
int np4_dataPartitionEnabl e;
int np4_reversi bl eVl cEnabl e;
int np4_intrabDcVl cThr;
int np4_hecEnabl e;
int np4_verid;

} EncMp4dPar am

i.MX51 VPU Application Programming Interface Windows Embedded CE 6.0 Reference Manual

Freescale Semiconductor 15

i.MX51 VPU Driver API Reference

Description

Data structure for configuring M PEG4-specific parameters in encoder applications

mp4_dataPartitionEnable
mp4_reversibleVIcEnable

O =disable, 1 =enable
O =disable, 1 =enable

mp4_intraDcVIcThr Value of intra_dc_vlc_thr in MPEG-4 part 2 standard, valid rangeis 0-7

mp4_hecEnable

O =disable, 1 =enable

mp4_verid Value of MPEG-4 part 2 standard version ID, version 1 and 2 are allowed

3.2.2.6 EncH263Param

typedef struct {

int h263_annexJEnabl e;
int h263_annexKEnabl e;
int h263_annexTEnabl e;

} EncH263Par am
Description

Data structure for configuring H.263-specific parameters in encoder applications
h263_annexJEnable O=disable, 1 =enable
h263_annexKEnable O=disable, 1 =enable
h263_annexTEnable O=disable, 1 =enable

3.2.2.7 EncAvcParam

typedef struct {

int avc_constrainedl ntraPredFl ag;
int avc_di sabl eDebl k;

int avc_debl kFilter O fset Al pha;
int avc_debl kFilter O fsetBeta;
int avc_chromaQpOff set;

int avc_audEnabl e;

int avc_fnmoEnabl e;

int avc

f oSl i ceNum
int avc_fnmType;

int avc_fnmSliceSaveBuf Si ze;

} EncAvcPar am
Description

Data structure for configuring AV C-specific parameters in encoder applications

avc_constrainedintraPredFlag
avc_disableDeblk

avc_deblkFilterOffsetAlpha
avc_deblkFilterOffsetBeta

Constrained_intra_pred_flag in picture parameter set
O=disable, 1 =enable

Disable_deblocking_filter_idc in slice header
0=enable, 1 =disable, 2 = disable deblocking filter at slice boundaries

dice alpha cO _offset_div2in slice header, rangeis—6to 6
dice beta offset_div2 in slice header, rangeis—6to 6

i.MX51 VPU Application Programming Interface Windows Embedded CE 6.0 Reference Manual

16

Freescale Semiconductor

avc_chromaQpOffset
avc_audEnable

avc_fmoEnable
avc_fmoSliceNum
avc_fmoType

i.MX51 VPU Driver API Reference

chroma_gp_index_offset in picture parameter set, rangeis—12to 12

Enable or disable encode H.264 Access Unit Delimiter (AUD) RBSP
used to simplify the detection of the picture boundary

0 =disable, 1 = enable and the encoder generates AUD RBSP at the
start of every picture

Not used on thei.MX51 since FMO encoding is not supported
Not used on thei.MX51 since FMO encoding is not supported
Not used on thei.MX51 since FMO encoding is not supported

avc_fmoSliceSaveBufSize Not used on thei.MX51 since FMO encoding is not supported

3.2.2.8 EncMjpgParam

typedef struct {

int nj pg_sourceFormat;
int njpg_restartlnterval;
int nj pg_t hurbNai | Enabl e;
int nj pg_thunbNai | W dt h;
int nj pg_t humrbNai | Hei ght ;
U nt8 * njpg_hufTabl e;
Unit8 * nj pg_qghat Tabl e;

} EncM pgPar am
Description

Data structure for configuring M JPEG-specific parameters in encoder applications

mjpg_sourceFormat

mjpg_restartinterval
mjpg_thumbNailEnable
mjpg_thumbNailWidth

Chromaformat. The format means chrominance size of source image and can
be avalue between 0 and 4:
0=4:2:0,1=4:2:2 horizontal, 2= 4:2:2 vertical, 3=4:4:4, 4 = 4.0:0

Value for representing interval of restart marker in Mbytes
0= disable, 1 = enable and the encoder enables thumbnail encoding

Variable representing the width of the thumbnail to be encoded in pixels. This
variable can be between 0 and sourceimage width, must be over aspecific value
and must be amultiple of the value shown in Table 2.

Table 2. mjpg_thumbNailWidth and mjpg_thumbNailHeight Values

Format Value
4:2:0 16

4:2:2 16

2:2:4 8

4:4:4 8

4:0:0 8

i.MX51 VPU Application Programming Interface Windows Embedded CE 6.0 Reference Manual

Freescale Semiconductor

17

i.MX51 VPU Driver API Reference

mjpg_thumbNailHeight Variable representing the height of the thumbnail to be encoded in pixels. This
variable can be between 0 and source image height, must be over a specific
value and be a multiple of the value shown in Table 2.

Variablerepresenting apointer to an addressin the Huffman table. The Huffman
table coefficients are saved in pre-defined format as shown in Table 3.

mjpg_hufTable

Table 3. Huffman Table Format

Offset .
Address 0 1 2 3 Description

0x000 Y_DCBits[3] Y_DCBits[2] Y_DCBits[1] Y_DCBits[0] Luminance DC
BitLength

0x00C Y_DCBits[15] Y_DCBits[14] Y_DCBits[13] Y_DCBits[12]

0x010 Y_DCValue[3] Y_DCValue[2] Y_DCValue[1] Y_DCValue[0] Luminance DC
HuffValue

0x018 Y_DCValue[11] Y_DCValue[10] Y_DCValue[9] Y_DCValue[8]

0x01C 0 0 0 0

0x020 Y_ACBits[3] Y_ACBits[2] Y_ACBits[1] Y_ACBits[0] Luminance AC
BitLength

0x02C Y_ACBits[15] Y_ACBits[14] Y_ACBits[13] Y_ACBits[12]

0x030 Y_ACValue[3] Y_ACValue[2] Y_ACValue[1] Y_ACValue[0] Luminance AC
HuffValue

0x0DO0 0 0 Y_ACValue[161] Y_ACValue[160]

0x0D4 0 0 0 0

0x0D8 C_DCBits[3] C_DCBits[2] C_DCBits[1] C_DCBits[0] Chrominance
DC BitLength

OxOE4 C_DCBits[15] C_DCBits[14] C_DCBits[13] C_DCBits[12]

Ox0ES8 C_DCValue[3] C_DCValue[2] C_DCValue[1] C_DCValue|[0] Chrominance
DC HuffValue

0x0F0 C_DCValue[11] C_DCValue[10] C_DCValue[9] C_DCValue[8]

O0x0F4 0 0 0 0

Ox0F8 C_ACBits[3] C_ACBits[2] C_ACBits[1] C_ACBits[0] Chrominance
AC BitLength

0x104 C_ACBits[15] C_ACBits[14] C_ACBits[13] C_ACBits[12]

0x108 C_ACValue[3] C_ACValue[2] C_ACValue[1] C_ACValue[0] Chrominance
AC HuffValue

0x1A8 0 0 C_ACValue[161] C_ACValue[160]

i.MX51 VPU Application Programming Interface Windows Embedded CE 6.0 Reference Manual

18

Freescale Semiconductor

mjpg_gMatTable

i.MX51 VPU Driver API Reference

Variable representing a pointer to an addressin the Q-Matrix. The Q-Matrix
coefficients are saved in pre-defined formats shown in Table 4.

Table 4. Q Matrix Format

Offset i
Address 0 1 2 3 Description

0x000 Y_QMat[3] Y_QMat[2] Y_QMat[1] Y_QMat[0] Luminance Q
Matrix

0x03C Y_QMat[63] Y_QMat[62] Y_QMat[61] Y_QMat[60]

0x040 C_BQMat[3] C_BQMat[2] C_BQMat[1] C_BQMat[0] Chrominance Q
Matrix for Cb

0x07C C_BQMat[63] C_BQMat[62] C_BQMat[61] C_BQMat[60]

0x080 C_RQMat[3] C_RQMat[2] C_RQMat[1] C_RQMat[0] Chrominance Q
Matrix for Cr

0x0BC C_RQMat[63] C_RQMat[62] C_RQMat[61] C_RQMat[60]

3.2.2.9

EncSliceMode

typedef struct {
int sliceMde;
int sliceSizeMbde;
int sliceSize;

} EncSli ceMode;

Description

Structure used for declaring encoder dlice mode and its options. This structure value isignored for a

MJPEG encoder.

diceMode

diceSizeMode

diceSize

0= One dice per picture, 1 = Multiple slices per picture.

If diceModeisset to 1, in norma MPEG-4 mode, the resync-marker and packet
header are inserted between the slice boundaries. In short video header with
Annex K =0, the GOB header isinserted at every GOB layer start. In short video
header with Annex K = 1, multiple slices are generated. In AVC mode, multiple
dice layer RBSP is generated. If diceMode is set to 0, no corresponding
information is generated for each encoder.

Size of agenerated slice when sliceMode = 1, 0 means sliceSize is define by
amount of bits, and 1 means dliceSize is defined by the number of Mbytesin a
dice. This parameter isignored when sliceMode = 0 or in short video header
mode with Annex K = 0.

Size of aslicein bits or Mbytes specified by sliceSizeMode. This parameter is
ignored when sliceMode = 0 or in short video header mode with Annex K = 0.

i.MX51 VPU Application Programming Interface Windows Embedded CE 6.0 Reference Manual

Freescale Semiconductor

19

i.MX51 VPU Driver API Reference

3.2.2.10

EncOpenParam

typedef struct {

CodStd bitstreanfFornat;

Physi cal Address bitstreanBuffer;

U nt 32 bitstreanBufferSize;

Unt8 *virt_bitstreanBuffer;

int picWdth;

int picHeight;

U nt 32 franeRat el nf o;

int bitRate;

int initial Del ay;

int vbvBufferSize;

i nt enabl eAut oSki p;

int gopSize;

EncSl i ceMbde sl i cenpde;

int intraRefresh;

int rclintraQp;

int dynam cAl | ocEnabl e;

int ringBufferEnable;

int interleavedChCr;

uni on {
EncMp4Par am np4Par am
EncH263Par am h263Par am
EncAvcPar am avcPar am
EncM pgPar am nj pgPar am

} EncStdPar am

int user QMax;

U nt 32 user Ganmm;

int Rclnterval Mode;

int Ml nterval;

} EncOpenPar am

Description

Data structure for parameters when an encoder instance is opened

bitstreamFormat Standard type of bitstream in encoder operation: STD_MPEG4, STD_H263,
STD_AVC or STD_MJPG, as defined in Section 3.2.1.5, “ CodStd.”

bitstreamBuffer Start address of bit stream buffer into which encoder places the bitstream. This
address must be 4 byte-aligned.

bitstreamBufferSize Sizein bytes of a buffer pointed to by bitstreamBuffer. This value must be a

virt_bitstreamBuffer

picWidth

multiple of 1024. The maximum size is 16383x1024 bytes.

This virtual address corresponds to the physical address of bitstreamBuffer.
Width of a picture to be encoded in pixels

Virtual start address of the bit stream buffer where the encoder places bit streams.

picHeight
frameRatel nfo

Height of a picture to be encoded in pixels

The 16 least significant bits, [15:0], is a numerator and 16 most significant bits,
[31:16], is adenominator for calculating the frame rate. The numerator is clock
ticks per second, and the denominator is clock ticks between frames minus 1. The
frame rate can be defined by (numerator/(denominator + 1)), which equals
(frameRatelnfo & Oxffff) /((frameRatel nfo >> 16) + 1).

i.MX51 VPU Application Programming Interface Windows Embedded CE 6.0 Reference Manual

20

Freescale Semiconductor

bitRate

initialDelay

vbvBuUfferSize

enableAutoSkip

gopSize

dicemode
intraRefresh

rcintraQp

dynamicAllocEnable

ringBufferEnable

i.MX51 VPU Driver API Reference

For example, aframeRatelnfo value of 30 represents 30 frames/sec, and thevalue
0x3e87530 represents 29.97 frames/sec.

This value is meaningless for H.264 because the frame rate is determined by the
container. So the frame rate of an encoded stream may be different from
frameRatel nfo.

Target bit rate in kbps. If O, there is no rate control and pictures are encoded with
aquantization parameter equal to quantParam in EncParam.

Time delay (in ms) for the bit stream to reach initial occupancy of the vbv buffer
fromzerolevel. Thisvalueisignored if rate control isdisabled. The value O means
the encoder does not check for reference decoder buffer delay constraints.

vbv_buffer_sizein bits. Thisvalueisignored if rate control is disabled or
initialDelay is 0. The value O means the encoder does not check for reference
decoder buffer size constraints.

0 = automatic skip disabled, 1 = automatic skip enabled. Automatic skip iswhen
the encoder skips frame encoding when generated bitstream so far istoo big
considering the target bitrate. This parameter isignored if rate control is not used
(bitRate = 0).

GOPsize. 0 =only first pictureis|, 1 = al | pictures, 2= IPIP, 3= I1PPIPP, and so
on. The maximum value is 32,767, but in practice, a smaller value should be
chosen by the application for proper error concealment. Thisvalue isignored for
STD_MJPG

Parameter for dice mode

0= IntraMB refresh isnot used. Otherwise = at least N MBsin every P-frame are
encoded asintraMBs. Thisvaueisignored in for STD_MJPG.

Quantization parameter for | frame. The allowed values are —1 or corresponding
available range. When thisvalue is—1, the quantization parameter for | framesis
automatically determined by the VPU. In MPEG4/H.263 mode, therangeis1-31,;
in H.264 mode, the range is from 0-51. Thisisignored for STD_MJPG

0 =disable, 1= enable

When thisfield is set, dynamic buffer allocation is enabled under buffer reset
mode for encoder operation, so that the buffer start address specified in the
EncOpenParam, bitstreamBuffer, isignored in picture encoding. In this case, the
picture buffer start address should be specified in the EncParam,
picStreamBufferAddr, at every call of vpu_EncStartOneFrame(). When this
field is not set, the picture buffer start address given by bitstreamBuffer, is used
for encoder operations, even though buffer reset mode is enabled.

0 =disable, 1= enable

This flag enables the streaming mode for the current encoder instance. Two
streaming modes, packet-based streaming with ring-buffer (buffer-reset mode)
and frame-based streaming with line buffer (buffer-flush mode) can be configured
using thisflag.

i.MX51 VPU Application Programming Interface Windows Embedded CE 6.0 Reference Manual

Freescale Semiconductor

21

i.MX51 VPU Driver API Reference

When thisfield is set, packet-based streaming with ring-buffer is used. When this
field is not set, frame-based streaming with line-buffer is used.

interleavedChCr 0 = non-interleaved chroma Y UV input format that the CbCr dataisinputted into
separate frame buffers.
1 = interleaved chromaY UV input format that the CbCr dataisinputted into one
chroma buffer.
For interleaved Cb/Cr map, the base addressfor the Cr isignored because the base
address for the Cb is used to store or load the interleaved Ch/Cr samples.

mp4Param Parameters for MPEG-4 part 2 Visua

h263Param Parametersfor ITU-T H.263

avcParam Parametersfor AVC

mjpgParam Parameters for MJPEG

userQpMax Setsthe maximum quantized step parameter for encoding. O = disablesthissetting

and the VPU uses the default maximum quantized step depending on the mode.
For MPEG-4/H.263, the allowed maximum valueis 31, so theavailable values are
from 1 to 31. In H.264 mode, the allowed maximum value is 51, so the available
values are from 1 to 51.

userGamma Smoothing factor in the estimation. A valuefor gammaisfactorx32768, wherethe
value for factor must be between 0 and 1. If the smoothing factor iscloseto 0, Qp
changes slowly. If the smoothing factor is closeto 1, Qp changes quickly. The
default Gamma value is 0.75x32768.

RcIntervaMode Encoder rate control mode setting. The host sets the bitrate control mode
according to the required case. The default valueis 1.
0= normal mode rate control
1=FRAME_LEVEL rate control
2=SLICE_LEVEL rate control
3=USER DEFINED MB LEVEL rate control

Mblinterval User defined Mbyte interval value. The default value is 2 macroblock rows. For
example, if the resolution is 720x470, then the two macroblock row is
2%x(720/16) = 90. Thisvalue is used only when the RcIntervalModeis 3.

3.2.2.11 EncReportBufSize

typedef struct {
int nblnfoBufSi ze;
int nvlnfoBufSize;
int slicelnfoBufSize;
} EncReport Buf Si ze;

Description
Data structure for returning the size of the buffer to save the corresponding report information. The buffer
must be allocated with the size for the specific information to enable the report. For example, if the host

application wantsto get the MB information of the current encoding, vpu_EncGetl nitiall nfo() returnsthe
necessary buffer size. Then host application must alocate a virtual buffer of this size and call

i.MX51 VPU Application Programming Interface Windows Embedded CE 6.0 Reference Manual

22 Freescale Semiconductor

i.MX51 VPU Driver API Reference

vpu_EncGiveCommand() with the ENC_SET_REPORT_MBINFO command to register the base
address of the allocated virtual buffer. The driver saves the reported information into this buffer.

mblnfoBufSize Buffer size for MB information
mvInfoBufSize Buffer size for motion vector information
dicelnfoBufSize Buffer size for dlice information

3.2.2.12 Enclnitialinfo

typedef struct {
int m nFranmeBuf f er Count ;
EncRepor t Buf Si ze report Buf Si ze;
} Enclnitiallnfo;

Description

Data structure for parameters of vpu_EncGetl nitiall nfo() which are needed for the minimum required
buffer count in host applications and the necessary size of the buffersthat are used to save the
corresponding information. Thisreturned value is used to allocate frame buffersin

vpu_EncRegister FrameBuffer ().

minFrameBufferCount Minimum required buffer count in host applications. This returned value is used
to allocate frame buffersin vpu_EncRegister FrameBuffer ()

reportBufSize Data report requested buffer size information

3.2.2.13 EncParam

typedef struct {
FrameBuf fer * sourceFrane;
int forcel Picture;
int skipPicture;
int quant Param
Physi cal Address pi cStreanBuffer Addr;
int picStreanmBufferSize;

} EncParam
Description
Data structure for configuring one frame encoding
sourceFrame Frame buffer containing source image to be encoded
forcel Picture If thisvalueis 0, the picture typeis determined by the VPU according to the

various parameters such as encoded frame number and GOP size.

If thisvalueis 1, the frameis encoded as an |-picture regardless of the frame
number or GOP size, and I-picture period calculation isreset to the initia state.
For MPEG-4 and H.263, I-pictureis sufficient for decoder refresh. For H.264
mode, the pictureis encoded as an Instantaneous Decoding Refresh (IDR) picture.
Thisvalueisignored if skipPicture= 1.

skipPicture If thisvalue is O, the encoder encodes the picture as normal.
If thisvalueis 1, the encoder ignores sourcefFrame and generates a skipped

i.MX51 VPU Application Programming Interface Windows Embedded CE 6.0 Reference Manual

Freescale Semiconductor 23

i.MX51 VPU Driver API Reference

quantParam

picStreamBufferAddr

picStreamBufferSize

picture. In this case, the reconstructed image is a duplication of the previous
picture. The skipped picture is encoded as P-type regardless of GOP size.

Thisvalueisused for all quantization parametersin case of VBR (no rate control).
Therange of valueis 1-31 for MPEG-4 and 0-51 for H.264. When rate control is
enabled, thisfield isignored.

Start address of a picture stream buffer under line-buffer mode and dynamic buffer
allocation. This variable represents the start of a picture stream for encoded
output. In buffer-reset mode, an application might use multiple picture stream
buffers for the best performance. Using this variable, an application re-registers
the start position of the picture stream whileissuing a picture encoding operation.
This start address of this buffer must be 8-byte aligned, and itssizeis specified by
picStreamBufferSize. In packet-based streaming with ring-buffer, thisvariableis
ignored. This variableis only meaningful when both line-buffer mode and
dynamic buffer allocation are enabled.

Byte size of a picture stream chunk. Thisvariable represents byte size of apicture
stream buffer and is crucial in line-buffer mode because encoder output can be
corrupted if this size is smaller than any picture encoded output. Therefore, this
value should be big enough for storing multiple picture streamswith average size.
In packet-based streaming with ring-buffer, thisvariableisignored. Thisvariable
specifies the picture stream buffer size for encoded output in line-buffer mode.

3.2.2.14 EncOutputinfo

typedef struct {
Physi cal Address bitstreanBuffer;
U nt 32 bitstreanti ze;
int bitstreamW apAround;
int picType;
int nunOf Slices;
Report I nfo nblnfo;
ReportInfo nvlnfo;
ReportInfo slicelnfo;
} EncQut put | nfo;

Description

Data structure for reporting the results of picture encoding operations

bitstreamBuffer

bitstreamSize
bitstreamWrapAround

picType

numOfSlices

Physical address of the starting point of a newly encoded picture stream. If
dynamic buffer allocation isenabled in line-buffer mode, thisvalueisidentical to
the picture stream buffer address specified by the host application.

Byte size of the encoded bitstream
Flag for bitstream buffer wrap-around. If thisflag is set alarger buffer isrequired.

Coded picture type. In H.263 and MPEG4, 0 = | picture, and 1 = P picture. In
AVC, 0=IDR picture and 1 = Non-IDR picture.

Number of slicesincluded in anewly encoded picture. When sliceReport in
EncOpenParam is 0, thisvalue isinvalid.

i.MX51 VPU Application Programming Interface Windows Embedded CE 6.0 Reference Manual

24

Freescale Semiconductor

i.MX51 VPU Driver API Reference

mblnfo Parameter to save the MB reporting
mvinfo Parameter to save the MV reporting
dicelnfo Parameter to save the slice reporting

3.2.2.15 SearchRamParam

typedef struct {
Physi cal Address sear chRamAddr;
i nt Sear chRanSi ze;

} Sear chRanPar am

Description

Structure used when host processor sets ME search RAM start address. SearchRamSize is calculated by:
SearchRamSize = ((picWidth + 15) & ~15) x 36 + 2048

This amount of memory space should be reserved by the host application for ME operations.

3.2.2.16 DecParamSet

typedef struct {
U nt32 * paraSet;
int sizelnByte;

} DecPar anfet ;

Description

Structure used when the host processor requires to send SPS data or PPS data. paraSet is the base address
of the buffer that contains the SPS and/or SPS data. The buffer size should be adjusted to a multiple of 8
bytes before being passed to the API, so sizelnByte isthe real size of the SPS and/or PPS data. The SPS
data or PPS datais used in real applications as atype of out-of-band information.

3.2.2.17 DecOpenParam

typedef struct {
CodStd bitstreanfFornat;
Physi cal Address bitstreanBuffer;
Unt8 *virt_bitstreanBuffer;
int bitstreanBufferSi ze;
i nt np4Debl kEnabl e;
int reorderEnabl e;
int filePl ayEnabl e;
int picWdth;
i nt picHeight;
int dynam cAl | ocEnabl e;
int streanStartByteO fset;
int nj pg_t humbNai | DecEnabl e;
Physi cal Address psSaveBuffer;
int psSaveBufferSize;
int interleavedChCr;
int nmp4d ass;

} DecOpenPar am

i.MX51 VPU Application Programming Interface Windows Embedded CE 6.0 Reference Manual

Freescale Semiconductor 25

i.MX51 VPU Driver API Reference

Description

Data structure used to open a new decoder instance

bitstreamFormat

bitstreamBuffer

virt_bitstreamBuffer

bitstreamBufferSize

mp4DbkEnable

reorderEnable

filePlayEnable

picWidth

picHeight

dynamicBuffAllocEnable

Standard type of bitstream decoder operation as defined in Section 3.2.1.5,
“CodStd.”

