
1 Introduction
This document describes a firmware upgrade procedure using KM35Z512
Kinetis microcontroller. Firmware upgrade of the MCU-based embedded
products is a very useful feature as it eliminates the need of any programming
tool to reprogram the MCU, which is difficult to be done with the products in
field. Using only a suitable communication channel for example, serial port or
remote communication module like GPRS communication, the products in field
can be upgraded with software patches or new features. KM35Z512 device
has 2 x 256 KB program flash memory. This means, although the program
code can execute from entire 512 KB flash memory, alternatively program code
when executing only from one bank of the flash memory, the other bank can
be used to store new version of the application firmware, which can be copied
to the first bank to upgrade the software/firmware. Here the second bank is used only to store the new version of firmware and
not to execute at place. Firmware upgrade can be of full replacement of the application software or only partially, if the application
is divided into code sections and/or data sections.

The process described in this document is useful to utilize as an example to implement firmware upgrade of applications in
different embedded solutions using Kinetis microcontrollers with dual bank flash memory. Using dual bank memory does not put
any constrains on the application flow during firmware upgrade as the second flash bank in KM35Z512 is read-while-write (rww)
which means, read/execution of code can happen in first flash bank while programming on the second bank is ongoing.

The process described in this document can also be utilized with little update to store and upgrade firmware within single program
flash bank. In that case, without the read-while-write facility we may need to temporarily disable the code to execute from the
same bank where another partition is attempted to be erased/programmed. In such case, executing code from RAM temporarily
solves the issue. KM35Z512 do not have such limitation if the product is designed appropriately that the active application is
executed from one bank and new application is stored in the other bank.

2 MKM35Z512 series MCU
NXPs MKM35Z512 series MCU is based on the 90 nm process technology. It has on-chip peripherals, computational
performance, and power capabilities to enable the development of a low-cost and highly integrated power meter, see Figure 1.
It is based on the 32-bit Arm Cortex-M0+ core, with CPU clock rated up to 75 MHz. The analog measurement frontend is integrated
on all devices; it includes a highly accurate 24-bit Sigma Delta ADC, PGA, high-precision internal 1.2 V voltage reference (Vref),
phase shift compensation block, 16-bit SAR ADC, a peripheral crossbar (XBAR), Programmable Delay Block (PDB), and a
Memory-Mapped Arithmetic Unit (MMAU). The XBAR module acts as a programmable switch matrix, enabling multiple
simultaneous connections of internal and external signals. An accurate Independent Real-Time Clock (IRTC) with passive and
active tamper detection capabilities is also available on all devices.

In addition to high-performance analog and digital blocks, the MKM35Z512 series MCU was designed with an emphasis on
achieving the required software separation. It integrates hardware blocks, supporting the distinct separation of the legally relevant
software from other software functions.

The hardware blocks controlling and/or checking the access attributes include:

• Arm Cortex-M0+ core

• DMA controller module

Contents

1 Introduction.. 1

2 MKM35Z512 series MCU...................... 1

3 Basic theory... 2

4 Hardware and setup.............................. 2

5 Software design..................................... 5

6 Summary... 21

7 References.. 22

8 Revision history................................... 22

AN12829
Firmware Upgrade Using KM35Z512
Rev. 0 — 25 April 2020 Application Note

• Miscellaneous control module

• Memory protection unit

• Peripheral bridge

• General-purpose input / output module

Figure 1. KM35Z512 MCUs block diagram

The MKM35Z512 devices are highly capable and fully programmable MCUs with application software driving the differentiation
of the product. Currently, the necessary peripheral software drivers, metering algorithms, communication protocols, and a vast
number of complementary software routines are available directly from semiconductor vendors or third parties. Because the
MKM35Z512 MCUs integrate a high-performance analog frontend, communication peripherals, hardware blocks for software
separation, and capable of executing various Arm Cortex-M0+ compatible software, they are ideal components for development
of residential, commercial, and light industrial electronic power meter applications and other similar applications.

3 Basic theory
Typically, firmware update is done by the bootloader (flash resident in this case) only. In such case, after power on reset,
bootloader can switch to download process and accept the new application firmware, and then can activate it. Another way of
application firmware upgrade is done by current application to store the new application software to a reserved memory, and
after the download is done, based on a schedule time or immediate action, can switch to its bootloader to activate the new
application firmware. The later process is useful as it does not disrupt the application execution while the time-consuming firmware
download and storing process can be carried on and once finished, can be scheduled to activate later as per convenience. Also,
this process is more suitable and similar for remote download using a GPRS or similar module in for example, a smart energy
meter. In such cases, the GPRS module running in the context of application software is utilized to download and store the new
firmware. The application can schedule the activation for later time, using off course the help of bootloader when a downtime or
backup time is identified.

