GFLIB User's Guide

ARM® Cortex® M7F

Document Number: CM7FGFLIBUG
Rev. 2, 11/2016

h
V"

GFLIB User's Guide, Rev. 2, 11/2016

NXP Semiconductors

Contents
Section number Title Page

Chapter 1

Library

L 51 13 (e Ta L Uo7 5 o | OO OO TP 5
1.2 Library integration into project (MCUXPIESSO IDE)cocoiiiiiiiiiiriiniiiieeiienecee ettt e 8
1.3 Library integration into project (Kinetis Design StUAIo)ceevueiiiiiiiiiiiiiiieieieeite ettt 15
1.4 Library integration into project (Keil LVISION)cccuirieriirieriiieite ettt ettt et et e et st e bt esee st estesbeenteneeens 21
1.5 Library integration into project (IAR Embedded Workbench)cccccoieiiniiiiiniiniiiiiniiicceicneccseeeseeeeeeee 28

Chapter 2

Algorithms in detail

2.1 GFLIB_SIN ittt ettt ettt sttt h et h et h e bt b et e ettt st b et ee 35
2.2 GELIB_CO0S....uttiititiietetetee ettt ettt ettt ettt e e et e 37
2.3 GFLIB_TAN. ettt sttt ettt b et bbbt b et b ettt e h et bbbt b et bt bt st b et b et ee 38
24 GEFLIB_ASIN ..ttt ettt ettt ettt ettt ettt ettt b ekt b ekt ek etk et a ettt b ettt enes 41
2.5 GELIB_ACOS. ...ttt sttt ettt et sttt e e et ee 42
2.0 GFLIB_ALAN. ...c.citiiitiietiietestett ettt ettt et b et b et b et b et b st eb e et es e b st bt ekt h et e bt b et eb et b b bt et s ettt ettt et eas 44
2.7 GFLIB_ATANY Xttt ettt ettt ettt ettt ettt h e bbbtk sttt a et st b et sttt enen 46
2.8 GELIB_S(It. .ttt sttt sttt ettt h et 49
2.9 GFLIB LML .ttt ettt b e bbbt e b et bbbt b et b et bt e bbbt n et ee 51
210 GEFLIB _LOWETLIIMIL. ..uutiiiiiieeiiiiieeeeeeeee ettt ettt e e eeeeeeeeeeesesse s s s aaasaaasassaeeeeeeeesasessesesessssesnssssnsssssassssseeens 52
2,11 GFLIB_UPPEILIMIL. ...ttt ettt ee 53
2,12 GEFLIB_ VECTOTLIMIL. c.eeeiieeeeee oottt et e e e e e e et eeeeeeeeeeeeeeeeeeae e e e e e e e e e eeeeaeeeeeeeeeeeeasananans 55
213 GEFLIB _VECIOTLAMITL ...ttt ettt et e a et et e eeeeeeeeeeeeseesss e sasssasasasaseeeeeseesasessesesssssssssnssssnnssssans 58
214 GELIB_HYSt ...ttt 61
215 GFLIB_LUEID ...ttt bbbttt ettt b et b et b e b s h ettt s et es e bt bt b et bt enn 63
2,16 GFLIB_LUIPEITD ..ottt st sttt ettt ettt sa e a e nene 66
217 GELIB_RAMP.....ciiiiiiieiiiciece ettt ettt ettt 70
2.18 GFLIB_DRAMP. ...ceiuiitiuiitiietitetitettst ettt ettt b e bt b ettt a bttt e bt b et b et eb bbb e st es e b et bt b et bt ens 74
2,19 GFLIB_FIEXRAMIP. c..cveiiiiiiiititeieetestt ettt ettt sttt ettt ea et eh e bt e st sb e et sb e et s bt et e s bt e b e eese b e eseeebeenee 78

GFLIB User's Guide, Rev. 2, 11/2016

NXP Semiconductors 3

Section number Title Page
2.20 GFLIB_DFIEXRAMP. ...ccutiiitiiiitieieeiteieeit ettt ettt ettt sttt et et eb et she et eb e et ebeesbe et e sbeestesbeeabesbeenbesbe et e ebeeneenee 83

221 GFLIB_FIEXSRAIMP.cviuiiiiieiiietiieiieee ettt et a et ee 90

2.22 GELIB_INTEEIALOT. c...eeuttiiteeiieette ettt ettt ettt et e et et e s a bt e bt e sae e et e e eb et e bt e sa e e et e e sbbeeabeesbeeeabe e bt e eabeenbeenabeenbeeeaneennee 101
2.23 GFLIB_CHIIBEAIPPAW ...ttt ettt ettt sttt et et b e et b e bbbt et e sbe e et sbeenae s bt enaesanenbeeanens 105
2.24 GFLIB_CHrIBetaIPDPAWc.oooiiiiiiieieeesee ettt ettt 111
2.25 GFLIB_CHIPIPAW ...ttt ettt b et bbbt b bbb sttt b et b et b b ese e ens 118
2.26 GFLIB_CIIIPIDPAW ..ottt sttt sttt ettt ettt sttt sa et ettt ettt et se et e enenaeuene 124

GFLIB User's Guide, Rev. 2, 11/2016

4 NXP Semiconductors

Chapter 1
Library

1.1 Introduction

1.1.1 Overview

This user's guide describes the General Functions Library (GFLIB) for the family of
ARM Cortex M7F core-based microcontrollers. This library contains optimized
functions.

1.1.2 Data types

GFLIB supports several data types: (un)signed integer, fractional, and accumulator, and
floating point. The integer data types are useful for general-purpose computation; they
are familiar to the MPU and MCU programmers. The fractional data types enable
powerful numeric and digital-signal-processing algorithms to be implemented. The
accumulator data type is a combination of both; that means it has the integer and
fractional portions.The floating-point data types are capable of storing real numbers in
wide dynamic ranges. The type is represented by binary digits and an exponent. The
exponent allows scaling the numbers from extremely small to extremely big numbers.
Because the exponent takes part of the type, the overall resolution of the number is
reduced when compared to the fixed-point type of the same size.

The following list shows the integer types defined in the libraries:

* Unsigned 16-bit integer —<0 ; 65535> with the minimum resolution of 1

 Signed 16-bit integer —<-32768 ; 32767> with the minimum resolution of 1

* Unsigned 32-bit integer —<O0 ; 4294967295> with the minimum resolution of 1

* Signed 32-bit integer —<-2147483648 ; 2147483647> with the minimum resolution
of 1

GFLIB User's Guide, Rev. 2, 11/2016

NXP Semiconductors 5

Introduction

e Unsigned 64-bit integer —<0 ; 18446744073709551615> with the minimum
resolution of 1

* Signed 64-bit integer —<-9223372036854775808 ; 9223372036854775807> with
the minimum resolution of 1

The following list shows the fractional types defined in the libraries:

* Fixed-point 16-bit fractional —<-1 ; 1 - 2-15> with the minimum resolution of 213
» Fixed-point 32-bit fractional —<-1; 1 - 2-315 with the minimum resolution of 2-3!

The following list shows the accumulator types defined in the libraries:

* Fixed-point 16-bit accumulator —<-256.0 ; 256.0 - 27> with the minimum
resolution of 27

» Fixed-point 32-bit accumulator —<-65536.0 ; 65536.0 - 2°15> with the minimum
resolution of 2°1°

The following list shows the floating-point types defined in the libraries:

« Floating point 32-bit single precision —<-3.40282 - 1038 ; 3.40282 - 108> with the
minimum resolution of 223

1.1.3 API definition

GFLIB uses the types mentioned in the previous section. To enable simple usage of the
algorithms, their names use set prefixes and postfixes to distinguish the functions'
versions. See the following example:

f32Result = MLIB Mac_F32lss(f32Accum, flé6Multl, fleMult2);
where the function is compiled from four parts:

e MLIB—this is the library prefix

* Mac—the function name—Multiply-Accumulate

» F32—the function output type

* Iss—the types of the function inputs; if all the inputs have the same type as the
output, the inputs are not marked

The input and output types are described in the following table:
Table 1-1. Input/output types

Type Output Input
frac16_t F16 S

Table continues on the next page...

GFLIB User's Guide, Rev. 2, 11/2016

6 NXP Semiconductors

Table 1-1. Input/output types (continued)

Chapter 1 Library

Type Output Input
frac32_t F32 I
acc32_t A32 a

float_t FLT f

1.1.4 Supported compilers

GFLIB for the ARM Cortex M7F core is written in . The library is built and tested using
the following compilers:

* Kinetis Design Studio

 MCUXpresso IDE

* JAR Embedded Workbench

» Keil pVision

For the MCUXpresso IDE, the library is delivered in the gflib.a file.

For the Kinetis Design Studio, the library is delivered in the gflib.a file.

For the IAR Embedded Workbench, the library is delivered in the gflib.a file.
For the Keil puVision, the library is delivered in the gflib.lib file.

The interfaces to the algorithms included in this library are combined into a single public
interface include file, gflib.h. This is done to lower the number of files required to be
included in your application.

1.1.5 Library configuration

GFLIB for the ARM Cortex M7F core is written in . Some functions from this library are
inline type, which are compiled together with project using this library. The optimization
level for inline function is usually defined by the specific compiler setting. It can cause an
issue especially when high optimization level is set. Therefore the optimization level for
all inline assembly written functions is defined by compiler pragmas using macros. The
configuration header file RTCESL_cfg.h is located in: specific library folder\MLIB
\Include. The optimization level can be changed by modifying the macro value for
specific compiler. In case of any change the library functionality is not guaranteed.

GFLIB User's Guide, Rev. 2, 11/2016

NXP Semiconductors 7

Library integration into project (MCUXpresso IDE)
1.1.6 Special issues

1. The equations describing the algorithms are symbolic. If there is positive 1, the
number is the closest number to 1 that the resolution of the used fractional type
allows. If there are maximum or minimum values mentioned, check the range
allowed by the type of the particular function version.

2. The library functions that round the result (the API contains Rnd) round to nearest
(half up).

1.2 Library integration into project (MCUXpresso IDE)

This section provides a step-by-step guide on how to quickly and easily include GFLIB
into any MCUXpresso SDK example or demo application projects using MCUXpresso
IDE. This example uses the default installation path (C:\NXP\RTCESL
\CM7F_RTCESL_4.5_MCUX). If you have a different installation path, use that path
instead.

1.2.1 Library path variable

To make the library integration easier, create a variable that holds the information about
the library path.

1. Right-click the MCUXpresso SDK project name node in the left-hand part and click
Properties, or select Project > Properties from the menu. A project properties dialog
appears.

2. Expand the Resource node and click Linked Resources. See Figure 1-1.

GFLIB User's Guide, Rev. 2, 11/2016

8 NXP Semiconductors

4
Chapter 1 Library

Mo s e .
type filter text Linked Resources = A 4
4 Resource -
Linked Resources Path Variables | Linked Resources
Resource Filters Path variables specify locations in the file system, including other path variables with the syntax "S${VAR}".
Builders The locations of linked resources may be specified relative to these path variables,
[C/C++ Build Defined path variables for resource 'twrkv31f120m_demo_apps_hello_world':
[C.’C.++ General Narme Value Mew...
Project References .
Run/Debug Settings (= ECLIPSE_HOME CAMXPAMCUXpressolDE_10.0.0_344%ide\ Edit..
= PARENT_LOC Diternp3
= PROJECT_LOC Dvternp3titwri31f120m_demo_apps_hello_world Remove
(= WORKSPACE_LOC Ditermnp3

Figure 1-1. Project properties
3. Click the New... button in the right-hand side.
4. In the dialog that appears (see Figure 1-2), type this variable name into the Name
box: RTCESL_LOC.
5. Select the library parent folder by clicking Folder..., or just type the following path
into the Location box: C:\NXP\RTCESL\CM7F_RTCESL 4.5 MCUX. Click OK.

GFLIB User's Guide, Rev. 2, 11/2016

NXP Semiconductors 9

A ————
Library integration into project (MCUXpresso IDE)

* N

10.

11.
12.

Define a New Path Variable

Enter a new variable name and its associated location.

MName: RTCESL_LOC

F R
; o - T —— =) g
. New Variable P — =

Location: ICA\NXPARTCESLAC File.. ||

Folder...

|| variable..

Resolved Location: CANXPY\RTCESLNCM7F_RTCESL_4.5_MCUX

®@ [

|| cancel

Figure 1-2. New variable
Create such variable for the environment. Expand the C/C++ Build node and click

Environment.
Click the Add... button in the right-hand side.

In the dialog that appears (see Figure 1-3), type this variable name into the Name

box: RTCESL_LOC.

Type the library parent folder path into the Value box: C:\NXP\RTCESL

\CM7F_RTCESL_4.5_MCUX.

Tick the Add to all configurations box to use this variable in all configurations. See

Figure 1-3.
Click OK.
In the previous dialog, click OK.

GFLIB User's Guide, Rev. 2, 11/2016

10

NXP Semiconductors

Chapter 1 Library

. Properties for twrkv31f120m_demo_apps_hello_world . . | = £ |
type filter text Environment =l v
4 Resource
Linked Resources
Resource Filters Configuration: | Debug [Active] Y] [Manage Com‘igurations...]
Builders
a4 C/C++ Build
Bu"_d Variables Environment variables to set Add
Environment
Legging Variable Value Origin 5
elect...
1 MCU settings CWD D:\termpIitwrk31F120... BUILD SYSTEM
Settings PATH CANXPAMCUXpressolD... BUILD SYSTEM Edit...
Toel Chain Editer PWD Diternp3\twrky31£120... BUILD SYSTEM
- C/C++ General Delete
Run/Del
MName: RTCESL_LOC
Value: CAMXPYRTCESLNCMT7F_RTCESL_4.5_MCUX Variables
Add to all configurations
[oK l ’ Cancel
@ Append variables to native environment
4 Replace native environment with specified one |
[Restore Defaults] l Apply]
® [OK] [Cancel l

Figure 1-3. Environment variable

1.2.2 Library folder addition

To use the library, add it into the Project tree dialog.

1.

et

GFLIB User's Guide, Rev. 2, 11/2016

Right-click the MCUXpresso SDK project name node in the left-hand part and click
New > Folder, or select File > New > Folder from the menu. A dialog appears.
Click Advanced to show the advanced options.
To link the library source, select the Link to alternate location (Linked Folder)
option.
Click Variables..., select the RTCESL_LOC variable in the dialog, click OK, and/or
type the variable name into the box. See Figure 1-4.
Click Finish, and the library folder is linked in the project. See Figure 1-5.

NXP Semiconductors

11

Library integration into project (MCUXpresso IDE)

o

Folder —

Create a new folder resource. Ii .n_“

Enter or select the parent folder

twrkv31f120m_demo_apps_hello_world
[y
| =3 twrkw31f120m_demo_apps_hello_world

Folder name: RTCESL_LOC

() [= Use default location
) [Folder is not located in the file system (Virtual Folder)
@ (% Link to alternate location (Linked Folder)

RTCESL_LOC | Browse.. || Variables.. | I

Figure 1-4. Folder link

a5 twrkv31f120m_demo_apps_hello_world
s g’;ﬁ Binariez
> [t Includes
- 2 CMSIS

- 2 board

- 2 drivers

- 2 source

» [startup

- A2 utilities

> [= Debug

» = doc

> | RTCESL_LOC

Figure 1-5. Projects libraries paths

1.2.3 Library path setup

GFLIB requires MLIB to be included too. These steps show how to include all dependent
modules:

1. Right-click the MCUXpresso SDK project name node in the left-hand part and click
Properties, or select Project > Properties from the menu. The project properties
dialog appears.

2. Expand the C/C++ General node, and click Paths and Symbols.

In the right-hand dialog, select the Library Paths tab. See Figure 1-7.

4. Click the Add... button on the right, and a dialog appears.

(O8]

GFLIB User's Guide, Rev. 2, 11/2016
12 NXP Semiconductors

~ o

10.
11.
12.
13.
14.

Chapter 1 Library

Look for the RTCESL_LOC variable by clicking Variables..., and then finish the
path in the box by adding the following (see Figure 1-6): ${RTCESL_LOC}\MLIB.
Click OK, and then click the Add... button.

. Look for the RTCESL_LOC variable by clicking Variables..., and then finish the

path in the box by adding the following: ${RTCESL_LOC }\GFLIB.
Click OK, you will see the paths added into the list. See Figure 1-7.

" ——
" Add.. I — =3
Directory:
S{RTCESL_LOCHMLIB]

[7] Add te all configurations
[T Add to all languages

[= Is a workspace path

Variables...

Workspace...

File systern...

Cancel

o
-

Figure 1-6. Library path inclusion

e e =

type filter texdt Paths and Symbols Frm >
» Resource
Builders ik
. C/C++ Build Configuration: [DEbUg [Active] '] [Manage Configurations...]
4 C/C++ General
> Code Analysis
Documentation | @ Includesl # Symbols | =, Libraries| 1= Library Paths |B Source Location I @ References| |
File Types
Formatter (B ${RTCESL_LOCH\MLIB | Add. | |5
Indexer [P ${RTCESL_LOCNGFLIB -
Language Mappings |
Paths and Symbols -
Delete
Preprocessor Include Pi - [
Project References | 4
Run/Debug Settings 1
Move U
6] "Preprocessor Include Paths, Macros etc.” property page may define additional entries - |
1 = r ' [T | » |
® [QK] [Cancel l]

Figure 1-7. Library paths
After adding the library paths, add the library files. Click the Libraries tab. See
Figure 1-9.
Click the Add... button on the right, and a dialog appears.
Type the following into the File text box (see Figure 1-8): :mlib.a
Click OK, and then click the Add... button.
Type the following into the File text box: :gflib.a
Click OK, and you will see the libraries added in the list. See Figure 1-9.

GFLIB User's Guide, Rev. 2, 11/2016

NXP Semiconductors 13

A ————
Library integration into project (MCUXpresso IDE)

B Add..

File:
:mlib.a
[7] Add te all configurations

[T Add to all languages
[= Is a workspace path

Variables...

Workspace...

I“ [

File systern...

[ok || cancel

|

Figure 1-8. Library file inclusion

| (el Includesl # 5],rmbols| = Libraries |B Library Pathsl B

TEl :mlib.a
T gflib.a

Figure 1-9. Libraries

15. In the right-hand dialog, select the Includes tab, and click GNU C in the Languages
list. See Figure 1-11.
16. Click the Add... button on the right, and a dialog appears. See Figure 1-10.
17. Look for the RTCESL_LOC variable by clicking Variables..., and then finish the
path in the box to be: ${RTCESL_LOC }\MLIB\Include
18. Click OK, and then click the Add... button.
19. Look for the RTCESL_LOC variable by clicking Variables..., and then finish the
path in the box to be: ${RTCESL_LOC }\GFLIB\Include
20. Click OK, and you will see the paths added in the list. See Figure 1-11. Click OK.
i B Add directory path) M
Directory:
S{RTCESL_LOCAMLIBinclude]
[7] Add to all configurations R
[T Add to all Iangugages
[= Is a workspace path
| [OK J ’ Cancel l
~
Figure 1-10. Library include path addition
GFLIB User's Guide, Rev. 2, 11/2016
14 NXP Semiconductors

4
Chapter 1 Library

-
B Properties for twrkv31f120m_demo_apps_hello_world [. . ’ m‘ vhlﬁlg
type filter text Paths and Symbols =T v v
» Resource
Builders
. C/C++ Build Configuration: [Debug [Active] '] [Manage Configurations...]
a C/C++ General
» Code Analysis
Documentation @ Includes | # Symbols | =, Libraries I] Library Paths I 2 Source Location I @ Re‘Ferences|
I File Types
: Formatter Languages Include directeries Add...
Indexer S =
Additional Assem @,’ﬂProJHame}fsource -
: Edit...
| Language Mappings Assembly 5 /${ProjName}
Paths and Symbols GMNU € .
=L f$ProjName}/CMSIS Delete
I Preprocessor Include Pz gﬁ:P J'N :;’d .
. rojMame}/drivers
Praject References Export
| ! i . @;’ﬂProjName}fstartup
Run/Debug Settings
I 12 /${ProjName}/utilities
@;’ﬂProjName}fboard Maove Up
(=l ${RTCESL_LOCAMLIB\Include
- Move Down
(=l ${RTCESL_LOCNGFLIB\Include
[¢ /mxp/mecuxpresseide 10.0.0_344/ideftools/redlib/include
[¢ /mxp/mecuxpresseide 10.0.0_344/ide/tools/features/include
@ "Preprocessor Include Paths, Macros etc.” property page may define additional entries
| [¥] Show built-in values
I l E.E: Import Settings... l ’ ?& Export Settings...
g : ’Restore Defaults] l Apply]
I @' [oK] [Cancel] |

e —— — —— v,

Figure 1-11. Compiler setting

Type the #include syntax into the code where you want to call the library functions. In
the left-hand dialog, open the required .c file. After the file opens, include the following
lines into the #include section:

#include "mlib_FP.h"
#include "gflib FP.h"

When you click the Build icon (hammer), the project is compiled without errors.

1.3 Library integration into project (Kinetis Design Studio)

This section provides a step-by-step guide on how to quickly and easily include GFLIB
into an empty project or any MCUXpresso SDK example or demo application projects
using Kinetis Design Studio. This example uses the default installation path (C:\NXP
\RTCESL\CM7F_RTCESL_4.5_KDS). If you have a different installation path, use that
path instead. If you want to use an existing MCUXpresso SDK project (for example the
hello_world project) see Library path variable. If not, continue with the next section.

GFLIB User's Guide, Rev. 2, 11/2016
NXP Semiconductors 15

Library integration into project (Kinetis Design Studio)

1.3.1 Library path variable

To make the library integration easier, create a variable that will hold the information
about the library path.

1. Right-click the MyProject01 or MCUXpresso SDK project name node in the left-
hand part and click Properties, or select Project > Properties from the menu. A
project properties dialog appears.

2. Expand the Resource node and click Linked Resources. See Figure 1-12.

i A ™ B
& Properties for MyProjectO1 ‘ E@ﬂ
type filter text Linked Resources =l v

4 Resource

Linked Resources Path Variables | Linked Rescurces
Resource Filters Path variables specify locations in the file system, including other path variables with the syntax "S${VAR}".
Builders The locations of linked rescurces may be specified relative to these path variables,
> CfC++ Build Defined path variables for resource 'MyProject01":
> C/C++ General
) M Val Mew..,
Linux Tools Path - - aue W
Project References (= ECLIPSE_HOME CANAPVKDS_3.0.0eclipseh, Edit
Run/Debug Settings = PARENT_LOC CAKDSProjects\workspace.kds
- Task Repository = PROJECT_LOC CAKDSProjects\MyProject0l Remove
WikiText = WORKSPACE_LOC CAKDSProjects\workspace. kds
@ OK l [Cancel
L= .

Figure 1-12. Project properties
Click the New... button in the right-hand side.
4. In the dialog that appears (see Figure 1-13), type this variable name into the Name
box: RTCESL_LOC.
5. Select the library parent folder by clicking Folder..., or just type the following path
into the Location box: C:\NXP\RTCESL\CM7F _RTCESL 4.5 KDS. Click OK.

(O8]

GFLIB User's Guide, Rev. 2, 11/2016
16 NXP Semiconductors

4
Chapter 1 Library

Define a New Path Variable

Enter a new variable name and its associated location.

MName: RTCESL_LOC

Location: ICA\NXPARTCESLAC File.. || Folder. || Variable..
Resolved Location: C:\NXP\RTCESL\CM7F_RTCESL_4.3_KDS

@ [ok || Concel

Figure 1-13. New variable

6. Create such variable for the environment. Expand the C/C++ Build node and click

Environment.

Click the Add... button in the right-hand side.

In the dialog that appears (see Figure 1-14), type this variable name into the Name

box: RTCESL_LOC.

9. Type the library parent folder path into the Value box: C:\NXP\RTCESL

\CM7F_RTCESL_4.5_KDS.

10. Tick the Add to all configurations box to use this variable in all configurations. See
Figure 1-14.

11. Click OK.

12. In the previous dialog, click OK.

* N

l{ﬁ Properties for MyPn:g'ectD‘ A Pra—— -9 wm - - l‘._lﬂli|
type filter text Environment Loy
[» Resource

Builders
a4 C/C++ Build Configuration: |debug [Active] '] ’Manage Configurations...]
Build Variables
Envirenment
Legging . .
Environment variables to set
Settings
Toaol Chain Editar Variable Value Origin
Select...
-
(2] Edit...
RTCESL_LOC
CAMNXPVRTCESLACMTF_RTCESL_4.3_KDS Variables l Undefine l
Lo]

Figure 1-14. Environment variable

GFLIB User's Guide, Rev. 2, 11/2016
NXP Semiconductors 17

Library integration into project (Kinetis Design Studio)

1.3.2 Library folder addition

To use the library, add it into the Project tree dialog.

1. Right-click the MyProject01 or MCUXpresso SDK project name node in the left-
hand part and click New > Folder, or select File > New > Folder from the menu. A
dialog appears.

2. Click Advanced to show the advanced options.

. To link the library source, select the option Link to alternate location (Linked

Folder).

4. Click Variables..., select the RTCESL_LOC variable in the dialog, click OK, and/or
type the variable name into the box. See Figure 1-15.