Start physical address of the bit stream buffer from which the decoder
retrieves the next bitstream. This address must be 8 byte-aligned. This
variableis not valid in file-play mode with dynamic buffer allocation
because, the bitstream buffer is dynamically re-allocated for multiple
buffering.

Start virtual address of the bit stream buffer from which the decoder can
retrieve the next bitstream. The virtual address corresponds to physical
address of bitstreeamBuffer.

Sizein bytes of a buffer pointed to by bitstreamBuffer. This value must be
amultiple of 1024. The maximum size is 16383x1024 bytes. This variable
isnot validinfile-play mode with dynamic buffer allocation becausein this
case, the bitstream buffer size is specified by the variable chunkSize.

0 =disable, 1= enable
When thisfield is set in MPEG4 and H.263 (post-processing) modes, the
decoder applies MPEG-4 deblocking filter output to the host application.

1 = enables display buffer reordering when decoding H.264 streams. In
H.264 mode, the output decoded pictureisre-ordered if pic_order_cnt_type
is0or 1 and the decoder must delay the output display for re-ordering.
However, some applications (such as video telephony) do not require such
display delay. The host may set thisflag to 0 to disable output display buffer
reordering. Thenthe BIT processor does not re-order the output buffer when
pic_order_cnt_typeisOor 1. If pic_order_cnt_typeis 2 or in MPEG4 or
H.263 modes, this flag is ignored because output display buffer reordering
isnot allowed.

0=disable, 1 =enable and file-play mode is enabled for decoder
operations. File-play mode means applications provide the chunk size and
reset the write pointer at each frame processing.

Horizontal picture size read from the file format header used for codecs for
which the picture sizeis not available in the bitstream, for example
Divx3.11.

Vertical picture size read from the file format header used for codecs for
which the picture sizeis not available in the bitstream, for example
Divx3.11.

1 = dynamic buffer allocation enabled under file-play mode for decoder
operations. When enabled, the buffer start address specified in
bitstreamBuffer isignored in decoder operations and the picture buffer start
address is specified in DecParam: picStreamBufferAddr, at every call of
vpu_DecSartOneFrame.

i.MX51 VPU Application Programming Interface Windows Embedded CE 6.0 Reference Manual

26

Freescale Semiconductor

i.MX51 VPU Driver API Reference

0 =disable, picture buffer start address given by bitstreamBuffer isused in
decoder operation, even though file-play mode is enabled.

streamStartByteOffset Start byte offset of the stream buffer. Since the VPU has an internal
limitation that the stream buffer start address must be 8-byte aligned, the
host application may be required to copy the stream datato an 8-byte
aligned buffer. This offset alows this overhead to be saved. This offset
should be between 0 and 7.

mjpg_thumbNailDecEnable 0= disable, 1 = enable and the M JPEG decoder decodesathumbnail image.
Thisvariableisonly valid in STD_MJPG mode.

psSaveBuffer Start address of the PS (SPS/PPS) save buffer which the decoder saves PS
(SPS/PPS) RBSP. Thisaddress must be 8 byte-aligned. Thisvariableisonly
valid for H.264 decoder mode.

psSaveBufferSize Sizein bytes of a buffer pointed to by psSaveBuffer. This value must be a
multiple of 1024. The maximum size is 65565x1024 bytes. Thisvariableis
only valid when decoding H.264 streams.

interleavedChCr 0 = non-interleaved chroma output format where the CbCr datais written
into separate frame buffers.
1 = interleaved chroma output format where the CbCr data is written into
one chroma buffer. For interleaved mode, the base address for the Cr is
meaningless because the base address for the Cb is used to store or load the
interleaved Cb/Cr samples.

mp4Class Parameter used to distinguish the subclass of MPEG4:
0=MPEG-4; 1 =DivX 5.0 or higher; 2 = Xvid; 5=DivX 4.0
Thisvariable is only valid when decoding an MPEG-4 stream. The VPU
regards MPEG4, Divx4 and Divx higher, Xvid as same codec. If the
upstream processing does not tell the exact subclasstype, use MPEG-4, but
itis highly encouraged to set the correct subclass type.

3.2.2.18 DecReportBufSize

typedef struct {
int nblnfoBufSize;
int nvlnfoBufSize;
int franmeBufStatBufSize;
int userDat aBuf Si ze;
} DecReport Buf Si ze;

Description

Data structure for returning the size of the buffer to save the corresponding report information. Thisbuffer
must be allocated with the return size for the specific information to enable the report. For example, if the
host application requiresthe MB information of the current encoding, vpu_DecGetl nitialI nfo returnsthe
necessary buffer size. Then the host application allocates a virtual buffer with this size and calls
vpu_DecGiveCommand withthe DEC_SET_REPORT_MBINFO command to register the base address
of the allocated virtual buffer. The driver saves the reported information into this buffer.

mblnfoBufSize Buffer size for Mb information

i.MX51 VPU Application Programming Interface Windows Embedded CE 6.0 Reference Manual

Freescale Semiconductor 27

i.MX51 VPU Driver API Reference

mvInfoBufSize

Buffer size for motion vector information

frameBufStatBufSize Buffer size for current frame buffer status

userDataBufSize

3.2.2.19

typedef struct {

Buffer size for decoded user data

Declnitialinfo

int picWdth;

i nt picHeight;

U nt 32 franeRat el nf o;

U nt 32 pi cCropEnabl e;

Rect picCropRect;

int np4_dataPartitionEnabl e;
int np4_reversi bl eVl cEnabl e;
int np4_short Vi deoHeader;
int h263_annexJEnabl e;

i nt m nFraneBuf f er Count ;

i nt frameBuf Del ay;

int normal SliceSize;

int worstSliceSize;

int nj pg_t hurbNai | Enabl e;
int nj pg_sourceFormat ;

int profile;
int level;

int interlace;
int direct8x8Fl ag;

int vcl_psf;

i nt aspect Rat el nf o;
int constraint_set_flag[4];
DecReport Buf Si ze report Buf Si ze;

} Declnitiallnfo;

Description

Data structure to get information necessary to start decoding

picWidth

picHeight

Horizontal picture sizein pixels. Thiswidth value is used when allocating

decoder frame buffers. In some cases, thisreturned value, thedisplay picture
width declared on the stream header, should be modified before allocating

the frame buffers. When the picture width isnot amultiple of 16, the picture
width for buffer allocation should be re-cal cul ated from the declared display
width as:

picBuf Width = ((picWidth + 15)/16) x 16,

where picBufWidth is the horizontal picture buffer width. When picWidth

isamultiple of 16, picWidth = picBuf Width.

Vertical picture sizein pixels. This height value is used when allocating
decoder frame buffers. In some cases, thisreturned value, thedisplay picture
height declared on the stream header, should be modified before allocating
theframebuffers. When the picture height isnot amultiple of 16, the picture
height for buffer allocation should be re-calculated from the declared
display height as:

picBufHeight = ((picHeight + 15)/16) x 16,

i.MX51 VPU Application Programming Interface Windows Embedded CE 6.0 Reference Manual

28

Freescale Semiconductor

frameRatel nfo

picCropEnable

picCropRect

mp4_dataPartitionEnable
mp4_reversibleVIcEnable
mp4_shortVideoHeader
H263_annexJEnable
minFrameBufferCount

frameBufDelay

norma SliceSize

worstSliceSize

mjpg_thumbNailEnable
mjpg_sourceFormat

i.MX51 VPU Driver API Reference

where picBufHeight isthe vertical picture buffer height. When picHeight is
amultiple of 16, picHeight = picBufHeight.

The 16 least significant bits, [15:0] isanumerator and 16 most significant
bits[31:16], isadenominator for calculating the frame rate. The numerator
isthe clock ticks per second, and the denominator isthe clock ticks between
frames minus 1. So the frame rate can be defined by
(numerator/(denominator + 1)), which equalsto (frameRatelnfo & Oxffff)
/((frameRatelnfo >> 16) + 1).

For example, the value of 30 for frameRatel nfo represents 30 frames/sec,
and the value of 0x3e87530 represents 29.97 frames/sec.

Indicates if picCropRect isvalid. If picCropEnable = 0,the picCropRect
should be ignored. picCropEnable = 1, thereis cropping rectangle
information picCropRect.

Picture cropping rectangle information. If picCropEnable =0, thisfield is
invalid. This structure specifiesthe cropping rectangle information only for
aH.264 decoder. The size and position of the cropping window in afull
frame buffer is presented in this structure. This structure isonly valid for
H.264 decoder mode.

O=disable, 1 =enable
O=disable, 1 =enable
O=disable, 1 =enable
O=disable, 1 =enable

Minimum number of frame buffers required for decoding. The application
must allocate at | east thisnumber of frame buffersand register those number
of buffersto the VPU using vpu_DecRegister FrameBuffer () before
decoding pictures.

Maximum display frame buffer delay for buffering decoded picture reorder.
The VPU may delay decoded picture displays for display reordering H.264
mode, when pic_order_cnt_typeisOor 1 and for B-frame handlingin VC-1
decoder. (By default, some H.264 encoder set pic_order_cnt_typetoOor 1,
but in BP applications, this setting is not actually used in practice.)

Recommended size of buffer to save dicein normal case. Thisvaueis
determined by a quarter of the memory size of oneraw YUV imagein
Kbytes.

Recommended size of buffer used to save slicein worst case. Thisvalueis
determined by half of the memory size for one raw YUV image in Kbytes.

0 =disable, 1 = enable and the stream which is decoded as thumbnail .

The chroma format of encoded image of the stream. The format definesthe
chrominance size of the source image and can be a value between 0 and 4.
0=4:2:0,1=4:2:2 horizontal, 2= 4:2:2 vertical, 3=4:4:4, 4 = 4.0:0

i.MX51 VPU Application Programming Interface Windows Embedded CE 6.0 Reference Manual

Freescale Semiconductor

29

i.MX51 VPU Driver API Reference

profile Profile of decoded stream and used as follows.
H.264—profile_idc
Vcl—0-2 (SMTPE reserved), 3 (advanced profile)
MP2—3'b101: Simple, 3'b100: Main, 3'b011: SNR Scalable, 3'b10:
Spatially Scalable, 3'b001: High
M P4—8'b00000000: SP, 8b00010001: ASP Real Video: 8 (version 8), 9
(version 9), 10 (version 10)

level Level of decoded stream and used as follows.
H.264—Ievel idc
Vcl—Ileve
MP2—4'b1010: Low, 4b1000: Main, 4'b0110: High 1440, 4'b0100: High
MP4—4'b0000: L0, 4'b0001: L1, 4'b0010: L2, 4b0011: L3, and so on
Real Video—N/A (real video does not have level information)

interlace 1 = decoded stream may be decoded into progressive or interlace frame
Otherwise, decoded stream is progressive frame

Direct8x8Flag Direct_8x8_inference_flag in H.264 SPS

vcl psf Only available in VC1 mode and indicates the value of the progressive
segmented frame

aspectRatelnfo 0 = aspect ratio information is not present.

[H.264]—if aspectRatelnfo [31:16] is 0, aspectRatelnfo [7:0] is
aspect_ratio_idc. Otherwise, AspectRatio is Extended SAR.

sar_width = aspectRatelnfo [31:16]

sar_height = aspectRatel nfo [15:0]

[V C-1]—Aspect Width = aspectRatelnfo [31:16],

Aspect Height = aspectRatel nfo [15:0]

[MP4]—Thisvalueisindex of Table 6-12 in ISO/IEC 14496-2
[MP2]—Thisvalueisindex of Table6-3in ISO/IEC 13818-2 Thisvalueis
determined by half of the memory size for one raw YUV image in Kbytes.

Constraint_set_flag Syntax element in H.264 used to make level. Ignored in other standards.

3.2.2.20 DecAvcSliceBufinfo

typedef struct {
Physi cal Address sliceSaveBuffer;
int sliceSaveBufferSi ze;

} DecAvcSli ceBufl nfo;

Description
Data structure used when host application transfers H.264 decoder slice save buffer information

diceSaveBuffer Start address of dice save buffer which the decoder can save slice RBSP. This
address must be 8 byte-aligned. This variable is only valid for H.264 decoder.

diceSaveBufferSize Sizein bytesof abuffer pointed by sliceSaveBuffer. Thisvalue must beamultiple
of 1024. The maximum size is 65535x1024 bytes. This variableisonly valid for
H.264 decoder.

i.MX51 VPU Application Programming Interface Windows Embedded CE 6.0 Reference Manual

30 Freescale Semiconductor

i.MX51 VPU Driver API Reference

3.2.2.21 DecBufinfo

typedef struct {
DecAvcSl i ceBufl nfo avcSli ceBuf | nfo;
} DecBuf I nfo;

Description
Data structure used when the host application transfers additional buffer information except frame buffer

avcSliceBufinfo Start address and size of slice save buffer which the decoder can save slice RBSP,
Thisvariable isonly valid for H.264 decoder.

3.2.2.22 DecParam

typedef struct {

int prescanEnabl e;

int prescanMde;

int ifranmeSearchEnabl e;

int skipfranmeMde;

int skipframeNum

int chunkSi ze;

int picStartByteOfset;

Physi cal Address pi cStreanBuffer Addr;
} DecPar am

Description
Data structure for picture decoding options

prescanEnable 0=disable, 1= enable
If this option is enabled, the decoder performs scanning stream buffers to check
whether afull picture stream exists or not. If thereis no full picture stream,
decoding picture is not initiated. This option is provided to prevent the decoder
from hanging. When multiple picture decoding isneeded, for example, for thefirst
picture decoding with display reordering enabled, pre-scan does not prevent
decoder hanging. So in this cases, it is recommended to disable this option.

prescanM ode Operation mode of decoder after pre-scan detects afull picture stream
0= Start decoding, 1 = Returns without decoding
If thisoption isenabled, the decoder returnswithout picture decoding even though
thereisafull picture stream in the stream buffer. This option is provided for
genera usage of pre-scan option as a useful tool for stream buffer check.

iframeSearchEnable 0= disable, 1 = enable and the decoder performs skipping frame decoding until
decoder meetsan | (IDR) frame. If thereisno | frame in the stream, the decoder
waitsfor al (IDR) frame. If skipframeNum isn, the decoder seeksthe (n + 1)th I
(IDR) frame. When decoder meets an EOS (End Of Sequence) code during
|-Search, the decoder returns—1 (OXFFFF). If this option is enabled,
prescanEnable, prescanMode and skipframeM ode options are ignored.

skipframeMode Skip frame function enable and operation mode:
0 = skip frame disable
1 = skip frame enabled (skip frames but | (IDR) frame)

i.MX51 VPU Application Programming Interface Windows Embedded CE 6.0 Reference Manual

Freescale Semiconductor 31

i.MX51 VPU Driver API Reference

skipframeNum

picStartByteOffset

chunkSize

picStreamBufferAddr

3.2.2.23

2 = skip frame enabled (skip any frames)

If this option enabled, the decoder skip decoding as many as skipframeNum
frames. If skipframNum is 1, the prescan function is enabled and prescanMode is
0. After the decoder skipsframes, the decoder returns decoded index —2 (OXFFFE)
when decoder does not have any frames displayed. When decoder meets EOS
(End Of Sequence) code during frame skip, the decoder returns—1 (= OXFFFF). If
this option is enabled, prescanEnable and prescanM ode options are ignored.

Number of skip frames. If the iframeSearchEnable option is enabled, this number
is the number of skipping | (IDR) frame. If the iframeSearchEnable option is
disabled and the skipframeMode option is enabled, this number is the number of
skipping frames. When this number is O, the skipframeM ode option is disabled.

Start byte offset of the picture stream buffer. Since the VPU has an internal
limitation that stream buffer start address must be 4-byte aligned, the host may be
required to copy the stream data to a separate 8-byte aligned buffer. This offset
allows this overhead to be saved. This offset should be between 0 and 3.

Byte size of a picture stream to be decoded. This variable represents the byte size
of apicture stream, and can be read from file container header field. Thisvariable
iscrucial infile-play mode operation. In packet-based streaming with ring-buffer,
thisvariableisignored. When thisnumber is 0, skipframeM ode option isdisabled.

Physical address of the start address of the picture stream buffer in file-play mode
This variable represents the start of a picture stream to be decoded. In file-play
mode, the application might use multiple picture stream buffers for the best
performance. Using this variable, the application can re-register the start position
of the picture stream while issuing a picture decoding operation. The start address
of this buffer must be 8-byte aligned, and its size is specified in the variable,
chunkSize. This variable is only meaningful when both file-play mode and
dynamic buffer allocation are enabled.

DecOutputinfo

typedef struct {
int indexFranmeDi spl ay;
i nt indexFrameDecoded;
int picType;
int nunOf Err MBs;
int hScal eFl ag;
int vScal eFl ag;
int prescanresult;

int not
int not

Suf ficient PsBuffer;
SufficientSliceBuffer;

int decodi ngSuccess;

int int

erl acedFr aneg;

int np4PackedPBfrane;
int h264Npf;

int pictureStructure;
int topFieldFirst;
int repeatFirstField;

uni on {

i.MX51 VPU Application Programming Interface Windows Embedded CE 6.0 Reference Manual

32

Freescale Semiconductor

i.MX51 VPU Driver API Reference

int np2_progressiveFrane;
int vcl_repeatFrane;

int fiel dSequence;
Report I nfo nblnfo;
ReportInfo nvlnfo;
ReportInfo frameBuf Stat;
Report I nfo userData;

int decPi cHei ght;

int decPi cWdth;

Rect decPi cCrop;

} DecCQut put | nfo;

Description

Data structure to get information resulting from decoding a frame

indexFrameDisplay

indexFrameDecoded

picType

numOfErrMBs

Frame buffer index of apictureto be displayed among frame bufferswhich were
registered using vpu_DecRegister FrameBuffer (). Frame data to be displayed
is stored into the frame buffer specified by thisindex. When a delay in display
does not exist, thisindex alwaysisthe same asindexFrameDecoded. But if not,
(for example, display reorderingin AV C or B-framesin VC-1), thisindex is not
the same value with indexFrameDecoded. If the decoder cannot provide a
display output at the beginning of sequence decoding with different display
order, thisindex always has —2 (OXFFFE) or —3 (OxFFFD) depending on the
decoder skip option. And at the end of sequence decoding, if there isno more
output for display, thisvalue has—1 (OXFFFF). By checking thisindex, the host
application can easily know whether sequence decoding has finished or not.

Frame buffer index of decoded picture among frame buffers which were
registered using vpu_DecRegister FrameBuffer (). A decoded frame during
current picture decoding operation is stored into the frame buffer specified by
thisindex. If decoder meets EOS or skip, the decoder return —1 (OxXFFFF) to
represent that no decoded output is generated. —2 means no real decoding
operation due to meeting aheader error. Because of delaysin display, thereturn
value of —1 does not mean end of decoding. In order to check the end of
decoding, the host application should refer to indexFrameDisplay.

Picture type of the current decoded picture. Thisvalue has different meaning in
different codec standard.

For VC1 SP/IMP: 0 =1 picture, 1 = P picture, 2= BI picture, 3 =B picture,

4 = SKIPPED picture.

In VC1 AP interlacing, picType contains two fields picture type information.
Bit[2:0] isfor the second field, and bit[5:3] isfor first field. Therespective value
has same meaning as SP/M P case described above. For example, 0 - 000_000:
both first and second field are | picture and 1 - 000_001.: first field is| picture
and second field is P picture.

In other codec cases: 0 =1 picture, 1 = P picture, 2 = B picture

Number of erroneous macroblocks while decoding a picture

i.MX51 VPU Application Programming Interface Windows Embedded CE 6.0 Reference Manual

Freescale Semiconductor

33

i.MX51 VPU Driver API Reference

hScaleFlag Flag for reduced resolution output in horizontal direction. For VVC1 decoding,
the resulting picture width from the decoder may be half the decoded picture
width. In thiscase, thisflag is set, and the host application should scale up the
picture by two times in the horizontal direction to get proper display output.

vScaleFlag Flag for reduced resolution output in vertical direction. For VC1 decoding, the
resulting picture height from the decoder may be half the decoded picture
height. In this case, thisflag is set, and the host application should scale up this
picture by two timesin the vertical direction to get proper display output.

prescanResult 0 = incomplete picture stream, 1 = full picture stream exists, 2 = pre-scan
disabled
If the application enables pre-scan mode for running a picture decoding task,
then it should check thisflag first. If thisflag isequal to O, all the other output
information has no meaning and the application should ignore al output
information. Only if prescanResult is greater than O is the other output
information meaningful for the application.

notSufficientPsBuffer ~ Flag that represents whether PS (SPS/PPS) save buffer is sufficient to decode
the current picture. The VPU does not get the last part of the current picture
stream because of buffer overflow. The host must close the current instance
because the picture streams cannot be decoded properly because of loss of
SPS/PPS data.

notSufficientSliceBuffer Flag that represents whether slice save buffer is sufficient to decode the current
picture. The VPU does not get the last part of the current picture stream, and
macroblock errors are issues because of buffer overflow. The host can continue
decoding the remaining pictures of the current input stream without closing the
current instance, even though several pictures can be error-corrupted.

decodingSuccess 0 = incompl ete finish of decoding process, = complete finish of decoding
process
This variable means that the decoding processisfinished completely. If stream
has errors in the picture header syntax or the first slice header syntax of H.264
stream, The VPU does not initiate the MB decoding routine and returns
immediately. In this case, the VPU returns 0 which means incomplete finish of
decoding process.

interlacedFrame 0 = progressive frame which consists of one frame picture
1 = interlaced frame which consists of two field picture (top field and bottom
field);
Thisvariableindicatesthat the frameistheinterlaced frame. If thisvalueis set,
the host application may use a de-interlacing filter to enhance image quality.

mp4PackedPBframe 0= normal frame chunk data, 1 = packed PB frame chunk data.
This variable indicates that the frame chunk data is a packed PB frame chunk.
If thisvalueis set, the host application must re-use this chunk in the next
decoding command. This variableis only valid for MPEG-4 file-play mode.

h264N pf When aNon-Paired Field (NPF) occursin the display picture, thisflag indicate
that atop or bottom field is absent.

i.MX51 VPU Application Programming Interface Windows Embedded CE 6.0 Reference Manual

34 Freescale Semiconductor

pictureStructure

topFieldFirst

repeatFirstField
mp2_progressiveFrame
vcl_repeatFrame

fieldSequence
mblnfo
mvinfo
frameBufStat

userData
decPicHeight

decPicWidth

decPicCrop

i.MX51 VPU Driver API Reference

O0=no NPF

1 = only bottom field of picture is absent
2=only top field of pictureis absent

3=all field (top/bottom) of pictureis absent

Variable that indicates whether that the decoded picture is progressive or
interlaced picture. The value of pictureStructure is used as below.
H.264—FieldPicFlag,

Vcl—FCM (Progressive O, 2 Frame interlace, 3 Field interlaced)
MP2—opicture structure (TopField: 1, BotField: 2, Frame: 3)

MP4—N/A

Real Video—N/A

When the decoded pictureisafield picture, if thisvalueis 1, thetop fieldis
decoded first, then the bottom field is decoded. If thisvalueis O, the decoding
order isbottom field first and then the top field. The topFieldFirst isused by the
post processing for de-interlacing.