4 Hardware and setup
The setup consists of a TWR-KM35Z7M tower board standalone and connected to a host machine by micro-B USB cable. The
host machine can be a personal computer or a handheld unit able to communicate to the serial port of the tower card as emulated
through its USB OpenSDA as described in the quick start guide of TWR-KM35Z7M.

NXP Semiconductors
Basic theory

Firmware Upgrade Using KM35Z512, Rev. 0, 25 April 2020
Application Note 2 / 23

Figure 2. Firmware upgrade setup

During the development of this document, a personal computer is used as host machine with Windows OS 10 to set up the
communication and a software executable to communicate as per the communication process described in this document.

4.1 Get to know the TWR-KM35Z7M
To use the TWR-KM35Z7M for the first time, download the Quick Start Guide and follow the step-by-step instructions to setup
for programming and communicate with the board. Normally, no jumper setting needs to be changed and the board can use the
default jumper settings.

NXP Semiconductors
Hardware and setup

Firmware Upgrade Using KM35Z512, Rev. 0, 25 April 2020
Application Note 3 / 23

https://www.nxp.com/docs/en/quick-reference-guide/TWR-KM35Z75M-QSG.pdf

Figure 3. TWR_KM35Z512 and its components

NXP Semiconductors
Hardware and setup

Firmware Upgrade Using KM35Z512, Rev. 0, 25 April 2020
Application Note 4 / 23

5 Software design
This section describes the bootloader and software application of the MKM35Z512 firmware upgrade process. The bootloader
is a small footprint boot code and facilitator to copy new application firmware version to the active code and data sections. The
software application, apart from doing an application-specific job, also does the new firmware transfer job from the firmware
provider host.

Below flash memory partitions done for –

• Bootloader – initial 6 KB, address range 0x0000_0000 to 0x0000_17FF

• Application software/firmware – maximum 250 KB, address range 0x0000_1800 to 0x0003_FFFF

• Firmware storage – the whole 256 KB of the second memory bank of MKM35Z512 MCU, address range 0x0004_0000 to
0x0007_FFFF . Initial 2 KB of memory (size of a flash sector) is used to store useful metadata about the new firmware, for
example, the firmware file size, block size, total number of blocks. This metadata can include more information about the
firmware. The rest of the memory in this bank is used for actual application firmware.

Figure 4. Flash partition scheme

NXP Semiconductors
Software design

Firmware Upgrade Using KM35Z512, Rev. 0, 25 April 2020
Application Note 5 / 23

5.1 Block diagram
Both the bootloader and the application software are written in the C language and compiled using the IAR® Embedded
Workbench for Arm (version 8.42 or higher). The software application is based on the MKM35Z512 bare-metal SDK software
drivers.

The application can do different type of jobs, but for simplification, this application firmware only blinks an LED on board at a
constant rate. Other than this, the application does the communication and flash program activities which are essential to facilitate
and demonstrate the firmware transfer from the host side.

Figure 5 shows the simple software architecture of the application program, including interactions of the software peripheral
drivers. All tasks executed by the MKM35Z512 application software are briefly explained in the following subsections.

Figure 5. Application software architecture

5.1.1 Bootloader
Boot loader is the first program that executes after MCU is reset. So, its exception vectors are available at the reset vector address
0x0000_0000 as per Arm Cortex-M0+ processor architecture. This bootloader does one of two jobs –

1. Jump to application entry point located at a fixed flash memory location 0x0000_1800, or,

2. Upon receiving a trigger from the application with a unique code 0xACAC being written in the iRTC RAM, activate the
new firmware by copying from the second flash bank partition to the application partition in the first program flash bank.

5.1.1.1 Bootloader program flow

Bootloader apart from just branching to the application software after reset, also compliments the user application to facilitate the
new firmware activation as described in this document.

Figure 6 describes the boot loader flow.

This boot loader does not accept or transfer new application firmware from the host but just facilitates the activation
of a pre-loaded new application firmware from the storage area to the active area from where the application is
supposed to execute.