5. Click Finish, and you will see the library folder linked in the project. See Figure
1-16.

(98]

. hl
PRISTRIRRS @ ——

Folder

—
Create a new folder resocurce, i .-_’

Enter or select the parent folder
MyProject0l
o

> 5 MyProject01
=+ RernoteSystemsTempFiles

Folder name: RTCESL_LOC

) = Use default location
[y Folder is not located in the file system (Virtual Folder)
@ (g Link te alternate lecation (Linked Folder)

RTCESL_LOC | Browse.. || Variables.. |
Cheoose file system:
Figure 1-15. Folder link

GFLIB User's Guide, Rev. 2, 11/2016
18 NXP Semiconductors

Chapter 1 Library

a 25 MyProject01
> [a)! Includes
¢ = Includes
» [= Project_Settings
> [Fg RTCESL_LOC
4 = Sources

+ [main.c

Figure 1-16. Projects libraries paths

1.3.3 Library path setup

GFLIB requires MLIB to be included too. These steps show how to include all dependent
modules:

1.

A

a

Right-click the MyProjectO1 or MCUXpresso SDK project name node in the left-
hand part and click Properties, or select Project > Properties from the menu. A
project properties dialog appears.

Expand the C/C++ General node, and click Paths and Symbols.

In the right-hand dialog, select the Library Paths tab. See Figure 1-18.

Click the Add... button on the right, and a dialog appears.

Look for the RTCESL_LOC variable by clicking Variables..., and then finish the
path in the box by adding the following (see Figure 1-17): ${RTCESL_LOC }\MLIB.
Click OK, and then click the Add... button.

Look for the RTCESL_LOC variable by clicking Variables..., and then finish the
path in the box by adding the following: ${RTCESL_LOC }\GFLIB.

Click OK, and the paths will be visible in the list. See Figure 1-18.

- ™
" Add.. 5
. aa——
Directory:
S{RTCESL_LOCHAMLIE|
[7] Add te all configurations
[T Add to all languages
[= Is a workspace path
[oK] [Cancel]

Figure 1-17. Library path inclusion

GFLIB User's Guide, Rev. 2, 11/2016

NXP Semiconductors 19

Library integration into project (Kinetis Design Studio)

10.
11.
12.
13.
14.

type filter text Paths and Symbols

> Resource
Builders

. C/C++ Build Configuration: ’Debug [Active]

'] [Manage Configurations...]

a4 C/C++ General
» Code Analysis

Documentation | (= Includesl # Symbols | = Libraries| B Library Paths |[B' Source Location | o References|

File Types

Formatter [P ${ProjDirPath}/Project_Settings/Linker_Files

Indexer [P ${RTCESL_LOCHMLIE

Add

Language Mappings | [P ${RTCESL_LOCNGFLIB

Edit...

Paths and Symbols

Preprocessor Include P:

Profiling Categories
Linux Tools Path

Delete

1

Export I

Figure 1-18. Library paths
After adding the library paths, add the library files. Click the Libraries tab. See

Figure 1-20.

Click the Add... button on the right, and a dialog appears.
Type the following into the File text box (see Figure 1-19): :mlib.a

Click OK, and then click the Add... button.

Type the following into the File text box: :gflib.a
Click OK, and you will see the libraries added in the list. See Figure 1-20.

B Add..

Igg_|

File:

:mlib.a

[7] Add te all configurations
[T Add to all languages

[= Is a workspace path

Variables...

Workspace...

File systern...

oK

J

Cancel]

Figure 1-19. Library file inclusion

| (el Includesl # 5ymbo|s| =i Libraries |B Library Pathsl =

T :mlib.a
= :gflib.a

Figure 1-20. Libraries
15. In the right-hand dialog, select the Includes tab, and click GNU C in the Languages

list. See Figure 1-22.

16. Click the Add... button on the right, and a dialog appears. See Figure 1-21.
17. Look for the RTCESL_LOC variable by clicking Variables..., and then finish the
path in the box to be: ${RTCESL_LOC }\MLIB\Include

GFLIB User's Guide, Rev. 2, 11/2016

20

NXP Semiconductors

4
Chapter 1 Library
18. Click OK, and then click the Add... button.
19. Look for the RTCESL_LOC variable by clicking Variables..., and then finish the
path in the box to be: ${RTCESL_LOC }\GFLIB\Include
20. Click OK, and you will see the paths added in the list. See Figure 1-22. Click OK.

4 ™

i Add directory path M
Directory:

S{RTCESL_LOCAMLIBinclude]

[7] Add te all configurations

[T Add to all languages

[= Is a workspace path

[oK l ’ Cancel l

Figure 1-21. Library include path addition

= Fropertes for NyPror

type filter text Paths and Symbels L=l v
> Resource
Builders
. C/C++ Build Configuration: [Debug [Active] 'l lManage Configurations...]
a C/C++ General
» Code Analysis
I Documentation (= Includes | # Symbols | =, Libraries | [Library Paths | 2 Source Location | =] References|
File Types
Formatter Languages Include directories Add...
Indexer Assemnbl el .
Language Mappings GNU C Y gf:;::z
—— GNU C+ (2 S{RTCESL_LOCAMLIB\include | Delete |
reprocessor Include Fi £ - Y
Pm;’i“ng Categories (= SIRTCESL LOCNGFLIB\include
Linux Tools Path [

Figure 1-22. Compiler setting

Type the #include syntax into the code. Include the library into the main.c file. In the left-
hand dialog, open the Sources folder of the project, and double-click the main.c file.
After the main.c file opens up, include the following lines in the #include section:

#include "mlib_ FP.h"
#include "gflib FP.h"

When you click the Build icon (hammer), the project will be compiled without errors.

1.4 Library integration into project (Keil pVision)

This section provides a step-by-step guide on how to quickly and easily include GFLIB
into an empty project or any MCUXpresso SDK example or demo application projects
using Keil pVision. This example uses the default installation path (C:\NXP\RTCESL

GFLIB User's Guide, Rev. 2, 11/2016
NXP Semiconductors 21

A ————
Library integration into project (Keil pVision)

\CM7F_RTCESL_4.5_KEIL). If you have a different installation path, use that path
instead. If any MCUXpresso SDK project is intended to use (for example hello_world
project) go to Linking the files into the project chapter otherwise read next chapter.

1.4.1 NXP pack installation for new project (without MCUXpresso
SDK)

This example uses the NXP MKV58F1MO0xxx22 part, and the default installation path
(CA\NXP\RTCESL\CM7F_RTCESL_4.5_KEIL) is supposed. If the compiler has never
been used to create any NXP MCU-based projects before, check whether the NXP MCU
pack for the particular device is installed. Follow these steps:

1. Launch Keil uVision.

2. In the main menu, go to Project > Manage > Pack Installer....

3. In the left-hand dialog (under the Devices tab), expand the All Devices > Freescale
(NXP) node.

Look for a line called "KVxx Series" and click it.

In the right-hand dialog (under the Packs tab), expand the Device Specific node.
Look for a node called "Keil::Kinetis_ KVxx_DFP." If there are the Install or Update
options, click the button to install/update the package. See Figure 1-23.

7. When installed, the button has the "Up to date" title. Now close the Pack Installer.

AN

5 Pack Installer - C:\Keil_vS\VARM\PACK. (=[] =
File Packs Window Help
¥ | Device: Freescale - KVix Series
ﬂ Devices Boards ﬂ ﬂ Packs Examples ﬂ
| Search: - X Pack Action Description
Toieg /| Summary =I-Device Specific 1Pack
I © @ Atmel 257 Dewices =] +1- Keil:Kinetis KVia DFP | Install | Freescale Kinetis KV Series Device Support
% Freescale 234 Devices =) Generic 10 Packs
442 K Series T Device - ARM::CMSIS @ Up to date | CMSIS (Cortex Microcontroller Software Interface Standard)
w-%2 KOO Series 2 Devices +-Keil: ARM_Compiler @ Up to date | Keil ARM Compiler extensions
4 %2 K10 Series 23 Devices +I-KeilzJansson & _Install Jansson is a C library for encoding, decoding and manipula
2% K20 Series H1 Devices - Keil:MDK-Middleware | Update | Keil MDK-ARM Professional Middleware for ARM Cortex-M
4 %2 K30 Series & Devices +1- Keil:MDK-Network_DS Install Keil MDK-ARM Professional Middleware Dual-Stack IPvd/IP
w-%2 K40 Series 5 Devices - wIPz:IwIP @ Install IwlP is a light-weight implementation of the TCP/IP protocy
4 %2 K50 Series 1 Devices +I-Micrium:RTOS & _Install Micrium software components
w-%2 K50 Series 18 Devices +I-Oryx-Embedded:Midd... @ Install Middleware Package (CycloneTCP, CycloneS5sL and Cyclon
4 %2 K70 Series + Devices - wolfSSL:CyaSsL & _Install Light weight SSL/TLS and Crypt Library for Embedded Syste
2% KB Series 2 Devices | +I-YOGITECH:fRSTLAR... |y Install VOGITECH fRSTL Functional Safety EVAL Saftware Pack for
“5 KEAoc Series 6 Devices
#- KExx Series 11 Devices
7 Ko« Series 54 Devices
#-H Kbt Series 14 Devices
7 Kiboc Series 26 Devices
#-H Kihee Series 8 Devices
+ “1 WPR1516 Series |1 Device
& U i nmie d || K o
Output ax
Refresh Pack descriptions
Update available for Keil:: MDK-Middleware (installed: 6.4.0, available: 7.0.0-beta)
Ready ONLINE

Figure 1-23. Pack Installer

GFLIB User's Guide, Rev. 2, 11/2016
22 NXP Semiconductors

4
Chapter 1 Library

1.4.2 New project (without MCUXpresso SDK)

To start working on an application, create a new project. If the project already exists and
is opened, skip to the next section. Follow these steps to create a new project:
1. Launch Keil pVision.
2. In the main menu, select Project > New uVision Project..., and the Create New
Project dialog appears.
3. Navigate to the folder where you want to create the project, for example C:
\KeilProjects\MyProjectO1. Type the name of the project, for example MyProjectO1.
Click Save. See Figure 1-24.

E Create New Project

. v Computer » Systemn (C) » KeilProjects » MyProjectdl - Search MyProject01

File name: MyProject0l

Save as type: [Project Files (*.uvproj; *.uvprox)

*. Browse Folders

Figure 1-24. Create New Project dialog
In the next dialog, select the Software Packs in the very first box.
Type " into the Search box, so that the device list is reduced to the devices.
Expand the node.

Click the MKV58F1MO0xxx22 node, and then click OK. See Figure 1-25.

CPU |

Nowns

ISoﬂware Packs LI

Vendor: Freescale
Device: MKVBEF1Mbeo22

Toolset: ARM
Search: I
Diescription:
% Freescale ;I The Kinetis K\ family of MCU is a high-peformance solution offering -«
= V%g Kok Seri exceptional precigion, sensing and control targeting Industrial Motor
L EMES Control, Industrial Drives and Automation and Power Conversion
“')Eg KVlx applications.
v{g V3 Buitt upon the ARM Cortex-M7 core running at 240 MHz with single

precision floating point unit.

#% Kvdx It features high resolution pulse-width modulation (PWM)with 312
"‘73 picosecond resolution, 4x 12-bit analog-to-digital converters (ADCs)

= KVGx zampling at 5 mega samples per second (MS/s), 3 FlexCAN modules,

£ MEVSEFLMDaaa2 optional Bthemet Communications and comprehensive enablement

suite from Freescale and third-party rezources including reference
€1 MKVS6F5120022 designs, software libraries and motor corfiguration tools.
€

Figure 1-25. Select Device dialog

GFLIB User's Guide, Rev. 2, 11/2016
NXP Semiconductors 23

Library integration into project (Keil pVision)

8. In the next dialog, expand the Device node, and tick the box next to the Startup node.

See Figure 1-26.
9. Expand the CMSIS node, and tick the box next to the CORE node.

T

Software Component Sel. Variant Version Description
= . CMSIS Cortex Microcontreller Software Interface Components
¥ CORE i 410 CMSIS-CORE for Cortex-M. 5C000. and SC300
¥ DsSP r 145 CMSIS-DSP Library for Cortex-M, SC000, and SC300
€ RTOS (APD) 10 CMSIS-RTOS APT for Cortex-M. 5C000. and 5C300
4 CMSIS Driver Unified Device Drivers compliant to CMSIS-Driver Specifications
& Compiler ARM Compiler Software Extensions
= ’ Device Startup, System Setup
¥ Startup g 100 System Startup for Kinetis KV58 220MHz devices devices devices
’ File System MDE-Pro 640 File Access on various storage devices
’ Graphics MDK-Pro 5261 User Interface on graphical LCD displays
’ Network MDK-Pro 640 1P Networking using Ethernet or Serial protocols
. UsB MDK-Pro G.4.0 USE Communication with varicus device classes

Figure 1-26. Manage Run-Time Environment dialog
10. Click OK, and a new project is created. The new project is now visible in the left-
hand part of Keil uVision. See Figure 1-27.

Ez CihKeilProjects\MyProject01\MyProjectd Luvprojx - u\ﬁsiur]
 — — e — —

File Edit Wiew Project Flash Debug Peripherals Tool
NS @] 3 B | | ?
e | 8 Targetn [=] & |
Project 1 @
= Project: MyProject0l
-4~ Targetl
[J Source Group 1
& cmsis
=9 Device
|] startup_MKVS8F22.s (Startup)
|1 system_MKV58F22.c (Startup)
|1 system_MKVS8F22.h (Startup)

Figure 1-27. Project
11. In the main menu, go to Project > Options for Target 'Targetl'..., and a dialog
appears.
12. Select the Target tab.
13. Select Use Single Precision in the Floating Point Hardware option. See Figure 1-27.

— Code Generation
ARM Compiler: IUse default compiler version LI

[~ Use Cross-Module Optimization
™ Use MicroLIB ™ BigEndian

Floating Poirt Hardware: Use Single Precision [

Figure 1-28. FPU

GFLIB User's Guide, Rev. 2, 11/2016
24 NXP Semiconductors

4
Chapter 1 Library

1.4.3 Linking the files into the project

GFLIB requires MLIB to be included too. The following steps show how to include all
dependent modules.

To include the library files in the project, create groups and add them.

1. Right-click the Target 1 node in the left-hand part of the Project tree, and select Add
Group... from the menu. A new group with the name New Group is added.

2. Click the newly created group, and press F2 to rename it to RTCESL.

3. Right-click the RTCESL node, and select Add Existing Files to Group 'RTCESL'...
from the menu.

4. Navigate into the library installation folder C:\NXP\RTCESL
\CM7F_RTCESL_4.5 KEIL\MLIB\Include, and select the mlib_FP.h file. If the file
does not appear, set the Files of type filter to Text file. Click Add. See Figure 1-29.

[mlib_FP

(2 MLIB_Log2_U16

[MLIB_Mac_a32

[2 MLIB_Mac_F16_Asmi
[MLIB_Mac_F32

(2 MLIB_Mac_F32_Asmi
[MLUIB_Mac_FLT

[MLIB_Mact_F32

[MLIB_Macd_F32_Asmi

[a1 1D Wt C1 T
4 I

1/22/2016 1:15 PM
6/20/2016 9:49 AM
6,/20/2016 9:49 AM
7/25/2016 8:27 AM
6,/20/2016 9:49 AM
7/25/2016 8:27 AM
6,/20/2016 9:49 AM
6/20/2016 9:49 AM
7/25/2016 8:27 AM

ENNTE LD AR

File name: |m|ib_FF'

Files of type: |Text file {*bd; =h; “inc)

Look in: | J Include j [=% BB
Mame = Date modified i
Q{ MLIB_Dinv1Q_F32 6/20/2016 9:49 AM

-

k

j Close

Figure 1-29. Adding .h files dialog
5. Navigate to the parent folder C:\NXP\RTCESL\CM7F_RTCESL_4.5_KEIL\MLIB,

and select the mlib.lib file. If the file does not appear, set the Files of type filter to
Library file. Click Add. See Figure 1-30.

GFLIB User's Guide, Rev. 2, 11/2016

NXP Semiconductors

25

Library integration into project (Keil pVision)

Lookin: | J. MLIB ~| & & e B
MName : Date modified Ty
JInclude 20.10.2014 15:37 Fi
|| MLIB.lib 16.10.2014 9:19 LI
1| mn 3
File name: |MLIB.Iib

Files of type: | Library file (*ib) <] e |

Figure 1-30. Adding .lib files dialog

6. Navigate into the library installation folder C:\NXP\RTCESL
\CM7F_RTCESL_4.5_KEIL\GFLIB\Include, and select the gflib_FP.h file. If the
file does not appear, set the Files of type filter to Text file. Click Add.

7. Navigate to the parent folder C:\NXP\RTCESL\CM7F_RTCESL_4.5_KEIL\GFLIB,
and select the gflib.lib file. If the file does not appear, set the Files of type filter to
Library file. Click Add.

8. Now, all necessary files are in the project tree; see Figure 1-31. Click Close.

I eroject 1B
=% Project: MyProject01
=g Targetl
I Source Group1
=l RTCESL
_1 mlib_FP.h
.1 MUB.lib
_1 gflib_FP.h
1 GFLIB.lib
& cMmsis
=] ’ Device

Figure 1-31. Project workspace

1.4.4 Library path setup
The following steps show the inclusion of all dependent modules.

1. In the main menu, go to Project > Options for Target "Targetl'..., and a dialog

appears.
2. Select the C/C++ tab. See Figure 1-32.

GFLIB User's Guide, Rev. 2, 11/2016
26 NXP Semiconductors

4
Chapter 1 Library

3. In the Include Paths text box, type the following paths (if there are more paths, they
must be separated by ';') or add them by clicking the ... button next to the text box:
e "C:\NXP\RTCESL\CM7F_RTCESL_4.5_KEIL\MLIB\Include"
e "C:\NXP\RTCESL\CM7F_RTCESL_4.5_KEIL\GFLIB\Include"
4. Click OK.
5. Click OK in the main dialog.

s -
Options for Target 'Target 1 E

Device I Targetl Outpl_rtl Ustingl User C/Ce+ |A5m I Unkerl Debugl Ltilties I

— Preprocessor Symbols

Define: I
Undefine: I

— Language / Code Generation
I~ Strict ANSIC ST

Optimization: Im [~ Enum Container always int IP‘" Wamings 'I

[~ Optimize for Time [™ Plain Charis Signed [Thurb Mode

[~ Split Load and Store Multiple ™ Read-Only Posttion Independent [Mo Auto Includes

[One ELF Section per Function [Read-Write Position Independent [C9%9 Mode

Include ||
Paths

Misc I
Caontrols

Compiler |- —cpu Cortex-M0+ -D__EVAL g 00 —apcs=intenwork
cortral || C:\KeilProjects MyProject01WRTE
string

Defaults |

Figure 1-32. Library path addition

Type the #include syntax into the code. Include the library into a source file. In the new
project, it is necessary to create a source file:

1. Right-click the Source Group 1 node, and Add New Item to Group 'Source Group
I'... from the menu.

2. Select the C File (.c) option, and type a name of the file into the Name box, for
example 'main.c'. See Figure 1-33.

GFLIB User's Guide, Rev. 2, 11/2016
NXP Semiconductors 27

A ————
Library integration into project (IAR Embedded Workbench)

Add MNew Item to Group "Source Group 1°

Create a new C source file and add it to the projed
C | CFie ()

@ C++ File (cpp)
\ﬂ Asm File (.5)

\ﬂ Header File (h)
é Teat File (i)
@ Image File (%)
7‘@ User Code Template

Type:
Marme: | i, &
Location: | C:\KeilProjects\MyProjectd1
|
Add Close |
R —

Figure 1-33. Adding new source file dialog
3. Click Add, and a new source file is created and opened up.
4. In the opened source file, include the following lines into the #include section, and
create a main function:

#include "mlib FP.h"
#include "gflib FP.h"

int main (void)

{

while (1) ;

When you click the Build (F7) icon, the project will be compiled without errors.

1.5 Library integration into project (IAR Embedded
Workbench)

This section provides a step-by-step guide on how to quickly and easily include the
GFLIB into an empty project or any MCUXpresso SDK example or demo application
projects using IAR Embedded Workbench. This example uses the default installation
path (C:\NXP\RTCESL\CM7F_RTCESL_4.5_IAR). If you have a different installation
path, use that path instead. If any MCUXpresso SDK project is intended to use (for
example hello_world project) go to Linking the files into the project chapter otherwise
read next chapter.

GFLIB User's Guide, Rev. 2, 11/2016
28 NXP Semiconductors

Chapter 1 Library

1.5.1 New project (without MCUXpresso SDK)

This example uses the NXP MKV58F1MO0xxx22 part, and the default installation path
(CANXP\RTCESL\CM7F_RTCESL_4.5_IAR) is supposed. To start working on an
application, create a new project. If the project already exists and is opened, skip to the
next section. Perform these steps to create a new project:

1. Launch IAR Embedded Workbench.

2. In the main menu, select Project > Create New Project... so that the "Create New

Project" dialog appears. See Figure 1-34.

S
Create New Project A ﬁ

Taol chain: [&RM -

Project templates:
- asm P
- C++
Il |55 ‘_

DLIE [C, C++ with exceptions and RTTI] | &
DLIE [C, Extended Embedded C++)

R e |

m

1

Dezcription:
C project uzing default tool gettings inchuding an empty main.c file.

[oK] [Cancel]

Figure 1-34. Create New Project dialog

3. Expand the C node in the tree, and select the "main" node. Click OK.

4. Navigate to the folder where you want to create the project, for example, C:
\[ARProjects\MyProjectO1. Type the name of the project, for example, MyProjectO1.
Click Save, and a new project is created. The new project is now visible in the left-
hand part of IAR Embedded Workbench. See Figure 1-35.

GFLIB User's Guide, Rev. 2, 11/2016
NXP Semiconductors 29

A ————
Library integration into project (IAR Embedded Workbench)

& IAR Embedded Workbench ID

Eile Edit View Project Simulator JTools Window Help
Dedd | S 2R o~ ~ 4
Workspace x main.cl

lDebug v]

Files £ B P

E}& JMyProjectd] -Deb__ | v | | return 0;

FrIEin.c *]

L@ 3 Output

Figure 1-35. New project
5. In the main menu, go to Project > Options..., and a dialog appears.
6. In the Target tab, select the Device option, and click the button next to the dialog to
select the MCU. In this example, select NXP > KV5x > NXP MKV58F1MO0Oxxx22.
Select VFPvV5 single precision in the FPU option. Click OK. See Figure 1-36.

- ™y
e~

Categony:

Static Analysis
Runtime Checking
C/C-++ Compiler Target | Qutput | Library Configuration | Library Options | MISRAC.200/ 4 | »
Assembler
Qutput Converter
Custom Build
Build Actions 71 Caore Cortex-M7
Linker -
Debugger @ Device MXP MKV5EF1MBocc22
Simulator
Angel
CMS3IS DAP
GDE Server
IAR ROM-monitor ©®) Little FPU
I4et/TTAGIet Big -
J-Link/1-Trace BE3
TI Stellaris @ BES
Macraigor - =
PE micro
RDI
STLIMK
Third-Party Driver
TI XDS [0K

Processor variant

Endian mode Floating poirt settings

D reqisters 16

Advanced SIMD (NEON)

] [Cancel

Figure 1-36. Options dialog

GFLIB User's Guide, Rev. 2, 11/2016
30 NXP Semiconductors

Chapter 1 Library

1.5.2 Library path variable

To make the library integration easier, create a variable that will hold the information
about the library path.

1.

2.

e

In the main menu, go to Tools > Configure Custom Argument Variables..., and a
dialog appears.

Click the New Group button, and another dialog appears. In this dialog, type the
name of the group PATH, and click OK. See Figure 1-37.

B ' Configure Custom Argument Variables % i

Workspace | Global

Ena cro
Enable Group

MNew Group m

|'\
‘ Flanie. ..
.

Mame: PATH

lable...

OK] l Cancel e

prt...

Expand/Collapse Al

[Hide disabled groups

[OK] [Cancel

Figure 1-37. New Group

. Click on the newly created group, and click the Add Variable button. A dialog

appears.

Type this name: RTCESL_LOC

To set up the value, look for the library by clicking the '..." button, or just type the
installation path into the box: C:\NXP\RTCESL\CM7F_RTCESL_4.5_IAR. Click
OK.

In the main dialog, click OK. See Figure 1-38.

GFLIB User's Guide, Rev. 2, 11/2016

NXP Semiconductors 31

Library integration into project (IAR Embedded Workbench)

B ' Configure Custom Argument Variables P
Workspace | Global
[pATH Disable Group
Add Variable S
MName: RCTESL_LOC
Value: C\WAP\RTCESL\CM7E_RCTESL 4.3 IAR| D
[0K] [Cancel]

Figure 1-38. New variable

1.5.3 Linking the files into the project

GFLIB requires MLIB to be included too. The following steps show the inclusion of all
dependent modules.

To include the library files into the project, create groups and add them.