Variable that means repeat first field is used during the display process
Variable used to indicate progressive_framein picture coding extensionin MP2

For VC1, this variable means RPTFRM (Repeat Frame Count) is used during
the display process

Variable used to indicate field_sequence in picture coding extension in MP2
Parameter to save the MB reporting if enabling the MB information reporting
Parameter to save the MV reporting if enabling the MV information reporting

Parameter to savethe current frame buffer statusinformation if the frame buffer
status reporting is enabled

Parameter to save the decoded user data if the user data reporting is enabled

Picture height inthe pixel of theframewith theindex of indexFrameDisplay. So
host application needs to use this information in the case that the decoded
stream has changed resol ution.

Picture height of the frame with the index of indexFrameDisplay. For MJPEG
decoding, decPicHeight and decPicWidth are the size of the decoded rotator
frame saved in the rotation frame buffer registered by the
SET_ROTATOR_OUTPUT command. The VPU supports the changed
resolution decoding. The VPU only supports the changed resolution not larger
than the original size. For example, the changed sequence of VGA > QVGA >
VGA is supported

Cropping information for H.264 changed resolution decoding. This parameter
isvalid only for H.264.

i.MX51 VPU Application Programming Interface Windows Embedded CE 6.0 Reference Manual

Freescale Semiconductor

35

i.MX51 VPU Driver API Reference

3.2.2.24 VPUMemAlloc

typedef struct {
ULONG PhysAdd;
ULONG Vi rt Add;
U NT Reserved;
} VPUMEMA | oc;

Description

Data structure used when the host application allocates physically continuous memory for the VPU
PhysAdd Physical base address of the buffer allocated by driver if alocating successfully
VirtAdd Virtual base address corresponds to the PhysAdd that host application can access
Reserved Used by driver internally

3.3 API Definitions
This section provides a description of thei.MX51 VPU API definitions.

3.3.1 Overview

This section provides an overview of the VPU API definitions. The basic API architectureis presented as
well as the operation flow of both decoder and encoder based VPU API functions.

3.3.1.1 Basic Architecture

Thei.MX51 VPU API has the following three basic categories:
» Control API—API functions for general control of the VPU such as initialization
» Decoder API—API functions for VPU decoding operations
* Encoder API—API functions for VPU encoding operations
Thei.MX51 VPU API functions are based on a frame-by-frame picture processing scheme. To run a

picture decoder or encoder, the application calls a API function and after completion the processing, the
application can check the results of the picture processing.

To support multi-instance decoding and encoding, thei.MX51 VPU API functions use ahandlefor specify
acertain instance. The handle for each instanceis provided when the application creates a new decoder or
encoder instance. If the application wants to give a command to a specific instance, the corresponding
handleis used in every API function call for that instance.

3.3.1.2 Decoder Operation Flow

To decode a bitstream, the application compl etes the following steps:
1. Open adecoder instance using vpu_DecOpen()

2. To provide the proper amount of bitstream, get the bitstream buffer address using
vpu_DecGetBitstreamBuffer ()

i.MX51 VPU Application Programming Interface Windows Embedded CE 6.0 Reference Manual

36 Freescale Semiconductor

i.MX51 VPU Driver API Reference

3. After transferring the decoder input stream, inform the amount of bits transferred into the
bitstream buffer using vpu_DecUpdateBitstreamBuffer()

4. Beforestarting apicture decoder operation, get the crucial parametersfor decoder operations such
as picture size, frame rate, required frame buffer size using vpu_DecGetl nitiall nfo()

5. Using the returned frame buffer requirement, allocate the proper size of the frame buffers and
convey this datato thei.MX51 VPU using vpu_DecRegister FrameBuffer ()

Start a picture decoder operation picture-by-picture using vpu_DecSartOneFrame()

Wait for the completion of the picture decoder operation interrupt event

Check the results of the decoder operation using vpu_DecGetOutputlnfo()

After displaying nt" frame buffer, clear the buffer display flag using vpu_DecClIr DispFlag()
10 If there is more bitstream to decode, go to Step 6, otherwise e go to the next step

11. Terminate the sequence operation by closing the instance using vpu_DecClose()

© o N o

i.MX51 VPU Application Programming Interface Windows Embedded CE 6.0 Reference Manual

Freescale Semiconductor 37

i.MX51 VPU Driver API Reference

The decoder operation flow is shown in Figure 4.

VPU_Init() '
VPU_Dec
Open()

VPU_DecGetStream
Buffex) & VPU_Dec
UpdateStreamBuffef)

VPU_Dec

Getlnitialinfq)

VPU_Dec
RegisterFrameBuffef)

VPU_Dec
StartOneFrame()

Optional for MultiDec

Yes

¢

No
v
VPU_Dec
GetOutputinfq)

=DEC_END?

Yes

Yes
v

WaitMixerint()

No

SetMixerDecOuf() J

A

Update
Frame Buffer Index

Lastinstance ?

Yes

VPU_Dec
GetBitstreamBuffer()

Lack of
Bitstream?

Cmd-= FillBsBufMult()

ClearHostCommand()

4—7VYes

—Gma - nong7

No

v

A
VPU_Dec

Close()

Figure 4. Decoder Operation Flow

VPU_Dec
UpdateBitstreamBuffef)

i.MX51 VPU Application Programming Interface Windows Embedded CE 6.0 Reference Manual

38

Freescale Semiconductor

i.MX51 VPU Driver API Reference

3.3.1.3 MJPEG Decoding Operation Flow

The operation flow is different for a MJPEG bitstream because MJPEG decoding supports larger
resolution. To save the physical buffer, the host application does not need to call

vpu_DecRegister FrameBuffer to register the frame buffers because MJPEG decoding does not use a
reference buffer. Instead, MJPEG decoding uses the same method as rotator decoding for other codecs to
decode an image. Before calling vpu_DecSartOneFrame(), the host application sends a
SET_ROTATOR_STRIDE command to set the stride, and then sendsa SET_ROTATOR_OUTPUT
command to set the physical addresses of Y CbCr components of output frame to save the decoded image.
If the host application calls the vpu_DecRegister FrameBuffer, the function does nothing and returns
success. Another difference is that the MJPEG decoder does not need to call vpu_DecClIrDispFlag to
clear the display flag of frame buffer because there is no frame buffer in the MJPEG decoder.

3.3.1.4 Encoder Operation Flow

To encode a bitstream, the application compl etes the following steps:
1. Open aencoder instance using vpu_EncOpen()

2. Before starting a picture encoder operation, get crucial parametersfor encoder operations such as
required frame buffer size using vpu_EncGetI nitiallnfo()

3. Using the returned frame buffer requirement, allocate size of frame buffers and convey this
information to the VPU using vpu_EncRegister FrameBuffer()

Generate high-level header syntaxes using vpu_EncGiveCommand()
Start picture encoder operation picture-by-picture using vpu_EncSartOneFrame()
Wait the completion of picture encoder operation interrupt event

After encoding aframe is complete, check the results of encoder operation using
vpu_EncGetOutputinfo()

If there are more frames to encode, go to Step 4, otherwise go to the next step
Terminate the sequence operation by closing the instance using vpu_EncClose()

N o g s

© ©

i.MX51 VPU Application Programming Interface Windows Embedded CE 6.0 Reference Manual

Freescale Semiconductor 39

i.MX51 VPU Driver API Reference

The encoder operation flow is shown in Figure 5.

VPU_Init()
VPU_Enc VPU_Enc
Open() RegisterFrameBuffe()
VPU_Enc VPU_Enc
Getlinitialln fo) GiveCommand()

GetHostCmd
=ENC_END?

No

FillYuvimage()

Yes
Frameldx=0? No - SetMixerDecOuft()
Yes
A
P VPU_Enc
WaitMixerin¥) StartOneFrame()

A

GetHostCmd
=ENC_END?

ClearHostCommand) - Yes

VPU_Enc
GetOutputinfq)

Process Stream & Update
Frame Buffer Index

Figure 5. Encoder Operation Flow

i.MX51 VPU Application Programming Interface Windows Embedded CE 6.0 Reference Manual

40 Freescale Semiconductor

i.MX51 VPU Driver API Reference

3.3.2 Control API
The following sections describe the control API functions.

3.3.2.1 vpu_lInit()
Prototype

Ret Code vpu_Il nit(void);
Parameter
None
Return Value

RETCODE_SUCCESS VPU initialized successfully

RETCODE_CALLED _BEFORE Function call isinvalid because multiple calls of the current AP
function for a given instance are not allowed. In this case, The VPU
has been aready initialized, and this function call is meaningless.

RETCODE_FAILURE VPU initialization unsuccessful
Description

Thisfunctioninitializesthe VPU hardware and proper data structures/resources. The application must call
this function only once before using the VPU.

3.3.2.2 vpu_Deinit()
Prototype

Ret Code vpu_Dei ni t (void);
Par ameter
None

Return Value

RETCODE_NOT_INITIALIZED VPU not initialized before calling this function. The application
should initialize VPU by calling vpu_l nit() before calling this

function.
RETCODE_SUCCESS VPU deinitialized successfully
RETCODE_FAILURE VPU deinitialized unsuccessfully

Description

Thisfunction deinitializesthe VPU hardware and rel eases the resourcesthat are allocated in thevpu_Init()
function. The application must call this function before exiting.

i.MX51 VPU Application Programming Interface Windows Embedded CE 6.0 Reference Manual

Freescale Semiconductor 41

i.MX51 VPU Driver API Reference

3.3.2.3 vpu_IsBusy()
Prototype

Ret Code vpu_Il sBusy(void);
Parameter
None

Return Value

RETCODE_NOT_INITIALIZED VPU not initialized before calling this function. The application
should initialize VPU by calling vpu_l nit() before calling this

function.
RETCODE_BUSY VPU hardware is busy processing a frame
RETCODE IDLE VPU hardwareisidle
RETCODE_FAILURE Operation unsuccessful

Description
This function tellsthe application if decoder or encoder frame processing is completed or not at any time.

3.3.24 vpu_GetVersioninfo()

Prototype
Ret Code vpu_Get Versi onl nfo(Uni t32 *versionl nfo);
Parameter
versioninfo [output] The 16 most significant bits are the product ID and the 16
least significant bets are the firmware version ID.
Return Value
RETCODE_SUCCESS Version information acquired successfully
RETCODE_FAILURE Current firmware does not contain any version information

RETCODE_NOT_INITIALIZED VPU not initialized before calling this function. The application
should initialize VPU by calling vpu_l nit() before calling this
function.

Description
This function provides the version information running on the system to the application.

3.3.2.5 vpu_AllocPhysMem()

Prototype

Ret Code vpu_Al |l ocPhysMen(Ui nt 32 cbSi ze, VPUMenAl | oc *prenmal | oc);
Parameter
cbSize [input] Number of bytesto allocate

i.MX51 VPU Application Programming Interface Windows Embedded CE 6.0 Reference Manual

42 Freescale Semiconductor

i.MX51 VPU Driver API Reference

pmemalloc [output] Pointer to aVPUMemAlloc that stores the physical/virtual
address of the memory allocation

Return Value

RETCODE_SUCCESS Allocation successful

RETCODE_FAILURE Allocation failed

Description

This function allocates physically contiguous memory and the corresponding virtual memory in user
space. When the application calls this function, the driver allocates physically contiguous memory and
reserves aregion of pagesin the virtua address space for the host application.

3.3.2.6 vpu_FreePhysMem()

Prototype
Ret Code vpu_FreePhysMenm(VPUVEMAI | oc* pnenal | oc) ;
Parameter
pmemalloc [input] Pointer to aVPUMemAlloc that stores the allocated
physical/virtual address of the memory
Return Value
RETCODE_SUCCESS Deallocation successful
RETCODE_FAILURE Deallocation failed
Description

This function frees the physical memory allocated by vpu_AllocPhysMem back to the system.

3.3.2.7 vpu_GetPhysAddrFromVirtAddr()

Prototype
Ret Code vpu_Get PhysAddr FronVi rt Addr (voi d* | pvAddress, Uint32 cbSize, Physical Address*
| ppAddr ess) ;
Parameter
IpvAddress [input] Pointer to a virtual memory to be trandated
cbSize [input] Number of bytes to be trandated
IppAddress [output] Pointer to physical memory corresponding to the IpvAddress
Return Value
RETCODE_SUCCESS Address retrieved successfully
RETCODE _FAILURE Addressretrieval failed

RETCODE_NOT_INITIALIZED VPU not initialized before calling this function. The application
should initialize VPU by calling vpu_l nit() before calling this
function.

i.MX51 VPU Application Programming Interface Windows Embedded CE 6.0 Reference Manual

Freescale Semiconductor 43

i.MX51 VPU Driver API Reference

Description

Thisfunction retrieves the physical address of the given virtual address. To improve the performance, the
VPU may use the display memory directly as frame buffers. The virtual memory address of the display
memory canonly beretrieved by the DirectDraw interface, but the VPU must access physically contiguous
memory asthe frame buffers. Thisfunction allowsthe host application to get the physical memory address
from the virtual memory address.

3.3.2.8 vpu_Reset()

Prototype
Ret Code vpu_Reset (CodecHandl e handl e, int index);
Parameter
handle [input] Encoder/decoder handle obtained from vpu_EncOpen()/vpu_DecOpen()
index [input] Index of instance to reset
Return Value
RETCODE_SUCCESS: VPU reset successfully
RETCODE _FAILURE VPU reset failed

RETCODE_INVALID_PARAM Given argument parameter, index, isinvalid, which meanstheindexis
larger than the maximum index value, 4

RETCODE_INVALID_HANDLE Given handle for current API function cal, handle, isinvalid
Description

This function resets the instance specified by the handle or index. The host application uses this function
in two ways:

o Cadl with handle parameter. If handleisgiven, theindex parameter isignored. After call, all context
of handle instance islost and cannot be used again. Therefore, the host must call vpu_DecClose()
to release the resources. In order to use this instance again, host must re-open the instance.

» Call with index parameter. This method is for the special case in which the application exists
without instance closed, the resources need to be released and the host knows the instance index.

In normal operation, it is encouraged to reset the VPU with a specified handle. Resetting the VPU with an
index parameter is not recommended.

3.3.3 Encoder API
The following sections describe the encoder AP functions.

3.3.31 vpu_EncOpen()
Prototype

Ret Code vpu_EncOpen (EncHandl e * pHandl e, EncOpenParam * pQpenParamn ;

i.MX51 VPU Application Programming Interface Windows Embedded CE 6.0 Reference Manual

44 Freescale Semiconductor

i.MX51 VPU Driver API Reference

Parameter

pHandle [output] Pointer to EncHandle type variable which specifies instance for an
application. If no instance is available, anull handleis returned.

pOpenParam [input] Pointer to a EncOpenParam type structure which describes the parameters
for the new encoder instance.

Return Value

RETCODE_SUCCESS New encoder instance opened successfully

RETCODE_FAILURE New encoder instance not opened successfully. If thereisno free

instance available, this value is returned in the function call.

RETCODE_INVALID_PARAM Given argument parameter, pOpenParam, is invalid—it has a null
pointer or contains improper values for some member variables.

RETCODE_NOT_INITIALIZED VPU not initialized before calling this function. The application
must initialize VPU by calling vpu_Init() before calling this
function.

RETCODE_FAILURE_TIMEOUT This value might mean that the hardware is busy with another
operation and unavailable for the current API call.

Description

To start a new encoder operation, the application must open anew instance for this encoder operation. By
calling thisfunction, the application gets ahandle specifying anew encoder instance. Because thei.M X 51
VPU supports multiple instances of codec operations, the application needs thiskind of handle for the all
running codec instances. Once the application received a handle, the application uses this handle to
represent the target instances for all subsequent encoder-related operations.

3.3.3.2 vpu_EncClose()

Prototype
Ret Code vpu_Encd ose(EncHandl e handl e);
Parameter
handle [input] Encoder handle obtained from vpu_EncOpen()
Return Value
RETCODE_SUCCESS Encoder instance closed successfully

RETCODE_INVALID_HANDLE Given handle for current API function call, handle, isinvalid. This
return code might be returned if handle has not been obtained by
vpu_EncOpen(), for example adecoder handle, or if handleisof an
instance which has been closed.

RETCODE_FAILURE_TIMEOUT The value might mean that the hardware is busy with an other
operation and unavailable for the current API call.

i.MX51 VPU Application Programming Interface Windows Embedded CE 6.0 Reference Manual

Freescale Semiconductor 45

i.MX51 VPU Driver API Reference

Description

Thisfunction iscalled by the application to close an instance when the application completes the encoding
operations and wants to release thisinstance for other processing. After completion of this function call,

the instance referred to by handle is free. Once the application closes an instance, the application cannot

call any further encoder-specific function with this handle before re-opening a new instance with the same
handle.

3.3.33 vpu_EncGetBitstreamBuffer()
Prototype

Ret Code vpu_EncCet Bi t st reanBuf f er (EncHandl e handl e, Physi cal Address * pRdptr,
Physi cal Address * pWptr, U nt32 * size);

Parameter

handle [input] Encoder handle obtained from vpu_EncOpen()

pRdptr [output] Stream buffer read pointer for the current encoder instance

pWrptr [output] Stream buffer write pointer for the current encoder instance

size [output] Variable specifying the avail able space in the bitstream buffer
for the current encoder instance

Return Value

RETCODE_SUCCESS Required information for encoder stream buffer received successfully

RETCODE_INVALID_HANDLE Given handle for current API function call, handle, isinvalid. This
return code might be returned if handle has not been obtained by
vpu_EncOpen(), for example adecoder handle, or if handleis of an
instance which has been closed.

RETCODE_INVALID_PARAM Given argument parameters, pRdptr, pWrptr or size, areinvalid—it
has a null pointer or contains improper values for some member
variables.

Description

After encoding aframe, the application must get the bitstream from the encoder using the bitstream
location and maximum size. The application gets this information by calling this function.

3.3.34 vpu_EncUpdateBitstreamBuffer()

Prototype
Ret Code vpu_EncUpdat eBi t streanBuffer (EncHandl e handl e, Ui nt32 size);
Parameter
handle [input] Encoder handle obtained from vpu_EncOpen()
size [Input] Variable specifying the amount of bitsto get from the bitstream

buffer for the current encoder instance

i.MX51 VPU Application Programming Interface Windows Embedded CE 6.0 Reference Manual

46 Freescale Semiconductor

i.MX51 VPU Driver API Reference

Return Value
RETCODE_SUCCESS Putting new stream data completed successfully

RETCODE_INVALID_HANDLE Given handle for current API function call, handle, isinvalid. This
return code might be returned if handle has not been obtained by
vpu_EncOpen(), for example adecoder handle, or if handleis of an
instance which has been closed.

RETCODE_INVALID_PARAM Given argument parameter, size, isinvalid—itislarger than the value
obtained from vpu_EncGetBitstreamBuffer()

Description

The application must let encoder know how much bitstream has been transferred from the address obtained
from vpu_EncGetBitstreamBuffer (). By giving the size as an argument, the APl automatically handles
pointer wrap-around and updates the read pointer.

3.3.3.5 vpu_EncGetlnitiallnfo()

Prototype

Ret Code vpu_EncCetlnitial Info(EncHandl e handl e, Enclnitiallnfo * plnitiallnfo);
Parameter
handle [input] Encoder handle obtained from vpu_EncOpen()
plnitiallnfo [output] Pointer to a EnclnitialInfo type structure which describes

the parameters required before starting encoder operations

Return Value
RETCODE_SUCCESS Receiving theinitial parameters completed successfully
RETCODE_FAILURE There is an error getting the configuration information for the

encoder

RETCODE_INVALID_HANDLE Given handle for current API function call, handle, isinvalid. This
return code might be returned if handle has not been obtained by
vpu_EncOpen(), for example adecoder handle, or if handleisof an
instance which has been closed.

RETCODE_INVALID_PARAM The given argument parameter, plnitialInfo, isinvalid—it has anull
pointer or contains improper values for some member variables.

RETCODE_CALLED BEFORE Function call isinvalid because multiple calls of the current API
function for agiven instance are not allowed. The encoder initial
information has already been received, so thisfunction call is
meaningless and not allowed.

RETCODE_FAILURE_TIMEOUT Thereis an time-out error in the function and the driver did not
receive an interrupt after sending theinitial command to the VPU

RETCODE_CALLED_BEFORE Function has been called before

i.MX51 VPU Application Programming Interface Windows Embedded CE 6.0 Reference Manual

Freescale Semiconductor 47

i.MX51 VPU Driver API Reference

Description

Before starting an encoder operation, the application must allocate the frame buffers according to the
information obtained from this function. This function returns the required parameters for
vpu_EncRegister FrameBuffer (), which isfollowed by this function call.

3.3.3.6 vpu_EncRegisterFrameBuffer()

Prototype
Ret Code vpu_EncRegi st er Fr ameBuf f er (EncHandl e handl e, FraneBuffer * pBuffer, int num int
stride);

Parameter

handle [input] Encoder handle obtained from vpu_EncOpen()

pBuffer [input] Pointer to a FrameBuffer type structure which describes the

frame buffer pointer parameters for the current encoder instance
num [input] Number of frame buffers
stride [input] Stride value of the given frame buffers

The distance between a pixel in arow and the corresponding pixel in the next row is called stride. The
value of stride must be amultiple of 8. The address of the first pixel in the second row does not necessarily
coincide with the value next to the last pixel in thefirst row. In other words, stride can have values greater
than the picturewidth in pixels. The application should not set astride value smaller than the picture width.
For the Y component, the application must allocate at |east a space of size (frame height x stride), and for
Cb or Cr components, (frame height/2 x stride/2). For MJPEG encoding, the address of the frame buffer
is not necessary. Only the stride value is necessary which is used as the source image stride.

Return Value
RETCODE_SUCCESS Registering the frame buffers completed successfully
RETCODE_FAILURE Thereisan error in registering the frame buffer for the encoder

RETCODE_INVALID_HANDLE Given handle for current API function call, handle, isinvalid. This
return code might be returned if handle has not been obtained by
vpu_EncOpen(), for example adecoder handle, or if handleis of an
instance which has been closed.

RETCODE_WRONG_CALL_SEQUENCE

Current API function call isinvalid considering the allowed sequences
between API functions. In this case, the application may have called
this function before successfully calling vpu_EncGetlInitiallnfo().
This function should be called after successfully calling
vpu_EncGetlnitiall nfo().