 NOTE

NXP Semiconductors
Software design

Firmware Upgrade Using KM35Z512, Rev. 0, 25 April 2020
Application Note 6 / 23

Figure 6. Bootloader program flow

5.1.1.2 Bootloader linker file setup

Boot loader linker script file is restricted to only 0x0000_0000 to 0x0000_017FF that is, 6 KB only for program flash.

NXP Semiconductors
Software design

Firmware Upgrade Using KM35Z512, Rev. 0, 25 April 2020
Application Note 7 / 23

Figure 7. Bootloader linker file

5.1.2 Application
Application firmware does the embedded software functions. For example, in case of an energy meter application, can run
metrology, load survey, tariff, billing, display, handle user inputs, communication and firmware upgrade. For simplification, this
application only does a job of glowing an LED on the board and then runs a communication process only to handle the new
firmware download to a pre-defined flash bank area.

5.1.2.1 Application tasks

Like any other embedded application, the application software initializes the MCU hardware and peripherals for use.

The application initially glows a green or red LED in the board.

NXP Semiconductors
Software design

Firmware Upgrade Using KM35Z512, Rev. 0, 25 April 2020
Application Note 8 / 23

Figure 8. Application program initialization and tasks C code

After this, Communication task waits for any command from the host machine. If any command is received and identified correctly,
then respective actions are taken by the software and response is sent to the host that sent the command.

5.1.2.2 Initialization of hardware

Application software initializes the MCU hardware and peripherals for use. These include MCU port pins for GPIO function to
glow LED, UART function for communication purpose. Clock module is initialized to run the MCU at higher clock rate. As the
application is going to erase/program flash sectors, flash drivers are also initialized.

The application initially glows a green or red LED in the board.

5.1.2.3 Communication process

Communication task waits for any command from the host machine. If any command is received and identified correctly, then
respective actions are taken by the software and response is sent to the host that sent the command.

Below is the list of possible command codes the Communication task can interpret and act accordingly –

• nxpfwutx – this 8 bytes long command is interpreted as the beginning of new firmware transfer. After receiving this
command, the application will expect the command parameters which includes 4 bytes FW file size and 4 bytes block size.
Number of blocks in the file are determined automatically by MCU software by dividing file size by the block size.

NXP Semiconductors
Software design

Firmware Upgrade Using KM35Z512, Rev. 0, 25 April 2020
Application Note 9 / 23

Figure 9. Firmware transfer command and parameter syntax

FS0-FS3 4 bytes contain the file size, BS0-BS3 4 bytes contains the block size.

• nxpfwuact – this 9 bytes long command is interpreted as the request to transfer new FW from the stored flash region to the
active program flash region. In this demo, the new FW is stored in second flash bank range 0x0004_0000 to
0x0007_FFFF. The working active application always resides in the second partition of the first flash bank starting range
0x0000_1800 to 0x0003_FFFF.

Communication process is triggered after receiving a command or block of firmware binary file data by the asynchronous UART
interrupts. The reception of commands and actions are identified into steps as shown below –

kFWUStatusIdle Idle state

kFWUStatusCmd Received a command

kFWUStatusInitiated Received the firmware header information

kFWUStatusTransfer Firmware transfer in progress

kFWUStatusActivationInitiated Firmware activation has been initiated

kFWUStatusActivationSuccess Firmware activation was successful

kFWUStatusActivationFailed Firmware activation failed

kFWUStatusIdle – when no command/data transaction is active.

kFWUStatusCmd – when a command as mentioned above has been received. After this state is reached, next action depends
on the type of command, i.e., FWU transfer command or FWU activation command as mentioned in this document.

kFWUStatusInitiated – the firmware header information has been received. This indicates that the FWU transfer command was
initiated. To prepare for new firmware program in the second flash bank transfer, this firmware destination area is first prepared
by erasing the second flash bank partition. The firmware file size and the block size are available in the firmware header and is
stored in the firmware metadata flash area.