1. Go to the main menu Project > Add Group...

2. Type RTCESL, and click OK.

3. Click on the newly created node RTCESL, go to Project > Add Group..., and create
a MLIB subgroup.

4. Click on the newly created node MLIB, and go to the main menu Project > Add
Files... See Figure 1-40.

5. Navigate into the library installation folder C:\NXP\RTCESL
\CM7F_RTCESL_4.5_TAR\MLIB\Include, and select the mlib_FP.h file. (If the file
does not appear, set the file-type filter to Source Files.) Click Open. See Figure 1-39.

6. Navigate into the library installation folder C:\NXP\RTCESL
\CM7F_RTCESL 4.5 TAR\MLIB, and select the mlib.a file. If the file does not
appear, set the file-type filter to Library / Object files. Click Open.

e i
rstem (C:) » NXP » RTCESL » CM7F_RTCESL 4.3_IAR » MLIB » Include

e —

it Mame Date modified Type
.| mlib_FRh 16.6.2015 13:17 H File
| MLIB_Log2_U16.h 16.6.201513:17 H File

Figure 1-39. Add Files dialog
7. Click on the RTCESL node, go to Project > Add Group..., and create a GFLIB

subgroup.

GFLIB User's Guide, Rev. 2, 11/2016
32 NXP Semiconductors

4
Chapter 1 Library

8. Click on the newly created node GFLIB, and go to the main menu Project > Add
Files....

9. Navigate into the library installation folder C:\NXP\RTCESL
\CM7F_RTCESL_4.5_IAR\GFLIB\Include, and select the gflib_FP.h file. (If the file
does not appear, set the file-type filter to Source Files.) Click Open.

10. Navigate into the library installation folder C:\NXP\RTCESL
\CM7F_RTCESL_4.5_IAR\GFLIB, and select the gflib.a file. If the file does not
appear, set the file-type filter to Library / Object files. Click Open.

11. Now you will see the files added in the workspace. See Figure 1-40.

Workspace x
[Debug v]
Files o H
& (F MyProject01 - Debug * v
- CIRTCESL
FacomuB
| — COMUB.A
| Y &l mlib_FF.h
o O
F— [GFLIB.a
L— B gflib_FF.h
FrIEin.c
& [Cutput

Figure 1-40. Project workspace

1.5.4 Library path setup
The following steps show the inclusion of all dependent modules:

1. In the main menu, go to Project > Options..., and a dialog appears.
2. In the left-hand column, select C/C++ Compiler.
3. In the right-hand part of the dialog, click on the Preprocessor tab (it can be hidden in
the right; use the arrow icons for navigation).
4. In the text box (at the Additional include directories title), type the following folder
(using the created variable):
e $SRTCESL_LOCS$\MLIB\Include
e SRTCESL_LOC$\GFLIB\Include
5. Click OK in the main dialog. See Figure 1-41.

GFLIB User's Guide, Rev. 2, 11/2016
NXP Semiconductors 33

A ————
Library integration into project (IAR Embedded Workbench)

r N

Cateqgony: Factory Settings

General Options [T Multi-file Compilation

Static Analysis Discard Unuzed Publics

Runtime Checking

| Language 1 I Language 2 I Code IOptirnizations IDutput I List | Hlatalin
Assembler
Output Conwverter
Custom Build
Build Actions [lgnore standard include directories
Linker
Debugger

Additional include directories: fone per line)

SRTCESL_LOCS\MLIBYnclude - E]

Simulztor SRTCESL_LOCSWSFLIENnclude|
Angel

CMSIS DAP
GOB Server i

IAR ROM-monitor Preinclude file:

I4et/TTAGjet - E]
J-Link{1-Trace
TI Stellaris Defined symbols: {one per ling)

Macraigor . [Tl Preprocessor output to file
PE micro Preserve comments

RDI Generate Hine directives
ST-LIMNK
Third-Party Driver
TLXDS

[Ok] l Cancel

Figure 1-41. Library path adition

Type the #include syntax into the code. Include the library included into the main.c file.
In the workspace tree, double-click the main.c file. After the main.c file opens up, include
the following lines into the #include section:

#include "mlib_FP.h"
#include "gflib_ FP.h"

When you click the Make icon, the project will be compiled without errors.

GFLIB User's Guide, Rev. 2, 11/2016
34 NXP Semiconductors

Chapter 2
Algorithms in detail

2.1 GFLIB_Sin

The GFLIB_Sin function implements the polynomial approximation of the sine function.
It provides a computational method for the calculation of a standard trigonometric sine
function sin(x), using the 9" order Taylor polynomial approximation. The Taylor
polynomial approximation of a sine function is expressed as follows:

. _ox3 x5 X7 X8
Sln(x)fx-ﬁﬂ-ﬁ-ﬁﬁ-ﬁ

Equation 1.
sin(x) = x(d, + xXdy+ xXds+ xXd7 + x2dy))))

Equation 2.

where the constants are:

The fractional arithmetic is limited to the range <-1 ; 1), so the input argument can only
be within this range. The input argument is the multiplier of n: sin(rt - x), where the user
passes the x argument. Example: if the input is -0.5, it corresponds to -0.57.

The fractional function sin(r - x) is expressed using the 9™ order Taylor polynomial as
follows:

sin(x) = x(c; + xc3+ xXcs+ x¥(c7+ x°¢o)))

Equation 3.

where:

GFLIB User's Guide, Rev. 2, 11/2016
NXP Semiconductors 35

A
GFLIB_Sin

c=dml=n

3

C3: d3.7f3: - ?
5
C5= d5.7T5: %
7

- _
Co=dom? =7

2.1.1 Available versions
The function is available in the following versions:

 Fractional output - the output is the fractional portion of the result; the result is
within the range <-1 ; 1). The result may saturate.

* Floating-point output - the output is the floating-point result within the range <-1.0 ;
1.0>.

* Floating-point output with accumulator input - the output is the floating-point result
within the range <-1.0 ; 1.0>. The input is the accumulator angle in radians divided
by .

The available versions of the GFLIB_Sin function are shown in the following table:

Table 2-1. Function versions

Function name | Input type | Result type Description

GFLIB_Sin_F16 frac16_t frac16_t Calculation of the sin(m - x), where the input argument is a 16-bit fractional
value normalized to the range <-1 ; 1) that represents an angle in radians
within the range <-m; m). The output is a 16-bit fractional value within the
range <-1; 1).

GFLIB_Sin_FLT float_t float_t Calculation of the sin(x), where the input argument is a 32-bit single
precision floating-point value in radians within the range <-m; m). The output
is a 32-bit single precision floating-point value within the range <-1.0 ; 1.0>.

GFLIB_Sin_FLTa |acc32_t float_t Calculation of the sin(m - x), where the input argument is a 32-bit
accumulator value where the fractional part <-1 ; 1) represents the angle
within the range <-m1;). The output is a 32-bit single precision floating-
point value within the range <-1.0 ; 1.0>.

2.1.2 Declaration

The available GFLIB_Sin functions have the following declarations:

fraclé_t GFLIB_Sin_Fl16 (fraclé_t flé6Angle)
float t GFLIB Sin FLT(float t fltAngle)
float t GFLIB Sin FLTa(acc32 t a32Angle)

GFLIB User's Guide, Rev. 2, 11/2016
36 NXP Semiconductors

4
Chapter 2 Algorithms in detail

2.1.3 Function use

The use of the GFLIB_Sin function is shown in the following example:

#include "gflib.h"

static fraclé t fl6Result;
static fraclée_t fl6Angle;

void main (void)
fléAngle = FRAC16(0.333333); /* fl6Angle = 0.333333 [60°] */

/* fl6Result = sin(flé6Angle); (m * flé6Angle[rad]) = deg * (m / 180) */
fl6Result = GFLIB Sin F16 (fl16Angle) ;

}

2.2 GFLIB Cos

The GFLIB_Cos function implements the polynomial approximation of the cosine
function. This function computes the cos(x) using the ninth-order Taylor polynomial
approximation of the sine function, and its equation is as follows:

cos(x) = sin[% +M]
Equation 4.

Because the fractional arithmetic is limited to the range <-1 ; 1), the input argument can
only be within this range. The input argument is the multiplier of n: cos(m - x), where the
user passes the x argument. For example, if the input is -0.5, it corresponds to -0.57.

2.2.1 Available versions
This function is available in the following versions:

* Fractional output - the output is the fractional portion of the result; the result is
within the range <-1 ; 1). The result may saturate.

* Floating-point output - the output is the floating-point result within the range <-1.0 ;
1.0>.

* Floating-point output with accumulator input - the output is the floating-point result
within the range <-1.0 ; 1.0>. The input is the accumulator angle in radians divided
by m.

GFLIB User's Guide, Rev. 2, 11/2016
NXP Semiconductors 37

A
GFLIB_Tan

The available versions of the GFLIB_Cos function are shown in the following table:

Table 2-2. Function versions

Function name Input type | Result type Description

GFLIB_Cos_F16 frac16_t frac16_t Calculation of cos(m - x), where the input argument is a 16-bit fractional
value, normalized to the range <-1 ; 1) that represents an angle in radians
within the range <- m;). The output is a 16-bit fractional value within the
range <-1; 1).

GFLIB_Cos_FLT |float_t float_t Calculation of cos(x), where the input argument is a 32-bit single precision
floating-point value in radians within the range <-m;). The output is a 32-
bit single precision floating-point value within the range <-1.0; 1.0>.

GFLIB_Cos_FLTa |acc32_t float_t Calculation of the cos(m - x), where the input argument is a 32-bit
accumulator value where the fractional part <-1 ; 1) represents the angle
within the range <-;). The output is a 32-bit single precision floating-
point value within the range <-1.0 ; 1.0>.

2.2.2 Declaration

The available GFLIB_Cos functions have the following declarations:

fraclé_t GFLIB_Cos_F16 (fraclé_t flé6Angle)
float t GFLIB Cos FLT(float t fltAngle)
float t GFLIB Cos FLTa(acc32 t a32Angle)

2.2.3 Function use

The use of the GFLIB_Cos function is shown in the following example:

#include "gflib.h"

static fraclé t fl6Result;
static fraclée_t fl6Angle;

void main (void)
fléAngle = FRAC16(0.333333); /* fl6Angle = 0.333333 [60°] */

/* fl6Result = cos(fléAngle); (m * fléAngle[rad]) = deg * (m / 180) */
fl6Result = GFLIB Cos_ F16 (fl6Angle) ;

2.3 GFLIB_Tan

GFLIB User's Guide, Rev. 2, 11/2016
38 NXP Semiconductors

4
Chapter 2 Algorithms in detail

The GFLIB_Tan function provides a computational method for calculation of a standard
trigonometric tangent function tan(x), using the piece-wise polynomial approximation.
Function tan(x) takes an angle and returns the ratio of two sides of a right-angled triangle.
The ratio is the length of the side opposite the angle divided by the length of the side
adjacent to the angle.

sin(x)

tan(x) = o5

Equation 5.

Because both sin(x) and cos(x) are defined in interval <-m ; >, the function tan(x) is
equal to zero when sin(x)=0 and is equal to infinity when cos(x)=0. The graph of tan(x) is
shown in the following figure:

Figure 2-1. Course of the function GFLIB_Tan

The fractional arithmetic is limited to the range <-1 ; 1) so the input argument can only be
within this range. The input argument is the multiplier of n: tan(n - X) where you pass the
x argument. Example: if the input is -0.5, it corresponds to -0.57. The output of the
function is limited to the range <-1 ; 1) for the fractional arithmetic. For the points where
the function is not defined, the output is fractional -1.

2.3.1 Available versions

The function is available in the following versions:

GFLIB User's Guide, Rev. 2, 11/2016
NXP Semiconductors 39

GFLIB_Tan

* Fractional output - the output is the fractional portion of the result; the result is
within the range <-1 ; 1). The result may saturate.

* Floating-point output - the output is the floating-point result.

* Floating-point output with accumulator input - the output is the floating-point result.
The input is the accumulator angle in radians divided by .

The available versions of the GFLIB_Tan function are shown in the following table:

Table 2-3. Function versions

Function name | Input type | Result type Description

GFLIB_Tan_F16 |frac16_t frac16_t Calculation of the tan(m - x) where the input argument is a 16-bit fractional
value normalized to the range <-1 ; 1) that represents an angle in radians
within the range <-1 ; 7). The output is a 16-bit fractional value within the

range <-1; 1).

GFLIB_Tan_FLT |float_t float_t Calculation of the tan(x) where the input argument is a 32-bit single
precision floating-point value in radians within the range <-1; m). The
output is a 32-bit single precision floating-point value within the full range.

GFLIB_Tan_FLTa |acc32_t float_t Calculation of the tan(m - x), where the input argument is a 32-bit
accumulator value where the fractional part <-1 ; 1) represents the angle
within the range <-11 ;). The output is a 32-bit single precision floating-
point value within the full range.

2.3.2 Declaration

The available GFLIB_Tan functions have the following declarations:

fraclé_t GFLIB_Tan_F16 (fraclé_t flé6Angle)
float t GFLIB Tan FLT(float t fltAngle)
float t GFLIB Tan FLTa(acc32 t a32Angle)

2.3.3 Function use

The use of the GFLIB_Tan function is shown in the following example:

#include "gflib.h"

static fraclé t fl6Result;
static fraclée_t fl6Angle;

void main (void)
fl16Angle = FRAC16(0.1); /* fl6Angle = 0.1 [18°] */

/* fl6Result = tan(fléAngle); (m * flé6Angle[rad]) = deg * (m / 180) */
fl6Result = GFLIB Tan F16 (fl6Angle) ;

GFLIB User's Guide, Rev. 2, 11/2016
40 NXP Semiconductors

Chapter 2 Algorithms in detail

2.4 GFLIB_Asin

The GFLIB_Asin function provides a computational method for calculation of a standard
inverse trigonometric arcsine function arcsin(x), using the piece-wise polynomial
approximation. Function arcsin(x) takes the ratio of the length of the opposite side to the
length of the hypotenuse and returns the angle.

arcsin(x)

y=

=] -0.8 -0.6 -0.4 -0.2 0 0.2 04 0.6 0.8 1

Figure 2-2. Course of the function GFLIB_Asin

The fractional arithmetic is limited by the range <-1;1) so the output can only be within
this range. This range corresponds to the angle <-1;1). Example: if the output is -0.5 it
corresponds to -0.57.

2.4.1 Available versions
The function is available in the following versions:

* Fractional output - the output is the fractional portion of the result; the result is
within the range <-1;1). The result may saturate.
 Floating point output - the output is the floating point result within the range <-m;m>.

GFLIB User's Guide, Rev. 2, 11/2016
NXP Semiconductors 41

GFLIB_Acos

The available versions of the GFLIB_Asin function are shown in the following table:

Table 2-4. Function versions

Function name | Input type | Result type Description

GFLIB_Asin_F16 |frac16_t frac16_t Calculation of the arcsin(x) / m where the input argument is a 16-bit
fractional within the range <-1;1). The output is a 16-bit fractional value
within the range <-1;1) that represents an angle in radians within the range
<-TT;T).

GFLIB_Asin_FLT |float_t float_t Calculation of the arcsin(x) where the input argument is a 32-bit single
precision floating point value within the range <-1;1>. The output is a 32-bit
single precision floating point value within the range <-m;m>.

2.4.2 Declaration

The available GFLIB_Asin functions have the following declarations:

fraclé_t GFLIB_Asin Fl16(fraclée_t fléval)
float t GFLIB Asin FLT(float t fltVal)

2.4.3 Function use

The use of the GFLIB_Asin function is shown in the following example:

#include "gflib.h"

static fraclée t fl6Result;
static fraclée t fléValue;

void main (void)
fl16value = FRAC16(0.5); /* fl6vValue = 0.5 */

/* fl6Result = arcsin(fl6Value); */
fl6Result = GFLIB_Asin Fl16(fl6Value) ;

2.5 GFLIB Acos

The GFLIB_Acos function provides a computational method for calculation of a standard
inverse trigonometric arccosine function arccos(x), using the piece-wise polynomial
approximation. Function arccos(x) takes the ratio of the length of the adjacent side to the
length of the hypotenuse and returns the angle.

GFLIB User's Guide, Rev. 2, 11/2016
42 NXP Semiconductors

Chapter 2 Algorithms in detail

35

arccos(x)

y=

-0.5

The fractional arithmetic is limited by the range <-1;1) so the output can only be within

-0.8

-0.6 -0.4

-0.2 0 0.2 04 0.6 0.8 1

Figure 2-3. Course of the function GFLIB_Acos

this range. This range corresponds to the angle <-1;1). Example: if the output is -0.5 it
corresponds to -0.57.

2.5.1 Available versions

The function is available in the following versions:

* Fractional output - the output is the fractional portion of the result; the result is
within the range <-1;1). The result may saturate.
* Floating point output - the output is the floating point result within the range <-m;m>.

The available versions of the GFLIB_Acos function are shown in the following table:

Table 2-5. Function versions

Function name

Input type

Result type

Description

GFLIB_Acos_F16 |frac16_t

frac16_t

Calculation of the arccos(x) / m where the input argument is a 16-bit
fractional within the range <-1;1). The output is a 16-bit fractional value

within the range <-1;1) that represents an angle in radians within the range

<-TT;m).

GFLIB_Acos_FLT

float_t

float_t

Calculation of the arccos(x) where the input argument is a 32-bit single

precision floating point value within the range <-1;1>. The output is a 32-bit

single precision floating point value within the range <-m;m>.

GFLIB User's Guide, Rev. 2, 11/2016

NXP Semiconductors

43

A
GFLIB_Atan

2.5.2 Declaration

The available GFLIB_Acos functions have the following declarations:

fraclé t GFLIB Acos Fl6(fracle t fleval)
float _t GFLIB Acos FLT(float t fltval)

2.5.3 Function use

The use of the GFLIB_Acos function is shown in the following example:

#include "gflib.h"

static fraclé t flé6Result;
static fraclée_t fléValue;

void main (void)

{

fl6vValue = FRAC16(0.5); /* fl6Value = 0.5 */

/* fl6Result = arcscos(fléValue); */
fl6Result = GFLIB Acos_Fl6 (fléeValue) ;

}

2.6 GFLIB Atan

The GFLIB_Atan function implements the polynomial approximation of the arctangent
function. It provides a computational method for calculating the standard trigonometric
arctangent function arctan(x), using the piece-wise minimax polynomial approximation.
Function arctan(x) takes a ratio, and returns the angle of two sides of a right-angled
triangle. The ratio is the length of the side opposite to the angle divided by the length of
the side adjacent to the angle. The graph of the arctan(x) is shown in the following figure:

GFLIB User's Guide, Rev. 2, 11/2016
44 NXP Semiconductors

4
Chapter 2 Algorithms in detail

,,, ﬂ__,fi,,,,,,,,,777777,,,,7,,77777777777,7,,,7,777,
2
atanX) _
’/1“’
w i //’
4 6\'0\\ i i
& 1 The function GFLIB_Atan
S 1 : :
& | is not defined for this range
L7 !
& !
I
I | | | J | |]
I I T “ I I 1 1
4 3 -2 ! 1 2 3 4
I
I
I
|
] | 7
e :
3

Figure 2-4. Course of the GFLIB_Atan function

The fractional arithmetic version of the GFLIB_Atan function is limited to a certain
range of inputs <-1 ; 1). Because the arctangent values are the same, with just an opposite
sign for the input ranges <-1 ; 0) and <0 ; 1), the approximation of the arctangent function
over the entire defined range of input ratios can be simplified to the approximation for a
ratio in the range <0 ; 1). After that, the result will be negated, depending on the input
ratio.

2.6.1 Available versions
The function is available in the following versions:

* Fractional output - the output is the fractional portion of the result; the result is
within the range <-0.25 ; 0.25), which corresponds to the angle <-n/ 4 ; 1/ 4).

* Floating-point output - the output is the floating-point result within the range <-mt /
2/ 2>.

* Accumulator output with floating-point input - the output is the accumulator angle
within the range (-0.5 ; 0.5), which corresponds to the angle (- /2 ; 7/ 2). The input
is the floating-point value.

GFLIB User's Guide, Rev. 2, 11/2016
NXP Semiconductors 45

GFLIB_AtanYX

The available versions of the GFLIB_Atan function are shown in the following table:

Table 2-6. Function versions

Function name Input type | Result type Description

GFLIB_Atan_F16 |frac16_t frac16_t Input argument is a 16-bit fractional value within the range <-1; 1). The
output is the arctangent of the input as a 16-bit fractional value, normalized
within the range <-0.25 ; 0.25), which represents an angle (in radians) in
the range <-m/ 4 ; m/ 4) <-45° ; 45°).

GFLIB_Atan_FLT |float_t float_t Input argument is a 32-bit single precision floating-point value within the
full type's range. The output is the arctangent of the input as a 32-bit single
precision floating-point value in radians.

GFLIB_Atan_A32f |float_t acc32_t Input argument is a 32-bit single precision floating-point value within the

full type's range. The output is the arctangent of the input as a 32-bit
accumulator value, normalized within the range (-0.5 ; 0.5), which
represents an angle (in radians) in the range (- /2 ; m/ 2) (-90° ; 90°).

2.6.2 Declaration

The available GFLIB_Atan functions have the following declarations:

fraclé_t GFLIB_Atan Fl6(fraclée_t fleval)
float t GFLIB Atan FLT(float t fltVval)
acc32_t GFLIB_Atan_ A32f (float_t fltVval)

2.6.3 Function use

The use of the GFLIB_Atan function is shown in the following example:

#include "gflib.h"

static fraclé t flé6Result;

static fracle t fleéeval;

void main (void)

fl16vVal = FRAC16(0.57735026918962576450914878050196) ; /* fleval = tan(30°) =/

/* fl6Result

fl6Result =

= atan(fleval) ;
GFLIB Atan F16(fl16Val);

2.7 GFLIB_AtanYX

fl16Result * 180 => angle[degree] */

GFLIB User's Guide, Rev. 2, 11/2016

46

NXP Semiconductors

Chapter 2 Algorithms in detail

The GFLIB_AtanY X function computes the angle, where its tangent is y / X (see the
figure below). This calculation is based on the input argument division (y divided by x),
and the piece-wise polynomial approximation.

Atan¥ (=1, 1=, <1, 1=)

o

Atan iy, ¥)

Figure 2-5. Course of the GFLIB_AtanYX function

The first parameter Y is the ordinate (the x coordinate), and the second parameter X is the
abscissa (the x coordinate). The counter-clockwise direction is assumed to be positive,
and thus a positive angle is computed if the provided ordinate (Y) is positive. Similarly, a
negative angle is computed for the negative ordinate. The calculations are performed in
several steps. In the first step, the angle is positioned within the correct half-quarter of the
circumference of a circle by dividing the angle into two parts: the integral multiple of 45°
(half-quarter), and the remaining offset within the 45° range. Simple geometric properties
of the Cartesian coordinate system are used to calculate the coordinates of the vector with
the calculated angle offset. In the second step, the vector ordinate is divided by the vector
abscissa (y / X) to obtain the tangent value of the angle offset. The angle offset is
computed by applying the GFLIB_Atan function. The sum of the integral multiple of
half-quarters and the angle offset within a single halfquarter form the angle is computed.

GFLIB User's Guide, Rev. 2, 11/2016
NXP Semiconductors 47

A
GFLIB_AtanYX

The function returns O if both input arguments equal 0, and sets the output error flag; in
other cases, the output flag is cleared. When compared to the GFLIB_Atan function, the
GFLIB_AtanYX function places the calculated angle correctly within the fractional range
<-TU; T>.

In the fractional arithmetic, both input parameters are assumed to be in the fractional
range <-1 ; 1). The output is within the range <-1 ; 1), which corresponds to the real
range <-T ;).

2.7.1 Available versions
This function is available in the following versions:

* Fractional output - the output is the fractional portion of the result; the result is
within the range <-1 ; 1), which corresponds to the angle <-nt ;).

* Floating-point output - the output is the floating-point result within the range <- m;
™.

* Accumulator output with floating-point input - the output is the accumulator angle
within the range <-1 ; 1>, which corresponds to the angle <-m ; n>. The input is the
floating-point value.

The available versions of the GFLIB_AtanY X function are shown in the following table:

Table 2-7. Function versions

Function name Input type Output type Result type
Y X Error flag
GFLIB_AtanYX_F16 frac16_t frac16_t bool_t * frac16_t

The first input argument is a 16-bit fractional value that contains the ordinate of the input vector (y
coordinate). The second input argument is a 16-bit fractional value that contains the abscissa of the
input vector (x coordinate). The result is the arctangent of the input arguments as a 16-bit fractional
value within the range <-1 ; 1), which corresponds to the real angle range <- m; m). The function sets
the boolean error flag pointed to by the output parameter if both inputs are zero; in other cases, the
output flag is cleared.

GFLIB_AtanYX_FLT |float t |f|oat_t |boo|_t * |f|oat_t

The first input argument is a 32-bit single precision floating-point value, which contains the ordinate
of the input vector (y coordinate). The second input argument is a 32-bit single precision floating-
point value, which contains the abscissa of the input vector (x coordinate). The result is the
arctangent of the input arguments as a 32-bit single precision floating-point value within the range
<- m; m>. The function sets the boolean error flag pointed to by the output parameter if both inputs
are zero; in other cases, the output flag is cleared.