RETCODE_INVALID_FRAME_BUFFER
Argument pBuffer isinvalid and is not initialized or is not valid.

i.MX51 VPU Application Programming Interface Windows Embedded CE 6.0 Reference Manual

48 Freescale Semiconductor

i.MX51 VPU Driver API Reference

RETCODE_INSUFFICIENT_FRAME_BUFFERS

Given number of frame buffers, num, is not enough for the encoder
operations of the given handle. num should be greater than or equal to
the value of minFrameBufferCount obtained from
vpu_EncGetlnitiall nfo().

RETCODE_INVALID_STRIDE Given argument stride isinvalid—it is 0 or isnot amultiple of 8

RETCODE_CALLED_BEFORE Function call isinvalid because multiple calls of the current AP
function for a given instance are not allowed. The encoder initial
information has already been received, so thisfunction call is
meaningless and not allowed.

RETCODE _FAILURE TIMEOUT
Thereisan time-out error in the function and the driver did not receive
an interrupt after sending the initial command to the VPU
Description

This function registers frame buffers requested by vpu_EncGetl nitiall nfo(). The frame buffers pointed
to by pBuffer are managed internally within the VPU. These include reference frames, reconstructed
frames, and so on. The application must not change the contents of the array of frame buffers during the
life time of the instance, and num must not be less than minFrameBufferCount obtained by
vpu_EncGetlnitiall nfo().

3.3.3.7 vpu_EncStartOneFrame()

Prototype
Ret Code vpu_EncSt art OneFrane (EncHandl e handl e, EncParam * pParan;

Parameter

handle [input] Encoder handle obtained from vpu_EncOpen()

pParam [input] Pointer to a EncParam type structure which describes picture
encoding parameters for the current encoder instance

Return Value

RETCODE_SUCCESS Encoding anew frame started successfully. Thisreturn value does not
mean that encoding a frame completed successfully.

RETCODE_FAILURE Thereis an error in starting one frame encoding operation

RETCODE_INVALID_HANDLE Given handle for current API function call, handle, isinvalid. This
return code might be returned if handle has not been obtained by
vpu_EncOpen(), for example adecoder handle, or if handleis of an
instance which has been closed.

RETCODE_WRONG_CALL_SEQUENCE

Current API function call isinvalid considering the allowed sequences
between API functions. In this case, the application may have called
this function before successfully calling

i.MX51 VPU Application Programming Interface Windows Embedded CE 6.0 Reference Manual

Freescale Semiconductor 49

i.MX51 VPU Driver API Reference

vpu_EncRegister FrameBuffer (). This function should be called
after successfully calling vpu_EncRegister FrameBuffer ().

RETCODE_INVALID_PARAM The given argument parameter, pParam, isinvalid—it has a null
pointer or contains improper values for some member variables.

RETCODE_INVALID FRAME_BUFFER
sourcefFrame in the input structure EncParam isinvalid—
sourcefFrame is not valid even though picture-skip is disabled
Description

This function starts encoding one frame. Returning from this function does not mean the completion of
encoding one frame, but it just initiates encoding one frame. This function should be followed by
vpu_EncGetOutputlnfo() with the same encoder handle. Before that, the application can not call another
API function except for vpu_IsBusy(), vpu_EncGetBitstreamBuffer (), and
vpu_EncUpdateBitstreamBuffer ().

3.3.3.8 vpu_EncGetOutputinfo()

Prototype
Ret Code vpu_EncSt art OneFr ane(EncHandl e handl e, EncQut putlnfo * plnfo);
Parameter
handle [input] Encoder handle obtained from vpu_EncOpen()
plnfo [output] Pointer to a EncOutputlnfo type structure which describes
picture encoding results for the current encoder instance
Return Value
RETCODE_SUCCESS Output information of current frame encoding received successfully
RETCODE_FAILURE Thereis an error in getting the output information after one frame

encoding command

RETCODE_INVALID_HANDLE Given handle for current API function call, handle, isinvalid. This
return code might be returned if handle has not been obtained by
vpu_EncOpen(), for example adecoder handle, or if handleis of an
instance which has been closed.

RETCODE_WRONG_CALL_SEQUENCE

Current API function call isinvalid considering the allowed sequences
between API functions. In this case, the application may have called
this function before successfully calling vpu_EncStartOneFrame().
This function should be called after successfully calling
vpu_EncStartOneFrame().

RETCODE_INVALID_PARAM Thegiven argument parameter, pinfo, isinvalid—it hasanull pointer
or contains improper values for some member variables.

i.MX51 VPU Application Programming Interface Windows Embedded CE 6.0 Reference Manual

50 Freescale Semiconductor

i.MX51 VPU Driver API Reference

Description

Thisfunction getsthe information about the encoding output. The application can know about picturetype,
the address and size of the generated bitstream, the number of generated dlices, the end addresses of the
dices, and the macroblock bit position information. The host application calls this function after frame
encoding is finished, and before starting the further processing. vpu_EncStartOneFrame() and
vpu_EncGetOutputlnfo() must be matched and must be called in the same thread.

3.3.3.9 vpu_EncGiveCommand()

Prototype

Ret Code vpu_EncG veCommand (EncHandl e handl e, CodecCommand cnd, void * pParam;
Parameter
handle [input] Encoder handle obtained from vpu_EncOpen()
cmd [input] Variable specifying the command of CodecComand type
pParam [input/output] Pointer to acommand-specific data structure which

describes picture |/O parameters for the current encoder instance

Return Value

RETCODE_INVALID_COMMAND Given argument, cmd, isinvalid—it isundefined or not allowed in
the current instance

RETCODE_INVALID_HANDLE Given handlefor current API function call, handle, isinvalid. This
return code might be returned if handle has not been obtained by
vpu_EncOpen(), for example adecoder handle, or if handleis of
an instance which has been closed.

RETCODE_FRAME_NOT_COMPLETE

Frame decoding or encoding operation is not complete, so the
given API function call cannot be performed thistime. A frame
encoding or decoding operation should be completed by calling
vpu_EncGetOutputinfo() or vpu_DecGetOutputl nfo(). Even
though the result of the current frame operation is not necessary,
the application should call vpu_EncGetOutputinfo() or
vpu_DecGetOutputlnfo() to proceed this function call.

i.MX51 VPU Application Programming Interface Windows Embedded CE 6.0 Reference Manual

Freescale Semiconductor 51

i.MX51 VPU Driver API Reference

Description

Thisfunction is provided to give applications a certain level of freedom for reconfiguring encoder
operations after creating an encoder instance. The options which can be changed dynamically while
encoding a video sequence aswell as some command-specific return codes are shown in Table 5.

Table 5. Encoder Commands

Command Description

ENABLE_ROTATION This command enables rotation of the post-rotator. pParam is ignored. This command returns
RETCODE_SUCCESS.

DISABLE_ROTATION This command disables rotation of the post-rotator. pParam is ignored. This command returns
RETCODE_SUCCESS.

ENABLE_MIRRORING This command enables mirroring of the post-rotator. pParam is ignored. This command returns
RETCODE_SUCCESS.

DISABLE_MIRRORING This command disables mirroring of the post-rotator. pParam is ignored. This command
returns RETCODE_SUCCESS.

SET_MIRROR_DIRECTION | This command sets the mirror direction of the post-rotator. pParam is a pointer to

MirrorDirection. *pParam should be one of the following:

e MIRDIR_NONE—No mirroring

¢ MIRDIR_VER—Vertical mirroring

¢ MIRDIR_HOR—Horizontal mirroring

* MIRDIR_HOR_VER—Both directions

Return values are as follows:

RETCODE_SUCCESS Given mirroring direction is valid

RETCODE_INVALID_PARAM Given argument parameter, pParam, is invalid so given
mirroring direction is invalid

SET_ROTATION_ANGLE | This command sets the counter-clockwise angle for post-rotation. pParam a pointer to an

integer which represents rotation angle in degrees. Rotation angle should be 0, 90, 180, or

270. Return values are as follows:

RETCODE_SUCCESS Given rotation angle is valid

RETCODE_INVALID_PARAM Given argument parameter, pParam, is invalid so given
rotation angle is invalid

Note: Rotation angle can not be changed after sequence initialization, because it might cause

problems in handling frame buffers.

ENC_GET_SPS_RBSP pParam is a pointer to an EncParamSet type structure. The first variable, paraSet, is a physical

address where the generated stream is located, and size is the size of the stream in bytes.

Return values are as follows:

RETCODE_SUCCESS SPS successfully generated and available at the received
buffer pointer

RETCODE_INVALID_COMMAND Given argument, cmd, is invalid—it is undefined or not
allowed in the current instance. In this case, current
instance might not be an AVC (H.264) encoder instance.

RETCODE_INVALID_PARAM Given argument, pParam, is invalid—it has a null pointer
or contains improper values for some member variables.

i.MX51 VPU Application Programming Interface Windows Embedded CE 6.0 Reference Manual

52 Freescale Semiconductor

i.MX51 VPU Driver API Reference

Table 5. Encoder Commands (continued)

Command

Description

ENC_GET_PPS_RBSP

pParam is a pointer to an EncParamSet type structure. Return values are as follows:

RETCODE_SUCCESS PPS successfully generated and available at the received
buffer pointer

RETCODE_INVALID_COMMAND Given argument, cmd, is invalid—it is undefined or not
allowed in the current instance. In this case, current
instance might not be an AVC (H.264) encoder instance.

RETCODE_INVALID_PARAM Given argument, pParam, is invalid—it has a null pointer
or contains improper values for some member variables.

ENC_PUT_MP4_HEADER

pParam is a pointer to an EncHeaderParam structure, where buf is a physical address pointing
to the generated stream location, and size is the size of the generated stream in bytes.
headerType is a type of header that the application wants to generate and has values such as
VOL_HEADER, VOS_HEADER, or VO_HEADER. Return values are as follows:
RETCODE_SUCCESS Requested header syntax successfully inserted
RETCODE_INVALID_COMMAND Given argument, cmd, is invalid—it is undefined or not
allowed in the current instance. In this case, current
instance might not be an MPEG-4 encoder instance.
RETCODE_INVALID_PARAM Given argument, pParam, is invalid—it has a null pointer
or contains improper values for some member variables.

ENC_PUT_AVC_HEADER

pParam is a pointer to an EncHeaderParam structure, where buf is a physical address pointing
the generated stream location and size is the size of generated stream in bytes. headerType
is a type of header that the application wants to generate and has values such as SPS_RBSP
or PPS_RBSP. Return values are as follows:
RETCODE_SUCCESS Requested header syntax successfully inserted
RETCODE_INVALID_COMMAND Given argument, cmd, is invalid—it is undefined or not
allowed in the current instance. In this case, current
instance might not be an AVC (H.264) encoder instance.
RETCODE_INVALID_PARAM Given argument, pParam or headerType, is invalid—it has
a null pointer or contains improper values for some
member variables

ENC_GET_VOS_HEADER

Tells the encoder to generate a video object sequence (VOS) header stream based on the
information provided when opening the instance for external usage (for example, out-of-band
transmission). The generated stream is in RBSP format and big endian. Return values are as
follows:
RETCODE_SUCCESS VOS header information encoded successfully
RETCODE_INVALID_COMMAND Given argument, cmd, is invalid—it is undefined or not
allowed in the current instance. In this case, current
instance might not be an MPEG-4 encoder instance.
RETCODE_INVALID_PARAM Given argument, pParam, is invalid—it has a null pointer
or contains improper values for some member variables.
RETCODE_FAILURE Command failed to executed due to unexpected errors

ENC_GET_VO_HEADER

Tells the encoder to generate a visual object (VO) header stream based on the information
provided when opening the instance for external usage (for example, out-of-band
transmission). The generated stream is in RBSP format and big endian. Return values are as
follows:
RETCODE_SUCCESS VO header information encoded successfully
RETCODE_INVALID_COMMAND Given argument, cmd, is invalid—it is undefined or not
allowed in the current instance. In this case, current
instance might not be an MPEG-4 encoder instance.
RETCODE_INVALID_PARAM Given argument, pParam, is invalid—it has a null pointer
or contains improper values for some member variables.
RETCODE_FAILURE Command failed to executed due to unexpected errors

i.MX51 VPU Application Programming Interface Windows Embedded CE 6.0 Reference Manual

Freescale Semiconductor

53

i.MX51 VPU Driver API Reference

Table 5. Encoder Commands (continued)

Command

Description

ENC_GET_VOL_HEADER

Tells the encoder to generate a video object layer (VOL) header stream based on the
information provided when opening the instance for external usage (for example, out-of-band
transmission). The generated stream is in RBSP format and big endian. Return values are as
follows:
RETCODE_SUCCESS VOL header information encoded successfully
RETCODE_INVALID_COMMAND Given argument, cmd, is invalid—it is undefined or not
allowed in the current instance. In this case, current
instance might not be an MPEG-4 encoder instance.
RETCODE_INVALID_PARAM Given argument, pParam, is invalid—it has a null pointer
or contains improper values for some member variables.
RETCODE_FAILURE Command failed to executed due to unexpected errors

ENC_SET_INTRA_MB_
REFRESH_NUMBER

pParam is a pointer to an integer which represents the intra refresh number. The intra refresh
number should be between 0 and the macroblock number of the encoded picture. Return
values are as follows:

RETCODE_SUCCESS Requested header syntax successfully inserted

ENC_ENABLE_HEC

pParam is ignored. Return values are as follows:

RETCODE_SUCCESS Requested header syntax successfully inserted

RETCODE_INVALID_COMMAND Given argument, cmd, is invalid—it is undefined or not
allowed in the current instance. In this case, current
instance might not be an MPEG-4 encoder instance.

ENC_DISABLE_HEC

pParam is ignored. Return values are as follows:

RETCODE_SUCCESS Requested header syntax successfully inserted

RETCODE_INVALID_COMMAND Given argument, cmd, is invalid—it is undefined or not
allowed in the current instance. In this case, current
instance might not be an MPEG-4 encoder instance.

ENC_SET_SLICE_INFO

pParam is a pointer to an EncSliceMode structure, where sliceMode enables a multi slice

structure, sliceSizeMode represents the mode of calculating one slicesize, and sliceSize is the

size of one slice. Return values are as follows:

RETCODE_SUCCESS Requested header syntax successfully inserted

RETCODE_INVALID_PARAM Given argument parameter, pParam (EncSliceMode), is
invalid—it has a null pointer or contains improper values for
some member variables

ENC_SET_GOP_NUMBER

pParam is a pointer to an integer which represents the GOP number. Return values are as

follows:

RETCODE_SUCCESS Requested header syntax successfully inserted

RETCODE_INVALID_PARAM pParam is invalid—the given values for gopsize is an
improper value

ENC_SET_INTRA_QP

pParam is a pointer to an integer which represents constant | frame QP. Constant | frame QP

should be between 1 and 31 for MPEG-4, and between 0 and 51 for AVC (H.264). Return

values are as follows:

RETCODE_SUCCESS Requested header syntax successfully inserted

RETCODE_INVALID_COMMAND Given argument, cmd, is invalid—it is undefined or not
allowed in the current instance. In this case, current
instance might not be an encoder instance.

RETCODE_INVALID_PARAM Given argument parameter, pParam(QP value), is
invalid—it has a null pointer or the given value for
constance | frame QP is an improper value

i.MX51 VPU Application Programming Interface Windows Embedded CE 6.0 Reference Manual

54

Freescale Semiconductor

i.MX51 VPU Driver API Reference

Table 5. Encoder Commands (continued)

Command

Description

ENC_SET_BITRATE

pParam is a pointer to an integer which represents the bitrate. The bitrate should be between

0 and 32767. Return values are as follows:

RETCODE_SUCCESS Requested header syntax successfully inserted

RETCODE_INVALID_COMMAND Given argument, cmd, is invalid—it is undefined or not
allowed in the current instance. In this case, current
instance might not be an encoder instance.

RETCODE_INVALID_PARAM The given argument parameter, pParam (Bitrate value), is
invalid—it has a null pointer or the given value for bitrate is
an improper value

ENC_SET_FRAME_RATE

pParam is a pointer to an integer which represents the frame rate value. The frame rate should

be greater than 0. Return values are as follows:

RETCODE_SUCCESS Requested header syntax inserted successfully

RETCODE_INVALID_COMMAND Given argument, cmd, is invalid—it is undefined or not
allowed in the current instance. In this case, the current
instance might not be an encoder instance.

RETCODE_INVALID_PARAM Given argument, pParam, is invalid—it has a null pointer
or contains improper values for some member variables

ENC_SET_REPORT_
MBINFO

pParam is a pointer to a type of Reportinfo. This command enables/disables the MB
information report. If the host application enables the MB information report, the buffer used to
save the MB information and its size must be set with the correct values that returns in
vpu_EncGetintialinfo(). The reported MB information is saved into the buffer set by this
command. If the MB information report option is enabled, Slice Boundary and Qp are reported
using 1byte as follows:
Bit 7: Reserved
Bit 6: Slice Boundary. Whenever new slice header is decoded, this bit field is toggled
Bits 5:0: Macroblock Qp value
Return values are as follows:
RETCODE_SUCCESS Requested settings set successfully
RETCODE_INVALID_PARAM Given parameters, buffer pointer or buffer size, is
invalid—invalid parameter pointer or the buffer size is smaller
than the required size.
RETCODE_REPORT_BUF_NOT_SET
Pointer to the MB information buffer is invalid

i.MX51 VPU Application Programming Interface Windows Embedded CE 6.0 Reference Manual

Freescale Semiconductor

55

i.MX51 VPU Driver API Reference

Table 5. Encoder Commands (continued)

Command

Description

ENC_SET_REPORT_
MVINFO

pParam is a pointer to a type of Reportinfo. This command enables/disables the MV
information report. If the host application enables the MV information report, the buffer used to
save the MV information and its size must be set with the correct values that returns in
vpu_EncGetintialinfo(). The reported MV information is saved into the buffer set by this
command. If the MV information option is enabled, Motion Vector information is reported using
4 bytes as follows:
Bit 31: Intra Flag (1: intra, O inter)
Bits 30:16: X value of motion vector
Bits 16:0: Y value of motion vector
Return values are as follows:
RETCODE_SUCCESS Requested settings set successfully
RETCODE_INVALID_PARAM Given parameters, buffer pointer and buffer size, are
invalid—invalid parameter pointer or the buffer size is smaller
than the required size.
RETCODE_REPORT_BUF_NOT_SET
Pointer to the MV information buffer is invalid

ENC_SET_REPORT_
SLICEINFO

pParam is a pointer to a type of Reportinfo. This command enables/disables the Slicelnfo
information report. If the host application enables the Slice information report, the buffer used
to save the Slicelnfo information and its size must be set with the correct values that returns in
vpu_EncGetlintiallnfo(). The reported Slicelnfo information is saved into the buffer set by this
command. If the Slicelnfo information option is enabled, Slice information is reported using
8 bytes as follows:
Bits 63:48: Reserved.
Bits 47:32: Last macroblock index of a slice (zero based-index)
Bits 31:0: Total number of bits used for encoding a slice
Return values are as follows:
RETCODE_SUCCESS Requested settings set successfully
RETCODE_INVALID_PARAM This means the given parameters, buffer pointer and buffer
size, are invalid—invalid parameter pointer or the buffer size
is smaller than the required size.
RETCODE_REPORT_BUF_NOT_SET
Pointer to the Slicelnfo buffer is invalid

3.34 Decoder API

The following sections describe the decoder AP functions.

3.3.41 vpu_DecOpen()

Prototype

Ret Code vpu_DecOpen(DecHandl e * pHandl e, DecOpenParam * pQpenPar am;

Parameter
pHandle

pOpenParam

[output] Pointer to a DecHandle type variable which specifies each
instance for an application

[input] Pointer to a DecOpenParam type structure which describes
the required parameters for creating a new decoder instance

i.MX51 VPU Application Programming Interface Windows Embedded CE 6.0 Reference Manual

56

Freescale Semiconductor

i.MX51 VPU Driver API Reference

Return Value
RETCODE_SUCCESS New decoder instance created successfully
RETCODE_FAILURE New decoder instance not opened successfully. If thereisno free

instance available, this value is returned in the function call.

RETCODE_INVALID_PARAM Given argument parameter, pOpenParam, is invalid—it has a null
pointer or contains improper values for some member variables.

RETCODE_NOT_INITIALIZED VPU not initialized before calling this function. The application
must initialize VPU by calling vpu_Init() before calling this
function.

RETCODE_FAILURE_TIMEOUT VPU isbusy with another task or thereis something wrong with the
VPU. In normal operation, the API call should not return a
RETCODE_FAILURE_TIMEOUT vaue. If the application
receives this value, the VPU internal function may be corrupted.

Description

To decode, the application must open the decoder. By calling this function, the application receives a
handle by which the application can refer to adecoder instance. Because the VPU is amultiple instance
codec, the application requires this kind of handle. Once the application receives a handle, the application
must pass the handle to all subsequent decoder-related functions.

3.3.4.2 vpu_DecClose()

Prototype
Ret Code vpu_Decd ose(DecHandl e handl e);
Parameter
handle [input] Decoder handle obtained from vpu_DecOpen()
Return Value
RETCODE_SUCCESS Current decoder instance closed successfully

RETCODE_INVALID_HANDLE Given handle for current API function call, handle, isinvalid. This
return code might be caused if handle has not been obtained by
vpu_DecOpen() or if handle is of an instance which has been
closed.

RETCODE_FAILURE_TIMEOUT VPU isbusy with another task or thereis something wrong with the
VPU. In normal operation, the API call should not return a
RETCODE_FAILURE_TIMEOUT value. If the application
receives this value, the VPU internal function may be corrupted.

Description

When the application is finished decoding a sequence and wants to release this instance for other

processing, the application should close this instance. After completion of this function call, the instance
referred to by handleisfree. Once the application closes an instance, the application cannot call any further
decoder-specific function with this handl e before re-opening anew decoder instance with the same handle.

i.MX51 VPU Application Programming Interface Windows Embedded CE 6.0 Reference Manual

Freescale Semiconductor 57

i.MX51 VPU Driver API Reference

3.3.4.3 vpu_DecGetlnitiallnfo()

Prototype
Ret Code vpu_DecGetlnitial I nfo(DecHandl e handl e, Declnitiallnfo * plnfo);

Parameter

handle [input] Decoder handle obtained from vpu_DecOpen()

pinfo [output] Pointer to a Declnitiallnfo data structure

Return Value

RETCODE_SUCCESS Required information of the stream data to be decoded received
successfully

RETCODE_FAILURE: Thereisan error in getting the configuration information for the
decoder

RETCODE_INVALID_HANDLE Given handle for current API function call, handle, isinvalid. This
return code might be caused if handle has not been obtained by
vpu_DecOpen() or if handle is of an instance which has been
closed.

RETCODE_INVALID_PARAM Given argument parameter, plnfo, isinvalid—it hasanull pointer or
contains improper values for some member variables.

RETCODE_FAILURE_TIMEOUT VPU isbusy with another task or thereis something wrong with the
VPU. In normal operation, the API call should not return a
RETCODE_FAILURE_TIMEOUT value. If the application
receives this value, the VPU internal function may be corrupted.

RETCODE_WRONG_CALL_SEQUENCE

Current API function call isinvalid considering the allowed
sequence between API functions. In this case, the application might
call this function before successfully putting the bitstream into the
buffer data by calling vpu_DecUpdateBitstreamBuffer (). In order
to perform this functions call, the bitstream data including the
sequencelevel header should be transferred into the bitstream buffer
before calling vpu_DecGetl nitiall nfo().