NXP Semiconductors
Software design

Firmware Upgrade Using KM35Z512, Rev. 0, 25 April 2020
Application Note 10 / 23

kFWUStatusTransfer – transfer of firmware binary image is in progress. The firmware binary file is transferred in small blocks
with fixed size, 256 bytes (but not limited to) only. To identify the firmware block, 4 bytes long block number is transferred along
with the block. The current block count is updated and saved every time a new file block is received and programmed to the
destination flash bank. Below diagram shows the command and block exchange sequence –

Figure 10. Communication flow control between tower board and host

NXP Semiconductors
Software design

Firmware Upgrade Using KM35Z512, Rev. 0, 25 April 2020
Application Note 11 / 23

Figure 11 is a C code snapshot that performs block transfer operations –

Figure 11. Firmware block transfer C code

kFWUStatusActivationInitiated – firmware image activation has been initiated. Image activation is triggered by writing a unique
flag code 0xACAC in the iRTC RAM locations. MCU is reset at this moment so that the boot loader program can restart.

iRTC module in the kinetis MCU is powered by VBAT supply and its RAM area is not impacted by MCU warm reset. Any update
to iRTC RAM area is write protected by MCU and can be unlocked to write and can be locked again. This RAM area has been
used to store a flag code 0xACAC to communicate activation request between application and boot loader.

kFWUStatusActivationSuccess – firmware image activation was successfully done. Actual image activation process is done by
the boot loader which once finding the unique flag code 0xACAC post-reset execution, copies the second flash bank resident
new firmware to the application partition in the first flash bank. At this moment another MCU reset done by boot loader (after
clearing the iRTC RAM flag) enables the boot loader to jump to application entry point which was being replaced with the new
firmware application.

kFWUStatusActivationFailed – firmware image activation failed. In case the activation process fails due to any reason, this state
is indicated.

WARNING

It is possible that application partition is damaged when the kFWUStatusActivationFailed state is arrived. But the boot loader may
still assist upgrading with the new firmware. Such fail-safe or alternative update process is beyond the scope of this document.

Figure 12 Explains the states of the communication process –

NXP Semiconductors
Software design

Firmware Upgrade Using KM35Z512, Rev. 0, 25 April 2020
Application Note 12 / 23

Figure 12. Commutation flow control

5.1.2.4 Firmware save and activation process

Firmware saving and activation process has been described in this document and can be visualized as shown in Figure 13 –

NXP Semiconductors
Software design

Firmware Upgrade Using KM35Z512, Rev. 0, 25 April 2020
Application Note 13 / 23

Figure 13. Firmware saving and activation process

5.2 Application setup
Application setup is done in 2 steps – first prepare the firmware binary to be upgraded and second, setup the TWR-KM35Z7M
to exercise the upgrade process. To facilitate the transfer, and activate the new firmware, a personal computer with Windows OS
is used.

5.2.1 Preparation of firmware binary
New application firmware is created by aligning the generated binary size to an integral multiple of block size, for example, 256
bytes. In the current case, 2 application binaries are prepared with application binary file sizes of 231 blocks x 256 bytes = 58
Kbytes. Although the actual application sizes are lesser than this, application binary file size is increased and adjusted by using
linker option of the IAR IDE as shown below.

The image size need not to be multiple of 256 bytes in real use cases but has been done here for simplification only.

 NOTE

NXP Semiconductors
Software design

Firmware Upgrade Using KM35Z512, Rev. 0, 25 April 2020
Application Note 14 / 23

Figure 14. IAR project linker file option update

Both fwupgrade_app_led1 and fwupgrade_app_led2 are adjusted to create image binary of size 0xFFFF – 0x1800 = 58 Kbytes.

To generate a binary file of the application firmware, output converter in IAR tool project options can be utilized, as shown below
–

NXP Semiconductors
Software design

Firmware Upgrade Using KM35Z512, Rev. 0, 25 April 2020
Application Note 15 / 23

Table 1. IAR project option to create .bin file

5.2.1.1 Application LED program linker file setup

Application fwupgrade_app_led1 and fwupgrade_app_led2 linker files limited the program code and initialized data sections
between 0x1800 to 0xFFFF = 58 Kbytes only. This leaves the free space between 0x0001_0000 to 0x0003_FFFF, which can be
claimed when the application size is increased to include more functionalities. Generated binary file size can be adjusted as
mentioned in this document for block size aligned binary file size again.

Below is the linker file of the application, the starting address is at 0x0000_01800 as the partition starts at this address.