GFLIB_AtanYX_A32ff |float t |f|oat_t |boo|_t * |acc32_t

The first input argument is a 32-bit single precision floating-point value, which contains the ordinate
of the input vector (y coordinate). The second input argument is a 32-bit single precision floating-
point value, which contains the abscissa of the input vector (x coordinate). The result is the
arctangent of the input arguments as a 32-bit accumulator value within the range <-1 ; 1>, which
corresponds to the real angle range <- m; m>. The function sets the boolean error flag pointed to by
the output parameter if both inputs are zero; in other cases, the output flag is cleared.

GFLIB User's Guide, Rev. 2, 11/2016
48 NXP Semiconductors

4
Chapter 2 Algorithms in detail

2.7.2 Declaration
The available GFLIB_AtanY X functions have the following declarations:

fraclé t GFLIB AtanYX Flé6(fracle t fleY, fraclée t £f16X, bool t *pbErrFlag)
float t GFLIB AtanYX FLT (float t fltY, float t fltX, bool t *pbErrFlag)
acc32 t GFLIB AtanYX a32ff(float t £f1tY, float t fltX, bool t *pbErrFlag)

2.7.3 Function use
The use of the GFLIB_AtanY X function is shown in the following example:

#include "gflib.h"

static fraclé_t fl6Result;
static fracle t fle6Y, fl6X;
static bool t bErrFlag;

void main (void)

f16Y = FRAC16(0.9) ; /* £16Y = 0.9 */
f16X = FRAC16(0.3); /* £16X = 0.3 */
/* fl6Result = atan(fléYy / f16X); fl6Result * 180 => angle [degree] */

fl6Result = GFLIB AtanYX Fle6(fleY, f16X, &bErrFlag);

2.8 GFLIB_Sqrt

The GFLIB_Sqrt function returns the square root of the input value. The input must be a
non-negative number, otherwise the function returns undefined results. See the following
equation:

GFLIB_Sqrt(x) = . ¥=0
undefined, x<0

Equation 6. Algorithm formula

2.8.1 Available versions

This function is available in the following versions:

GFLIB User's Guide, Rev. 2, 11/2016
NXP Semiconductors 49

GFLIB_Sqrt

* Fractional output - the output is the fractional portion of the result; the result is
within the range <0 ; 1). The function is only defined for non-negative inputs. The
function returns undefined results out of this condition.

* Floating-point output - the output is the floating-point non-negative result. The
function is only defined for non-negative inputs. The function returns undefined
results out of this condition.

The available versions of the GFLIB_Sqrt function are shown in the following table:

Table 2-8. Function versions

Function name Input Result Description
type type
GFLIB_Sqrt_F16 frac16_t [frac16_t |The input value is a 16-bit fractional value, limited to the range <0 ; 1). The
function is not defined out of this range. The output is a 16-bit fractional value
within the range <0 ; 1).

GFLIB_Sqrt_F16l frac32_t |frac16_t |The input value is a 32-bit fractional value, limited to the range <0 ; 1). The
function is not defined out of this range. The output is a 16-bit fractional value
within the range <0 ; 1).

GFLIB_Sqrt_FLT float_t float_t The input value is a 32-bit single precision floating-point non-negative value.
The function is not defined for the negative inputs. The output is a 32-bit single
precision floating-point non-negative value.

2.8.2 Declaration
The available GFLIB_Sqrt functions have the following declarations:

fraclé_t GFLIB_Sqrt Fl6(fraclé_t fleVval)
fraclé_t GFLIB_Sqrt_ Fl6l(frac32_t £f32Vval)
float_t GFLIB_Sqgrt_ FLT(float_t fltVal)

2.8.3 Function use
The use of the GFLIB_Sqrt function is shown in the following example:

#include "gflib.h"

static fraclé_t flé6Result;
static fracle t fleval;

void main (void)
fl16val = FRAC16(0.5) ; /* f£1l6vVal = 0.5 */

/* fl6Result = sqrt(fie6val) */
fl6Result = GFLIB Sqgrt F16(fl6Val);

GFLIB User's Guide, Rev. 2, 11/2016
50 NXP Semiconductors

Chapter 2 Algorithms in detail

2.9 GFLIB_Limit

The GFLIB_Limit function returns the value limited by the upper and lower limits. See
the following equation:

min, x <min
GFLIB_Limit (x, min, max) = { max, X > max
X, else

Equation 7. Algorithm formula

2.9.1 Available versions
This function is available in the following versions:

 Fractional output - the output is the fractional portion of the result; the result is
within the range <-1 ; 1). The result may saturate.

* Floating-point output - the output is the floating-point result within the type's full
range.

The available versions of the GFLIB_Limit functions are shown in the following table:

Table 2-9. Function versions

Function name Input type Result Description
type

Input Lower Upper
limit limit

GFLIB_Limit_F16 frac16_t |frac16_t |frac16_t |[frac16_t |The inputs are 16-bit fractional values within the range
<-1; 1). The function returns a 16-bit fractional value in
the range <f16LLim ; f16ULIm>.

GFLIB_Limit_F32 frac32_t |frac32_t |[frac32_t |frac32_t |The inputs are 32-bit fractional values within the range
<-1; 1). The function returns a 32-bit fractional value in
the range <f32LLim ; f32ULim>.

GFLIB_Limit_FLT float_t float_t float_t float_t The inputs are 32-bit single precision floating-point
values within the full range. The function returns a 32-
bit single precision floating-point value in the range
<fltLLim ; fltULim>.

2.9.2 Declaration

The available GFLIB_Limit functions have the following declarations:

GFLIB User's Guide, Rev. 2, 11/2016
NXP Semiconductors 51

A
GFLIB_LowerLimit

fraclé_t GFLIB_Limit F16 (fraclé_t fleval, fraclé t fleLLim, fraclé_ t f£16ULim)
frac32_t GFLIB_Limit F32(frac32_t £32Val, frac32 t £32LLim, frac32 t £32ULim)
float_t GFLIB Limit FLT(float_t fltval, float_t fltLLim, float_t f£1tULim)

2.9.3 Function use

The use of the GFLIB_Limit function is shown in the following example:

#include "gflib.h"
static fracleé t flé6Vval, f£16ULim, £f16LLim, fl6Result;
void main(void)

f16ULim FRAC16(0.8) ;

)
f16LLim FRAC16 (-0.3) ;
f16Val = FRAC16(0.9);

fl6Result = GFLIB Limit F16(fl16Val, f16LLim, £16ULim) ;

2.10 GFLIB LowerLimit

The GFLIB_LowerLimit function returns the value limited by the lower limit. See the
following equation:

min, x <min

GFLIB_LowerLimit (x, min) = { X else

Equation 8. Algorithm formula

2.10.1 Available versions
This function is available in the following versions:

 Fractional output - the output is the fractional portion of the result; the result is
within the range <-1 ; 1). The result may saturate.

* Floating-point output - the output is the floating-point result within the type's full
range.

GFLIB User's Guide, Rev. 2, 11/2016
52 NXP Semiconductors

4
Chapter 2 Algorithms in detail

The available versions of the GFLIB_LowerLimit functions are shown in the following
table:

Table 2-10. Function versions

Function name Input type Result Description
Input Lower type
limit

GFLIB_LowerLimit_F16 frac16_t |frac16_t |frac16_t |[The inputs are 16-bit fractional values within the range <-1 ;
1). The function returns a 16-bit fractional value in the range
<f16LLIm ; 1).

GFLIB_LowerLimit_F32 frac32_t |frac32_t |frac32_t |[The inputs are 32-bit fractional values within the range <-1 ;
1). The function returns a 32-bit fractional value in the range
<f32LLim ; 1).

GFLIB_LowerLimit_FLT float_t float_t float_t The inputs are 32-bit single precision floating-point values
within the full range. The function returns a 32-bit single
precision floating-point value greater than or equal to fltLLim.

2.10.2 Declaration

The available GFLIB_LowerLimit functions have the following declarations:

fraclé t GFLIB LowerLimit F16 (fraclé t flé6Val, fracle t f16LLim)
frac32 t GFLIB LowerLimit F32(frac32 t f32Val, frac32 t £32LLim)
float_t GFLIB_ LowerLimit_ FLT(float_t fltVal, float_t fltLLim)

2.10.3 Function use

The use of the GFLIB_LowerLimit function is shown in the following example:

#include "gflib.h"
static fracle t flé6val, fl6LLim, fl6Result;
void main (void)

f16LLim = FRAC16(0.3);
fl6val = FRAC16(0.1);

fl6Result = GFLIB LowerLimit F16(fl6Val, fl6LLim);

2.11 GFLIB_UpperLimit

GFLIB User's Guide, Rev. 2, 11/2016
NXP Semiconductors 53

A ————
GFLIB_UpperLimit

The GFLIB_UpperLimit function returns the value limited by the upper limit. See the
following equation:

o max, X > max
GFLIB_UpperLimit(x, max) = { x else

Equation 9. Algorithm formula

2.11.1 Available versions
This function is available in the following versions:

 Fractional output - the output is the fractional portion of the result; the result is
within the range <-1 ; 1). The result may saturate.

* Floating-point output - the output is the floating-point result within the type's full
range.

The available versions of the GFLIB_UpperLimit functions are shown in the following
table:

Table 2-11. Function versions

Function name Input type Result Description

Input Upper type
limit

GFLIB_UpperLimit_F16 frac16_t |frac16_t |frac16_t |[The inputs are 16-bit fractional values within the range <-1 ;
1). The function returns a 16-bit fractional value in the range
<-1; f16ULIMm>.

GFLIB_UpperLimit_F32 frac32_t |frac32_t |frac32_t |[The inputs are 32-bit fractional values within the range <-1 ;
1). The function returns a 32-bit fractional value in the range
<-1; f32ULim>.

GFLIB_UpperLimit_FLT float_t float_t float_t The inputs are 32-bit single precision floating-point values
within the full range. The function returns a 32-bit single
precision floating-point value, which is lower or equal to
fltULim.

2.11.2 Declaration

The available GFLIB_UpperLimit functions have the following declarations:

fraclé t GFLIB UpperLimit F16 (fraclé t fléeVal, fracle t £16ULim)
frac32 t GFLIB UpperLimit F32(frac32 t f32Val, frac32 t £32ULim)
float_t GFLIB UpperLimit FLT(float t fltVal, float_ t f1ltULim)

GFLIB User's Guide, Rev. 2, 11/2016
54 NXP Semiconductors

4
Chapter 2 Algorithms in detail

2.11.3 Function use

The use of the GFLIB_UpperLimit function is shown in the following example:

#include "gflib.h"
static fracle t fl6Val, f£16ULim, fl6Result;
void main (void)

f16ULim = FRAC16(0.3);
f16Val = FRAC16(0.9);

fl6Result = GFLIB UpperLimit F16(f16Val, f£16ULim) ;

2.12 GFLIB VectorLimit

The GFLIB_VectorLimit function returns the limited vector by an amplitude. This
limitation is calculated to achieve the zero angle error.

Figure 2-6. Input and releated output

GFLIB User's Guide, Rev. 2, 11/2016
NXP Semiconductors 55

GFLIB_VectorLimit

The GFLIB_VectorLimit function limits the amplitude of the input vector. The input
vector a, b components, are passed into the function as the input arguments. The resulting
limited vector is transformed back into the a, b components. The limitation is performed
according to the following equations:

a, \/a2 +b% <lim

lim
o —Lim__

a \/sz’ else
-

Equation 10. Algorithm formulas

b, \/az +b* <lim
lim

\/sz’ else
Equation 11

o* =

where:

* a, b are the vector coordinates
e a* b* are the vector coordinates after limitation
* lim is the maximum amplitude

The relationship between the input and limited output vectors is obvious from Figure 2-6.

If the amplitude of the input vector is greater than the input Lim value, the function
calculates the new coordinates from the Lim value; otherwise the function copies the
input values to the output.

2.12.1 Available versions
The function is available in the following versions:

* Fractional output - the output is the fractional portion of the result; the result is
within the range <-1;1). The result may saturate.

* Floating point output - the output is the floating point result within the type's full
range.

The available versions of the GFLIB_VectorLimit functions are shown in the following
table:

Table 2-12. Function versions

Function nhame Input type Output type Result
Input Limit type
GFLIB_VectorLimit_F16 GFLIB_VECTORLIMIT_T_F16 * |frac16_t |GFLIB_VECTORLIMIT_T_F16* |void

Table continues on the next page...

GFLIB User's Guide, Rev. 2, 11/2016
56 NXP Semiconductors

4
Chapter 2 Algorithms in detail

Table 2-12. Function versions (continued)

Function name Input type Output type Result
Input | Limit type

Limitation of a two-component 16-bit fractional vector within the range <-1;1) with a 16-bit
fractional limitation amplitude. The function returns a two-component 16-bit fractional vector.

GFLIB_VectorLimit_FLT GFLIB_VECTORLIMIT_T_FLT * |f|0at_t GFLIB_VECTORLIMIT_T_FLT * |V0id

Limitation of a two-component 32-bit single precision floating point vector within the full range
with a 32-bit single precision floating point limitation amplitude. The function returns a two-
component 32-bit single precision floating point vector.

2.12.2 GFLIB_VECTORLIMIT_T_F16 type description

Variable name Input type Description
f16A frac16_t A-component; 16-bit fractional type.
f16B frac16_t B-component; 16-bit fractional type

2.12.3 GFLIB_VECTORLIMIT_T_FLT type description

Variable name Input type Description
fltA float_t A-component; 32-bit single precision floating point type.
fitB float_t B-component; 32-bit single precision floating point type.

2.12.4 Declaration

The available GFLIB_VectorLimit functions have the following declarations:

fraclé_t GFLIB_VectorLimit_ F16 (const GFLIB VECTORLIMIT_T F16 *psVectorIn, fraclé_t fléLim,
GFLIB VECTORLIMIT T F16 *psVectorOut)

float t GFLIB VectorLimit FLT (const GFLIB VECTORLIMIT T FLT *psVectorIn, float t fltLim,
GFLIB VECTORLIMIT T FLT *psVectorOut)

2.12.5 Function use

The use of the GFLIB_VectorLimit function is shown in the following example:

GFLIB User's Guide, Rev. 2, 11/2016
NXP Semiconductors 57

A
GFLIB_VectorLimit1

#include "gflib.h"

static GFLIB VECTORLIMIT T F1l6 sVector, sResult;
static fracleée t flé6MaxAmpl;

void main(void)

{

fl6MaxAmpl = FRAC16(0.8) ;
sVector.f1l6A FRAC16(-0.79) ;
sVector.f16B FRAC16(0.86) ;

GFLIB_VectorLimit_ F16 (&sVector, fléMaxAmpl, &sResult) ;

2.13 GFLIB VectorLimit1

The GFLIB_VectorLimitl function returns the limited vector by an amplitude. This
limitation is calculated to achieve that the first component remains unchanged (if the
limitation factor allows).

In: B

Out: B

L J

Figure 2-7. Input and releated output

The GFLIB_VectorLimitl function limits the amplitude of the input vector. The input
vector a, b components are passed to the function as the input arguments. The resulting
limited vector is transformed back into the a, b components. The limitation is performed
according to the following equations:

GFLIB User's Guide, Rev. 2, 11/2016
58 NXP Semiconductors

4
Chapter 2 Algorithms in detail

._ a, la| <lim
a {lim°sgn(a), else
Equation 12

b b, 16| < \llin? — a*?
\’Zim2 —a*? . sen(b), else

Equation 13

where:

e a, b are the vector coordinates
e a* b* are the vector coordinates after limitation
* lim is the maximum amplitude

The relationship between the input and limited output vectors is shown in Figure 2-7.

If the amplitude of the input vector is greater than the input Lim value, the function
calculates the new coordinates from the Lim value; otherwise the function copies the
input values to the output.

2.13.1 Available versions
The function is available in the following versions:

* Fractional output - the output is the fractional portion of the result; the result is
within the range <-1 ; 1). The result may saturate.

* Floating-point output - the output is the floating-point result within the type's full
range.

The available versions of the GFLIB_VectorLimitl function are shown in the following
table:

Table 2-13. Function versions

Function name Input type Output type Result
Limit type

Input
GFLIB_VectorLimit1_F16 GFLIB_VECTORLIMIT_T_F16 * |frac16_t |GFLIB_VECTORLIMIT_T_F16* |void

Limitation of a two-component 16-bit fractional vector within the range <-1 ; 1) with a 16-bit
fractional limitation amplitude. The function returns a two-component 16-bit fractional vector.

GFLIB_VectorLimit1_FLT GFLIB_VECTORLIMIT_T_FLT * |float_t GFLIB_VECTORLIMIT_T_FLT * |void

Limitation of a two-component 32-bit single precision floating-point vector within the full range
with a 32-bit single precision floating-point limitation amplitude. The function returns a two-
component 32-bit single precision floating-point vector.

GFLIB User's Guide, Rev. 2, 11/2016
NXP Semiconductors 59

A
GFLIB_VectorLimit1

2.13.2 GFLIB_VECTORLIMIT_T_F16 type description

Variable name Input type Description
f16A frac16_t A-component; 16-bit fractional type.
f16B frac16_t B-component; 16-bit fractional type.

2.13.3 GFLIB_VECTORLIMIT_T_FLT type description

Variable name Input type Description
fltA float_t A-component; 32-bit single precision floating-point type.
fltB float_t B-component; 32-bit single precision floating-point type.

2.13.4 Declaration

The available GFLIB_VectorLimitl functions have the following declarations:

fraclé t GFLIB VectorLimitl F16 (const GFLIB VECTORLIMIT T F16 *psVectorIn, fraclé t fléLim,
GFLIB _VECTORLIMIT T F1l6 *psVectorOut)

float_t GFLIB VectorLimitl_ FLT (const GFLIB_VECTORLIMIT_ T FLT *psVectorIn, float_t fltLim,
GFLIB VECTORLIMIT T FLT *psVectorOut)

2.13.5 Function use

The use of the GFLIB_VectorLimitl function is shown in the following example:

#include "gflib.h"

static GFLIB_VECTORLIMIT_T F16 sVector, sResult;
static fraclée_t flé6MaxAmpl;

void main (void)

{

flé6MaxAmpl = FRAC16(0.5);
sVector.f16A = FRAC16(-0.4);
sVector.f16B = FRAC16(0.2) ;

GFLIB VectorLimitl F16 (&sVector, fléMaxAmpl, &sResult);

GFLIB User's Guide, Rev. 2, 11/2016
60 NXP Semiconductors

4
Chapter 2 Algorithms in detail

2.14 GFLIB_Hyst

The GFLIB_Hyst function represents a hysteresis (relay) function. The function switches
the output between two predefined values. When the input is higher than the upper
threshold, the output is high; when the input is lower than the lower threshold, the output
1s low. When the input is between the two thresholds, the output retains its value. See the
following figure:

r'y
Out

OutVaLC)n

A 4

HystOff HystOn In

A J

A 4

OutValOff

Figure 2-8. GFLIB_Hyst functionality

The four points in the figure are to be set up in the parameters structure of the function.
For a proper functionality, the HystOn point must be greater than the HystOff point.

2.14.1 Available versions
This function is available in the following versions:

* Fractional output - the output is the fractional portion of the result, and the result is
within the range <-1; 1).

* Floating-point output - the output is the floating-point result within the type's full
range.

GFLIB User's Guide, Rev. 2, 11/2016
NXP Semiconductors 61

GFLIB_Hyst

The available versions of the GFLIB_Hyst function are shown in the following table.

Table 2-14. Function versions

Function name Input Parameters Result Description
type type
GFLIB_Hyst_F16 frac16_t GFLIB_HYST_T_F16 * frac16_t |The inputis a 16-bit fractional value within
the range <-1; 1). The output is a two-
state 16-bit fractional value.
GFLIB_Hyst FLT float_t GFLIB_HYST_T_FLT* float_t The input is a 32-bit single precision

floating-point value within its full range.
The output is a two-state 32-bit single

precision floating-point value.

2.14.2 GFLIB_HYST_T_F16

Variable name Input Description
type

f16HystOnN frac16_t |The point where the output sets the output to the f160utValOn value when the input rises.
Set by the user.

f16HystOff frac16_t |The point where the output sets the output to the f160utValOff value when the input falls.
Set by the user.

f160utValOn frac16_t |The ON value. Set by the user.

f160utValOff frac16_t |The OFF value. Set by the user.

f160utState frac16_t |The output state. Set by the algorithm. Must be initialized by the user.

2.14.3 GFLIB_HYST_T_FLT

Variable name Input Description
type

fltHystOn float_t The point where the output sets the output to the fltOutValOn value when the input rises.
Set by the user.

fltHystOff float_t The point where the output sets the output to the fltOutValOff value when the input falls.
Set by the user.

fltOutValOn float_t The ON value. Set by the user.

fltOutValOff float_t The OFF value. Set by the user.

fltOutState float_t The output state. Set by the algorithm. Must be initialized by the user.

GFLIB User's Guide, Rev. 2, 11/2016

62

NXP Semiconductors

4
Chapter 2 Algorithms in detail

2.14.4 Declaration
The available GFLIB_Hyst functions have the following declarations:

fraclé t GFLIB Hyst Fl16(fraclé t fl6Val, GFLIB HYST T F1l6 *psParam)
float t GFLIB Hyst FLT(float t fltVal, GFLIB HYST T FLT *psParam)

2.14.5 Function use

The use of the GFLIB_Hyst function is shown in the following example:

#include "gflib.h"

static fraclé t flé6Result, fleInvVal;
static GFLIB HYST T F16 sParam;

void main (void)

{
fl16InvVal = FRAC16(-0.11);
sParam.f16HystOn = FRAC16(0.5) ;
sParam.f16HystOff = FRAC16(-0.1
sParam.f160utValOn = FRAC16 (0.7
sParam.fl160utvValOff = FRAC16 (0.

)
)
sParam.fl60utState = FRAC16(0.0)

i
;
)i
i

fléResult = GFLIB Hyst Fl6(fl16InVal, &sParam) ;

2.15 GFLIB_Lut1D

The GFLIB_LutlD function implements the one-dimensional look-up table.

Y h
y:y1+x2—xl(x7xl)

Equation 14.

where:

y 1s the interpolated value

* y; and y, are the ordinate values at the beginning and end of the interpolating
interval, respectively

* X1 and x, are the abscissa values at the beginning and end of the interpolating

interval, respectively

x is the input value provided to the function in the X input argument

GFLIB User's Guide, Rev. 2, 11/2016
NXP Semiconductors 63

GFLIB_Lut1D

/ Table points

Figure 2-9. Algorithm diagram - fractional version

The GFLIB_LutlD function fuses a table of the precalculated function points. These
points are selected with a fixed step.

The fractional version of the algorithm has a defined interval of inputs within the range
<-1; 1>. The last table point is intended for the real value of 1, not the value of 1 from
the fraction numbers, which is lower than the real value of 1. The calculations are based
on the same intervals among the table points. The number of points must be 2" + 1, where
n can range from 1 through to 15.

The floating-point version of the algorithm has a defined interval of inputs within the
range <min ; max>, where the min and max values are the parameters of the algorithms.
The number of points is within the range <2 ; 65535>, where the first point lies at the min
position, and the last point lies at the max position.

The function finds two nearest precalculated points of the input argument, and calculates
the output value using the linear interpolation between these two points.

2.15.1 Available versions

This function is available in the following versions:

GFLIB User's Guide, Rev. 2, 11/2016
64 NXP Semiconductors

L __4
Chapter 2 Algorithms in detail
* Fractional output - the output is the fractional portion of the result; the result is
within the range <-1 ; 1).
* Floating-point output - the output is the floating-point result within the type's full
range. The input values are defined by the minimum and maximum input parameters
of the GFLIB_LutlDInit function.

The available versions of the GFLIB_Lut]1DInit function are shown in the following
table:

Table 2-15. Init function versions

Function name Input type Parameters Result
Min Max | Table size Table type
GFLIB_Lut1DInit_FLT [float_t float_t uint16_t GFLIB_LUTID_T_FLT * void

The input arguments are the 32-bit single precision floating-point values that contain the minimum
and maximum x-coordinates of the look-up table. The table size parameter can be in the range <2 ;
65535> and the pointer to the structure that contains the parameters defined in Table 2-16.

The available versions of the GFLIB_Lut1D function are shown in the following table:

Table 2-16. Function versions

Function name Input type Parameters Result type

Table Table size
GFLIB_Lut1D_F16 frac16_t frac16_t * uint16_t frac16_t

The input arguments are the 16-bit fractional value that contains the abscissa for which the 1-D
interpolation is performed, the pointer to a table which contains the 16-bit fractional values of the
look-up table, and the size of the look-up table. The table size parameter can be in the range <1 ;
15> (that means the parameter is log, of the number of points + 1). The output is the interpolated 16-
bit fractional value computed from the look-up table.

GFLIB_Lut1D_F32 frac32_t |frac32_t * uint16_t frac32_t

The input arguments are the 32-bit fractional value that contains the abscissa for which the 1-D
interpolation is performed, the pointer to a table which contains the 32-bit fractional values of the
look-up table, and the size of the look-up table. The table size parameter can be in the range <1 ;
15> (that means the parameter is log, of the number of points + 1). The output is the interpolated 32-
bit fractional value computed from the look-up table.