RETCODE_CALLED BEFORE Function cal isinvalid because multiple calls of the current API
function for agiven instance are not allowed. The decoder initial
information has been aready received, so thisfunction call is
meaningless and not allowed.

Description

The application must pass the address of a DeclnitialInfo structure, where the decoder stores the
information such as picture size, number of necessary frame buffers, and so on. For details, see the
definition of the DeclnitiaInfo data structure in Section 3.2.2.19, “DeclnitialInfo.” This function should
be called after creating a decoder instance and before starting frame decoding. The application must
provide sufficient amount of bitstream to the decoder by calling vpu_DecUpdateBitstreamBuffer () so
bitstream buffer does not empty before this function returns.

i.MX51 VPU Application Programming Interface Windows Embedded CE 6.0 Reference Manual

58 Freescale Semiconductor

i.MX51 VPU Driver API Reference

In file-play mode with MPEG-4 or H.264, vpu_DecGetl nitiall nfo() operates only with sequence level
header syntaxes which might be much smaller than the 256 byte minimum transfer unit. If the application
cannot ensure to feed enough data for the stream, the application can use the forced escape option using
vpu_DecSetEscSeql nit().

3.3.4.4 vpu_DecSetEscSeqlnit()

Prototype
Ret Code vpu_DecSet EscSeql nit (DecHandl e handl e, int escape);
Parameter
handle [input] Decoder handle obtained from vpu_DecOpen()
escape [input] Flag to enable or disable forced escape from SEQ_INIT
Return Value
RETCODE_SUCCESS Force escape flag successfully provided to the BIT processor

RETCODE_INVALID_HANDLE Given handle for current API function call, handle, isinvalid. This
return code might be caused if handle has not been obtained by
vpu_DecOpen() or if handle is of an instance which has been
closed.

RETCODE_FAILURE_TIMEOUT VPU isbusy with another task or thereis something wrong with the
VPU. In normal operation, the API call should not return a
RETCODE_FAILURE_TIMEOUT value. If the application
receives this value, the VPU internal function may be corrupted.

Description

Thisisaspecial function to provide away of escaping the VPU hanging during DEQ_SEQ_INIT. When

thisflag is set to 1 and the stream buffer becomes empty, the VPU automatically terminates the

DEC_SEQ INIT operation. If the target application ensuresthat a high layer header syntax is periodically

sent through the channel, the application does not need this option. however, if the target application

cannot ensure that a high layer header syntax is periodically sent through the channel (such asfile-play

mode), this function is useful to avoid the VPU hanging because of crucia errors in the header syntax.
NOTE

Thisflag isapplied to all decoder instances together; therefore, it is
recommended to reset thisflag to O after successfully finishing the sequence
initialization.

3.34.5 vpu_DecGetBitstreamBuffer()

Prototype

Ret Code vpu_DecCet Bi t st reanBuf f er (DecHandl e handl e, Physi cal Address * pRdptr,
Physi cal Address * pWptr, U nt32 * size);

Parameter
handle [input] Decoder handle obtained from vpu_DecOpen()

i.MX51 VPU Application Programming Interface Windows Embedded CE 6.0 Reference Manual

Freescale Semiconductor 59

i.MX51 VPU Driver API Reference

pRdptr [output] Stream buffer read pointer for the current decoder instance

pWrptr [output] Stream buffer write pointer for the current decoder instance

size [output] Variable specifying the avail abl e space in the bitstream buffer
for the current decoder instance

Return Value

RETCODE_SUCCESS Required information for the decoder stream buffer received

successfully

RETCODE_INVALID_HANDLE Given handle for current API function call, handle, isinvalid. This
return code might be caused if handle has not been obtained by
vpu_DecOpen() or if handleis of an instance which has been closed.

RETCODE_INVALID_PARAM Given argument parameter, pRdptr, pWrptr or size, isinvalid—it has
anull pointer or given values for some member variables have
improper values.

Description

Before decoding a bitstream, the application must give the bitstream data to the decoder. First, the
application must know where bitstream can be placed and the maximum size. The application received this
information from this function. For the VPU, using the data from this function is more efficient than
providing an arbitrary bitstream buffer to the decoder.

NOTE

The given sizeisthe total sum of the free space in the ring buffer. So when
the application downloads a bitstream of thisgiven size, Wrptr can reach the
end of the stream buffer. In this case, the application should wrap-around
Wrptr to the beginning of the stream buffer and download the remaining
bits. If not, the decoder operation can fail.

3.3.4.6 vpu_DecUpdateBitstreamBuffer()

Prototype
Ret Code vpu_DecUpdat eBi t streanBuff er (DecHandl e handl e, Ui nt32 size);

Parameter

handle [input] Decoder handle obtained from vpu_DecOpen()

Sze [input] Variable specifying the amount of bits transferred into the
bitstream buffer for the current decoder instance

Return Value

RETCODE_SUCCESS Putting new stream data completed successfully

RETCODE_INVALID_HANDLE Given handle for current API function call, handle, isinvalid. This
return code might be caused if handle has not been obtained by
vpu_DecOpen() or if handle is of an instance which has been
closed.

i.MX51 VPU Application Programming Interface Windows Embedded CE 6.0 Reference Manual

60 Freescale Semiconductor

i.MX51 VPU Driver API Reference

RETCODE_INVALID_PARAM The given argument parameter, size, isinvalid—it islarger than the
value obtained from vpu_DecGetBitstreamBuffer () or larger than
the available space in the bitstream buffer.

RETCODE_FAILURE_TIMEOUT VPU isbusy with another task or thereis something wrong with the
VPU. In normal operation, the API call should not return a
RETCODE_FAILURE_TIMEOUT value. If the application
receives this value, the VPU internal function may be corrupted.

Description

The application must let decoder know how much bitstream has been transferred to the address obtained
from vpu_DecGetBitstreamBuffer(). By giving the size as argument, the APl automatically handles
pointer wrap-around and write pointer update.

3.3.4.7 vpu_DecRegisterFrameBuffer()
Prototype

Ret Code vpu_DecRegi st er Fr aneBuf f er (DecHandl e handl e, FrameBuffer * pBuffer, int num int
stride, DecBuflnfo * pBuflnfo);

Parameter

handle [input] Decoder handle obtained from vpu_DecOpen()

pBuffer [input] Pointer to a FrameBuffer type structure which describes the
frame buffer pointer parameters for the current decoder instance

num [input] Number of frame buffers

stride [input] Stride value of the given frame buffers

pBufinfo [input] Pointer to a DecBufInfo type structure which describes the
additional work buffers. diceSaveBuffer isonly declared by this
structure

Return Value

RETCODE_SUCCESS Registering the frame buffer information completed successfully

RETCODE_INVALID_HANDLE Given handle for current API function call, handle, isinvalid. This
return code might be caused if handle has not been obtained by
vpu_DecOpen() or if handle is of an instance which has been
closed.

RETCODE_FAILURE_TIMEOUT VPU isbusy with another task or thereis something wrong with the
VPU. In normal operation, the API call should not return a
RETCODE_FAILURE_TIMEOUT value. If the application
receives this value, the VPU internal function may be corrupted.

RETCODE_WRONG_CALL_SEQUENCE

Current API function call isinvalid considering the allowed
sequence between API functions. In this case, the application might
have called this function before successfully calling
vpu_DecGetlnitiallnfo().

i.MX51 VPU Application Programming Interface Windows Embedded CE 6.0 Reference Manual

Freescale Semiconductor 61

i.MX51 VPU Driver API Reference

RETCODE_INVALID_FRAME_BUFFER
pBuffer isinvalid—it is not initialized or is not valid anymore
RETCODE_INSUFFICIENT_FRAME_BUFFERS

Given number of frame buffers, num, is not enough for the decoder
operations of the given handle. num should be greater than or equal
to the value requested by vpu_DecGetlInitiall nfo().

RETCODE_INVALID_STRIDE Thegiven argument strideisinvalid—it is smaller than the decoded
picture width, or is not a multiple of 8.

RETCODE_CALLED BEFORE Function cal isinvalid because multiple calls of the current API
function for agiven instance are not allowed. The decoder initial
information has been already received, so thisfunction call is
meaningless and not allowed.

Description

This function is used for registering frame buffers with the information from vpu_DecGetl nitiall nfo().
The frame buffers pointed to by pBuffer are managed internally within the VPU. These include reference
frames, reconstructed frame, and so on. The application must not change the contents of the array of frame
buffers during the lifetime of the instance, and num must not be less than minFrameBufferCount obtained
from vpu_DecGetlnitialInfo(). In MJIPG decoding, the host application can skip this function call
because there is no reference frame concept.

3.3.4.8 vpu_DecStartOneFrame()

Prototype
Ret Code vpu_DecSt art OneFr ane(DecHandl e handl e, DecParam *pParam ;
Parameter
handle [input] Decoder handle obtained from vpu_DecOpen()
pParam [input] Pointer to a DecParam type structure that describes the
picture decoding parameters for the current encoder instance
Return Value
RETCODE_SUCCESS Decoding anew frame started successfully. This return value does

not mean that decoding a frame completed successfully.

RETCODE_INVALID_HANDLE Given handle for current API function call, handle, isinvalid. This
return code might be caused if handle has not been obtained by
vpu_DecOpen() or if handle is of an instance which has been
closed.

RETCODE_FAILURE_TIMEOUT VPU isbusy with another task or thereis something wrong with the
VPU. In normal operation, the API call should not return a
RETCODE_FAILURE_TIMEOUT value. If the application
receives this value, the VPU internal function may be corrupted.

i.MX51 VPU Application Programming Interface Windows Embedded CE 6.0 Reference Manual

62 Freescale Semiconductor

i.MX51 VPU Driver API Reference

RETCODE_WRONG_CALL_SEQUENCE

Current API function call isinvalid considering the allowed
sequence between API functions. The application might have called
this function before successfully calling

vpu_DecRegister FrameBuffer (). This function should be called
after successfully calling vpu_DecRegister FrameBuffer ().

Description

This function starts decoding one frame. Returning from this function does not mean the completion of
decoding one frame, but it just initiates decoding one frame. The host application should wait for the
VPU_INT_PIC_RUN_NAME. If thisevent is signaled, then vpu_DecGetOutputinfo() is called to get
the decoded output information. Every call of this function should be matched with
vpu_DecGetOutputlinfo() with the same handle. Before that, the application can not call other API
functions except for vpu_I sBusy(), vpu_DecGetBitstreamBuffer (), and
vpu_DecUpdateBitstreamBuffer ().

When the application uses pre-scan mode, thereis only avery small chance that the decoder may hang.
For the VC-1 decoder, pre-scan mode is not supported. Do not use prescan mode for MPEG4 decoding or
in file-play mode.

3.3.4.9 vpu_DecGetOutputinfo()

Prototype
Ret Code vpu_DecCet Qut put | nfo(DecHandl e handl e, DecQutputlnfo * plnfo);
Parameter
handle [input] Decoder handle obtained from vpu_DecOpen()
plnfo [output] Pointer to aDecOutputl nfo type structure which describesthe
picture decoding results for the current decoder instance
Return Value
RETCODE_SUCCESS Receiving the output information of current frame completed

successfully

RETCODE_INVALID_HANDLE Given handle for current API function call, handle, isinvalid. This
return code might be caused if handle has not been obtained by
vpu_DecOpen() or if handleis of an instance which has been closed.
Also, thisvalue is returned when vpu_DecSartOneFrame() is
matched with vpu_DecGetOutputlnfo() with different handles.

RETCODE_WRONG_CALL_SEQUENCE

Current API function call isinvalid considering the allowed sequence
between API functions. vpu_DecStartOneFrame() with the same
handle might not have been called before calling this function

RETCODE_INVALID_PARAM Given argument parameter, plnfo, isinvalid—it hasanull pointer or
contains improper values for some member variables.

i.MX51 VPU Application Programming Interface Windows Embedded CE 6.0 Reference Manual

Freescale Semiconductor 63

i.MX51 VPU Driver API Reference

Description

The application received the output information of the decoder by calling this function after the
VPU_INT_PIC_RUN_NAME event is signaled. The output information includes the frame buffer
information containing the reconstructed image. The host application calls this function after the frame
decoding is finished and before starting further processing.

NOTE

If pre-scan mode is enabled, the application should check prescanResult. If
thevalue of prescanResult = O, the other output information is meaningless.
vpu_DecSartOneFrame() and vpu_DecGetOutputlnfo() must be
matched and called in the same thread.

3.3.4.10 vpu_DecBitBufferFlush()

Prototype
Ret Code vpu_DecBi t Buf f er Fl ush(DecHandl e handl e) ;
Parameter
handle [input] Decoder handle obtained from vpu_DecOpen()
Return Value
RETCODE_SUCCESS Receiving the output information of the current frame completed

successfully

RETCODE_FAILURE_TIMEOUT VPU isbusy with another task or thereis something wrong with the
VPU. In normal operation, the API call should not return a
RETCODE_FAILURE_TIMEOUT value. If the application
receives this value, the VPU internal function may be corrupted.

RETCODE_INVALID_HANDLE Given handle for current API function call, handle, isinvalid. This
return code might be caused if handle has not been obtained by
vpu_DecOpen() or if handleis of an instance which has been
closed. Also, thisvalueis returned when
vpu_DecSartOneFrame() is matched with
vpu_DecGetOutputlnfo() with different handles.

RETCODE_WRONG_CALL_SEQUENCE

Current API function call isinvalid considering the allowed
sequence between API functions. vpu_DecRegister FrameBuffer ()
with the same handle might not have been called before calling this
function.

Description

The application flushes the bitstream in the decoder bitstream buffer without decoding by calling this
function. If the bitstream buffer is flushed, the read and write pointers of the bitstream buffer of each
instance are set to the bitstream buffer start address.

i.MX51 VPU Application Programming Interface Windows Embedded CE 6.0 Reference Manual

64 Freescale Semiconductor

i.MX51 VPU Driver API Reference

3.3.4.11 vpu_DecCirDispFlag()

Prototype
Ret Code vpu_Decd rDi spFl ag(DecHandl e handl e, int index);
Parameter
handle [input] Decoder handle obtained from vpu_DecOpen()
index [input] Frame buffer index to be cleared
Return Value
RETCODE_SUCCESS Receiving the output information of the current frame completed

successfully

RETCODE_INVALID_HANDLE Given handle for current API function call, handle, isinvalid. This
return code might be caused if handle has not been obtained by
vpu_DecOpen() or if handleis of an instance which has been closed.
Also, thisvalue is returned when vpu_DecSartOneFrame() is
matched with vpu_DecGetOutputlnfo() with different handles.

RETCODE_WRONG_CALL_SEQUENCE

Current API function call isinvalid considering the allowed sequence
between API functions. vpu_DecRegister FrameBuffer () with the
same handle might not have been called before calling this function.

RETCODE_INVALID_PARAM Given argument parameter, index, isinvalid—it has improper values
Description

The application clearsthedisplay flag of each frame buffer by calling thisfunction after creating a decoder
instance. If the display flag of the frame buffer is cleared, the frame buffer can be used in the decoding
process. Therefore, the application controls displaying abuffer by clearing the display flag which isset by
the VPU at every display index output process.

3.3.4.12 vpu_DecGiveCommand()

Prototype
Ret Code vpu_DecG veComrand(DecHandl e handl e, CodecCommand cnd, void * pParan);

Parameter

handle [input] Decoder handle obtained from vpu_DecOpen()

cmd [input] Variable specifying the given command of CodecComand
type

pParam [input/output] Pointer to acommand-specific data structure which
describes picture |/O parameters for the current decoder instance

Return Value

RETCODE_INVALID_COMMAND Given argument, cmd, isinvalid—it isundefined or not allowed in
the current instance

i.MX51 VPU Application Programming Interface Windows Embedded CE 6.0 Reference Manual

Freescale Semiconductor 65

i.MX51 VPU Driver API Reference

RETCODE_INVALID_HANDLE Given handlefor current API function call, handle, isinvalid. This

RETCODE_FAILURE_T

Description

return code might be caused if handle has not been obtained by
vpu_DecOpen() or if handle is of an instance which has been
closed.

IMEOUT VPU is busy with another task or there is something wrong with
the VPU. In normal operation, the API call should not return a
RETCODE_FAILURE_TIMEOUT value. If the application
receives this value, the VPU internal function may be corrupted.

This function is provided to give applications a certain level of freedom for reconfiguring decoder
operations after creating a decoder instance. The options which can be changed dynamically while
decoding a video sequence aswell as some command-specific return codes are shown in Table 6.

Table 6. Decoder Commands

Command

Description

ENABLE_ROTATION

Enables rotation of the post-rotator. pParam is ignored. Returns RETCODE_SUCCESS.

DISABLE_ROTATION

Disables rotation of the post-rotator. pParam is ignored. Returns RETCODE_SUCCESS.

ENABLE_MIRRORING

Enables mirroring of the post-rotator. pParam is ignored. Returns RETCODE_SUCCESS.

DISABLE_MIRRORING

Disables mirroring of the post-rotator. pParam is ignored. Returns RETCODE_SUCCESS.

SET_MIRROR_DIRECTION

Sets the mirror direction of the post-rotator. pParam is a pointer to MirrorDirection. *pParam

should be one of the following:

¢ MIRDIR_NONE—No mirroring

* MIRDIR_VER—Vertical mirroring

e MIRDIR_HOR—Horizontal mirroring

* MIRDIR_HOR_VER—Both directions

Return values are as follows:

RETCODE_SUCCESS Given mirroring direction is valid

RETCODE_INVALID_PARAM Given argument parameter, pParam, is invalid so given
mirroring direction is invalid

SET_ROTATION_ANGLE

Sets the counter-clockwise angle for post-rotation. pParam a pointer to an integer which

represents rotation angle in degrees. The rotation angle should be 0, 90, 180, or 270. Return

values are as follows:

RETCODE_SUCCESS Given rotation angle is valid

RETCODE_INVALID_PARAM Given argument parameter, pParam, is invalid so given
rotation angle is invalid

SET_ROTATOR_OUTPUT

Sets the rotator output buffer address. pParam a pointer to a structure representing the physical
addresses of the YCbCr components of the output frame. For storing the rotated output for a
display, at least one more frame buffer should be allocated. When multiple display buffers are
required, the application changes the buffer pointer of the rotated output at every frame by
issuing this command. Return values are as follows:
RETCODE_SUCCESS Given frame buffer pointer is valid
RETCODE_INVALID_PARAM Given argument parameter, pParam, is invalid so given frame
buffer pointer is invalid

i.MX51 VPU Appl

ication Programming Interface Windows Embedded CE 6.0 Reference Manual

66

Freescale Semiconductor

i.MX51 VPU Driver API Reference

Table 6. Decoder Commands (continued)

Command Description

SET_ROTATOR_STRIDE | Sets the stride size of the frame buffer containing rotated output. pParam is the stride value of

the rotated output. Return values are as follows:

RETCODE_SUCCESS Given stride value is valid

RETCODE_INVALID_PARAM Given argument parameter, pParam, is invalid so given stride
value is invalid. The stride value must be greater than 0 and a
multiple of 8.

DEC_SET_SPS_RBSP Applies the SPS stream to the decoder received from a certain out-of-band reception scheme.

The stream should be in RBSP format and big endian. pParam is a pointer to a DecParamSet

structure. paraSet is an array of 32 bits which contains SPS RBSP, and size is the size of the

stream in bytes. Return values are as follows:

RETCODE_SUCCESS Transferring a SPS RBSP to a decoder completed
successfully

RETCODE_INVALID_COMMAND Given argument, cmd, is invalid—it is undefined or not
allowed in the current instance. In this case, the current
instance might not be an AVC (H.264) decoder instance.

RETCODE_INVALID_PARAM Given argument, pParam, is invalid—it has a null pointer or
contains improper values for some member variables.

DEC_SET_PPS_RBSP Applies the PPS stream to the decoder received from a certain out-of-band reception scheme.

The stream should be in RBSP format and big endian. pParam is a pointer to a DecParamSet

structure. paraSet is an array of 32 bits which contains PPS RBSP, and size is the size of the

stream in bytes. Return values are as follows:

RETCODE_SUCCESS Transferring a PPS RBSP to decoder completed
successfully

RETCODE_INVALID_COMMAND Given argument, cmd, is invalid—it is undefined or not
allowed in the current instance. In this case, current
instance might not be an AVC (H.264) decoder instance.

RETCODE_INVALID_PARAM Given argument, pParam, is invalid—it has a null pointer or
contains improper values for some member variables.

ENABLE_DERING Enables the VPU internal dering operation. Returns RETCODE_SUCCESS.

DISABLE_DERING Disables the VPU internal dering function. Returns RETCODE_SUCCESS.

DEC_SET_REPORT_ Enables/disables the frame buffers status report function. If the host application requires the
BUFSTAT frame buffer status information, it enables the function by setting this command with the
allocated buffer from the user space with the correct size returned from vpu_DecGetintiallnfo().

The returned frame buffer status information is saved into this buffer after calling
vpu_DecGetOutputinfo(). Each frame buffer can be used for display, for reference or not used.
The decoder reports the frame buffer status of each frame using 4 bits as follows:

Bit 3 set = Not used

Bit 2 set = Display

Bit 1 set = Reference

Bit 0 set = Not used

For example, if the value of the frame buffer status is 6, then the frame buffer is used for
reference and display. If the value is 4, the frame buffer is used for display and is not used for
reference.

In H.264, bit field definition is as follows:

Bit 3 set = Not used

Bit 2 set = Display

Bit 1 set = Out (Frame is in DPB buffer)

Bit 0 set = Reference

i.MX51 VPU Application Programming Interface Windows Embedded CE 6.0 Reference Manual

Freescale Semiconductor 67

i.MX51 VPU Driver API Reference

Table 6. Decoder Commands (continued)

Command

Description

DEC_SET_REPORT_
MBINFO

Enables/disables the MB information report function. If the host application requires the MB

information, it enables the function by setting this command with the allocated buffer from the

user space with the correct size returned from vpu_DecGetIntialinfo(). The returned MB

parameter is saved into this buffer after calling vpu_DecGetOutputinfo(). If this option is

enabled, error flag, Slice Boundary and Qp are reported using 8 bits as follows:

Bit 7: Error Map. If error is detected in macroblock decoding, this bit field is set to 1

Bit 6: Slice Boundary. Whenever new slice header is decoded, this bit field is toggled

Bits 5:0: Macroblock Qp value

Return values are as follows:

RETCODE_SUCCESS Operation completed successfully

RETCODE_INVALID_PARAM Given argument parameter, param is invalid—it has a null
pointer or addr in DecReportinfo is a null pointer when
enable is 1.

DEC_SET_REPORT_
MVINFO

This command enables/disables the Motion Vector (MV) information report function. If the host

application requires the MV information, it enables the function by setting this command with the

allocated buffer from the user space with the correct size returned from vpu_DecGetIntiallnfo().