NXP Semiconductors
Software design

Firmware Upgrade Using KM35Z512, Rev. 0, 25 April 2020
Application Note 16 / 23

Figure 15. IAR project linker file for application

5.2.2 Execution of Firmware upgrade process
1. Build and download fwupgrade_app_led1 to the TWR-KM35Z7M -

NXP Semiconductors
Software design

Firmware Upgrade Using KM35Z512, Rev. 0, 25 April 2020
Application Note 17 / 23

Figure 16. IAR Embedded work bench build and download option for application

2. Build and download fwupgrade_bootloader program to the tower board –

Figure 17. IAR Embedded work bench build and download for boot loader

3. Reset TWR-KM35Z357M by pressing SRESET button of the board. The board’s green LED starts blinking.

NXP Semiconductors
Software design

Firmware Upgrade Using KM35Z512, Rev. 0, 25 April 2020
Application Note 18 / 23

Figure 18. Blinking green LED program execution

4. Build fwupgrade_app_led2 project and copy its generated fwupgrade_app_led2.bin file to the same subfolder where
your PC host utility is available. In our case, a PC host utility called FWUpgradeClient.exe was created to facilitate
the .bin file transfer.

NXP Semiconductors
Software design

Firmware Upgrade Using KM35Z512, Rev. 0, 25 April 2020
Application Note 19 / 23

Figure 19. Preparation of blinking red LED program binary

Do not download fwupgrade_app_led2 program as the TWR-KM35Z7M is already programmed with
fwupgrade_app_led1, the green LED program.

 NOTE

5. The generated fwupgrade_app_led2.bin file can be located in the build type specific that is, either \debug or \release sub
folder.

Start transferring fwupgrade_app_led2.bin with the PC host utility as shown below –

After the file transfer is over, activate the image copy by as shown below:

At this point, the red LED blinks and green LED is turned off, as shown in Figure 20.

NXP Semiconductors
Software design

Firmware Upgrade Using KM35Z512, Rev. 0, 25 April 2020
Application Note 20 / 23

Figure 20. Blinking red LED program execution after firmware update activation

At this moment the red LED application program built by fwupgrade_app_led2 is running in the TWR-KM35z7M board.

New firmware activation is successful.

Similarly, fwupgrade_app_led1.bin, the green LED program can also be located in \debug or \release subfolders and the
firmware update process can be done. The process is a repeat of the above and find below step by step –

6 Summary
This application note describes a process to upgrade application firmware in Kinetis KM35Z512 MCU. KM35Z512 has 512 KB
of total flash memory which is divided in two 256 KB program flash banks. RWW feature is available which means, program read
can happen in one bank while erase/write or programming can be done in the second bank simultaneously. New firmware is
received from a PC host machine using PC-to-MCU serial port communication and stored in the second flash bank of KM35Z512.
The application running in the first bank of the MCU does this image transfer and storing job. The implementation also takes help
of a bootloader to activate the stored image by copying the new firmware image from the second bank to the first bank, thereby
replacing only the application present in the first bank application area.

NXP Semiconductors
Summary

Firmware Upgrade Using KM35Z512, Rev. 0, 25 April 2020
Application Note 21 / 23

The implementation is based on TWR-KM35Z7M tower board at default configuration as described in the quick-start-guide of this
tower board. A PC with Windows 10 OS is used to build the program code using IAR embedded workbench version 8.42. Both
the application and bootloader are downloaded to the tower board, using the OpenSDA debug probe supported on tower board.
This prepares the tower board to be ready for the firmware transfer process.

New application transfer to the tower board is facilitated by the PC by transferring new firmware binary in fixed size blocks, through
the serial port connection (OpenSDA USB). Once the whole firmware binary is transferred, PC host resident program can trigger
an activation command through the serial port to the tower board. The current running application along with the bootloader
makes sure to copy and update the first bank application program with the new program which was stored in the second flash
bank. From this point, the old application firmware is no longer available in the MCU and completely being replaced with the new
firmware.

7 References
1. Quick Start Guide TWR-KM35Z37M

8 Revision history

Revision number Date Substantive changes

0 04/2020 Initial release

NXP Semiconductors
References

Firmware Upgrade Using KM35Z512, Rev. 0, 25 April 2020
Application Note 22 / 23

https://www.nxp.com/docs/en/quick-reference-guide/TWR-KM35Z75M-QSG.pdf
https://www.nxp.com/docs/en/quick-reference-guide/TWR-KM35Z75M-QSG.pdf

How To Reach Us

Home Page:

nxp.com

Web Support:

nxp.com/support

Information in this document is provided solely to enable system and software implementers to
use NXP products. There are no express or implied copyright licenses granted hereunder to
design or fabricate any integrated circuits based on the information in this document. NXP
reserves the right to make changes without further notice to any products herein.