GFLIB_Lut1D_FLT float_t |f|oat_t * GFLIB_LUT1D_T_FLT * float_t

The input arguments are the 32-bit single precision floating-point value that contains the abscissa for
which the 1-D interpolation is performed, the pointer to a table which contains the 32-bit single
precision floating-point values of the look-up table, and the pointer to a structure that contains the
size of the look-up table together with the minimum and maximum borders of the input interval. The
table size parameter can be in the range <2 ; 65535>. The first value of the table is located at the
fltMin position, and the last value of the table is located at the fltMax position. The output is the
interpolated 32-bit single precision floating-point value computed from the look-up table.

GFLIB User's Guide, Rev. 2, 11/2016
NXP Semiconductors 65

A
GFLIB_LutPer1D

2.15.2 GFLIB_LUT1D_T_FLT type description

Variable name | Input type Description

fltMin float_t The minimum of the look-up table x-coordinate; a 32-bit single precision floating-point type.
Set by the user in GFLIB_Lut1DInit_FLT.

fliMax float_t The maximum of the look-up table x-coordinate; a 32-bit single precision floating-point
type. Set by the user in GFLIB_Lut1DInit_FLT.

fltintinv float_t Inverse interval of the look-up table; a 32-bit single precision floating-point type. Set by the
algoritm in GFLIB_Lut1DInit_FLT.

u16TableSize uint16_t Size of the table; a 16-bit unsigned integer type within the range <2 ; 65535>. Set by the
user in GFLIB_Lut1DlInit_FLT.

2.15.3 Declaration
The available GFLIB_LutlD functions have the following declarations:

fraclé_t GFLIB_LutlD Fl6(fraclé_t f16X, const fraclé_t *pfléTable, uintlé_t
ulé6TableSize)void GFLIB_LutlDInit FLT(float_ t fltMin,float t fltMax, uintlé_t ulé6TableSize,
const GFLIB LUT1D T FLT *psParam)float t GFLIB LutlD FLT (float t £fltX, const float t
*pfltTable, const GFLIB LUT1D T FLT *psParam)

2.15.4 Function use
The use of the GFLIB_LutlD function is shown in the following example:

#include "gflib.h"

static fraclé t fl6Result, f16X;

static uintlé_t uléTableSize;

static fracle t fl6Table[9] = {FRAC16(0.8), FRAC16(0.1), FRAC16(-0.2), FRAC16(0.7),
FRAC16 (0.2), FRAC16(-0.3), FRAC16(-0.8), FRAC16(0.91), FRAC16(0.99)};

void main (void)

{
uléTableSize = 3; /* size of table = 2 * 3 + 1 */
f16X = FRAC16(0.625) ; /* £16X = 0.625 */

/* fléResult = value from look-up table between 7th and 8th position */
fl6Result = GFLIB LutlD F16(f16X, fleTable, ulé6TableSize);

2.16 GFLIB_LutPeriD

The GFLIB_LutPer1D function approximates the one-dimensional arbitrary user function
using the interpolation look-up method. It is periodic.

GFLIB User's Guide, Rev. 2, 11/2016
66 NXP Semiconductors

4
Chapter 2 Algorithms in detail

Y~y
Y=yt o=x (- x)
Equation 15.
where:

* y is the interpolated value

* y; and y, are the ordinate values at the beginning and end of the interpolating
interval, respectively

* X; and x, are the abscissa values at the beginning and end of the interpolating
interval, respectively

* x is the input value provided to the function in the X input argument

/ Table points

Figure 2-10. Algorithm diagram - fractional version

The GFLIB_LutPerlD fuses a table of the pre-calculated function points. These points
are selected with a fixed step.

The fractional version of the algorithm has a defined interval of inputs within the range
<-1; 1>. The last table point is intended for the real value of 1 not the value of 1 from the
fraction numbers, which is lower than the real value of 1. The calculations are based on
the same intervals among the table points. The floating-point version of the algorithm has
a defined interval of inputs within the range <min ; max>, where the min and max values
are the parameters of the algorithms. The number of points is within the range <2 ;
65535>, where the first point lies at the min position, and the last point lies at the max
position.

GFLIB User's Guide, Rev. 2, 11/2016
NXP Semiconductors 67

A
GFLIB_LutPer1D

The function finds two nearest precalculated points of the input argument, and calculates
the output value using the linear interpolation between these two points. This algorithm
serves for periodical functions. That means that when the input argument lies behind the
last pre-calculated point of the function, the interpolation is calculated between the last
and first points of the table.

2.16.1 Available versions
This function is available in the following versions:

 Fractional output - the output is the fractional portion of the result; the result is
within the range <-1 ; 1).

* Floating-point output - the output is the floating-point result within the type's full
range. The input values are defined by the minimum and maximum input parameter
of the GFLIB_LutPer1DInit function.

The available versions of the GFLIB_LutPer1DInit function are shown in the following
table:

Table 2-17. Init function versions

Function name Input type Parameters Result
Min Max Table size Table type
GFLIB_LutPer1DInit_FLT |float_t float_t uint16_t GFLIB_LUT1D_T_FLT* void

The input arguments are the 32-bit single precision floating-point values that contain the
minimum and maximum x-coordinates of the periodic look-up table. The table size parameter can
be in the range <2 ; 65535> and the pointer to the structure that contains the parameters defined
in .Table 2-18

The available versions of the GFLIB_LutPer1D function are shown in the following
table:

Table 2-18. Function versions

Function name Input type Parameters Result type

Table Table size
GFLIB_LutPer1D_F16 frac16_t frac16_t * uint16_t frac16_t

The input arguments are the 16-bit fractional value that contains the abscissa for which the 1-D
interpolation is performed, the pointer to a structure which contains the 16-bit fractional values of
the periodic look-up table, and the size of the look-up table. The table size parameter can be in
the range <1 ; 15> (that means the parameter is log, of the number of points). The output is the
interpolated 16-bit fractional value computed from the periodic look-up table.

GFLIB_LutPeriD_F32 frac32_t |fra032_t * |uint16_t |fra032_t

Table continues on the next page...

GFLIB User's Guide, Rev. 2, 11/2016
68 NXP Semiconductors

4
Chapter 2 Algorithms in detail

Table 2-18. Function versions (continued)

Function name Input type Parameters Result type
Table | Table size

The input arguments are the 32-bit fractional value that contains the abscissa for which the 1-D
interpolation is performed, the pointer to a table which contains the 32-bit fractional values of the
periodic look-up table, and the size of the periodic look-up table. The table size parameter can be
in the range <1 ; 15> (that means the parameter is log, of the number of points). The output is
the interpolated 32-bit fractional value computed from the periodic look-up table.

GFLIB_LutPeriD_FLT float_t |float_t * |GFLIB_LUT1 D TFLT* |f|oat_t

The input arguments are the 32-bit single precision floating-point value that contains the abscissa
for which the 1-D interpolation is performed, the pointer to a structure which contains the 32-bit
single precision floating-point values of the periodic look-up table, and the pointer a to structure
that contains the size of the periodic look-up table together with the minimum and maximum
borders of the input interval. The table size parameter can be in the range <2 ; 65535>. The first
value of the table is located at the fltMin position, and the last value of the table is located at the
fliMax position. The output is the interpolated 32-bit single precision floating-point value
computed from the periodic look-up table.

2.16.2 GFLIB_LUTPER1ID_T_FLT type description

Variable name | Input type Description

fltMin float_t The minimum of the periodic look-up table x-coordinate; a 32-bit single precision floating-
point type. Set by the user in GFLIB_LutPer1DInit_FLT.

fliMax float_t The maximum of the periodic look-up table x-coordinate; a 32-bit single precision floating-
point type. Set by the user in GFLIB_LutPer1DInit_FLT.

fltintinv float_t Inverse interval of the periodic look-up table; a 32-bit single precision floating-point type.
Set by the algorithm in GFLIB_LutPer1DInit_FLT.

u16TableSize uint16_t Size of the table; a 16-bit unsigned integer type within the range <2 ; 65535>. Set by the
user in GFLIB_LutPer1DInit_FLT.

2.16.3 Declaration
The available GFLIB_LutPer1D functions have the following declarations:

fraclé_t GFLIB_LutPerlD F16(fraclé6_t f16X, const fraclé_t *pfléeTable, uintlé_t
ulé6TableSize)void GFLIB_LutPerlDInit FLT(float_t fltMin,float t fltMax, uintlé_t
uléTableSize, const GFLIB LUTPER1D T FLT *psParam)float t GFLIB LutPerlD FLT (float t fltX,
const float t *pfltTable, const GFLIB LUTPER1ID T FLT *psParam)

2.16.4 Function use
The use of the GFLIB_LutPer1D function is shown in the following example:

GFLIB User's Guide, Rev. 2, 11/2016
NXP Semiconductors 69

A
GFLIB_Ramp

#include "gflib.h"

static fraclé t fl6Result, f16X;

static uintlé_t uléTableSize;

static fracle t fle6Table[8] = {FRAC16(0.8), FRAC16(0.1), FRAC16(-0.2), FRAC16(0.7),
FRAC16(0.2), FRAC16(-0.3), FRAC1l6(-0.8), FRAC16(0.91)};

void main (void)

A

uléTableSize = 3; /* size of table = 2 3 %/

f16X = FRAC16(0.25); /* f£16X = 0.25 */

/* fl6Result = value from periodic look-up table at é6th position */
fl6Result = GFLIB LutPerlD F16(fl16X, fléTable, ulé6TableSize) ;

2.17 GFLIB_Ramp

The GFLIB_Ramp function calculates the up / down ramp with the defined fixed-step
increment / decrement. These two parameters must be set by the user.

For a proper use, it is recommended that the algorithm is initialized by the
GFLIB_Ramplnit function, before using the GFLIB_Ramp function. The
GFLIB_Ramplnit function initializes the internal state variable of the GFLIB_Ramp
algorithm with a defined value. You must call the init function when you want the ramp
to be initialized.

The use of the GFLIB_Ramp function is as follows: If the target value is greater than the
ramp state value, the function adds the ramp-up value to the state output value. The
output will not trespass the target value, that means it will stop at the target value. If the
target value is lower than the state value, the function subtracts the ramp-down value
from the state value. The output is limited to the target value, that means it will stop at the
target value. This function returns the actual ramp output value. As time passes, it is
approaching the target value by step increments defined in the algorithm parameters'
structure. The functionality of the implemented ramp algorithm is explained in the next
figure:

GFLIB User's Guide, Rev. 2, 11/2016
70 NXP Semiconductors

Chapter 2 Algorithms in detail
A : : N :
Output Pl P
: r======= T
: : 1 : [}
R 1 : i
: 1 Y
: H i
: 1 1
: : : : 1 . |
I : : i o
I--------------;---- 1
¥ H : 1
I: : i 1
i . '
i i Qut 3
L O S S SO SO 1_
[: [
i H 1
____________ . 1
i L
; [
RampUp H ; ; il
i RampDown 1
[JEREUNIE S EY S RS : 1
I H 1
£ 1
i 1
I 1
i [
/ e e s et =
f 1
d 0 1:
7 [
i 1
i 1 :
S L T S SNV Ry Sy I
I :
i
I
I
k<1 k

Figure 2-11. GFLIB_Ramp functionality
2.17.1 Available versions

This function is available in the following versions:

 Fractional output - the output is the fractional portion of the result; the result is
within the range <-1 ; 1). The result may saturate.

* Floating-point output - the output is the floating-point result within the type's full
range.

The available versions of the GFLIB_Ramplnit functions are shown in the following
table:

Table 2-19. Init function versions
Function name Input Parameters Result Description
type type
GFLIB_Ramplnit_F16 frac16_t |GFLIB_RAMP_T_F16* void Input argument is a 16-bit fractional value that
represents the initialization value. The
parameters' structure is pointed to by a pointer.
The input data value is in the range <-1; 1).
GFLIB_Ramplnit_F32 frac32_t |GFLIB_RAMP_T_F32* |void Input argument is a 32-bit fractional value that
represents the initialization value. The
parameters' structure is pointed to by a pointer.
The input data value is in the range <-1; 1).
Table continues on the next page...
GFLIB User's Guide, Rev. 2, 11/2016
NXP Semiconductors

71

GFLIB_Ramp
Table 2-19. Init function versions (continued)
Function name Input Parameters Result Description
type type
GFLIB_Ramplnit_FLT float_t GFLIB_RAMP_T_FLT* |void Input argument is a 32-bit single precision

floating-point value that represents the
initialization value. The parameters' structure is
pointed to by a pointer. The input value is within
the full 32-bit single-point floating-point range.

The available versions of the GFLIB_Ramp functions are shown in the following table:

Table 2-20. Function versions

Function name Input Parameters Result Description
type type
GFLIB_Ramp_F16 frac16_t |GFLIB_RAMP_T_F16* |frac16_t |Input argumentis a 16-bit fractional value that
represents the target output value. The
parameters' structure is pointed to by a pointer.
The function returns a 16-bit fractional value,
which represents the actual ramp output value.
The input data value is in the range <-1; 1), and
the output data value is in the range <-1 ; 1).

GFLIB_Ramp_F32 frac32_t |GFLIB_RAMP_T_F32* |frac32_t |Input argument is a 32-bit fractional value that
represents the target output value. The
parameters' structure is pointed to by a pointer.
The function returns a 32-bit fractional value,
which represents the actual ramp output value.
The input data value is in the range <-1; 1), and
the output data value is in the range <-1 ; 1).

GFLIB_Ramp_FLT float_t GFLIB_RAMP_T_FLT * |float_t Input argument is a 32-bit single precision floating-
point value that represents the target output value.
The parameters' structure is pointed to by a
pointer. The function returns a 32-bit single
precision floating-point value, which represents
the actual ramp output value. The input and output
values are within the full 32-bit single-point
floating-point range.

2.17.2 GFLIB_RAMP_T_F16

Variable name Type Description
f16State frac16_t |Actual value - controlled by the algorithm.
f16RampUp frac16_t |Value of the ramp-up increment. The data value is in the range <0 ; 1). Set by the user.
f16RampDown frac16_t |Value of the ramp-down increment. The data value is in the range <0 ; 1). Set by the user.

GFLIB User's Guide, Rev. 2, 11/2016
72 NXP Semiconductors

4
Chapter 2 Algorithms in detail

2.17.3 GFLIB_RAMP_T_F32

Variable name Type Description
f32State frac32_t |Actual value - controlled by the algorithm.
f32RampUp frac32_t |Value of the ramp-up increment. The data value is in the range <0 ; 1). Set by the user.
f32RampDown frac32_t |Value of the ramp-down increment. The data value is in the range <0 ; 1). Set by the user.

2.17.4 GFLIB_RAMP_T_FLT

Variable name Type Description
fltState float_t Actual value - controlled by the algorithm.
fltRampUp float_t Value of the ramp-up increment. The data value is within the full 32-bit single precision

floating point. Set by the user as non- negative value.

fltRampDown float_t Value of the ramp-down increment. The data value is within the full 32-bit single precision
floating point. Set by the user as non- negative value.

2.17.5 Declaration

The available GFLIB_Ramplnit functions have the following declarations:

void GFLIB RampInit F16 (fracle t fl16InitVal, GFLIB RAMP T F16 *psParam)
void GFLIB RampInit F32(frac32 t £32InitVval, GFLIB RAMP T F32 *psParam)
void GFLIB_RampInit FLT(float_t fltInitVal, GFLIB_RAMP_T FLT *psParam)

The available GFLIB_Ramp functions have the following declarations:

fracle t GFLIB Ramp Fl6(fraclé t fléTarget, GFLIB RAMP T F16 *psParam)
frac32 t GFLIB Ramp F32(frac32 t f32Target, GFLIB RAMP T F32 *psParam)
float_t GFLIB_Ramp_ FLT(float_t fltTarget, GFLIB_RAMP T_FLT *psParam)

2.17.6 Function use

The use of the GFLIB_Ramplnit and GFLIB_Ramp functions is shown in the following
example:

#include "gflib.h"

static fracle t fl6InitVal;

static GFLIB RAMP T F16 sParam;
static fraclée t fléTarget, fl6Result;

void Isr (void) ;

GFLIB User's Guide, Rev. 2, 11/2016
NXP Semiconductors 73

GFLIB_DRamp
void main (void)

sParam.f16RampUp = FRAC16(0.1);
sParam.fl6RampDown = FRAC16(0.02) ;
fle6Target = FRAC16(0.75);

fl16InitVal = FRAC16(0.9);

GFLIB RampInit Fl6(fléInitVal, &sParam) ;

}

/* periodically called function */
void Isr()

fl6Result = GFLIB_ Ramp F16 (fl6Target, &sParam);

}

2.18 GFLIB_DRamp

The GFLIB_DRamp function calculates the up / down ramp with the defined step
increment / decrement. The algorithm approaches the target value when the stop flag is
not set, and/or returns to the instant value when the stop flag is set.

Ramp output

Instant
'w

Ramp-up-satl

Ramp-down-sat

Reachﬂag\
! TTTTTTTTTTTLTTTTTTTTTTTTTTTTTTTDTTTTTTTTTT

Figure 2-12. GFLIB_DRamp functionality

For a proper use, it is recommended that the algorithm is initialized by the
GFLIB_DRamplnit function, before using the GFLIB_DRamp function. This function
initializes the internal state variable of GFLIB_DRamp algorithm with the defined value.
You must call this function when you want the ramp to be initialized.

GFLIB User's Guide, Rev. 2, 11/2016
74 NXP Semiconductors

L __4

Chapter 2 Algorithms in detail
The GFLIB_DRamp function calculates a ramp with a different set of up / down
parameters, depending on the state of the stop flag. If the stop flag is cleared, the function
calculates the ramp of the actual state value towards the target value, using the up or
down increments contained in the parameters' structure. If the stop flag is set, the
function calculates the ramp towards the instant value, using the up or down saturation
increments.

If the target value is greater than the state value, the function adds the ramp-up value to
the state value. The output cannot be greater than the target value (case of the stop flag
being cleared), nor lower than the instant value (case of the stop flag being set).

If the target value is lower than the state value, the function subtracts the ramp-down
value from the state value. The output cannot be lower than the target value (case of the
stop flag being cleared), nor greater than the instant value (case of the stop flag being
set).

If the actual internal state reaches the target value, the reach flag is set.

2.18.1 Available versions
The function is available in the following versions:

 Fractional output - the output is the fractional portion of the result; the result is
within the range <-1 ; 1). The result may saturate.

* Floating-point output - the output is the floating-point result within the type's full
range.

The available versions of the GFLIB_DRamplnit function are shown in the following
table:

Table 2-21. Init function versions

Function name Input Parameters Result Description
type type
GFLIB_DRamplnit_F16 frac16_t |GFLIB_DRAMP_T_F16* |void Input argument is a 16-bit fractional value

that represents the initialization value. The
parameters' structure is pointed to by a
pointer. The input data value is in the range
<-1;1).

GFLIB_DRamplnit_F32 frac32_t |GFLIB_DRAMP_T_F32* |void Input argument is a 32-bit fractional value
that represents the initialization value. The
parameters' structure is pointed to by a
pointer. The input data value is in the range
<-1;1).

Table continues on the next page...

GFLIB User's Guide, Rev. 2, 11/2016
NXP Semiconductors 75

GFLIB_DRamp

Table 2-21. Init function versions (continued)

Function name Input Parameters Result Description
type type
GFLIB_DRamplnit_FLT float_t GFLIB_DRAMP_T_FLT * void Input argument is a 32-bit single precision

floating-point value that represents the
initialization value. The parameters'
structure is pointed to by a pointer. The
input value is within the full 32-bit single-
point floating-point range.

The available versions of the GFLIB_DRamp function are shown in the following table:

Table 2-22. Function versions

Function name Input type Parameters Result type
Target Instant Stop flag
GFLIB_DRamp_F16 |frac16_t frac16_t bool_t * GFLIB_DRAMP_T_F16 * frac16_t

The target and instant arguments are 16-bit fractional values. The parameters' structure is pointed to
by a pointer. The function returns a 16-bit fractional value, which represents the actual ramp output
value. The input data values are in the range of <-1; 1), the Stop flag parameter is a pointer to a
boolean value, and the output data value is in the range <-1 ; 1).

GFLIB_DRamp_F32

frac32_t frac32_t bool_t * | GFLIB_DRAMP_T_F32 * frac32_t

The target and instant arguments are 32-bit fractional values. The parameters' structure is pointed to
by a pointer. The function returns a 32-bit fractional value, which represents the actual ramp output
value. The input data values are in the range <-1 ; 1), the Stop flag parameter is a pointer to a boolean
value, and the output data value is in the range <-1; 1).

GFLIB_DRamp_FLT

float_t float_t bool_t * | GFLIB_LDRAMP_T_FLT * float_t

The target and instant arguments are 32-bit single precision floating-point values. The parameters'
structure is pointed to by a pointer. The function returns a 32-bit single precision floating-point value,
which represents the actual ramp output value. The input and output values are within the full 32-bit

single-point floating-point range, the Stop flag parameter is a pointer to a boolean value.

2.18.2 GFLIB_DRAMP_T_F16

Variable name Type Description

f16State frac16_t |Actual value - controlled by the algorithm.

f16RampUp frac16_t |Value of non-saturation ramp-up increment. The data value is in the range <0 ; 1). Set by
the user.

fi6RampDown frac16_t |Value of non-saturation ramp-down increment. The data value is in the range <0 ; 1). Set
by the user.

f16RampUpSat frac16_t |Value of saturation ramp-up increment. The data value is in the range <0 ; 1). Set by the
user.

fi6RampDownSat |frac16_t |Value of saturation ramp-down increment. The data value is in the range <0 ; 1). Set by the
user.

bReachFlag bool_t If the actual state value reaches the target value, this flag is set, otherwise, it is cleared.
Set by the algorithm.

GFLIB User's Guide, Rev. 2, 11/2016
76 NXP Semiconductors

Chapter 2 Algorithms in detail

2.18.3 GFLIB_DRAMP_T_F32

Variable name Type Description

f32State frac32_t |Actual value - controlled by the algorithm.

f32RampUp frac32_t |Value of non-saturation ramp-up increment. The data value is in the range <0 ; 1). Set by
the user.

f32RampDown frac32_t |Value of non-saturation ramp-down increment. The data value is in the range <0 ; 1). Set
by the user.

f82RampUpSat frac32_t |Value of saturation ramp-up increment. The data value is in the range <0 ; 1). Set by the
user.

f32RampDownSat |frac32_t |Value of saturation ramp-down increment. The data value is in the range <0 ; 1). Set by the
user.

bReachFlag bool_t If the actual state value reaches the target value, this flag is set, otherwise, it is cleared.

Set by the algorithm.

2.18.4 GFLIB_DRAMP_T_FLT

Variable name Type Description

fltState float_t Actual value - controlled by the algorithm.

fltRampUp float_t Value of non-saturation ramp-up increment. The data value is within the full 32-bit single
precision floating point. Set by the user as non- negative value.

flitRampDown float_t Value of non-saturation ramp-down increment. The data value is within the full 32-bit single
precision floating point. Set by the user as non- negative value.

fltRampUpSat float_t Value of saturation ramp-up increment. The data value is within the full 32-bit single
precision floating point. Set by the user as non- negative value.

fltRampDownSat float_t Value of saturation ramp-down increment. The data value is within the full 32-bit single
precision floating point. Set by the user as non- negative value.

bReachFlag bool_t If the actual state value reaches the target value, this flag is set, otherwise, it is cleared.

Set by the algorithm.

2.18.5 Declaration

The available GFLIB_DRamplnit functions have the following declarations:

void GFLIB DRampInit F16 (fraclé t fl6InitVal, GFLIB DRAMP T F16 *psParam)
void GFLIB DRampInit F32(frac32 t f£32InitVal, GFLIB DRAMP T F32 *psParam)
void GFLIB_DRampInit_ FLT(float_t fltInitVal, GFLIB_DRAMP_T FLT *psParam)

The available GFLIB_DRamp functions have the following declarations:

GFLIB User's Guide, Rev. 2, 11/2016

NXP Semiconductors

77

GFLIB_FlexRamp

fraclé_t GFLIB_DRamp_ F16 (fraclé_t flé6Target, fraclé_t fléInstant, const bool_t *pbStopFlag,
GFLIB_DRAMP T F16 *psParam)

frac32 t GFLIB DRamp F32(frac32 t f32Target, frac32 t f32Instant, const bool t *pbStopFlag,
GFLIB DRAMP T F32 *psParam)

float_t GFLIB_DRamp_ FLT (float_t fltTarget, float_t fltInstant, const bool_t *pbStopFlag,
GFLIB_DRAMP T FLT *psParam)

2.18.6 Function use

The use of the GFLIB_DRamplnit and GFLIB_DRamp functions is shown in the
following example:

#include "gflib.h"

static fraclée t fl6InitVal, fl6Target, fléInstant, fléResult;
static GFLIB DRAMP T F16 sParam;
static bool t bStopFlag;

void Isr (void) ;
void main (void)

sParam.fl6RampUp = FRAC16(0.05) ;
sParam. fl6RampDown = FRAC16(0.02) ;
sParam. fl16RampUpSat = FRAC16(0.025);
sParam.fl6RampDownSat = FRAC16(0.01) ;
fl6Target = FRAC16(0.7);

fl6Initval FRAC16(0.3) ;

fl6Instant FRAC16(0.6) ;

bStopFlag = FALSE;

GFLIB DRampInit F16(f16InitVal, &sParam);

}

/* periodically called function */
void Isr()

{

fl6Result = GFLIB DRamp_ F16 (fl6Target, flé6Instant, &bStopFlag, &sParam) ;

2.19 GFLIB_FlexRamp

The GFLIB_FlexRamp function calculates the up/down ramp with a fixed-step increment
that is calculated according to the required speed change per a defined duration. These
parameters must be set by the user.