The returned MV information is saved into this buffer after calling vpu_DecGetOutputinfo(). If

this option is enabled, the decoder reports a MV for P picture and two motion vectors for B

picture. The MV information is reported using 4 bytes as follows:

bit 31: Intra Flag (1: intra, O inter)

[30:16] :X value of motion vector

[16:0] : Y value of motion vector

Return values are as follows:

RETCODE_SUCCESS Operation completed successfully

RETCODE_INVALID_PARAM Given argument parameter, param. is invalid—it has a null
pointer or addr in DecReportinfo is a null pointer when
enable is 1.

i.MX51 VPU Application Programming Interface Windows Embedded CE 6.0 Reference Manual

68

Freescale Semiconductor

i.MX51 VPU Driver API Reference

Table 6. Decoder Commands (continued)

Command

Description

DEC_SET_REPORT_
USERDATA

This command enables/disables the user data report function. If the host application requires

the user data information, it enables the function by setting this command with the allocated

buffer from the user space with the correct size returned from vpu_DecGetlntiallnfo(). The

returned user data information is saved into this buffer after calling vpu_DecGetOutputinfo().

The user data buffer full interrupt is issued if the user data buffer size is not large enough to save

the user data during frame decoding. If the interrupt is issued, the decoder waits until the host

clears the interrupt and restarts the user data by writing at the beginning of userDataBufAddr if

the interrupt is cleared.

If the user data report mode is 1, the decoder does not issue the interrupt and reports buffer size

amount of user data. The size and address of the user data buffer, userDataBufSize and

userDataBufAddr, should be multiple of 8. userDataBufSize does not include user data type and

user data size as shown in Figure 6, Therefore, the host should allocate

8 x 17 + userDataBufSize bytes for the user data memory.

To avoid complex implementation and considering that in most cases the user data size not

large, the user data report mode is hard-coded as 1. If the user buffer size is too small to save

all user data during frame decoding, the userDataBufFull in Reportinfo is set to indicate that the

user data buffer overflowed. Figure 7 and Figure 8 show these two cases.

According to codec standard, the user data type is set as follows:

For H.264 (For more details see the Annex D in the H.264 spec):

4: user_data_registered_itu_t_t35

5: user_data_unregistered

For VC1:

31: Sequence level user data

30: Entry-point level user data

29: Frame level user data

28: Field level user data

27: Slice level user data

For MP2:

0: Sequence user data

1: GOP user data

2: Picture user data

For MP4:

0: VOS user data

1: VIS user data

2: VOL user data

3: GOV user data

Return values are as follows:

RETCODE_SUCCESS Operation completed successfully

RETCODE_INVALID_PARAM Given argument parameter, param is invalid—it has a null
pointer or addr in DecReportinfo is a null pointer when
enable is 1.

Figure 6 shows the user data report structure where each of the 16 possible users are designated #0 User,
#1 User, and so on. The data of the first user, #0 User, isthe #0 User Data and the size of thisdatais

#0 User Data Size. The User Data Size for users #0-15 isthe size in bytes of the #0-15 User Data,
excluding the zero padding (O Padding) that is between each user data. The User Data Size is used to
calculate the offset from the base, userDataBufBase, to the data for each user.

For example:

#1 User Data = userDataBufBase + 8x17 + #0 User Data Size + 0 Padding

i.MX51 VPU Application Programming Interface Windows Embedded CE 6.0 Reference Manual

Freescale Semiconductor

69

i.MX51 VPU Driver API Reference

Where the size of the 0 Padding for each user is:
0 padding = (8 - (User Data Size% 8))%8
For example, the O padding for User #0 = (8 - (#0 User Data Size% 8))%8

External Memory

A

userDataBuf Base 4 bytes >

TotalUserDataNum TotalUserDataSize
OverflowFlag Reserved
#0 User Data Type #0 User Data Size
Reserved

#1 User Data Size

Reserved

User Data#2 ~ #14

#15 User Data Size

#1 User Data Type

userDataBuf Base + 8*17

#15 User Data Type ‘

#0 User Data Reserved

0 Padding

Figure 6. User Data Report Structure

In case of
“User Data < Buffer”

Data copying will be processed after

& picture decoding is teminated .
(2]

k] »| SaveUserData

2z User Data

o Buffer

o

Figure 7. Normal Case: Amount of User Data is Less than Buffer Size

i.MX51 VPU Application Programming Interface Windows Embedded CE 6.0 Reference Manual

70 Freescale Semiconductor

VPU Control

In case of
“User Data > Buffer’

v Data copying will be done by ISR to

pying
prevent user data buffer overflow .

(2]

2 User Dat

g ser Jata » SaveUserDataINT

8 Buffer

- Data copying will be processed after

% picture decoding is terminated .
t / ﬁ » SaveUserData

Figure 8. User Data Overflow Case

4 VPU Control

This section describes the VPU control scheme based on the API functions and includes some practical
programming iSsues.

4.1 VPU Initialization
When the host processor enables the VPU for thefirst time, the following initialization process should be
performed. These operations are completed by calling asingle API function, vpu_I nit().
» Disablethe BIT processor by setting BIT_CODE_RUN (BASE + 0x000) =0
» Writethe BIT processor microcode to the SDRAM accessible by the VPU during run-time
» Download the first N Kbytes of microcode to the BIT processor code memory
» Setthe BIT processor buffer pointers, working buffer, parameter buffer and code buffer
» Set the stream buffer control options and the frame buffer endian mode
» Enableinterrupt and reset registers
» Enablethe BIT processor by setting BIT_CODE_RUN register =1
e Wait until vpu_lsBusy() returns RETCODE_IDLE

Detailed information about each of these initialization steps and some programming tips are presented in
the following sections.

411 Version Check of BIT Processor Microcode

The application can check the version information of the BIT processor microcode during runtime. The
version number of microcode is a 32-bit value. The 16 most significant bits are the internal product
number, and the 16 least significant bits are the version number specified by the following rule:

* Bits15:12 = Mgjor revision
* Bits11:8=Minor revision
* Bits7:0= Revision patches

i.MX51 VPU Application Programming Interface Windows Embedded CE 6.0 Reference Manual

Freescale Semiconductor 71

VPU Control

This version number can have avalue from 0.0.0 to 15.15.255. A dedicated command,
vpu_GetVersionlnfo(), isused for this version check and is supported after initialization.

4.1.2 BIT Processor Enable and Disable

TheBIT processor has adedicated register that activates or deactivatesthe BIT processor during run-time,
BIT_CODE_RUN (BASE + 0x000). During initialization, the BIT processor program memory is updated
and some configuration registersfor controlling VVPU operations are a so set. During this process, the BIT
processor should be disabled. After finishing the initialization process, the host processor enablesthe BIT
processor. Then the BIT processor starts its own internal initialization process and is ready for operation.

4.1.3 BIT Processor Data Buffer Management

The BIT processor requires a certain amount of SDRAM space for its codec operations. This dedicated
memory space includes memory space for the BIT processor microcode, internal work buffer, parameter
buffers, and so on. The size of each sub-buffer asfollows:

#def i ne CODE_BUF_SI ZE (128*1024) /1 byte size of Code buffer
#def i ne WORK_BUF_SI ZE (256*1024) /1 byte size of Work Buffer
#def i ne PARA BUF_SI ZE (8*1024) /1 byte size of Parameter Buffer

In the VPU API, the initialization function only receives the start address of this internal buffer asan
argument. Therefore, the total sum of the VPU processing buffer space starting from the start address
should be dedicated memory space for the VPU and no other process should access this memory space
whilethe VPU isenabled. It is highly recommended for the host processor to reserve the specified size of
the dedicated buffer for the BIT processor and call vpu_I nit() with the start address of the reserved
memory. The start addresses of internal buffer partitions, code buffer, work buffer and parameter buffer,
are calculated inside of the vpu_Init() function and the calcul ated start addresses are set in the host
interface.

In addition to the above sub-buffers, the VVPU requires buffersfor saving SPS/PPS and SLICE RBSPwhen
decoding aH.264 stream. In general, 5 Kbytesis sufficient for the SPS/PPS save buffer and a quarter of
theraw YUV image sizeis sufficient for the SLICE save buffer. If the VPU requires more buffer space to
decode aH.264 stream, the VPU reports a buffer overflow.

41.4 BIT Processor Microcode Management

The BIT processor has its own program memory inside of the VPU, but the content of this program
memory is dynamically updated according to the required codec standard. The advantage of this dynamic
microcode reloading is the reduction of program memory size. This advantage is meaningful because the
BIT processor generally requires many sets of microcode to support several codec standards in duplex
mode. Generally speaking, it seldom happens that the codec standard is changed in the middle of a codec
application. So dynamic reloading for changing the codec is not a burden in cycle consumption. In the
worst case, the dynamic code reloading happens once per picture processing, but considering the amount
of maximum reloaded code, it is not alarge burden to the VPU cycle consumption.

i.MX51 VPU Application Programming Interface Windows Embedded CE 6.0 Reference Manual

72 Freescale Semiconductor

VPU Control

Since the dynamic reloading is completed by the VPU itself, the host processor only needsto copy the
given microcode to the reserved code buffer before initializing the VPU. Of course, thefirst loading of the
microcode to the BIT processor program memory should be completed separately by the host processor.

4.1.5 Stream Buffer Management

The stream buffer is a shared buffer between the host processor and the VPU for exchanging stream data.
There are two different streaming schemes for decoding: ring-buffer and line-buffer. The ring-buffer
scheme is used for host applications to reserve afixed size of memory space and use it during codec
operations. On the other hand, the line buffer schemeis used for host application to alocate astream buffer
dynamically and use it frame-by-frame.

The host processor aso can choose the endian option of the stream buffer and can enable or disable the
buffer full/empty check option. All these options for stream buffer data management are stored in a
dedicated host interface register, BIT_BITSTREAM_CTRL, and are referenced by the BIT processor
during run-time.

For decoding, the VPU provides both streaming options. But sometimes multiple-instance decoding may
require adifferent streaming option for each decoder instance. For example, while playing alocal video
file, the application might need to decode a digital video broadcast. In this case, the different types of
streaming mode can be helpful for the application design and the different streaming option is applied to
each decoder instance independently.

4.1.51 Ring-Buffer Scheme (Packet Mode)

The ring-buffer scheme is preferred in packet-based video communication and streaming applications. In
packet-based streaming based on a ring-buffer, the read and write pointers automatically wrap around at
the boundaries. When the application downloads a new chunk of the bitstream, the application should
check the available space in the bitstream buffer. Even though the available space can easily be calculated
from the read pointer, write pointer and buffer size, the VPU API provides a dedicated function for
providing the buffer read pointer, buffer write pointer and the available space in the stream buffer,
vpu_DecGetBitStreamBuffer (). Based on the returned value from this API function, the application
downloads a new chunk of bitstream data whose size should be smaller than the available buffer space.
The amount of bits transferred into the stream buffer should be notified to the VPU using
vpu_DecUpdateBitSreamBuffer ().

4.1.5.2 Line-Buffer Scheme (File-Play Mode)

The line-buffer based streaming scheme is suitable for local file-play applications where a picture stream
iscompletely separated by file container structures. For decoding, the line-buffer based streaming scheme
isonly allowed if the application always sends the stream data for only one frame. This means, when the
line-buffering scheme, or file-play mode, is enabled, the VPU resets the read pointer to the start address
of the bitstream buffer.

File-play mode is used when an application all ocates the bitstream buffer dynamically as dynamic buffer
allocation is only allowed when file-play mode is enabled. Aswell as this dynamic buffer allocation
option, the byte offset of each dynamically allocated stream buffer can be used to avoid unnecessary

i.MX51 VPU Application Programming Interface Windows Embedded CE 6.0 Reference Manual

Freescale Semiconductor 73

VPU Control

stream copi es because of the 8-byte alignment restriction in the VPU. By providing a byte offset between
zero and three, the host application can avoid the overhead of coping the stream to an 8-byte aligned input
stream buffer.

The application does not need to use two dedicated APIs, vpu_DecGetBitStreamBuffer () and
vpu_DecUpdateBitSreamBuffer (). The start address and the size of bitstream buffer is provided as an
argument of vpu_DecStartOneFrame() to the VPU frame-by-frame.

4.1.6 Interrupt Signaling Management

To achieve maximum efficiency in VPU control, the VPU IP provides interrupt signaling for completion
of arequested operation as well as stream buffer empty/full. For some commands with aquick return,
interrupt signaling is not helpful so interrupt signaling is not provided.
The VPU providesinterrupt signaling for the following commands:

* BIT_RUN_COMPLETE—BIT processor initialization complete after setting BIT_CODE_RUN

 DEC_SEQ INIT—Decoder sequence initialization complete

» DEC_SEQ _END—Decoder sequence termination complete

» DEC_PIC_RUN—Decoder picture processing complete

» DEC_SET_FRAME_BUF—Decoder frame buffer registration complete

» DEC_PARA_SET—EXxternal header syntax transfer to decoder complete

» DEC_BUF_FLUSH—Flushing decoder stream buffer complete
DEC_SEQ INIT and DEC_PIC_RUN can cause the VPU to stall when the input bitstream is not large
enough. So enabling the bitstream buffer-empty interrupt with these two interrupts, avoids unnecessary
cycle consumptionsin the host application. Each interrupt is easily enabled or disabled by writing O or 1
to the corresponding bit field of interrupt enable register. When an interrupt is signaled, the application
checks the source of theinterrupt by checking the value of interrupt reason register. When interrupt
signaling is not easily applicable, these interrupt can be replaced by a polling scheme by reading the BIT
processor busy-flag.

NOTE

Only the DEC_PIC_RUN interrupt is used by applications. The other
interrupts are used internally by the APl or not supported.

4.2 Encoder Control

4.2.1 Creating an Encoder Instance

After initialization of the VPU, an application creates an encode instance and acquires a handle for
specifying that encoder instance as the first step to run an encoder operation. Thisis accomplished using
asingle API function caled vpu_EncOpen().

i.MX51 VPU Application Programming Interface Windows Embedded CE 6.0 Reference Manual

74 Freescale Semiconductor

VPU Control

When creating a new encoder instance, the application specifies the internal features of the encoder
instance through the EncOpenParam structure. This structure includesthe following information about the
new encoder instance:

» Bitstream buffer address and size—Physical address of the bitstream buffer start and its size
» Codec standard—Video codec standard such as H.263, MPEG-4, H.264 or MJPEG
* Picture size—Picture width and height

» Target framerate and bitrate with Video Buffer Verifier (VBV) model parameters, initialDelay and
vbvBufferSize—V BV mode parameters are optional even when rate control is enabled

» Gop size—Frequency of periodic intra (or IDR) pictures in the encoded stream output

* Slice enable/disable, slice size mode and dlice size—Slice mode enable or disable as well as the
dice size and size mode (number of bits or number of Mbytesin each slice)

» Output report such as sliceReport, mbReport and gpReport, and so on. gpReport option is only
supported in H.263/M PEG-4 encoders—Informative output data such as slice boundary, MB
boundary in encoded bitstream

» Miscellaneous options such as enableAutoSkip and intraRefresh—Enabl e auto-skipping of
pictures when the output bit count is large enough as well as enable intra-refresh for error
robustness and the number of intra MB in a non-intra picture

* Ring buffer mode enable, allows streaming mode setting for each encoder instance
independently—A pplication decides whether aring-buffer based streaming schemeis used or not.
When this option is disabled, a frame-based streaming scheme is used with a line-buffer scheme

» Dynamic buffer allocation enable—A pplication allocates the picture stream buffer dynamically by
enabling dynamic buffer alocation only if ring-buffer mode is disabled. If dynamic buffer
allocation is disabled, the address and size of the bitstream buffer is used in picture encoding. If
dynamic buffer allocation is enabled, the address and the size of picture stream buffer is
dynamically given by the application while issuing the picture encoding operation.

* Intraquantization step—Intra Qstep value is configurable by specifying this value greater than O.
Even if rate control is enabled, the VPU encoder uses this fixed quantization step for all I-frames.
This intra quantization step is re-configurable after creating an instance dynamically.

* Video standard specific parameters—Specify standard-specific parameters for each video codec
standard such as error resilience tools in MPEG-4, Annexes in H.263, deblocking and FMO
parameters in H.264, source chroma format and thumbnail parameters and table coefficientsin
MJPEG and so on.

Using these options, the application receives awell optimized output for the requirements of the target
application. Some output information options such as siceReport, mbReport, gpReport, and so on, help
application developers satisfy the constraints for target applications.

For example, for afixed packet size, an application might need to insert one dice to a certain amount of
bits. If the slice size is given by the number of bits, it does not ensure that the output slice sizeis smaller
than the given size because of the variable length characteristics of the encoding process. Therefore, the
application dividesthe diceinto two packetswhich causes an inefficiency in the packetization. To achieve
an easy packetization, the application sets the slice size to (packet_size — N) with a certain margin of N,
which allows the output slice size to be less than the packet size. Then the application easily adds aslice
into a packet by referring to the slice boundary information provided by the VPU as encoder outpui.

i.MX51 VPU Application Programming Interface Windows Embedded CE 6.0 Reference Manual

Freescale Semiconductor 75

VPU Control

MJPEG can be encoded with various YUV format such as 4:4:4 by setting source format variable. 4:0:0,
4:2:0, 4:2:2 horizontal/vertical and 4:4:4 formats are supported in the i.MX51 MJPEG encoder. The
i.MX51 VPU also supports encoding using a user defined Huffman Table and Q matrix. To encode using
auser defined Huffman Table and Q matrix, the host must save the coefficientsin apre-defined format and
set the pointer to the area.

After creating an encoder instance with these parameters, the application cannot change these parameters.
If the application wants to change any of these basic parameters, it should close thisinstance and re-create
another encoder instance with new initial parameters. However, the application may need to change some
of these initial parameters depending on the target application environment. Using the dynamic
configuration command, the VPU API enablesthe application to configure part of these initial parameters
dynamically. For details, refer to Section 3.3.3.9, “vpu_EncGiveCommand().”

The API function, vpu_EncOpen(), does not require any operations on the VPU side but declares all of
the internal parameters used in later stages as well as the bitstream buffer information.

4.2.2 Configuring VPU for Encoder Instance

4.2.2.1 Sequence Initialization

After registering all of the required information for the new encoder instance, the host application
configures the VPU to support the new encoder instance. This procedure is completed by setting the
encoder related information in the VPU host interface registers and giving acommand, ENC_SEQ _INIT,
to the VPU for initiating the internal configuration operation in the VPU.

This processis mainly completed by an API function, vpu_EncGetl nitiall nfo(), and this function return
acrucia output parameter for encoder operations, the minimum number of frame buffers. Normally, this
process does not require much time, and it should be done only once at the beginning of each encoder
instance. Therefore, it is not recommended to use an interrupt signal for this function, but interrupt
signaling is allowed after completion of this operation by enabling the corresponding bit on interrupt
enable register.

42.2.2 Registering Frame Buffers

The configuration process is completed by registering the frame buffers to the VPU for picture encoding
operations. Inthisfinal stage of configuration, the parameter returned from vpu_EncGetl nitiall nfo(), the
minimum number of frame buffers, has an important meaning. This parameter means that the application
should reserve at least the same number of frame buffers to the VPU for proper encoding operation. For
MJPEG, the frame buffer is not necessary, because MJPEG does not need motion compensation.
Therefore, only the frame buffer stride istransferred to the VPU in this stage. The stride value is used as
the stride of the source image frame buffer.

4.2.2.3 Generating High-Level Header Syntaxes

Automatic header syntax generation (such as VOL in MPEG-4, SPS/PPSin AVC) is not supported.
When the encoder instance has been opened by calling vpu_EncGetl nitiall nfo(), the application
generatesthe high-level header syntaxes such asVOS/VO/VOL headersin MPEG-4 and SPS/PPSinAVC

i.MX51 VPU Application Programming Interface Windows Embedded CE 6.0 Reference Manual

76 Freescale Semiconductor

VPU Control

from the VPU using vpu_EncGiveCommand(). These high-level syntaxes can also be used directly for
negotiation in the transport protocol layer of the application.

There are two possible methods for generating these header syntaxes: by PARA_BUF or by the stream
buffer. The recommended way for generating the header syntaxesisto usethe ENC_PUT_AVC/MP4
_HEADER command by the stream buffer. If the application uses this set of commands, the resulting
header syntaxes are stored into the bitstream buffer according to the given endian setting.

If DecBufReset is enabled, the output header syntaxes are written to the bitstream buffer starting from the
base address of the bitstream buffer. If the application does not read out each header syntax one-by-one,
they are overwritten by the following header syntaxes. If the application wants to read out a set of header
syntaxes (such as VOS/VO/VOL or SPS/PPS), then the application should disable DecBufReset and
enable the DecBufFlush bit. After completing the generation of the last header syntax, the application can
read out a cascaded set of header syntaxes together.

The other method for generating header syntaxes, by PARA_BUF, is used when the application wants to
generate header syntaxes in the middle of encoding. It can be accomplished using
ENC_GET_XXX_HEADER for MPEG-4, and ENC_GET_XXX_RBSPfor AVC. Regardless of the
streaming mode, this command generates header syntaxes successfully, but the endian setting is always
big endian. So for little endian systems, an endian conversion should be performed.

4.2.3 Running Picture Encoder on VPU

4.2.3.1 YUV Input Loading

Before running a picture encoder operation, the host application should provide a4:2:0 or 4:2:2 vertical
formatted input YUV image with a pre-defined size for H.263, MPEG-4 and H.264. The host should
provide4:2:0, 4:2:2 vertical/horizontal, 4:4:4 or 4.0:0 formatted input YUV for MJPEG. If theinput image
is coming from an external video input device, such as a CMOS sensor, the VPU idles while waiting for
completion of the receiving input picture. To avoid thisidling, use adual buffering scheme for the input
image so that the encoder does not spend any cycles idling before starting operation.

4.2.3.2 Initiating Picture Encoding

When activating picture encoding operations, the application provides the following information to the
VPU:

» Source frame address—Base address of each component of input YUV picture

» Quantization step—for the current picture which isignored when rate control is enabled

» Forced frame skip and forced |-picture options—Forced frame skip is skipping the current frame
encoding unconditionally and force I-pictureis encoding current frame as I-frame unconditionally

» Source format—The VPU supports 4:2:2 vertical format source image. The sourceimageis
converted to 4:2:0 format automatically

After providing thisinformation to the VVPU, the host processor initiates a picture encoding operation by
sending aENC_PIC_RUN command to the VPU.

i.MX51 VPU Application Programming Interface Windows Embedded CE 6.0 Reference Manual

Freescale Semiconductor 77

VPU Control

These processes can be performed by calling asingle API function, vpu_EncStartOneFrame() with the
EncParam structure. This API function initiates a picture encoding operation. Return from this APl does
not mean that picture encoding is completed, only that the encoding operation began successfully.

The quantization step size given to the VPU with ENC_PIC_RUN is only meaningful when the rate
control option isdisabled. Thisadditional featureisprovided to support application-specific VBR encoder
operations.

The forced frame skip option is used when encoding a new picture is not allowed temporarily. Automatic
frame skipping in the VPU rate control is used for limiting the output amount of the bitstream under the
given target bit-rate. Also, the forced frame skip can be used by the application when encoding a picture
is problematic under certain external situations, for example, if the channel condition is temporarily
unacceptable and transmitting the encoded stream isimpossible. Then the application can suspend the
encoder operation for awhile using this forced frame skip option.