NXP makes no warranty, representation, or guarantee regarding the suitability of its products for
any particular purpose, nor does NXP assume any liability arising out of the application or use
of any product or circuit, and specifically disclaims any and all liability, including without limitation
consequential or incidental damages. “Typical” parameters that may be provided in NXP data
sheets and/or specifications can and do vary in different applications, and actual performance
may vary over time. All operating parameters, including “typicals,” must be validated for each
customer application by customer's technical experts. NXP does not convey any license under
its patent rights nor the rights of others. NXP sells products pursuant to standard terms and
conditions of sale, which can be found at the following address: nxp.com/
SalesTermsandConditions.

While NXP has implemented advanced security features, all products may be subject to
unidentified vulnerabilities. Customers are responsible for the design and operation of their
applications and products to reduce the effect of these vulnerabilities on customer’s applications
and products, and NXP accepts no liability for any vulnerability that is discovered. Customers
should implement appropriate design and operating safeguards to minimize the risks associated
with their applications and products.

NXP, the NXP logo, NXP SECURE CONNECTIONS FOR A SMARTER WORLD, COOLFLUX,
EMBRACE, GREENCHIP, HITAG, ICODE, JCOP, LIFE VIBES, MIFARE, MIFARE CLASSIC,
MIFARE DESFire, MIFARE PLUS, MIFARE FLEX, MANTIS, MIFARE ULTRALIGHT,
MIFARE4MOBILE, MIGLO, NTAG, ROADLINK, SMARTLX, SMARTMX, STARPLUG, TOPFET,
TRENCHMOS, UCODE, Freescale, the Freescale logo, AltiVec, CodeWarrior, ColdFire,
ColdFire+, the Energy Efficient Solutions logo, Kinetis, Layerscape, MagniV, mobileGT, PEG,
PowerQUICC, Processor Expert, QorIQ, QorIQ Qonverge, SafeAssure, the SafeAssure logo,
StarCore, Symphony, VortiQa, Vybrid, Airfast, BeeKit, BeeStack, CoreNet, Flexis, MXC, Platform
in a Package, QUICC Engine, Tower, TurboLink, EdgeScale, EdgeLock, eIQ, and Immersive3D
are trademarks of NXP B.V. All other product or service names are the property of their respective
owners. AMBA, Arm, Arm7, Arm7TDMI, Arm9, Arm11, Artisan, big.LITTLE, Cordio, CoreLink,
CoreSight, Cortex, DesignStart, DynamIQ, Jazelle, Keil, Mali, Mbed, Mbed Enabled, NEON,
POP, RealView, SecurCore, Socrates, Thumb, TrustZone, ULINK, ULINK2, ULINK-ME, ULINK-
PLUS, ULINKpro, µVision, Versatile are trademarks or registered trademarks of Arm Limited (or
its subsidiaries) in the US and/or elsewhere. The related technology may be protected by any or
all of patents, copyrights, designs and trade secrets. All rights reserved. Oracle and Java are
registered trademarks of Oracle and/or its affiliates. The Power Architecture and Power.org word
marks and the Power and Power.org logos and related marks are trademarks and service marks
licensed by Power.org.

© NXP B.V. 2020. All rights reserved.

For more information, please visit: http://www.nxp.com
For sales office addresses, please send an email to: salesaddresses@nxp.com

Date of release: 25 April 2020
Document identifier: AN12829

http://www.nxp.com
http://www.nxp.com/support
http://www.nxp.com/SalesTermsandConditions
http://www.nxp.com/SalesTermsandConditions

	Contents
	1 Introduction
	2 MKM35Z512 series MCU
	3 Basic theory
	4 Hardware and setup
	4.1 Get to know the TWR-KM35Z7M

	5 Software design
	5.1 Block diagram
	5.1.1 Bootloader
	5.1.1.1 Bootloader program flow
	5.1.1.2 Bootloader linker file setup

	5.1.2 Application
	5.1.2.1 Application tasks
	5.1.2.2 Initialization of hardware
	5.1.2.3 Communication process
	5.1.2.4 Firmware save and activation process

	5.2 Application setup
	5.2.1 Preparation of firmware binary
	5.2.1.1 Application LED program linker file setup

	5.2.2 Execution of Firmware upgrade process

	6 Summary
	7 References
	8 Revision history