The GFLIB_FlexRamp algorithm consists of three functions that must be used for a
proper functionality of the algorithm:

* GFLIB_FlexRamplnit - this function initializes the state variable with a defined
value and clears the reach flag

GFLIB User's Guide, Rev. 2, 11/2016
78 NXP Semiconductors

e
Chapter 2 Algorithms in detail
* GFLIB_FlexRampCalclncr - this function calculates the increment and clears the
reach flag
* GFLIB_FlexRamp - this function calculates the ramp in the periodically called loop

For a proper use, it is recommended to initialize the algorithm by the
GFLIB_FlexRamplnit function. The GFLIB_FlexRamplnit function initializes the
internal state variable of the algorithm with a defined value and clears the reach flag. Call
the init function when you want to initialize the ramp.

To calculate the increment, use the GFLIB_FlexRampCalclncr function. This function is
called at the point when you want to change the ramp output value. This function's inputs
are the target value and duration. The target value is the destination value that you want
to get to. The duration is the time required to change the ramp output from the actual state
to the target value. To be able to calculate the ramp increment, fill the control structure
with the sample time, that means the period of the loop where the GFLIB_FlexRamp
function is called. The structure also contains a variable which determines the maximum
value of the increment. It is necessary to set it up too. The equation for the increment
calculation is as follows:

V,—V
I= tT ST,

Equation 16.

where:

* [is the increment

* V,is the target value

* V. is the state (actual) value (in the structure)

* T is the duration of the ramp (to reach the target value starting at the state value)

T, is the sample time, that means the period of the loop where the ramp algorithm is
called (set in the structure)

If the increment is greater than the maximum increment (set in the structure), the
increment uses the maximum increment value.

As soon as the new increment is calculated, call the GFLIB_FlexRamp algorithm in the
periodical control loop. The function works as follows: The function adds the increment
to the state value (from the previous step), which results in a new state. The new state is
returned by the function. As the time passes, the algorithm is approaching the target
value. If the new state trespasses the target value, that new state is limited to the target
value and the reach flag is set. The functionality of the implemented algorithm is shown
in this figure:

GFLIB User's Guide, Rev. 2, 11/2016
NXP Semiconductors 79

GFLIB_FlexRamp

Duration | ; Duration

,,,

e FTT

Target - State

Target - State

|
| Sample time
. S

“Flex ramp output (State)

__— Reachflag

-

! RN RN RN R RN

Flex ramp Flex ramp Flex ramp
initialization periodical call periodical call
Flex ramp Flex ramp
increment calculation increment calculation

Figure 2-13. GFLIB_FlexRamp functionality

2.19.1 Available versions
This function is available in the following versions:

* Fractional output - the output is the fractional portion of the result; the result is
within the range <-1 ; 1). The input parameters are the fractional and accumulator
types.

* Floating-point output - the output is the floating-point result within the type's full
range.

The available versions of the GFLIB_FlexRamplnit function are shown in the following
table:

Table 2-23. Init function versions

Function name Input Parameters Result Description
type type
GFLIB_FlexRamplnit_F16 frac16_t |GFLIB_FLEXRAMP_T_F32 * void The input argument is a 16-bit

fractional value that represents the
initialization value. The
parameters' structure is pointed to
by a pointer. The input data value
is in the range <-1; 1).

Table continues on the next page...

GFLIB User's Guide, Rev. 2, 11/2016
80 NXP Semiconductors

4
Chapter 2 Algorithms in detail

Table 2-23. Init function versions (continued)

Function name Input Parameters Result Description
type type
GFLIB_FlexRamplnit_FLT float_t GFLIB_FLEXRAMP_T_FLT * void The input argument is a 32-bit

single precision floating-point
value that represents the
initialization value. The
parameters' structure is pointed to
by a pointer. The input value is
within the full 32-bit single-point
floating-point range.

The available versions of the GFLIB_FlexRamp function are shown in the following
table:

Table 2-24. Increment calculation function versions

Function name Input type Parameters Result
Target Duration type
GFLIB_FlexRampCalcincr_F16 frac16_t acc32_t GFLIB_FLEXRAMP_T_F32 * void

The input arguments are a 16-bit fractional value in the range <-1 ; 1) that represents
the target output value and a 32-bit accumulator value in the range (0 ; 65536.0) that
represents the duration of the ramp (in seconds) to reach the target value. The
parameters' structure is pointed to by a pointer.

GFLIB_FlexRampCalcincr_FLT float_t float_t | GFLIB_FLEXRAMP_T_FLT * | void

The input arguments are 32-bit single precision floating-point values that represent
the target output value and the duration of the ramp (in seconds, except zero value)
to reach the target value. The parameters' structure is pointed to by a pointer. The
target argument is within the full range; the duration argument is a non-negative
value.

Table 2-25. Function versions

Function nhame Parameters Result Description
type
GFLIB_FlexRamp_F16 GFLIB_FLEXRAMP_T_F32 * frac16_t The parameters' structure is pointed to by a

pointer. The function returns a 16-bit fractional
value, which represents the actual ramp
output value. The output data value is in the
range <-1; 1).

GFLIB_FlexRamp_FLT GFLIB_FLEXRAMP_T_FLT * float_t The parameters' structure is pointed to by a
pointer. The function returns a 32-bit single
precision floating-point value, which
represents the actual ramp output value. The
output value is within the full 32-bit single-
point floating-point range.

GFLIB User's Guide, Rev. 2, 11/2016
NXP Semiconductors 81

A
GFLIB_FlexRamp

2.19.2 GFLIB_FLEXRAMP_T_F32

Variable name Type Description

f32State frac32_t |The actual value. Controlled by the GFLIB_FlexRamplnit_F16 and GFLIB_FlexRamp_F16
algorithms.

f32Incr frac32_t |The value of the flex ramp increment. Controlled by the GFLIB_FlexRampCalcincr_F16
algorithm.

f32Target frac32_t |The target value of the flex ramp algorithm. Controlled by the
GFLIB_FlexRampCalclncr_F16 algorithm.

f32Ts frac32_t |The sample time, that means the period of the loop where the GFLIB_FlexRamp_F16
algorithms are periodically called. The data value (in seconds) is in the range (0 ; 1). Set by
the user.

f32IncrMax frac32_t |The maximum value of the flex ramp increment. The data value is in the range (0 ; 1). Set
by the user.

bReachFlag bool_t The reach flag. This flag is controlled by the GFLIB_FlexRamp_F16 algorithm. It is cleared
by the GFLIB_FlexRamplnit_F16 and GFLIB_FlexRampCalcIncr_F16 algorithms.

2.19.3 GFLIB_FLEXRAMP_T_FLT

Variable name Type Description

fltState float_t The actual value. Controlled by the GFLIB_FlexRamplnit_FLT and GFLIB_FlexRamp_FLT
algorithms.

fltincr float_t The value of the flex ramp increment. Controlled by the GFLIB_FlexRampCalcincr_FLT
algorithm.

fltTarget float_t The target value of the flex ramp algorithm. Controlled by the
GFLIB_FlexRampCalclncr_FLT algorithm.

fltTs float_t The sample time, that means the period of the loop where the GFLIB_FlexRamp_FLT

algorithm is periodically called. The data value (in seconds, except zero value) is a non-
negative value. Set by the user.

fltincrMax float_t The maximum value of the flex ramp increment. The data is a positive value. Set by the
user.
bReachFlag bool_t The reach flag. This flag is controlled by the GFLIB_FlexRamp_FLT algorithm. It is cleared

by the GFLIB_FlexRamplnit_FLT and GFLIB_FlexRampCalclncr_FLT algorithms.

2.19.4 Declaration

The available GFLIB_FlexRamplnit functions have the following declarations:

void GFLIB_FlexRampInit_ F16 (fraclé_t fl16InitVal, GFLIB_FLEXRAMP T F32 *psParam)
void GFLIB_FlexRampInit FLT(float_t fltInitVal, GFLIB_FLEXRAMP T FLT *psParam)

The available GFLIB_FlexRampCalclncr functions have the following declarations:

GFLIB User's Guide, Rev. 2, 11/2016
82 NXP Semiconductors

4
Chapter 2 Algorithms in detail

void GFLIB_FlexRampCalcIncr F16(fraclé_t flé6Target, acc32_t a32Duration,
GFLIB FLEXRAMP T F32 *psParam)
void GFLIB FlexRampCalcIncr FLT (float t fltTarget, float t fltDuration, GFLIB FLEXRAMP T FLT
*
psParam)

The available GFLIB_FlexRamp functions have the following declarations:

fraclé t GFLIB FlexRamp F16 (GFLIB FLEXRAMP T F32 *psParam)
float t GFLIB FlexRamp FLT (GFLIB FLEXRAMP T FLT *psParam)

2.19.5 Function use

The use of the GFLIB_FlexRamplnit, GFLIB_FlexRampCalcIncr, and
GFLIB_FlexRamp functions is shown in the following example:

#include "gflib.h"

static fracle t flé6InitVval;

static GFLIB FLEXRAMP T F32 sFlexRamp;
static fracle t fl6Target, fl6RampResult;
static acc32 t a32RampDuration;

void Isr (void) ;

void main (void)
/* Control loop period is 0.002 s; maximum increment value is 0.15 */
sFlexRamp.f32Ts = FRAC32(0.002) ;
sFlexRamp.f32IncrMax = FRAC32(0.15);

/* Initial value to 0 */
f16InitVal = FRAC16(0.0);

/* Flex ramp initialization */
GFLIB_FlexRampInit F16(fl6InitVal, &sFlexRamp) ;

/* Target value is 0.7 in duration of 5.3 s */
flé6Target = FRAC16(0.7) ;
a32RampDuration = ACC32(5.3);;

/* Flex ramp increment calculation */
GFLIB_ FlexRampCalcIncr F16 (fl6Target, a32RampDuration, &sFlexRamp) ;

}

/* periodically called control loop with a period of 2 ms */
void Isr()

fl6RampResult = GFLIB FlexRamp F16 (&sFlexRamp) ;

2.20 GFLIB_DFlexRamp

GFLIB User's Guide, Rev. 2, 11/2016
NXP Semiconductors 83

AR
GFLIB_DFlexRamp

The GFLIB_DFlexRamp function calculates the up/down ramp with a fixed-step
increment that is calculated according to the required speed change per a defined
duration.These parameters must be set by the user. The algorithm has stop flags. If none
of them is set, the ramp behaves normally. If one of them is set, the ramp can run in the
opposite direction.

The GFLIB_DFlexRamp algorithm consists of three functions that must be used for a
proper functionality of the algorithm:

* GFLIB_DFlexRamplnit - this function initializes the state variable with a defined
value and clears the reach flag

* GFLIB_DFlexRampCalclncr - this function calculates the increment and clears the
reach flag

* GFLIB_DFlexRamp - this function calculates the ramp in the periodically called
loop

For a proper use, initialize the algorithm by the GFLIB_DFlexRamplnit function. The
GFLIB_DFlexRamplInit function initializes the internal state variable of the algorithm
with a defined value and clears the reach flag. Call the init function when you want to
initialize the ramp.

To calculate the increment, use the GFLIB_DFlexRampCalclIncr function. Call this
function when you want to change the ramp output value. This function's inputs are the
target value and duration, and the ramp increments for motoring and generating
saturation modes. The target value is the destination value that you want to get to. The
duration is the time required to change the ramp output from the actual state to the target
value. To calculate the ramp increment, fill the control structure with the sample time,
that means the period of the loop where the GFLIB_DFlexRamp funciton is called. The
structure also contains a variable which determines the maximum value of the increment.
It is necessary to set it up too. The equation for the increment calculation is as follows:

V=V
I= ZT ST,

Equation 17.

where:

* [is the increment

* V,is the target value

* V. is the state (actual) value (in the structure)

* T is the duration of the ramp (to reach the target value starting at the state value)

* T, is the sample time, that means the period of the loop where the ramp algorithm is
called (set in the structure)

GFLIB User's Guide, Rev. 2, 11/2016
84 NXP Semiconductors

.4

Chapter 2 Algorithms in detail
If the increment is greater than the maximum increment (set in the structure), the
increment uses the maximum increment value.

The state, target, and instant values must have the same sign, otherwise the saturation
modes don't work properly.

As soon as the new increment is calculated, you can call the GFLIB_DFlexRamp
algorithm in the periodical control loop. If none of the stop flags is set, the function
works as follows: The function adds the increment to the state value (from the previous
step), which results in a new state. The new state is returned by the function. As time
passes, the algorithm is approaching the target value. If the new state trespasses the target
value that new state 1s limited to, the target value and the reach flag are set. The
functionality of the implemented algorithm is shown in the following figure:

Duration N | Duration

Increment
Gen-sat-mode | |

Increment
Mot-sat-mod el

*

g
\
_________________ \ T el A

I

\ Instant Jl‘lncrement
\
\

Target - State

i ' A}
------ “T Dyn. flex ramp
Increment i output (State)

Motoring mode Sample time
stop flag ; s
— ' ; '

Generating mode
stop flag —

___—— Reachflag | E—

—

Dyn. flex ramp Dyn. flex ramp Dyn. flex ramp

! {TTTTTTTTTTTTTTTTTTHTTTTTTTTTTTTTTTTTTTTT

initialization periodical call periodical call
Dyn. flex ramp Dyn. flex ramp
increment calculation increment calculation

Figure 2-14. GFLIB_DFlexRamp functionality

If the motoring mode stop flag is set and the absolute value of the target value is greater
than the absolute value of the state value, the function uses the increment for the
motoring saturation mode to return to the instant value. Use case: when the application is
in the saturation mode and cannot supply more power to increase the speed, then a
saturation (motoring mode) flag is generated. To get out of the saturation, the ramp
output value is being reduced.

GFLIB User's Guide, Rev. 2, 11/2016
NXP Semiconductors 85

A
GFLIB_DFlexRamp

If the generating mode stop flag is set and the absolute value of the target value is lower
than the absolute value of the state value, the funcion uses the increment for the
generating saturation mode to return to the instant value. Use case: when the application
1s braking a motor and voltage increases on the DC-bus capacitor, then a saturation
(generating mode) flag is generated. To avoid trespassing the DC-bus safe voltage limit,
the speed requirement is increasing to disipate the energy of the capacitor.

2.20.1 Available versions
This function is available in the following versions:

* Fractional output - the output is the fractional portion of the result; the result is
within the range <-1 ; 1). The input parameters are the fractional and accumulator

types.

The available versions of the GFLIB_DFlexRamplInit functions are shown in the
following table:

Table 2-26. Init function versions

Function name Input Parameters Result Description
type type
GFLIB_FlexRamplnit_F16 frac16_t |GFLIB_DFLEXRAMP_T_F32* void The input argument is a 16-bit

fractional value that represents
the initialization value. The
parameters' structure is pointed
to by a pointer. The input data
value is in the range <-1; 1).

GFLIB_FlexRamplnit_FLT float_t GFLIB_DFLEXRAMP_T_FLT * void The input argument is a 32-bit
single precision floating-point
value that represents the
initialization value. The
parameters' structure is pointed
to by a pointer. The input value is
within the full 32-bit single-point
floating-point range.

The available versions of the GFLIB_DFlexRamp functions are shown in the following
table:

Table 2-27. Increment calculation function versions

Function name Input type Parameters Result
Target Duration | Incr. sat- | Incr. sat- type
mot gen
GFLIB_DFlexRampCalcincr_F16 frac16_t |acc32_t frac32_t |frac32_t |GFLIB_DFLEXRAMP_T_ |void
F32*

Table continues on the next page...

GFLIB User's Guide, Rev. 2, 11/2016
86 NXP Semiconductors

4
Chapter 2 Algorithms in detail

Table 2-27. Increment calculation function versions (continued)

Function name Input type Parameters Result
Target Duration | Incr. sat- | Incr. sat- type
mot gen

The input arguments are 16-bit fractional values in the range <-1 ; 1) that represent
the target output value and a 32-bit accumulator value in the range (0 ; 65536.0) that
represents the duration (in seconds) of the ramp to reach the target value. The other
two arguments are increments for the saturation mode when in the motoring and
generating modes. The parameters' structure is pointed to by a pointer.

GFLIB_DFlexRampCalclncr_FLT float_t float_t float_t float_t GFLIB_DFLEXRAMP_T_ |void
FLT *

The input arguments are 32-bit single precision floating-point values that represent
the target output value and the duration of the ramp (in seconds, except zero value)
to reach the target value. The other two arguments are increments for the saturation
mode when in the motoring and generating modes. The parameters' structure is
pointed to by a pointer. The target argument is within the full range; the duration
argument is a non-negative value.

Table 2-28. Function versions

Function name Input type Parameters Result
Instant | Stop flag- | Stop flag- type
mot gen
GFLIB_DFlexRamp_F16 frac16_t |bool_t* bool_t * GFLIB_DFLEXRAMP_T_F32 * frac16_t

The input argument is a 16-bit fractional value in the range <-1 ; 1) that represents
the measured instant value. The stop flags are pointers to the bool_t types. The
parameters' structure is pointed to by a pointer. The function returns a 16-bit
fractional value, which represents the actual ramp output value. The output data
value is in the range <-1; 1).

GFLIB_DFlexRamp_FLT float_t bool_t * | bool_t * | GFLIB_DFLEXRAMP_T_FLT * float_t

The input arguments are 32-bit single precision floating-point values that represent
the measured instant value. The stop flags are pointers to bool_t types. The
parameters' structure is pointed to by a pointer. The function returns a 32-bit single
precision floating-point value, which represents the actual ramp output value. The
output value is within the full 32-bit single-point floating-point range.

2.20.2 GFLIB_DFLEXRAMP_T_F32

Variable name Type Description
f32State frac32_t |The actual value. Controlled by the GFLIB_FlexRamplnit_F16 and GFLIB_FlexRamp_F16
algorithms.
f32Incr frac32_t |The value of the dyn. flex ramp increment. Controlled by the

GFLIB_FlexRampCalclncr_F16 algorithm.

f32IncrSatMot frac32_t |The value of the dyn. flex ramp increment when in the motoring saturation mode.
Controlled by the GFLIB_DFlexRampCalclncr_F16 algorithm.

Table continues on the next page...

GFLIB User's Guide, Rev. 2, 11/2016
NXP Semiconductors 87

A
GFLIB_DFlexRamp

Variable name Type Description

f32IncrSatGen frac32_t |The value of the dyn. flex ramp increment when in the generating saturation mode.
Controlled by the GFLIB_DFlexRampCalclncr_F16 algorithm.

f32Target frac32_t |The target value of the flex ramp algorithm. Controlled by the
GFLIB_DFlexRampCalcincr_F16 algorithm.

f32Ts frac32_t |The sample time, that means the period of the loop where the GFLIB_DFlexRamp_F16
algorithm is periodically called. The data value (in seconds) is in the range (0 ; 1). Set by
the user.

f32IncrMax frac32_t |The maximum value of the flex ramp increment. The data value is in the range (0 ; 1). Set
by the user.

bReachFlag bool_t Reach flag. This flag is controlled by the GFLIB_DFlexRamp_F16 algorithm. It is cleared
by the GFLIB_DFlexRamplnit_F16 and GFLIB_DFlexRampCalcIncr_F16 algorithms.

2.20.3 GFLIB_DFLEXRAMP_T_FLT

Variable name Type Description

fltState float_t The actual value. Controlled by the GFLIB_DFlexRamplnit_FLT and
GFLIB_DFlexRamp_FLT algorithms.

fltincr float_t The value of the flex ramp increment. Controlled by the GFLIB_DFlexRampCalclncr_FLT
algorithm.

fltincrSatMot float_t The value of the dyn. flex ramp increment when in the motoring saturation mode.
Controlled by the GFLIB_DFlexRampCalcincr_FLT algorithm.

fltincrSatGen float_t The value of the dyn. flex ramp increment when in the generating saturation mode.
Controlled by the GFLIB_DFlexRampCalcincr_FLT algorithm.

fltTarget float_t The target value of the flex ramp algorithm. Controlled by the
GFLIB_DFlexRampCalcIncr_FLT algorithm.

fitTs float_t The sample time, that means the period of the loop where the GFLIB_DFlexRamp_FLT
algorithm is periodically called. The data value (in seconds, except zero value) is a non-
negative value. Set by the user.

fltincrMax float_t The maximum value of the flex ramp increment. The data is a positive value. Set by the
user.

bReachFlag bool_t The reach flag. This flag is controlled by the GFLIB_DFlexRamp_FLT algorithm. It is
cleared by the GFLIB_DFlexRamplnit_FLT and GFLIB_DFlexRampCalcIncr_FLT
algorithms.

2.20.4 Declaration
The available GFLIB_DFlexRamplnit functions have the following declarations:

void GFLIB DFlexRampInit F16 (fraclé t f16InitVal, GFLIB DFLEXRAMP T F32 *psParam)
void GFLIB DFlexRampInit FLT (float t fltInitVal, GFLIB DFLEXRAMP T FLT *psParam)

The available GFLIB_DFlexRampCalclncr functions have the following declarations:

GFLIB User's Guide, Rev. 2, 11/2016
88 NXP Semiconductors

4
Chapter 2 Algorithms in detail

void GFLIB_DFlexRampCalcIncr_Fl16 (fraclé_t fléTarget, acc32_t a32Duration, frac32_t
f32IncrSatMot, frac32 t f32IncrSatGen, GFLIB_DFLEXRAMP T _F32 *psParam)

void GFLIB DFlexRampCalcIncr FLT(float t fltTarget, float t fltDuration, float t
f32IncrSatMot, float t f32IncrSatGen, GFLIB DFLEXRAMP T FLT *psParam)

The available GFLIB_DFlexRamp functions have the following declarations:

fraclé t GFLIB DFlexRamp F16 (fracl6é t fléInstant, const bool t *pbStopFlagMot, const bool t
*pbStopFlagGen, GFLIB DFLEXRAMP T F32 *psParam)

float_t GFLIB DFlexRamp FLT(float_t fltInstant, const bool_t *pbStopFlagMot, const bool_ t
*pbStopFlagGen, GFLIB_DFLEXRAMP T FLT *psParam)

2.20.5 Function use

The use of the GFLIB_DFlexRamplnit, GFLIB_DFlexRampCalclncr, and
GFLIB_DFlexRamp functions is shown in the following example:

#include "gflib.h"

static fracle t fl6InitVval;

static GFLIB DFLEXRAMP T F32 sDFlexRamp;

static fracleée t fléTarget, fle6RampResult, flé6Instant;
static acc32 t a32RampDuration;

static frac32 t f£32IncrSatMotMode, £32IncrSatGenMode;
static bool t bSatMot, bSatGen;

void Isr (void) ;
void main (void)

/* Control loop period is 0.002 s; maximum increment value is 0.15 */
sDFlexRamp.£32Ts = FRAC32(0.002) ;
sDFlexRamp.f32IncrMax = FRAC32(0.15);

/* Initial value to 0 */
f16InitVal = FRAC16(0.0);

/* Dyn. flex ramp initialization */
GFLIB FlexRampInit F16(fl6InitVal, &sDFlexRamp) ;

/* Target value is 0.7 in duration of 5.3 s */
fl6Target = FRAC16(0.7) ;
a32RampDuration = ACC32(5.3);;

/* Saturation increments */
f32IncrSatMotMode = FRAC32(0.000015) ;
f32IncrSatGenMode = FRAC32(0.00002) ;

/* Saturation flags init */
bSatMot = FALSE;
bSatGen = FALSE;

/* Dyn. flex ramp increment calculation */
GFLIB DFlexRampCalcIncr F16 (fl6Target, a32RampDuration, f32IncrSatMotMode,
f32IncrSatGenMode, &sDFlexRamp) ;

}

/* periodically called control loop with a period of 2 ms */
void Isr()

{

GFLIB User's Guide, Rev. 2, 11/2016
NXP Semiconductors 89

A
GFLIB_FlexSRamp

fl6RampResult = GFLIB DFlexRamp F16 (fl6Instant, &bSatMot, &bSatGen, &sDFlexRamp) ;

2.21 GFLIB_FlexSRamp

The GFLIB_FlexSRamp function calculates the up/down ramp with a variable increment
that is calculated according to the required speed change per a defined duration. These
parameters must be set by the user. The variable increment is profiled to reach the S-
profile of the resulting ramp.

The GFLIB_FlexSRamp algorithm consists of three functions that must be used for a
proper functionality of the algorithm:

e GFLIB_FlexSRamplnit - this function initializes the state variable with a defined
value, resets the accelaration increment to zero, sets the acceleration state to zero,
and clears the reach flag

» GFLIB_FlexSRampCalclncr - this function calculates the desired acceleraion, two
points of the speed where the acceleration changes from a variable to a constant and
vice-versa, acceleration (derivative) increment, resets the increment to zero, sets the
acceleration state to zero, and clears the reach flag

* GFLIB_FlexSRamp - this function calculates the ramp in the periodically called loop

For a proper use, initialize the algorithm by the GFLIB_FlexSRamplInit function. The
GFLIB_FlexSRamplnit function initializes the internal state variable of the algorithm
with a defined value, resets the acceleration increment to zero, sets the acceleration state
to zero, and clears the reach flag. This function does not affect the other parameters of the
ramp. Call the init function to initialize the ramp.