Theforced I-frame option is used when the remote receiver side reports an error during decoder operation.
Even though a certain error concealment or error robustness scheme might be implemented on the decoder
side, the best way to recover from a decoder error isto send an |-frame. Using this forced I-frame option,
the application can achieve error-recovery of the remote receiver side very effectively.

4.2.3.3 Completion of Picture Encoding

Picture encoder operation takes a certain amount of time and the application can be completing other tasks
while waiting for the completion of picture encoding operation, such as packetization of the encoded
stream for transmission. The application can use two different type of schemes for detecting completion
of the picture encoding operation: polling a status register or interrupt signaling. When the application is
using apolling scheme, the application checks the BusyFlag register of the BIT processor. Calling
vpu_lsBusy() givesthe same result.

Interrupt signaling can be the most efficient way to check the completion of a given command. An
interrupt signal for the ENC_PIC_RUN command is mapped on bit 3 of the interrupt enable register.
Therefore, the application can use this dedicated interrupt signal from the VPU to determine the
completion of the picture encoder operation.

42.3.4 Encoder Stream Handling

When the encoder stream buffer islarge enough to store any size of picture stream, the encoder does not
need to retrieve any bitstream data during the picture encoder operation. After the encoder operation is
complete, the host application reads the encoded bitstream according to the requirements of packetization.

When the encoder stream buffer is not large enough to store a complete picture stream, the encoder
buffer-full occurs and until this buffer-full situation is resolved, the encoder task running on the VPU is
stalled. Therefore, while the picture is encoding, the application should continue reading out the encoded
bitstream from stream buffer to avoid this stalling.

When using aring-buffer scheme with alimited size of encoder stream buffer, stream reading during
encoder operation isrecommended. Using two dedicated functions, vpu_EncGetBitStreamBuffer () and
vpu_EncUpdateBitStreamBuffer (), the application can easily handle the read pointer while accessing
the encoder bitstream buffer. If the ring-buffer option is disabled with a stream buffer large enough to store

i.MX51 VPU Application Programming Interface Windows Embedded CE 6.0 Reference Manual

78 Freescale Semiconductor

VPU Control

one encoded picture data, the host can wait to read the encoded bitstream at the end of each picture
encoding. Inthiscase, the application can safely complete other taskswhile the picture encoding isrunning
on the VPU. The vpu_EncGetBitStreamBuffer () and vpu_EncUpdateBitStreamBuffer () functions
have no meaning when the application uses the frame-based streaming option.

4.2.3.5 Acquiring Encoder Results

When picture encoding is complete, the host application retrieves the encoded output such as the encoded
picture type, number of dices, and so on. According to theinput parameter settings of the picture encoding,
the dice boundary and MB boundary information can al so be acquired from the VPU. For H.263/MPEG-4
decoding, the MB Qstep information can be acquired from the VPU. This encoder output information is
generally placed on the parameter buffer with pre-defined formats (for the predefined formats of the output
information, refer to the i.MX51 Applications Processor Reference Manual). Therefore, the application
can read out thisinformation directly from the parameter buffer using the base address of each data
structure.

The VPU API provides a function for retrieving the output results of the picture encoder,
VPU_EncGetOutputlnfo(), which has a output data structure that includes the following information:

» Start address of encoded picture and its size

* Number of slicesin the encoded picture

» Slice boundary information in the encoded bitstream

* MB boundary information in the encoded bitstream

» Application-specific information for packetization such as MB Qstep information

Some packetization schemes, such as Real-time Transfer Protocol (RTP), require some internal
information of encoded picture depending on the codec standard.

Thesliceinformation isuseful for packet-based applicationswhich have limitations of the slice start in the
video packet. The dice information is also useful for implementing dlice re-ordering on the application
side such as Arbitrary Slice Ordering (ASO) in the H.264 standard.

The VPU API includes a constraint on using the encoder initiation function and the encoder result
acquisition. When using the VPU API, the application should always use these two functions as a pair.
This means that without calling the result acquisition function, vpu_EncGetOutputlnfo(), the next
picture encoding operation is not initiated by calling vpu_EncStar tOneFrame(). Most VPU commands
are not allowed unless the application calls VPU_EncGetOutputl nfo() after completion of the picture
encoding operation. This constraint is used to protect the encoded results from being overwritten from
another thread by mistake in a multi-instance environment. Therefore, the application should regard the
vpu_EncGetOutputlnfo() function asareleasing command of the VPU from the current picture encoding
operation.

4.2.4 Terminating an Encoder Instance

When the application finishes with the encoder operation and terminates an encoder instance, the
application releases the handle of thisinstanceto inform the VPU that thisinstance isterminated by giving
the SEQ_END command to the VPU. This can be accomplished by calling vpu_EncClose() function.

i.MX51 VPU Application Programming Interface Windows Embedded CE 6.0 Reference Manual

Freescale Semiconductor 79

VPU Control

4.2.5 Dynamic Configuration Commands

Whilerunning sequential picture encoding operations, the application may need to give special commands
to the VPU such asrotating the input pictures before encoding, inserting ahigh layer header syntaxes, and
so on. The VPU API provides a set of commands to support the following special requests from the host
application:

* Rotate and mirror source frame before encoding

» Extract high layer header syntaxes such as VOS/VO/VOL in MPEG-4 and SPS/PPS in H.264 for
external use

* Insert high layer header syntaxes such as VOS/VO/VOL in MPEG-4 and SPS/PPSin H.264

» Change encoder parameters such as bitrate, frame rate, GOP number, slice mode and so on
dynamically between picture encoding operations

4.3 Decoder Control

4.3.1 Creating a Decoder Instance

After initialization of the VPU, the next step to run adecoder operation isto create a decoder instance and
acquire a handle for specifying that decoder instance. This is accomplished using asingle API function,
vpu_DecOpen().

When creating a new decoder instance, the application specifies the internal features of this decoder
instance through the DecOpenParam structure. This structureincludes the following information about the
new decoder instance:

» Bitstream buffer address and size—Physical address of bitstream buffer start address and its size
* Codec standard—Video codec standard such as H.263, MPEG-4, H.264 or VC-1
* MPEG-4 deblocking filter enable—Enable or disable MPEG-4 deblocking filter option

* ReorderEnable—Enableor disable H.264 display reordering option, thisoptionisignored for other
decoder standards. It should usually be set to 1.

» File-play mode enable and picture size information—Enable or disable frame-based streaming
option for local file-play mode. The application allocates the picture stream buffer dynamically by
enabling dynamic buffer alocation. If dynamic buffer allocation is disabled, the address and size
of the bitstream buffer isused in picture decoding. If dynamic buffer allocation is enabled, the
address and the size of the picture stream buffer is given dynamically by the application while
enabling the picture decoding operation. Using the start byte-offset, the host application eliminates
the limitation for 8-byte alignment of the bitstream buffer.

* Picture size information—~Picture size information is used only if file-play modeis enabled. This
information can be read from the file-format and is generally included in stream header itself.
Therefore, it isnot necessary to give thisinformation for file-play mode. But thisfield isavailable
for general usage of file-play mode. The given picture size information is ignored when the
bitstream includes the decoded picture size.

» SPS/PPSRBSP save buffer address and size—Physical address and size of buffer for SPS and PPS

i.MX51 VPU Application Programming Interface Windows Embedded CE 6.0 Reference Manual

80 Freescale Semiconductor

VPU Control

» Enablethumbnail decoding of M JPEG—Enable thumbnail decoding. If the host enablesthumbnail
decoding, the decoded output is s thumbnail

For decoding, most information isacquired from the input stream, so there are few required parametersfor
creating adecoder instance. The VPU API function, VPU_DecOpen(), does not require any operationson
theVPU side but declaresall theinternal parametersto be used in later stage aswell asthe bitstream buffer
information.

4.3.1.1 AVC Display Reordering

The AV C-specific display reordering option should be used carefully, because it drastically varies the
behavior of the AV C decoder. In principle, this option should always be enabled because the flag for this
option isembedded in the header syntax. According to the optionsin the header, the required frame buffer
Size is automatically determined by the VPU.

When creating a decoder instance for H.264, the application should decide if display reordering is used.
In principle, this bit field should be set to 1, because the display reordering option is enabled or disabled
automatically according to the values of the corresponding header fields. But in practice, there are too
many streams which do not actually use display reordering but display reordering option is enabled.

Display reordering generally requires many more decoder buffers, amuch longer delay, and some complex
constraintsin decoder operations. When display reordering is not used even though the display reordering
optionis enabled on the baseline profile stream, sometimesit would be helpful for application to force the
VPU decoder to ignore this option. Thisflag is provided for this case.

When this option is disabled, the minimum number of frame buffersis reference frame number + 2.
Whenever one frame decoding is complete, adisplay (or decoded) output is provided from the VPU, so
the decoder operation is the same as a normal decoder operation.

But when this option is enabled, the minimum number of frame buffersis

MAX (reference frame number, 16) + 2 for the worst case. After decoding one frame, the VPU cannot
provide adisplay output because display order can be different from the decoding order. In theworst case,
thefirst display output is provided from the VPU after decoding 17 frames. Because of this characteristic
of display reordering, the VPU AV C decoder always decodes display delay + 1 frames during thefirst call
of the picture decoding when display reordering is enabled in the stream.

In practice, there are many streams which do not use display reordering, but the flag in the header is
enabled. In this case, the host application must allocate unnecessarily more frame buffers and apply large
delays. Considering this practical cases, this option for forced-disable of display reordering isprovided in
the VPU API.

4.3.2 Configuring VPU for Decoder Instance
4.3.2.1 Feeding Bitstream into Stream Buffer
For the decoder, sequence initialization performs parsing of high level header syntaxes such as

VOS/VO/VOL in MPEG-4 and SPS/PPS in H.264 for reading out decoder configurations. To start
sequenceinitialization, the application fillsthe decoder stream bufferswith enough bitstream data. In some

i.MX51 VPU Application Programming Interface Windows Embedded CE 6.0 Reference Manual

Freescale Semiconductor 81

VPU Control

applications, the host applications can not guarantee that those kinds of header syntaxes are placed at the
beginning of the bitstream. In this case, until the VPU successfully receivesall of the required information
from the input stream, the application should keep feeding the input data stream to the decoder bitstream
buffer.

In file-play mode for MPEG-4 and H.264, vpu_DecGetl nitiall nfo() operates only with sequence level
header syntaxes (VOS/VO/VOL headers or SPS/PPS), which might be much smaller than the 512 byte
minimum transfer unit. Because of the start-codes in these codec standards, reinsertion of the header data
does not cause any problems while decoding the first picture. So the application can also use dynamic
buffer allocation with the same buffer start address for the first picture decoding.

In file-play mode of VC-1, SEQ_META, FRAME_META and chunk data should be fed into the stream
buffer beforecalling vpu_DecGetlnitiall nfo(). Inserting only the SEQ_META information isnot allowed
in this case because the VC-1 M P standard does not use start-codes. For dynamic allocation, the VPU
decoder does not use the new buffer start-address, but instead uses the previous buffer pointer updated by
vpu_DecGetl nitiallnfo() because of this limitation. For the second picture decoding, FRAME_META
and a chunk of data placed at a different buffer can be used in dynamic allocation.

To feed the input bitstream, the host application should know the available space in the bitstream buffer.
This is determined using the read pointer, write pointer and stream buffer size because the stream buffer
operates as a ring-buffer. Getting the available space in the stream buffer, the application can directly
download the decoder input stream to the bitstream buffer. After completing the stream download, the
application informs the amount of downloaded stream data by updating the stream write pointer.

The VPU API provides an API function to get the stream read pointer, write pointer and available space,
vpu_DecGetBitstreamBuffer (). Updating the write pointer is accomplished using the API function,
vpu_DecUpdateBitstreamBuffer ().

4.3.2.2 Sequence Initialization

After creating anew instance and feeding the input bitstream to the stream buffer, the application givesthe
DEC_SEQ _INIT command to the VPU to get the decoder configuration information from the bitstream.
After parsing the header syntaxes, the decoder returns the following crucial information about the decoder
configuration:

* Picture size—Picture width and height

» Framerate—Decoder frame rate

» Picture cropping rectangle information—Information about H.264 decoder picture cropping
rectangle which isthe offset of top-left point and bottom-right point from the origin of frame buffer

e Minimum number of frame buffers

* MPEG-4 option information—Enable or disable MPEG-4 error resilience options such as data
partitioned or Reversible VLC as well as short video header mode

» Frame buffer delay for display reordering—The number of frame delays for supporting display
reordering in H.264 decoder

» Annex-J(Deblocking) option indication—Thisflag indicates whether the deblocking option of the
H.263 decoder is enabled or disabled. When the external post-deblocking filter isused for H.263,

i.MX51 VPU Application Programming Interface Windows Embedded CE 6.0 Reference Manual

82 Freescale Semiconductor

VPU Control

thisflag is used to avoid repetition of the H.263 in-loop deblocking filter and external
post-deblocking filter

* Number of returned next decoded index after decoding one frame—The number of returned
indexes which are used in next decoding after decoding one frame

» Estimated slice save buffer sizes—The size of the slice save buffer. The VPU reportstwo different
sizes: recommended and worst-case

* MJPEG thumbnail enable information—This flag indicates whether thumbnail image of MJPEG
exists or not. When thumbnail does not exist in the stream, the VPU returnsfailure if the host
application enables the thumbnail decoding option

* MJPEG image YUV format—Image YUV format. The host must allocate frame buffer by this
value

The picture size acquired from the bitstream might not be a multiple of 16x16. However, to perform the
decoder operation properly, frame buffer size should be a multiple of 16x16. Therefore, the returned size
ismodified to be amultiple of 16x16 after a ceiling operation. Using the picture size and the minimum
number of frame buffers, the application reserves frame buffers and provides them to the VPU before
starting the picture decoding operation.

Theframebuffer delay isan H.264-specific parameter for supporting display reordering. If the application
supports display reordering and reordering requires five additional frame buffers, for example, then the
first display output comes out from decoder after decoding the 6t frame. Theoretically, the maximum
delay for display reordering is a 16-frames.

The VPU API provides a function to handle the DEC_SEQ _INIT operations, vpu_DecGetlnitiallnfo().
Completion of this function is signaled by adedicated interrupt or by polling the BusyFlag.

Animportant issue in SEQ_INIT operation is error-handling because any errorsin the high layer header
syntaxes cause serious problems in decoding operations. Generally, many marker bits are added to the
header syntaxesto assist error detection. When header syntaxes included in the stream have crucial errors,
or when header syntaxes are not received for along time, the VPU can be stuck on this task and no other
instances can run on the VPU. Therefore, the VPU API provides a special function which isused in this
situation, called vpu_SetSeql nitEsc(). When this function is called and the stream buffer is empty, the
VPU automatically terminates the SEQ_INIT operation. Then the host application decides whether to
close thisinstance or retry SEQ_INIT after running a different codec instance. After escaping from this
situation, it is highly recommend to reset the internal ESCAPE flag by calling the vpu_SetSeql nitEsc()
function again. Thisflag affects all the decoder instances performing a DEC_SEQ _INIT operation.

4.3.2.3 Registering Frame Buffers

This configuring process is completed by registering the frame buffers to the VPU for picture decoding
operations. In thisfinal stage of configuration, the parameter returned from vpu_DecGetl nitiall nfo(), the
minimum number of frame buffer, has an important meaning. This parameter means that the application
should reserve at least the same number of frame buffers to the VPU for proper decoding operation.

The size of the frame buffersis cal culated from the picture width and height. When both the picture width
and height are amultiple of 16, the picture size is the size as the frame buffers. If both the picture width

i.MX51 VPU Application Programming Interface Windows Embedded CE 6.0 Reference Manual

Freescale Semiconductor 83

VPU Control

and height are not amultiple of 16, the application should apply aceiling operation to the picture width or
picture height to get the smallest multiple of 16 larger than picture width or picture height.

In addition to registering the frame buffers to the VPU, the slice save buffer is a so registered in this step.
The recommended buffer sizeis given by calling vpu_DecGetl nitiall nfo().

For MJPEG decoder, registering the frame buffers is not necessary. The MJPEG decoder uses rotation
decoding. If vpu_DecRegister FrameBuffer () is called, no operations are performed.

4.3.3 Running Picture Decoder On VPU

4.3.3.1 Initiating Picture Decoding

When activating a picture decoding operation, the application provides the following information to the
VPU:

* Pre-scan Enable—Enabl e or disable pre-scan option for checking whether full picture stream exists
in the stream buffer

* Pre-scan Mode—Specify decoder operation mode after pre-scan
* |-Frame Search Enable—Enable or disable I-(IDR for H.264) frame search option
* Frame Skip Mode—Enable or disable skipping bitstream for the next frame decoding

» picStreamBufferAddr and picStartByteOffset—Start address of the picture stream buffer to be
decoded in file-play mode and the byte offset of the actual start bytes of the picture data

» chunkSize—Byte size of the picture stream to be decoded which is read from the file-container
information

After providing these parametersto the VPU, the application starts the picture decoding operation by
sending aDEC_PIC_RUN command.

The pre-scan option is aspecia option for scanning the bitstream buffer to check if afull picture stream
existsin the stream buffer. This option alows the application to determine whether the bitstream empty
and decoder stalls or not before running the actual decoder operation. When this option is enabled and
thereis not afull picture stream in the decoder buffer, the DEC_PIC_RUN command does not initiate the
picture decoding operation and returns immediately. Then the application decides whether to retry the
picture decoding after feeding more bitstream data or to handle other tasksfor awhile.

The pre-scan modeis also given as an option for general usage of the pre-scan operation. When this flag
isset to 0 and thereis at |east one full picture stream in the stream buffer, the decoder operation is
automatically initiated. On the contrary, when thisflag is set to 1, the DEC_PIC_RUN command returns
immediately with areturn code representing whether afull picture stream exists or not. In this case, no
picture decoding isinitiated. To run picture decoding in this case, the application resets this flag to 0 and
re-sends the DEC_PIC_RUN command.

When display reordering in H.264 is enabled, the first decoded output is only available after decoding
many frames. To avoid this, a constraint is added to the H.264 decoder that requires the decoder to fill al
the reordering display buffers at the first time of picture decoding. That means, if the frame buffer delay
received from the stream header isfive, the H.264 decoder should decode six frames at once at the first
DEC_PIC_RUN operation. Then, the picture decoding always provides a picture output to be displayed.

i.MX51 VPU Application Programming Interface Windows Embedded CE 6.0 Reference Manual

84 Freescale Semiconductor

VPU Control

In this scenario, the pre-scan might cause problems, because it is designed for the case of one picture
decoding. So when display reordering is enabled, it is recommend that the first DEC_PIC_RUN be
performed with pre-scan disabled.

To support display reordering in H.264 mode, aspecial parameter isused to flush the stored decoder output
from the display reorder buffer without picture decoding. This option is designed for flushing out the
decoded picture not yet displayed at the end of the decoding video sequence. When the display reordering
option is enabled and the reordering frame buffer stores five decoded pictures, the first display output is
available after the 6 frame decodi ng. Therefore, at the end of the stream decoding, there are five decoded
pictures which are not displayed yet even though there is no more available bitstream data to decode. In
this case, the application may ignore these five non-displayed pictures or display them by setting the
dispReorderBuf parameter to 1 and sending the DEC_PIC_RUN command until the VPU returns the
decoded picture index of —1.

In file-play mode, the decoder refers the start address of the picture stream from picStreamBufferAddr
givenwiththe DEC_PIC_RUN command or BitStreamBuffer given withthe DEC_SEQ_INIT command
depending on the dynamicBuffAllocEnable setting. When dynamicBuffAllocEnable is set, the stream
buffer information, BitStreamBuffer, specified during DEC_SEQ INIT isignored. The size of the picture
stream always refers chuckSize given with the DEC_PIC_RUN command.

It is necessary for the application to read this chunk size from the file format header for every frame
processing. The application might use dual or multiple picture stream buffers for speed optimization or
might also use dynamic allocation for better memory management with the dynamicBuffAllocEnable
option. In file-play mode, the application can achieve higher efficiency of stream buffering and memory
management with dynamic buffer allocation.

NOTE

There might be empty chunks whose chunk size equals zero. These empty
chunks should be removed in the file format parser because they might
cause improper operations in the VPU.

The VPU API provides an API for handling all these complex operations, vpu_DecStar tOneFrame(),
which initiates the picture decoding operation and returns as soon as picture decoding has started on the
VPU. Completion of picture decoding is checked using a different method.

4.3.3.2 Frame Skipping Option

When a decoder error is detected, the application might want to hide the corrupted decoder output. Even
though error concealment is applied to that decoder output, some applications would like to the freeze
display instead of showing the corrupted picture. This output-hiding operation should continue until the
decoder meetsthe next | (or IDR) frame. Considering AV synchronization, skipping one frame can be a
good way to hide a sequence of pictures without affecting the audio decoding operation.

The frame skipping option is supported for the picture decoding command. Aswell as skip enable or
disable, the skipping option of detecting an | (or IDR in H.264)-frame can be chosen by the application.
So when an error is detected during picture decoding and the application would like to hide the
error-defected pictures, the application can achieve this using the picture skipping option with I-frame
detection enabled. By setting skipframeMode of DecParam to 1, the application easily performs skipping

i.MX51 VPU Application Programming Interface Windows Embedded CE 6.0 Reference Manual

Freescale Semiconductor 85

VPU Control

of non-intra (or non-1DR) frames. While the application enables one frame skipping by setting
skipframeNum of DecParam to 1, pre-scan is automatically enabled and therefore, the frame skip resultis
translated to a pre-scan result. While doing one frame skip, the application can detect the results of the
frame skipping by checking prescanresult of DecOutputlinfo.

This frame skip feature can be used by the application when the system performance is temporarily
degraded and video decoding is significantly delayed. In this case, it is recommended for the application
to usethe I-(IDR in H.264 case) frame detect option. Using this option, the application can only decode
I-(or IDR) frame properly without displaying error-defected frame output.

Multi-frame skipping is aso supported by setting skipframeNum of DecParam greater than 1. But
multi-frame skipping is not recommended in normal usage because it may cause problems with AV
synchronization.

Infile-play mode, frame skipping can be easily achieved in the application side by referring thefile format
header syntax. Therefore, it is not required to support this feature in the frame-based streaming case. But
in the random access case, the I-frame search option can be useful when the keyframe information in the
file container isincorrect.

4.3.3.3 I-Frame Search for Random Access and Trick Mode

When amedia player application is designed, trick modes and random access may be desirable features.
To achieve these operations the application, decoder should support afeature for searching the I-framein
the middle of the decoder bitstream.

The |-frame search option is accomplished by setting the iframeSearchEnable of DecParam. The number
of I-frames skipped is also set by setting skipframeNum of DecParam. (The same skipframeNum of
DecParam is used for specifying the skipped frame number in frame skipping and |-search; however, the
meaning of thisvalueis somewhat different.) If skipframeNum= N, all theintermediate frames before the
(N+1)th next |-frame are skipped. This multiple I-frame skipping might be used for high speed playback
such asfast forward. By increasing the number N, the application can increase the speed of the fast
forward. Thiskind of fast forward operation depends on thefrequency of thel-(IDR) framesin the decoder
input bitstream. Therefore, thistype of trick mode can be applicable to applications specifying the
maximum interval between I-frames.