To calculate the profile of the ramp, use the GFLIB_FlexSRampCalcIncr function. This
function is called when you want to change the ramp output value. This function's inputs
are the target value and duration. The target value is the destination value that you want
to get to. The duration is the time required to change the ramp output from the actual state
to the target value. To calculate the ramp increment, fill the control structure with the
sample time, that means the period of the loop where the GFLIB_FlexSRamp function is
called. Set up the desirable acceleration derivative that is necessary for the acceleration
and decceleration states. The structure also contains a variable that determines the
maximum value of the increment (acceleration). It is necessary to set it up too. The
equations for the ramp calculation are derived from the following figure:

GFLIB User's Guide, Rev. 2, 11/2016
90 NXP Semiconductors

Chapter 2 Algorithms in detail

Ramp (on time)

a

® B B

w

- Desired

i acceleration
] .

- (increment)

10 15

‘State 0 | State 1 Ly A ——
r rl L H ':

™ Duration (desired) T2

i
Figure 2-15. GFLIB_FlexSRamp profile

For the ramp output change in each state, these equations apply:
Axy=X(T)) = x0)
Equation 18.
Axy=x(Ty) —x(T)
Equation 19.
Axy=Ax,

Equation 20.

where:

* X is the ramp output

» Ax, is the ramp change in state 0

» AX, is the ramp change in state 1

» Axj is the ramp change in state 2

T, is the instant when the desired acceleration is reached and becomes constant
* T, is the instant when the desired acceleration starts to decrease

To get the full ramp change between the actual state value and the target value, this
equation applies:

GFLIB User's Guide, Rev. 2, 11/2016

NXP Semiconductors

91

A
GFLIB_FlexSRamp

Ax = Ax + Axy+ Axy =2 Ax |+ Ax,

Equation 21.

The value of the desired accelelarion that is reached by the integration of the acceleration
derivative along the time within state O is:

Ty
adeS: a(Tl): J‘dAdt = dATI
0

Equation 22.

where:

* a4es 1S the desired acceleration
e dA is the derivative of the acceleration

Similarly, the Ax; and Ax;, values are given by integrating the acceleration in time:

T

A, = J.dA’t-dt:%dA-le
0

Equation 23.

)

Ax2: jades'dt = ades'(TZ - Tl)
Ty

Equation 24.
Because the ramp is symetrical, time 75 is expressed as:
T,=T-T,
Equation 25.
where:
* T is the duration of the ramp
Using the equations for a,,, and T,, Equation 24 on page 92 is rewritten as:
Axy=dA-T (T —2T))
Equation 26.

Putting Equation 26 on page 92 and Equation 26 on page 92 into Equation 21 on page 92,
the following equation is reached:

Ax=2%-dA-TP+dA T\(T - 2T) = ~dA T2 +dA T T,
Equation 27.

GFLIB User's Guide, Rev. 2, 11/2016
92 NXP Semiconductors

4
Chapter 2 Algorithms in detail

Having normalized the previous equation, a quadrature equation is reached:
TP=T-T+4% =0
Equation 28.

One root of this quadrature equation is 77;:

Tl_ 2

Equation 29.

Using Equation 22 on page 92, the desired acceleration is expressed as:

dA-T—\/dAz-T2—4-dA~Ax

Aes = 2

Equation 30.

This equation has a solution within the range of real numbers only if the square root
argument is not negative, so this condition must be met:

dA*T?>4-dA Ax
Equation 31.

If this condition is met and the desired acceleration is not greater than the maximum
increment (set in the structure), the ramp is achievable within the defined duration and
the function's output flag is TRUE. If the acceleration is greater than the maximum
increment, the function uses the maximum increment value and then the ramp is not
achieved on time, the output flag is FALSE.

If the condition given by Equation 31 on page 93 is not met, the ramp is not achievable
within the defined duration and the function returns the flag FALSE. In such case, the
ramp skips state 1 (where the acceleration is constant) and goes directly from state O to
state 2. The following figure shows the ramp profile:

GFLIB User's Guide, Rev. 2, 11/2016
NXP Semiconductors 93

A
GFLIB_FlexSRamp

Ramp (delayed)

Desired
acceleration
(increment)

X(T1) = X(T2) -0

Target - State

| State 0

1 B 1
H
o State 2 i ——OuUpUt —— Increment
T Ll

ri
T1=T2
Duration (desired)

i
Figure 2-16. GFLIB_FlexSRamp delayed profile

This ramp takes longer time than desirable duration. In this case, Ax; is exactly a half of
the full ramp change output. The 7 instant is derived from Equation 23 on page 92 as:

2-Ax Y
r=\ar = \ay
Equation 32.

The desired acceleration is given by Equation 22 on page 92 as:

adeS:dA~\/j—j = \ax-dA

Equation 33.

Similarly to the previous case (when the ramp is achievable within the desired time), the
desired acceleration cannot be greater than the maximum increment, otherwise the
function uses the maximum increment value. If the desired acceleration is trimmed, the
ramp is in state 1 with a constant acceleration.

In both cases, the desired acceleration could have been reduced to the maximum
increment value, therefore it is necessary to adjust the 7; value using Equation 22 on
page 92 :

GFLIB User's Guide, Rev. 2, 11/2016
94 NXP Semiconductors

4
Chapter 2 Algorithms in detail

_ Aes
1 dA

T

Equation 34.
where:

* a4es can be changed to the maximum increment
By putting T; into Equation 23 on page 92, the Ax; value is given as:

Ades)2: 1 9es

_ 1 Gdes® 1 Gues”
Aoy =2dAd(Gg) =274

Equation 35.
Because the ramp output profile is now symetrical, the ramp output value in time 77 is
given by adding (or subracting) the Ax; value to the state value. Similarly, the ramp
output value in time 7 is given by subtracting (or adding) the Ax; value from the target

value. These two values are returned within the function structure together with the
desired acceleration value.

Another parameter that must be calculated is the acceleration increment. The increment
uses the derivative of acceleration dA and the sample time of the application. This must

apply:

_@_d_z)CNAincr
d4= dt — dr ~ Ts2

Equation 36.
where:

* A, 18 the acceleration increment
* T, is the sample time

The acceleration increment needed for the algorithm is:
Aincr = TSZ.dA
Equation 37.

As soon as the necessary parameters are calculated, call the GFLIB_FlexSRamp
algorithm in the periodical control loop. The function works in these three states:

e State 0 - acceleration rises from 0 towards the desired acceleration
e State 1 - acceleration is constant
* State 2 - acceleration is falling from the desired acceleration towards zero

GFLIB User's Guide, Rev. 2, 11/2016
NXP Semiconductors 95

A ————
GFLIB_FlexSRamp

In state O, the function adds the acceleration increment to the increment. In the first step,
it only adds half of the acceleration increment (to form the trapezoidal integration). The
resulting increment is added to or subtracted from the state value (from the previous
step), which results in a new state. The new state is returned by the function. After the
X(T;) value is reached, the function switches to state 1. At the same time, the function
checks whether the condition X(75) value is reached. In such case, the function goes
directly to state 2.

In state 1, the function does not change the increment; it stays constant from the last
value in state 0. The increment is added to or subtracted from the state value (from the
previous step), which results in a new state. The new state is returned by the function.
When the X(7,) value is reached, the function switches to state 2.

In state 2, the function subtracts the acceleration increment from the increment. The
resulting increment is added to or subtracted from the state value (from the previous
step), which results in a new state. The new state is returned by the function. If the new
state trespasses the target value, it is trimmed to the target value. It can happen that the
function output does not reach the target value before the increment returns to zero. If the
increment is zero before reaching the target value, the output stops before the target
value. This can happen because the function does not work with the continuous time. The
incrementation depends on the sampling time and the arithmetic accuracy used. To
ensure that the function always reaches the target value, the function checks if the
increment is not lower than the half of the acceleration increment. If the resulting
increment is lower than half of the acceleration increment, the increment is set to a half of
the acceleration increment. Using this approach, the function always reaches the target
value. As soon as the target value is reached, the reach flag is set.

The functionality of the implemented algorithm is shown in this figure:

GFLIB User's Guide, Rev. 2, 11/2016
96 NXP Semiconductors

-i_._______

Chapter 2 Algorithms in detail

" L - T H‘ ;(ﬂmple fine - Reach flag
LECL]] gt || T
—_ T i RS s
! RERRRRRRRRRRRRERRRRRERRRRAREE

increment calculation

2.21.1 Available versions

This function is available in the following versions:

Figure 2-17. GFLIB_FlexSRamp functionality

* Fractional output - the output is the fractional portion of the result; the result is
within the range <-1 ; 1). The input parameters are the fractional and accumulator

types.
The available versions of the GFLIB_FlexSRamplnit function are shown in the following
table:
Table 2-29. Init function versions
Function name Input Parameters Result Description
type type
GFLIB_FlexSRamplnit_F16 frac16_t |GFLIB_FLEXSRAMP_T_F32* void The input argument is a 16-bit

fractional value that represents the
initialization value. The
parameters' structure is pointed to
by a pointer. The input data value
is in the range <-1; 1).

GFLIB_FlexRamplnit_FLT

float_t

GFLIB_FLEXSRAMP_T_FLT *

void

GFLIB User's Guide, Rev. 2, 11/2016

The input argument is a 32-bit
single precision floating-point
value that represents the
initialization value. The

NXP Semiconductors

97

A
GFLIB_FlexSRamp

Table 2-29. Init function versions

Function name Input Parameters Result Description
type type

parameters' structure is pointed to
by a pointer. The input value is
within the full 32-bit single-point
floating-point range.

The available versions of the GFLIB_FlexSRamp function are shown in the following
table:

Table 2-30. Increment calculation function versions

Function nhame Input type Parameters Result
Target Duration type
GFLIB_FlexSRampCalcincr_F16 frac16_t acc32_t GFLIB_FLEXSRAMP_T_F32 * bool_t

The input arguments are a 16-bit fractional value in the range <-1 ; 1) that represents
the target output value and a 32-bit accumulator value in the range (0 ; 1/ f16DA) that
represents the duration of the ramp (in seconds) to reach the target value. The
parameters' structure is pointed to by a pointer. The function returns TRUE if the
ramp is achievable within the defined duration; if it is not achievable, it returns
FALSE. The parameters are calculated, but the ramp takes longer.

GFLIB_FlexRampCalcincr_FLT float_t float_t | GFLIB_FLEXSRAMP_T_FLT * | bool_t

The input arguments are 32-bit single precision floating-point values that represent
the target output value and the duration of the ramp (in seconds, except zero value)
to reach the target value. The parameters' structure is pointed to by a pointer. The
target argument is within the full range; the duration argument is a non-negative
value. The function returns TRUE if the ramp is achievable within the defined
duration; if it is not achievable, it returns FALSE. The parameters are calculated, but
the ramp takes longer.

Table 2-31. Function versions

Function name Parameters Result Description
type
GFLIB_FlexSRamp_F16 GFLIB_FLEXSRAMP_T_F32 * frac16_t The parameters' structure is pointed to by a
pointer. The function returns a 16-bit fractional
value, which represents the actual ramp
output value. The output data value is in the
range <-1; 1).

GFLIB_FlexRamp_FLT GFLIB_FLEXSRAMP_T_FLT * float_t The parameters' structure is pointed to by a
pointer. The function returns a 32-bit single
precision floating-point value, which
represents the actual ramp output value. The
output value is within the full 32-bit single-
point floating-point range.

GFLIB User's Guide, Rev. 2, 11/2016
98 NXP Semiconductors

4
Chapter 2 Algorithms in detail

2.21.2 GFLIB_FLEXSRAMP_T_F32

Variable name Type Description
f32State frac32_t |The actual value. Controlled by the GFLIB_FlexSRamplnit_F16 and
GFLIB_FlexSRamp_F16 algorithms.
f32Incr frac32_t |The value of the flex s-ramp increment. Controlled by the GFLIB_FlexSRamp_F16

algorithm. It is reset to zero by the GFLIB_FlexSRamplnit_F16 and
GFLIB_FlexSRampCalclncr_F16 algorithms.

f32Alncr frac32_t |The value of the flex s-ramp acceleration increment. Controlled by the
GFLIB_FlexSRampCalcincr_F16 algorithm.

f382ADes frac32_t |The value of the flex s-ramp desired acceleration. Controlled by the
GFLIB_FlexSRampCalclncr_F16 algorithm.

f32Target frac32_t |The target value of the flex s-ramp algorithm. Controlled by the
GFLIB_FlexSRampCalcincr_F16 algorithm.

f32Ts frac32_t |The sample time, that means the period of the loop where the GFLIB_FlexSRamp_F16
algorithms are periodically called. The data value (in seconds) is in the range (0 ; 1). Set by
the user.

f32IncrMax frac32_t |The maximum value of the flex s-ramp increment. The data value is in the range (0 ; 1). Set
by the user.

f32XT1 frac32_t |The flex s-ramp value of the point where the increment must stop incrementing. Controlled
by the GFLIB_FlexSRampCalcincr_F16 algorithm.

f32XT2 frac32_t |The flex s-ramp value of the point where the increment must start decrementing. Controlled
by the GFLIB_FlexSRampCalcincr_F16 algorithm.

f16DA frac16_t |The acceleration derivative. The data value (in accelaration change per second or ramp

output value change per square second) is in the range <0 ; 0.5). Set by the user.

u16AccState uint_16_t | The acceleration state of the function: 0 - acceleration rises; 1 - acceleration is constant; 2 -
acceleration falls. Controlled by the GFLIB_FlexSRamp_F16 algorithm. It is reset to zero
by the GFLIB_FlexSRamplnit_F16 and GFLIB_FlexSRampCalcincr_F16 algorithms.

bReachFlag bool_t Reach flag. This flag is controlled by the GFLIB_FlexSRamp_F16 algorithm. It is cleared by
the GFLIB_FlexSRamplnit_F16 and GFLIB_FlexSRampCalcincr_F16 algorithms.

2.21.3 GFLIB_FLEXSRAMP_T_FLT

Variable name Type Description
fltState float_t The actual value. Controlled by the GFLIB_FlexSRamplnit_FLT and
GFLIB_FlexSRamp_FLT algorithms.
fltincr float_t The value of the flex s-ramp increment. Controlled by the GFLIB_FlexSRamp_FLT

algorithm. It is reset to zero by the GFLIB_FlexSRamplnit_FLT and
GFLIB_FlexSRampCalcincr_FLT algorithms.

fltAlncr float_t The value of the flex s-ramp acceleration increment. Controlled by the
GFLIB_FlexSRampCalcIncr_FLT algorithm.

fltADes float_t The value of the flex s-ramp desired acceleration. Controlled by the
GFLIB_FlexSRampCalcincr_FLT algorithm.

fltTarget float_t The target value of the flex s-ramp algorithm. Controlled by the

GFLIB_FlexSRampCalcincr_FLT algorithm.

Table continues on the next page...

GFLIB User's Guide, Rev. 2, 11/2016
NXP Semiconductors 99

A
GFLIB_FlexSRamp

Variable name Type Description

fltTs float_t The sample time, that means the period of the loop where the GFLIB_FlexSRamp_FLT
algorithms are periodically called. The data value (in seconds, except zero value) is in the
32-bit single precision floating-point range. Set by the user.

fltincrMax float_t The maximum value of the flex s-ramp increment. The data value is in the 32-bit single
precision floating-point range. Set by the user.

fItXTA float_t The flex s-ramp value of the point where the increment must stop incrementing. Controlled
by the GFLIB_FlexSRampCalclncr_FLT algorithm.

fltXT2 float_t The flex s-ramp value of the point where the increment must start decrementing. Controlled
by the GFLIB_FlexSRampCalcincr_FLT algorithm.

fltDA float_t The acceleration derivative. The data value (in accelaration change per second or ramp

output value change per square second) is in the range <0 ; 1). Set by the user.

ui16AccState uint_16_t |The acceleration state of the function: 0 - acceleration rises; 1 - acceleration is constant; 2 -
acceleration falls. Controlled by the GFLIB_FlexSRamp_FLT algorithm. It is reset to zero
by the GFLIB_FlexSRamplnit_FLT and GFLIB_FlexSRampCalcincr_FLT algorithms.

bReachFlag bool_t The reach flag. This flag is controlled by the GFLIB_FlexSRamp_FLT algorithm. It is
cleared by the GFLIB_FlexSRamplnit_FLT and GFLIB_FlexSRampCalcincr_FLT
algorithms.

2.21.4 Declaration

The available GFLIB_FlexSRamplnit functions have the following declarations:

void GFLIB FlexSRampInit F16 (fraclé_t fl6InitVal, GFLIB FLEXSRAMP T F32 *psParam)
void GFLIB_FlexSRampInit FLT(float_t fltInitVal, GFLIB_FLEXSRAMP T FLT *psParam)

The available GFLIB_FlexSRampCalcIncr functions have the following declarations:

bool t GFLIB FlexSRampCalcIncr F1l6 (fraclé t fléTarget, acc32 t a32Duration,
GFLIB_FLEXSRAMP_T F32 *psParam)
bool t GFLIB FlexSRampCalcIncr FLT (float t fltTarget, float t fltDuration,
GFLIB_FLEXSRAMP T FLT *psParam)

The available GFLIB_FlexSRamp functions have the following declarations:

fraclé_t GFLIB_FlexSRamp F16 (GFLIB FLEXSRAMP T F32 *psParam)
float t GFLIB FlexSRamp FLT (GFLIB FLEXSRAMP T FLT *psParam)

2.21.5 Function use

The use of the GFLIB_FlexSRamplnit, GFLIB_FlexRampSCalcIncr, and
GFLIB_FlexSRamp functions is shown in the following example:

A ramp with a profile as in Figure 2-15 is generated. The ramp must change the speed
from 100 RPM to 900 RPM in 20 s. The speed scale is 5000 RPM. The ramp must
change the speed in 20 s. The acceleration derivative is 15 RPM / s2. The sample time is
0.1 s. The maximum acceleraion is 50 RPM / s.

GFLIB User's Guide, Rev. 2, 11/2016
100 NXP Semiconductors

Chapter 2 Algorithms in detail

#include "gflib.h"

static fracle t flé6Initval;

static GFLIB_FLEXSRAMP T_F32 sFlexSRamp;
static fracleé t flé6Target, fl6RampResult;
static acc32 t a32RampDuration;

static bool t bFlexSRampFlag;

void Isr (void) ;
void main (void)

{

/* Control loop period is 0.1 s */
sFlexSRamp.f32Ts = FRAC32(0.1);

/* Maximum increment value is 50 RPM / s */
sFlexSRamp.f32IncrMax = FRAC32(50.0 / 5000.0 * 0.1);

/* Desired acceleration derivative 15 RPM / s ~ 2 */
sFlexSRamp.f16DA = FRAC16(15.0 / 5000.0);

/* Initial value to 100 RPM */
fl16InitVal = FRAC16(100.0 / 5000.0) ;

/* Flex ramp initialization */
GFLIB FlexSRampInit F16 (fl6InitVal, &sFlexSRamp) ;

/* Target value is 900 RPM in duration of 20 s */
fl6Target = FRAC16(900.0 / 5000.0);
a32RampDuration = ACC32(20.0) ;

/* Flex s-ramp parameters calculation */
bFlexSRampFlag = GFLIB FlexSRampCalcIncr F16 (fl6Target, a32RampDuration, &sFlexSRamp) ;

}

/* periodically called control loop with a period of 100 ms */
void Isr ()

fl6RampResult = GFLIB FlexSRamp F16 (&sFlexSRamp) ;

}

2.22 GFLIB_Integrator

The GFLIB_Integrator function calculates a discrete implementation of the integrator
(sum), discretized using a trapezoidal rule in Tustin's method (bi-linear transformation).

The continuous time domain representation of the integrator is defined as follows:

u(t) = je(t)dt
Equation 38.

In a continuous time domain, the transfer function for this integrator is described using
the Laplace transformation as follows:

GFLIB User's Guide, Rev. 2, 11/2016
NXP Semiconductors 101

A
GFLIB_Integrator

Us) 1

H($)=) =5

Equation 39.

Transforming the above equation into a digital time domain using the bi-linear
transformation leads to the following transfer function:

U@) _Ts+Tz!
Z{H(S)}z Be) ~ 221

Equation 40.

where Ty is the sampling period of the system. The discrete implementation of the digital
transfer function in the above equation is expressed as follows:

u(k) = u(k — 1)+ e(k)% +e(k— 1)%
Equation 41.

Considering integrator gain Kj, the transfer function leads to the following equation:

K, T KT
(k)= uylk = 1)+ (k) —5= + e(k —)5

Equation 42.

where:

* uy(k) is the integrator's output in the actual step

uy(k - 1) 1s the integrator's output from the previous step
e(k) is the integrator's input in the actual step

e(k - 1) is the integrator's input from the previous step
K is the integrator's gain coefficient

* T, is the sampling period of the system

Equation 42 on page 102 can be used in the fractional arithmetic as follows:

k) +eg(k—1
Uy (k) U = v — 1)'umax+K1Ts.M ‘e

max

Equation 43.

where:

* Uy 1S the integrator output scale

* ug(k) is the scaled integrator output in the actual step

* up.(k - 1) is the scaled integrator output from the previous step
* eqax 18 the integrator input scale

* ¢..(k) is the scaled integrator input in the actual step

* e..(k - 1) 1s the scaled integrator input in the previous step

GFLIB User's Guide, Rev. 2, 11/2016
102 NXP Semiconductors

4
Chapter 2 Algorithms in detail

For a proper use of this function, it is recommended to initialize the function's data by the

GFLIB_IntegratorInit functions, before using the GFLIB_Integrator function. You must
call the init function when you want the integrator to be initialized.

2.22.1 Available versions
This function is available in the following versions:

* Fractional output - the output is the fractional portion of the result, the result is within
the range <-1 ; 1), and it may overflow from one limit to the other. The parameters
use the accumulator types.

* Floating-point output - the output is the floating-point result within the type's full
range, with defined upper and lower limits. The result can not overflow from one
limit to the other.

The available versions of the GFLIB_IntegratorInit function are shown in the following
table:

Table 2-32. Init function versions

Function nhame Input Parameters Result Description
type type
GFLIB_Integratorlnit_F16 frac16_t |GFLIB_INTEGRATOR_T_A32* void The inputs are a 16-bit fractional

initial value and a pointer to the
integrator parameters' structure.

GFLIB_Integratorlnit_FLT float_t GFLIB_INTEGRATOR_T_FLT * void The inputs are a 32-bit single
precision floating-point initial value

and a pointer to the integrator
parameters' structure.

The available versions of the GFLIB_Integrator function are shown in the following
table:

Table 2-33. Function versions

Function name Input Parameters Result Description
type type
GFLIB_Integrator_F16 frac16_t |GFLIB_INTEGRATOR_T_A32* frac16_t |The inputs are a 16-bit fractional
value to be integrated and a pointer
to the integrator parameters'
structure. The output is limited to
range <-1; 1>. When the integrator
reaches the limit, it overflows to the
other limit.

GFLIB_Integrator_FLT float_t GFLIB_INTEGRATOR_T_FLT * float_t The inputs are a 32-bit single

precision floating-point value to be
integrated and a pointer to the

GFLIB User's Guide, Rev. 2, 11/2016
NXP Semiconductors 103

A
GFLIB_Integrator

Table 2-33. Function versions

Function name Input Parameters Result Description
type type

integrator parameters' structure. The
output is limited to range
<fltLowerLim ; fltUpperLim>. The
output can not overflow to the other

limit.
2.22.2 GFLIB_INTEGRATOR_T_A32
Variable name Input Description
type
a32Gain acc32_t |Integrator gain is set up according to Equation 43 on page 102 as follows:
K Ty g

The parameter is a 32-bit accumulator type within the range <-65536.0 ; 65536.0). Set by

the user.
f32IAccK_1 frac32_t |Integral portion in the step k - 1. Controlled by the algorithm.
f16InValK_1 frac16_t |Input value in the step k - 1. Controlled by the algorithm.

2.22.3 GFLIB_INTEGRATOR_T_FLT

Variable name Input Description
type
fltGain float_t Integrator gain is set up according to Equation 42 on page 102 as KTs.
The parameter is a 32-bit single precision floating-point type within the full range. Set by
the user.
fltIAccK_1 float_t Integral portion in the step k - 1 without any limitation. Controlled by the algorithm.
fltinValK_1 float_t Input value in the step k - 1. Controlled by the algorithm.
fltUpperLim float_t Upper limit. This parameter must be greater than fltLowerLim. Set by the user.
fliLowerLim float_t Lower limit. This parameter must be lower than fltUpperLim. Set by the user.