Random access is generally supported with aform of side-bar in agraphic user interface of a player. For
supporting this random access, an I-(or IDR in H.264) frame search operation is needed because decoding
intermediate inter-frames causes visual artifacts on displayed pictures. Aswell as|-frame search
functionality, random access also requires a buffer-reset scheme that does not cause unexpected artifacts
in the decoded output. The steps of random access for the video decoder are as follows:

1. Freezethe display and reset the decoder bit-stream buffer

Read the bitstream from the new file read pointer and transfer it into the decoder

Enable I-Search and run the picture decoding operation

If the buffer empty interrupt is signaled, feed more bitstream and wait for decoding completion
If decoding completion is detected, read the decoder results and resume display

Resetting the bitstream buffer in Step 1 can be accomplished by calling vpu_DecBitBuffer Flush().
Starting the decoder operation with I-frame search can also be accomplished by calling

o s~ DN

i.MX51 VPU Application Programming Interface Windows Embedded CE 6.0 Reference Manual

86 Freescale Semiconductor

VPU Control

vpu_DecSartOneFrame() with iframeSearchEnable of DecParam set to 1. The number of skipped
frames specified by skipframeNum of DecParam isgiven by 1 in random access operation. When an
interrupt of decoder completion or non-busy state of the BIT processor isdetected, the I-frameis searched
and decoded.

When the application uses the I-frame search option, the decoder should skip many bitsin the decoder
stream buffer. Therefore, the pre-scan option can be meaningless when used simultaneously with the
I-search. Inthe VPU firmware; therefore, the pre-scan option isautomatically disabled and settings for the
pre-scan option areignored. The application should handle stream buffer filling until the end of the
|-search operation. Larger stream units are recommended in this case; otherwise, too many stream buffer
empty interrupts might occur from the VPU side.

4.3.3.4 Decoder Stream Handling

When the decoder stream buffer includesafull picture stream, the host application does not need to worry
about streaming in the middle of the decoder operation. Using the pre-scan option, the application can
determine the status of the bitstream buffer in advance. If there is no full picture in the stream buffer, the
application might feed more stream data to the stream buffer and start the picture decoding operation.

The VPU API provides an API function to get the stream read pointer, write pointer and available space
in one function call, vpu_DecGetBitstreamBuffer (). The application can get the information about the
available space in the stream buffer using this API and transfer an amount of stream datato the stream
buffer which islessthan or equal to the available size. When transferring the stream data, the application
should take care of the end of the stream buffer to avoid unexpected data corruption. When transferring
stream data to the stream buffer and the write pointer reaches the end of the stream buffer, the application
should wrap the write pointer around to the beginning of the stream buffer and then continue downloading
to avoid data corruption.

Updating the write pointer is accomplished using, vpu_DecUpdateBitstreamBuffer (). The write pointer
wrap-around and updating of the write pointer is done by this API function by providing the downloaded
stream size. Before updating the write pointer, the host application must finish transferring the stream data
to the stream buffer. If not, a mismatch in access time may cause problems in the decoder operation.

In file-play mode, the two APIsfor streaming are meaningless because the VPU aways assumes the
bitstream buffer is flushed at the end of every picture decoding operation. The application only needsto
feed the stream buffer with one frame stream and then call vpu_DecSartOneFrame().

4.3.3.5 Completion of Picture Decoding

Picture decoder operations take a certain amount of time, and the application can complete other tasks
while waiting for the completion of the picture decoding operation, such as display processing of the
previously decoded output. The application can use two different schemesfor detecting the compl etion of
the picture decoding operation: polling a status register or waiting for an interrupt signal. When the
application uses the polling scheme, the application checks the BusyFlag Register of the BIT processor.
Calling vpu_lsBusy() gives the same result.

Interrupt signaling can be the most efficient way to check the completion of a given command. An
interrupt signal for the DEC_PIC_RUN command is mapped to bit 3 of the interrupt enable register. So

i.MX51 VPU Application Programming Interface Windows Embedded CE 6.0 Reference Manual

Freescale Semiconductor 87

VPU Control

the application can easily determine the completion of the picture decoder operation from this dedicated
interrupt signal from the VPU.

4.3.3.6 Acquiring Decoder Results

When picture decoding is complete, the host application retrieves the decoded output, such as the display
frame index, decoded frame index, decoded frame picture type, number of error concealed MBs, Pre-scan
result, and so on. The VPU API providesafunction for retrieving the output results of the picture decoder,
vpu_DecGetOutputinfo().

TheVPU API includes a constraint on using the decoder initiation function and decoder result acquisition.
When using the VPU API, the application should always use these two functions as apair. This means that
without calling the result acquisition function, vpu_DecGetOutputl nfo(), the next picture decoding
operation is not initiated by calling vpu_DecSartOneFrame(). This constraint is used to protect the
decoded results from being overwritten from other thread by mistake in multi-instance environment.
Therefore, the application should regard vpu_DecGetOutputlnfo() function as a releasing command of
the VPU from the current picture decoding operation.

Reading Display Output

The display frame index, indexFrameDisplay, is used to represent the frame buffer number where the
display output picture is stored. It always equals the frame buffer index to be displayed and it can be
different from the decoded picture index when display ordering control is enabled, such as display
reordering of H.264, B-framein VC-1, and so on.

At the beginning of sequence decoding, even after decoding several frames, thereisno display output from
decoder because of the order of display. For H.264 reordering, in worst case, the first display output can

come out after the 17" frame decoding. Therefore, at times thereis no proper display buffer index. In this
case, theVPU decoder returns anegative frame buffer index for indexFrameDisplay of —3 or —2 depending
on the frame skip option. Only at the end of sequence decoding isthisvalue equal to—1 and the application
can terminate the current decoder instance without any lossin picture display. Table 7 shows the display
output status based on the indexFrameDisplay values.

Table 7. indexFrameDisplay Values

indexFrameDisplay

Value Display Output Status

Non-negative value |Output index value points to the frame buffer index of the display output

-1 Signals the end of sequence decoding, there is no more display output when the stream end
is signaled to the VPU

-2 There is temporarily no display output because of the frame-skip option

-3 There is temporarily no display output even without any action by the host application. Usually,

this value occurs when an IDR picture is received for H.264 display-reordering mode

Reading Decoded Output

The decoded frame index, indexFrameDecoded, is an optional output to the host application. Thisindex
is used to represent the frame buffer number where the decoded picture is stored. Usually, the host

i.MX51 VPU Application Programming Interface Windows Embedded CE 6.0 Reference Manual

88 Freescale Semiconductor

VPU Control

application does not need to worry about this index. The display index, indexFrameDisplay, is sufficient
to handle the output of the VPU decoder. Under this situation, this value is equal to —2 (OXFFFE) to
represent that thereisno decoded frame at thistime. This negative decoded index isal so used when picture
decoding is skipped because of a skip option or picture header error.

When there are not enough frame buffers to be written with decoded image data, thisvalueis equal to -1
(OXFFFF). In this situation, the application re-calls vpu_DecSartOneFrame() after clearing the display
flag by caling vpu_DecClr DispFlag().

When display ordering control is enabled for H.264 display reordering, VC-1 B-frame, and so on, at the
end of sequence decoding, the host application needs to flush out the decoded frames for display. During
this flushing operation, no actual decoding operations are performed. Under this situation, thisvalue is
equal to—1 (OxFFFF) to represent that there is no decoded frame thistime. This negative decoded index is
also used when picture decoding is skipped because of skip option or picture header error.

Reading Pre-Scan Result

The pre-scan result flag represents whether afull picture stream isincluded in the bitstream buffer before
picture decoding. When thisflag isequal to 0, the decoding operation is not performed because thereisno
full picture stream in the stream buffer. If application enables pre-scan and sets pre-scan mode to 0
(decoding a picture when full picture stream exists), the application should check this output parameter
first to determine whether a decoding operation is performed or not.

When pre-scan result is 0 and the stream buffer isfull and the current stream buffer istoo small to storea
full picture stream. To avoid dead-lock, the host application should disable the pre-scan option and re-run
the picture decoding operation.

Display Cropping in H.264

The display cropping option in H.264 forces the host application to display part of the frame buffers. The
information about the cropping window is provided by SPS. In SPS, four offset values of cropping
rectangles are presented, and these four offset values are given by the picCropRect structure to the host
application. Using these four offset values, the host application can easily detect the position of the target
output window. When display cropping is off, the cropping window sizeisO.

Next Decoded Frame Index

The next decoded frameindex, indexNextFrameDecoded[3], isan optional output to the host application.
Thisindexes are used to represent the frame buffer index which is used in the next
VPU_DecSartOneFrame() call. The application might not stop calling VPU_DecStartOneFrame() to
protect display corruption, if some of these indexes are not displayed yet.

When display ordering control is enabled for H.264 display reordering, VC-1 B-frame, and so on, at the
end of sequence decoding, the host application needs to flush out the decoded frames for display. During
thisflushing operation, no actual decoding operations are performed. Under this situation, thisvalue might
be ignored.

i.MX51 VPU Application Programming Interface Windows Embedded CE 6.0 Reference Manual

Freescale Semiconductor 89

VPU Control

Reading Lack of Additional Work Buffer

The VPU reports the status of the PS (SPS/PPS) save buffer and slice save buffer after it decodes one
frame. If the VPU reports lack of PS save buffer, the VPU can not properly decode the remaining input
stream,; therefore, it isbest to close current instance in this situation. If the VPU reports lack of dice save
buffer, the VPU can choose to either close and reopen the current instance or continue picture decoding
regardless of display corruption until the next I-frame.

4.3.3.7 Management of Displaying Buffers Decoded

The VPU hasflagsto indicate if the frame buffer is displayed or not internally. The flag is set after the
VPU returnsthe display frame index automatically and the VPU never uses the buffer for which the
display flag isset. Before starting the decoding process, the VPU checksif thereisaframe buffer available
and returns immediately if there is no frame buffer to be written with decoded image with a current
decoded index of —1. The host application clears the flag after completion of displaying the frame buffers
by calling vpu_DecClrDispFlag().

4.3.3.8 Escape from Decoder Hang

Even when pre-scan is used, it is still possible for an application to experience decoder hanging because
of astream error or lack of available stream at the end of sequence decoding. In the middle of picture
decoding, decoder hanging is signaled to the application through the decoder buffer empty interrupt if this
interrupt is enabled, and the application can avoid decoder hanging by putting more bitstream data to
stream buffer.

In some extraordinary cases and at the end of sequence decoding, the application avoids decoder hanging
by means of garbage insertion or sending an end-of-stream command to the VPU decoder. thisis
accomplished by calling vpu_DecUpdateStreamBuffer () with size of 0. Assoon asthe VPU detects this
setting, the VPU terminates the current picture decoding with error concealment if applicable.

4.3.4 Terminating a Decoder Instance

4.3.4.1 Stream End and Last Picture in Stream Buffer

After the host application meets the end of stream and sends all of the stream dataiin the stream buffer, the
host application must determine when the last picture output is coming out. If there is no display delay,
thistask issimple. But if display delay exists (reordering of the decoded pictures for display), this task
might be difficult for the host application.

Inthe VPU API, aflag that indicates the end-of-stream is used. After sending the last byte of the stream
data to bitstream buffer, the host application sets this flag and calls the vpu_DecStartOneFrame()
function. After the last display output picture has come out, the decoded picture index is changed to —1.
When the host application receivesthisindex, host application detects the end of the sequence processing.

When the display delay exists (display reordering option in H.264, B-frames in other codecs), the host
application gets the buffered decoder output frame even after finishing actual decoding operation. In this
case, the host application callsthe VPU_DecStartOneFrame() as usual. Until the delayed display output
frames are completely flushed out, the VPU decoder provides the frame index of the newly displayed

i.MX51 VPU Application Programming Interface Windows Embedded CE 6.0 Reference Manual

90 Freescale Semiconductor

VPU Control

output to the host application. And if there isno more available output, the VPU decoder returns aframe
index of —1.

4.3.4.2 Closing Current Instance

When the application finishes the last picture decoding operation and terminates a decoder instance, the
application releases the handle of thisinstance and inform the VPU that this instance is terminated by
giving the SEQ_END command to the VPU. This can be accomplished by calling the vpu_DecClose()
function.

4.3.5 Dynamic Configuration Commands

While running sequential picture decoding operations, application may need to give aspecial command to
the VPU. The VPU API provides a set of commands to support the following specia requests from the
host application:

» Rotate and mirror output frame before decoding

* Apply SPS and PPS from the external out-of-band protocol

» Specify the frame buffer address for the MPEG-4 deblocking filtered output

44 Example Applications

An example application can be found under w NCE600\ SUPPORT_PDK1_6\ APP\ VPU after thei.MX51 BSPis
installed. Thisapplication gives an example of how to use the decoder and encoder API to control theVPU
hardware to implement an encoder and decoder. The readne. txt file under

W NCE600\ SUPPORT_PDK1_6\ APP\ VPU\ ENCTEST and W NCE600\ SUPPORT_PDK1_6\ APP\ VPU\ DECTEST contains
detailed information about how to build and run the example applications.

i.MX51 VPU Application Programming Interface Windows Embedded CE 6.0 Reference Manual

Freescale Semiconductor 91

How to Reach Us:

Home Page:
www.freescale.com

Web Support:
http://www.freescale.com/support

USA/Europe or Locations Not Listed:
Freescale Semiconductor, Inc.
Technical Information Center, EL516
2100 East Elliot Road

Tempe, Arizona 85284

1-800-521-6274 or

+1-480-768-2130
www.freescale.com/support

Europe, Middle East, and Africa:
Freescale Halbleiter Deutschland GmbH
Technical Information Center
Schatzbogen 7

81829 Muenchen, Germany

+44 1296 380 456 (English)

+46 8 52200080 (English)

+49 89 92103 559 (German)

+33 169 35 48 48 (French)
www.freescale.com/support

Japan:

Freescale Semiconductor Japan Ltd.
Headquarters

ARCO Tower 15F

1-8-1, Shimo-Meguro, Meguro-ku
Tokyo 153-0064

Japan

0120 191014 or

+81 35437 9125

support.japan @freescale.com

Asia/Pacific:

Freescale Semiconductor China Ltd.
Exchange Building 23F

No. 118 Jianguo Road

Chaoyang District

Beijing 100022

China

+86 10 5879 8000

support.asia @freescale.com

For Literature Requests Only:

Freescale Semiconductor
Literature Distribution Center

1-800 441-2447 or

+1-303-675-2140

Fax: +1-303-675-2150

LDCForFreescaleSemiconductor
@hibbertgroup.com

Document Number: 924-76395
Rev. 1.6
10/2009

Information in this document is provided solely to enable system and software
implementers to use Freescale Semiconductor products. There are no express or
implied copyright licenses granted hereunder to design or fabricate any integrated
circuits or integrated circuits based on the information in this document.

Freescale Semiconductor reserves the right to make changes without further notice to
any products herein. Freescale Semiconductor makes no warranty, representation or
guarantee regarding the suitability of its products for any particular purpose, nor does
Freescale Semiconductor assume any liability arising out of the application or use of
any product or circuit, and specifically disclaims any and all liability, including without
limitation consequential or incidental damages. “Typical” parameters which may be
provided in Freescale Semiconductor data sheets and/or specifications can and do
vary in different applications and actual performance may vary over time. All operating
parameters, including “Typicals” must be validated for each customer application by
customer’s technical experts. Freescale Semiconductor does not convey any license
under its patent rights nor the rights of others. Freescale Semiconductor products are
not designed, intended, or authorized for use as components in systems intended for
surgical implant into the body, or other applications intended to support or sustain life,
or for any other application in which the failure of the Freescale Semiconductor product
could create a situation where personal injury or death may occur. Should Buyer
purchase or use Freescale Semiconductor products for any such unintended or
unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor
and its officers, employees, subsidiaries, affiliates, and distributors harmless against all
claims, costs, damages, and expenses, and reasonable attorney fees arising out of,
directly or indirectly, any claim of personal injury or death associated with such
unintended or unauthorized use, even if such claim alleges that Freescale
Semiconductor was negligent regarding the design or manufacture of the part.

Freescale are trademarks or registered trademarks of Freescale
Semiconductor, Inc. in the U.S. and other countries. All other product or
service names are the property of their respective owners. ARM is the
registered trademark of ARM Limited. ARMnnn is the trademark of ARM Limited.

© Freescale Semiconductor, Inc., 2009. All rights reserved.

W POWERED

ARM
freescale"

semiconductor

	i.MX51 VPU Application Programming Interface Windows Embedded CE 6.0 Reference Manual
	1 Introduction
	1.1 Overview
	1.2 Main Features
	1.3 Programmability
	1.3.1 Frame-Based Processing
	1.3.2 Program Memory Management
	1.3.3 Multi-Instances

	2 Host Interface
	2.1 Host Interface Overview
	2.1.1 Communication Models
	2.1.2 Data Handling
	2.1.3 Host Interface Registers

	2.2 API-Based VPU Control

	3 i.MX51 VPU Driver API Reference
	3.1 API Features
	3.1.1 Simple Software Control
	3.1.2 Handling Multi-Instances
	3.1.3 Frame-Based Codec Processing

	3.2 Type Definitions
	3.2.1 Type Definitions
	3.2.1.1 Uint8
	3.2.1.2 Uint16
	3.2.1.3 Uint32
	3.2.1.4 PhysicalAddress
	3.2.1.5 CodStd
	3.2.1.6 RetCode
	3.2.1.7 CodecCommand
	3.2.1.8 MirrorDirection
	3.2.1.9 Mp4HeaderType
	3.2.1.10 AvcHeaderType
	3.2.1.11 EncHandle
	3.2.1.12 DecHandle

	3.2.2 Data and Structure Definitions
	3.2.2.1 FrameBuffer
	3.2.2.2 Rect
	3.2.2.3 EncHeaderParam
	3.2.2.4 EncParamSet
	3.2.2.5 EncMp4Param
	3.2.2.6 EncH263Param
	3.2.2.7 EncAvcParam
	3.2.2.8 EncMjpgParam
	3.2.2.9 EncSliceMode
	3.2.2.10 EncOpenParam
	3.2.2.11 EncReportBufSize
	3.2.2.12 EncInitialInfo
	3.2.2.13 EncParam
	3.2.2.14 EncOutputInfo
	3.2.2.15 SearchRamParam
	3.2.2.16 DecParamSet
	3.2.2.17 DecOpenParam
	3.2.2.18 DecReportBufSize
	3.2.2.19 DecInitialInfo
	3.2.2.20 DecAvcSliceBufInfo
	3.2.2.21 DecBufInfo
	3.2.2.22 DecParam
	3.2.2.23 DecOutputInfo
	3.2.2.24 VPUMemAlloc

	3.3 API Definitions
	3.3.1 Overview
	3.3.1.1 Basic Architecture
	3.3.1.2 Decoder Operation Flow
	3.3.1.3 MJPEG Decoding Operation Flow
	3.3.1.4 Encoder Operation Flow

	3.3.2 Control API
	3.3.2.1 vpu_Init()
	3.3.2.2 vpu_Deinit()
	3.3.2.3 vpu_IsBusy()
	3.3.2.4 vpu_GetVersionInfo()
	3.3.2.5 vpu_AllocPhysMem()
	3.3.2.6 vpu_FreePhysMem()
	3.3.2.7 vpu_GetPhysAddrFromVirtAddr()
	3.3.2.8 vpu_Reset()

	3.3.3 Encoder API
	3.3.3.1 vpu_EncOpen()
	3.3.3.2 vpu_EncClose()
	3.3.3.3 vpu_EncGetBitstreamBuffer()
	3.3.3.4 vpu_EncUpdateBitstreamBuffer()
	3.3.3.5 vpu_EncGetInitialInfo()
	3.3.3.6 vpu_EncRegisterFrameBuffer()
	3.3.3.7 vpu_EncStartOneFrame()
	3.3.3.8 vpu_EncGetOutputInfo()
	3.3.3.9 vpu_EncGiveCommand()

	3.3.4 Decoder API
	3.3.4.1 vpu_DecOpen()
	3.3.4.2 vpu_DecClose()
	3.3.4.3 vpu_DecGetInitialInfo()
	3.3.4.4 vpu_DecSetEscSeqInit()
	3.3.4.5 vpu_DecGetBitstreamBuffer()
	3.3.4.6 vpu_DecUpdateBitstreamBuffer()
	3.3.4.7 vpu_DecRegisterFrameBuffer()
	3.3.4.8 vpu_DecStartOneFrame()
	3.3.4.9 vpu_DecGetOutputInfo()
	3.3.4.10 vpu_DecBitBufferFlush()
	3.3.4.11 vpu_DecClrDispFlag()
	3.3.4.12 vpu_DecGiveCommand()

	4 VPU Control
	4.1 VPU Initialization
	4.1.1 Version Check of BIT Processor Microcode
	4.1.2 BIT Processor Enable and Disable
	4.1.3 BIT Processor Data Buffer Management
	4.1.4 BIT Processor Microcode Management
	4.1.5 Stream Buffer Management
	4.1.5.1 Ring-Buffer Scheme (Packet Mode)
	4.1.5.2 Line-Buffer Scheme (File-Play Mode)

	4.1.6 Interrupt Signaling Management

	4.2 Encoder Control
	4.2.1 Creating an Encoder Instance
	4.2.2 Configuring VPU for Encoder Instance
	4.2.2.1 Sequence Initialization
	4.2.2.2 Registering Frame Buffers
	4.2.2.3 Generating High-Level Header Syntaxes

	4.2.3 Running Picture Encoder on VPU
	4.2.3.1 YUV Input Loading
	4.2.3.2 Initiating Picture Encoding
	4.2.3.3 Completion of Picture Encoding
	4.2.3.4 Encoder Stream Handling
	4.2.3.5 Acquiring Encoder Results

	4.2.4 Terminating an Encoder Instance
	4.2.5 Dynamic Configuration Commands

	4.3 Decoder Control
	4.3.1 Creating a Decoder Instance
	4.3.1.1 AVC Display Reordering

	4.3.2 Configuring VPU for Decoder Instance
	4.3.2.1 Feeding Bitstream into Stream Buffer
	4.3.2.2 Sequence Initialization
	4.3.2.3 Registering Frame Buffers

	4.3.3 Running Picture Decoder On VPU
	4.3.3.1 Initiating Picture Decoding
	4.3.3.2 Frame Skipping Option
	4.3.3.3 I-Frame Search for Random Access and Trick Mode
	4.3.3.4 Decoder Stream Handling
	4.3.3.5 Completion of Picture Decoding
	4.3.3.6 Acquiring Decoder Results
	4.3.3.7 Management of Displaying Buffers Decoded

	4.3.3.8 Escape from Decoder Hang
	4.3.4 Terminating a Decoder Instance
	4.3.4.1 Stream End and Last Picture in Stream Buffer
	4.3.4.2 Closing Current Instance

	4.3.5 Dynamic Configuration Commands

	4.4 Example Applications