2.22.4 Declaration

The available GFLIB_Integratorlnit functions have the following declarations:

void GFLIB IntegratorInit F1l6(fraclé t flé6InitVal, GFLIB_ INTEGRATOR T A32 *psParam)
void GFLIB IntegratorInit FLT(float t fltInitVal, GFLIB_ INTEGRATOR T FLT *psParam)

GFLIB User's Guide, Rev. 2, 11/2016
104 NXP Semiconductors

4
Chapter 2 Algorithms in detail

The available GFLIB_Integrator functions have the following declarations:

fraclé t GFLIB Integrator F16(fraclé t £f16InVal, GFLIB INTEGRATOR T A32 *psParam)
float t GFLIB Integrator FLT(float t fltInvVal, GFLIB_ INTEGRATOR T FLT *psParam)

2.22.5 Function use

The use of the GFLIB_IntegratorInit and GFLIB_Integrator functions is shown in the
following example:

#include "gflib.h"

static fraclé t flé6Result, fl6Inval, flé6InitVal;
static GFLIB INTEGRATOR T A32 sParam;

void Isr (void) ;
void main (void)

fl16Inval = FRAC16(-0.4);
sParam.a32Gain = ACC32(0.1);

fl6InitvVal = FRAC16(0.1);

GFLIB IntegratorInit F16 (fl6InitVal, &sParam) ;

}

/* periodically called function */
void Isr()

{

fl6Result = GFLIB Integrator F16(fl6InVal, &sParam) ;

2.23 GFLIB_CtriBetalPpAW

The GFLIB_CtrlBetalPpAW function calculates the parallel form of the Beta-Integral-
Proportional (Beta-IP) controller with an implemented integral anti-windup functionality.
The Beta-IP controller is an extended PI controller, which enables to separate the
responses from the setpoint change and the load change (if B = 1, the Beta-IP controller
has the same response as the PI controller). Therefore the Beta-IP controller allows for
reducing the overshoot caused by the change of the setpoint without affecting the load
change response. The B parameter can be set in the range from zero to one, where zero
means the maximal overshoot limitation and one means no limitation.

The Beta-IP controller attempts to correct the error between the measured process
variable (feedback) and the desired set-point by calculating a corrective action that can
adjust the process accordingly. The GFLIB_CtrIBetalPpAW function calculates the Beta-
IP algorithm according to the equations below. The Beta-IP algorithm is implemented in

GFLIB User's Guide, Rev. 2, 11/2016
NXP Semiconductors 105

A
GFLIB_CtriBetalPpAW

the parallel (non-interacting) form, enabling you to define the P, I, and B parameters
independently and without interaction. The controller output is limited and the limit
values (the upper limit and the lower limit) are defined by the user.

The Beta-IP controller algorithm also returns a limitation flag, which indicates that the
controller's output is at the limit. If the Beta-IP controller output reaches the upper or
lower limits, the limit flag is set to one. Otherwise, it is zero (integer values).

An anti-windup strategy is implemented by limiting the integral portion. The integral
state 1s limited by the controller limits in the same way as the controller output. The
integration can be stopped by a flag that is pointed to by the function's API.

The Beta-IP algorithm in the continuous time domain can be expressed as follows:

u(r) = Kpr [Bw(0) -y () 14K [Dw(0) -y (1)]
Equation 44.

where:

* u(t) is the controller output in the continuous time domain

* w(t) is the required value in the continuous time domain

* y(t) is the measured value (feedback) in the continuous time domain

» Kp is the proportional gain

K| is the integral gain

* [3 is the beta gain (overshoot reduction gain in the range from zero to one)

Equation 44 on page 106 can be expressed using the Laplace transformation as follows:

U(s) =Kp-[-W(5)-Y(s)] + K- LTS

Equation 45.
The proportional part (up) of Equation 44 on page 106 is transformed into the discrete
time domain as follows:
up(k) =Kp-[f-w(k)-y(k)]

Equation 46.

where:

* up(k) 1s the proportional action in the actual step
* w(k) is the required value in the actual step

* y(k) is the measured value in the actual step

» Kp is the proportional gain coefficient

* [is the beta gain coefficient

GFLIB User's Guide, Rev. 2, 11/2016
106 NXP Semiconductors

4
Chapter 2 Algorithms in detail

Equation 46 on page 106 can be used in the fractional arithmetic as follows:

Upge (k) * gy =Kp- [ﬁ'wsc(k) 'ysc(k)] " €max

Equation 47.

where:

* Uy 1S the action output scale

up..(k) 1s the scaled proportional action in the actual step
* enax 1S the error input scale

w.(k) is the scale required value in the actual step

ysc(K) 1s the scale measured value in the actual step

Transforming the integral part (u;) of Equation 44 on page 106 into a discrete time
domain using the bi-linear method (also known as the trapezoidal approximation) is as
follows:

KTy KTy
up(k) =up(k-1)+[w(k)-y(k)]-—5—+e(k-1)—%5—
Equation 48.

where:

* uy(k) is the integral action in the actual step

uy(k - 1) is the integral action from the previous step
w(k) is the required value in the actual step

y(k) is the measured value in the actual step

e(k - 1) 1s the error in the previous step

* T, is the sampling period of the system

K is the integral gain coefficient

Equation 48 on page 107 can be used in the fractional arithmetic as follows:

ege (k) +eg(k-1)
u]sc'umth:“[sc(k'l)'umax+K1Ts'%-emax

Equation 49.

where:

* U,.x 1S the action output scale

* ur(k) is the scaled integral action in the actual step

* up(k - 1) is the scaled integral action from the previous step
* €nax 1S the error input scale

* e..(k) is the scaled error in the actual step

* e..(k - 1) is the scaled error in the previous step

GFLIB User's Guide, Rev. 2, 11/2016
NXP Semiconductors 107

A ————
GFLIB_CtriBetalPpAW

The output signal limitation is implemented in this controller. The actual output u(k) is
bounded not to exceed the given limit values UpperLimit and LowerLimit. This is either
due to the bounded power of the actuator or due to the physical constraints of the plant.

U pperLimit u(k)> U pperLimit

u(k) =1 LowerLimit u(k) < Lower Limit
u(k) else
Equation 50.

The bounds are described by a limitation element, as shown in Equation 50 on page 108.
When the bounds are exceeded, the non-linear saturation characteristic takes effect and
influences the dynamic behavior. The described limitation is implemented on the integral
part accumulator (limitation during the calculation) and the overall controller output.
Therefore, if the limitation occurs, the controller output is clipped to its bounds, and the
wind-up occurrence of the accumulator portion is avoided by saturating the actual sum.

For a proper use of this function, it is recommended to initialize the function data by the
GFLIB_CtrIBetalPpAWInit function, before using the GFLIB_CtrlBetalPpAW function.

2.23.1 Available versions
This function is available in the following versions:

* Fractional output - the output is the fractional portion of the result; the result is
within the range <-1 ; 1). The parameters use the accumulator types.

* Floating-point output - the output is the floating-point result within the type's full
range.

The available versions of the GFLIB_CtrIBetalPpAWInit function are shown in the
following table:

Table 2-34. Init function versions

Function name Input Parameters Result Description
type type
GFLIB_CtrIBetalPpAWInit_F16 |frac16_t |GFLIB_CTRL_BETA_IP_P_AW_T_A |void The inputs are a 16-bit
32" fractional initial value and a

pointer to the controller's
parameters structure.

GFLIB_CtriBetalPpAWInit_FLT |float_t GFLIB_CTRL_BETA_IP_P_AW_T_F |void The inputs are a 32-bit single
LT precision floating-point initial
value and a pointer to the
controller's parameters
structure.

GFLIB User's Guide, Rev. 2, 11/2016
108 NXP Semiconductors

Chapter 2 Algorithms in detail

The available versions of the GFLIB_CtrlBetalPpAW function are shown in the

following table:

Table 2-35. Function versions

Function nhame Input type Parameters Result
required measured Stop flag type
value value
GFLIB_CtriBetalPpAW_F16 frac16_t frac16_t bool_t * GFLIB_CTRL_BETA_IP_P_AW_T |frac16_t
_AB32*

The required value input is a 16-bit fractional value within the range <-1 ; 1). The measured
value input is a 16-bit fractional value within the range <-1 ; 1). The integration of the Beta-
IP controller is suspended if the stop flag is set. When it is cleared, the integration
continues. The parameters are pointed to by an input pointer. The function returns a 16-bit
fractional value in the range <f16LowerLim ; f16UpperLim>.

GFLIB_CtriBetalPpAW_FLT

float_t float_t bool_t * GFLIB_CTRL_BETA_IP_P_AW_T
_FLT*

float_t

The required value input is a 32-bit single precision floating-point value within the full type's
range. The measured value input is a 32-bit single precision floating-point value within the
full type's range.The integration of the Beta-IP controller is suspended if the stop flag is set.
When it is cleared, the integration continues. The parameters are pointed to by an input
pointer. The function returns a 32-bit single precision floating-point value in the range
<fltLowerLim ; fltUpperLim>.

2.23.2 GFLIB_CTRL_BETA_IP_P_AW_T_A32

Variable name Input Description
type
a32PGain acc32_t | The proportional gain is set up according to Equation 47 on page 107 as follows:
Kp-
The parameter is a 32-bit accumulator type within the range <0 ; 65536.0). Set by the user.
a32IGain acc32_t |The integral gain is set up according to Equation 49 on page 107 as follows:
KT, g
The parameter is a 32-bit accumulator type within the range <0 ; 65536.0). Set by the user.
f321AccK_1 frac32_t |State variable of the internal accumulator (integrator). Controlled by the algorithm.
f16InErrK_1 frac16_t |Input error at the step k - 1. Controlled by the algorithm.
f16UpperLim frac16_t |Upper limit of the controller's output and the internal accumulator (integrator). This
parameter must be greater than f16LowerLim. Set by the user.
f16LowerLim frac16_t |Lower limit of the controller's output and the internal accumulator (integrator). This
parameter must be lower than f16UpperLim. Set by the user.
f16BetaGain frac16_t |The beta gain is a fraction 16-bit type in the range [0 ; 1). The beta gain defines the
reduction overshot when the required value is changed. Set by the user.
bLimFlag bool_t Limitation flag which identifies that the controller's output reached the limits. 1 - the limit is

reached; O - the output is within the limits. Controlled by the application.

GFLIB User's Guide, Rev. 2, 11/2016

NXP Semiconductors

109

A ————
GFLIB_CtriBetalPpAW

2.23.3 GFLIB_CTRL_BETA_IP_P_AW_T_FLT

Variable name Input Description
type
fltPGain float_t The proportional gain is set up according to Equation 46 on page 106 as Kp.
The parameter is a 32-bit single precision floating-point type non-negative value. Set by
the user.
fltIGain float_t The integral gain is set up according to Equation 48 on page 107 as K|Ts.
The parameter is a 32-bit single precision floating-point type non-negative value. Set by
the user.
fltIAccK_1 float_t State variable of the internal accumulator (integrator). Controlled by the algorithm.
fltinErrK_1 float_t Input error at the step k - 1. Controlled by the algorithm.
fltUpperLim float_t Upper limit of the controller's output and the internal accumulator (integrator). This

parameter must be greater than fltLowerLim. Set by the user.

fltLowerLim float_t Lower limit of the controller's output and the internal accumulator (integrator). This
parameter must be lower than fltUpperLim. Set by the user.

fliBetaGain float_t The beta gain is a 32-bit single precision floating-point type non-negative value. Set by the
user. The beta gain defines the reduction overshot when the required value is changed.
Set by the user.

bLimFlag bool_t Limitation flag which identifies that the controller's output reached the limits. 1 - the limit is
reached; 0 - the output is within the limits. Controlled by the application.

2.23.4 Declaration
The available GFLIB_CtrlBetalPpAWInit functions have the following declarations:

void GFLIB_CtrlBetaIPpAWInit F16 (fraclé_t fleInitvVal, GFLIB_CTRL BETA IP_P AW T A32 *psParam)
void GFLIB CtrlBetalPpAWInit FLT (float t f£ltInitVal, GFLIB CTRL BETA IP P AW T FLT *psParam)

The available GFLIB_CtrIBetalPpAW functions have the following declarations:

fracle t GFLIB_ CtrlBetaIPpAW F16(fraclé t fléInReq, fraclé t f16In, const bool t
*pbStopIntegFlag, GFLIB CTRL BETA IP P AW T A32 *psParam)

float_t GFLIB_CtrlBetalIPpAW FLT(float_t fltInReq, float_t fltIn, const bool_t
*pbStopIntegFlag, GFLIB CTRL BETA IP P AW T FLT *psParam)

2.23.5 Function use

The use of the GFLIB_CtrlBetalPpAWInit and GFLIB_CitrlBetalPpAW functions is
shown in the following example:

#include "gflib.h"

GFLIB User's Guide, Rev. 2, 11/2016
110 NXP Semiconductors

4
Chapter 2 Algorithms in detail

static fraclé_t fl6Result, fléInitVal, flé6InReq, fl6In;
static bool t bStopIntegFlag;
static GFLIB CTRL BETA IP P AW T A32 sParam;

void Isr (void) ;

void main(void)

{
fl6InReq = FRAC16(-0.3);
f16In = FRAC16(-0.4);
sParam.a32PGain = ACC32(0.1);
sParam.a32IGain = ACC32(0.2);
sParam.fl16UpperLim FRAC16(0.9) ;
sParam.fl6LowerLim FRAC16(-0.9) ;
sParam.fl6BetaGain = FRAC16(0.5);
bStopIntegFlag = FALSE;

f16Initval = FRAC16(0.0);

GFLIB_ CtrlBetaIPpAWInit F1l6(fl6InitVal, &sParam) ;

}

/* periodically called function */
void Isr()

fl6Result = GFLIB CtrlBetaIPpAW F16(fl6InReq, f16In, &bStopIntegFlag, &sParam) ;

2.24 GFLIB_CtriBetalPDpAW

The GFLIB_CtrIBetalPDpAW function calculates the parallel form of the Beta-Integral-
Proportional-Derivative (Beta-IPD) controller with the implemented integral anti-windup
functionality. The Beta-IPD controller is an extended PID controller, which enables to
separate the responses from the setpoint change and the load change (if B = 1 then the
Beta-IPD controller has the same response as the PID controller). Therefore, the Beta-
IPD controller enables to reduce the overshoot caused by a change of the setpoint without
affecting the load change response. The B parameter can be set in a range from zero to
one, where zero means the maximal overshoot limitation and one means no limitation.

The Beta-IPD controller attempts to correct the error between the measured process
variable and the desired set-point by calculating a corrective action that can adjust the
process accordingly. The GFLIB_CtrlBetalPDpAW function calculates the Beta-IPD
algorithm according to the equations below. The Beta-IPD algorithm is implemented in
the parallel (non-interacting) form, enabling you to define the P, I, D, and 3 parameters
independently and without interaction. The controller output is limited, and the limit
values (upper limit and lower limit) are defined by the user.

The algorithm has an error input for the D portion calculation. This enables you to apply
different filters for the D error input and for the required and measured value inputs.

GFLIB User's Guide, Rev. 2, 11/2016
NXP Semiconductors 111

A
GFLIB_CtriBetalPDpAW

The Beta-IPD controller algorithm also returns a limitation flag, which indicates that the
controller's output is at the limit. If the Beta-IPD controller output reaches the upper or
lower limit, then the limit flag is set to one. Otherwise, it is zero (integer values).

An anti-windup strategy is implemented by limiting the integral portion. The integral
state 1s limited by the controller limits in the same way as the controller output. The
integration can be stopped by a flag, which is pointed to by the function's API.

The Beta-IPD algorithm in the continuous time domain can be expressed as follows:

u(t) =Kpr [ow(t) v (D) 1K [D00 -y () i+ Kpthep (1)
Equation 51.

where:

* u(t) is the controller output in the continuous time domain

* w(t) is the required value in the continuous time domain

* y(t) is the measured value (feedback) in the continuous time domain

* ep(t) is the input error for the derivative calculation in the continuous time domain
* Kp is the proportional gain

» K is the integral gain

* Kp is the derivative gain

* [is the beta gain (overshoot reduction gain in the range from zero to one)

Equation 51 on page 112 can be expressed using the Laplace transformation as follows:

W)Y |

U(s) =Kp-[B-W(s)-Y(s)]+K; D*ep’s

Equation 52.

The proportional part (up) of Equation 51 on page 112 is transformed into the discrete
time domain as follows:

up(k) =Kp-[f-w(k)-y(k)]

Equation 53.

where:

* up(k) is the proportional action in the actual step
* w(k) is the required value in the actual step

* y(k) is the measured value in the actual step

» Kp is the proportional gain coefficient

* [is the beta gain coefficient

Equation 53 on page 112 can be used in the fractional arithmetic as follows:

GFLIB User's Guide, Rev. 2, 11/2016
112 NXP Semiconductors

4
Chapter 2 Algorithms in detail

uPsc(k) Upax = Kp- [ﬁ'Wsc(k) 'ysc(k)] * €max

Equation 54.

where:

* Uax 1S the action output scale

up,.(k) is the scaled proportional action in the actual step
* €max 18 the error input scale

w(k) 1s the scale required value in the actual step

ysc(K) is the scale measured value in the actual step

Transforming the integral part (uy) of Equation 51 on page 112 into a discrete time
domain using the bi-linear method (also known as the trapezoidal approximation) is as
follows:

KT, KT,
wp (k) =y (k=1) + [w(k) - y(k) - =52 + e (k-1) =5

Equation 55.

where:

* uy(k) 1s the integral action in the actual step

uy(k - 1) is the integral action from the previous step
w(k) is the required value in the actual step

y(k) is the measured value in the actual step

e(k - 1) is the error in the previous step

T, is the sampling period of the system

» K is the integral gain coefficient

Equation 55 on page 113 can be used in the fractional arithmetic as follows:

e k) + ek — 1)
U K) thmax = upsk = 1)'umax+K1Ts'% e

max

Equation 56.

where:

* Uy 1S the action output scale

* up(k) is the scaled integral action in the actual step

* up(k - 1) is the scaled integral action from the previous step
* €max 18 the error input scale

* e..(k) is the scaled error in the actual step

* e..(k - 1) is the scaled error in the previous step

The derivative part (up) of Equation 51 on page 112 is transformed into the discrete time
domain as follows:

GFLIB User's Guide, Rev. 2, 11/2016
NXP Semiconductors 113

A
GFLIB_CtriBetalPDpAW

K D
up(k) = 7 [ep(k)- ep(k-1)]

N

Equation 57.

where:

* up(k) is the proportional action in the actual step

* ep(k) is the error used for the derivative input in the actual step

* ep(k - 1) is the error used for the derivative input in the previous step
* Kp is the proportional gain coefficient

Equation 53 on page 112 can be used in the fractional arithmetic as follows:

Kp
uDsc(k)' Umax = Tg '[eDsc(k) -€ Dsc(k' D] epax
Equation 58.

where:

* U 1S the action output scale

up.(k) 1s the scaled derivative action in the actual step

* €max 18 the error input scale

epsc(k) 1s the scaled error for the derivative input in the actual step
epsc(k - 1) 1s the scaled error for the derivative input in the previous step

The output signal limitation is implemented in this controller. The actual output u(k) is
bounded to not exceed the given limit values - UpperLimit and LowerLimit. This is either
due to the bounded power of the actuator, or due to the physical constraints of the plant.

U pperLimit u(k) > U pperLimit

u(k)=1{ LowerLimit u(k) < Lower Limit
u(k) else
Equation 59.

The bounds are described by a limitation element, as shown in Equation 59 on page 114.
When the bounds are exceeded, the non-linear saturation characteristic takes place and
influences the dynamic behavior. The described limitation is implemented in the integral
part accumulator (limitation during the calculation) and in the overall controller output.
Therefore, if the limitation occurs, the controller output is clipped to its bounds, and the
wind-up occurrence of the accumulator portion is avoided by saturating the actual sum.

For a proper use of this function, it is recommended to initialize the function data by the
GFLIB_CtrIBetalPDpAWInit functions, before using the GFLIB_CtrIBetalPDpAW
function.

GFLIB User's Guide, Rev. 2, 11/2016
114 NXP Semiconductors

4
Chapter 2 Algorithms in detail

2.24.1 Available versions
This function is available in the following versions:

* Fractional output - the output is the fractional portion of the result; the result is
within the range <-1 ; 1). The parameters use the accumulator types.

* Floating-point output - the output is the floating-point result within the type's full
range.

The available versions of the GFLIB_CtrIBetalPDpAWInit function are shown in the
following table:

Table 2-36. Init function versions
Function name Input Parameters Result Description
type type
GFLIB_CtriBetalPDpAWInit_F16 |frac16_t |GFLIB_CTRL_BETA_IPD_P_AW_T_ |void The inputs are a 16-bit
A32* fractional initial value and a
pointer to the controller's
parameters structure.
GFLIB_CtriBetalPDpAWInit_FLT |float_t GFLIB_CTRL_BETA_IPD_P_AW_T_ |void The inputs are a 32-bit
FLT * single precision floating-
point initial value and a
pointer to the controller's
parameters structure.

The available versions of the GFLIB_CtrlBetalPDpAW function are shown in the
following table:

Table 2-37. Function versions

Function name Input type Parameters Result
Required | Measured | D error type
value value
GFLIB_CtriBetalPDpAW_F16 |frac16_t frac16_t frac16_t bool_t * GFLIB_CTRL_BETA_IPD_P_ |frac16_t
AW_T_A32*

The required value input is a 16-bit fractional value within the range <-1; 1). The measured
value input is a 16-bit fractional value within the range <-1 ; 1). The D error input is a 16-bit
fractional value within the range <-1; 1). The integration of the Beta-IPD controller is
suspended if the stop flag is set. When it is cleared, the integration continues. The
parameters are pointed to by an input pointer. The function returns a 16-bit fractional value
in the range <f16LowerLim ; f16UpperLim>.

float_t float_t float_t bool_t*

GFLIB_CtriBetalPDpAW_FLT GFLIB_CTRL_BETA_IPD_P_

AW_T_FLT*

The required value input is a 32-bit single precision floating-point value within the full type's
range. The measured value input is a 32-bit single precision floating-point value within the
full type's range. The error input is a 32-bit single precision floating-point value within the full
type's range. The integration of the Beta-IPD controller is suspended if the stop flag is set.

float_t

GFLIB User's Guide, Rev. 2, 11/2016
NXP Semiconductors 115

A
GFLIB_CtriBetalPDpAW

Table 2-37. Function versions

Function name Input type Parameters Result
Required | Measured | D error | Stop flag type
value value

When it is cleared, the integration continues. The parameters are pointed to by an input
pointer. The function returns a 32-bit single precision floating-point value in the range
<fltLowerLim ; fltUpperLim>.

2.24.2 GFLIB_CTRL_BETA_IPD_P_AW_T_A32

Variable name Input Description
type
a32PGain acc32_t | The proportional gain is set up according to Equation 54 on page 113 as follows:
€,
K T

The parameter is a 32-bit accumulator type within the range <0 ; 65536.0). Set by the user.

a32|Gain acc32_t |The integral gain is set up according to Equation 56 on page 113 as follows:
K]T emax

S Umax

The parameter is a 32-bit accumulator type within the range <0 ; 65536.0). Set by the user.

a32DGain acc32_t |The derivative gain is set up according to Equation 58 on page 114 as follows:

Kp . Cmax
Ty Umax

The parameter is a 32-bit accumulator type within the range <0 ; 65536.0). Set by the user.

f32IAccK_1 frac32_t |State variable of the internal accumulator (integrator). Controlled by the algorithm.

f16InErrK_1 frac16_t |Input error in the step k - 1. Controlled by the algorithm.

f16UpperLim frac16_t |Upper limit of the controller's output and the internal accumulator (integrator). This
parameter must be greater than f16LowerLim. Set by the user.

f16LowerLim frac16_t |Lower limit of the controller's output and the internal accumulator (integrator). This
parameter must be lower than f16UpperLim. Set by the user.

f16InErrDK_1 frac16_t |Input error for the derivative calculation in the step k - 1. Controlled by the algorithm.

f16BetaGain frac16_t |The beta gain is a fraction 16-bit type in the range [0 ; 1). The beta gain defines the

reduction overshot when the required value is changed. Set by the user.

bLimFlag bool_t The limitation flag which identifies that the controller's output reached the limits. 1 - the limit
is reached; O - the output is within the limits. Controlled by the application.

GFLIB User's Guide, Rev. 2, 11/2016
116 NXP Semiconductors

4
Chapter 2 Algorithms in detail

2.24.3 GFLIB_CTRL_BETA_IPD_P_AW_T_FLT

Variable name Input Description
type

fltPGain float_t The proportional gain is set up according to Equation 53 on page 112 as Kp.
The parameter is a 32-bit single precision floating-point type non-negative value. Set by the
user.

fltIGain float_t The integral gain is set up according to Equation 55 on page 113 as K|Ts.
The parameter is a 32-bit single precision floating-point type non-negative value. Set by the
user.

fltDGain float_t The derivative gain is set up according to Equation 57 on page 114 as Kp / Ts.
The parameter is a 32-bit single precision floating-point type non-negative value. Set by the
user.

fltIAccK_1 float_t State variable of the internal accumulator (integrator). Controlled by the algorithm.

fltinErrk_1 float_t Input error in the step k - 1. Controlled by the algorithm.

fltUpperLim float_t Upper limit of the controller's output and the internal accumulator (integrator). This
parameter must be greater than fliLowerLim. Set by the user.

fltLowerLim float_t Lower limit of the controller's output and the internal accumulator (integrator). This
parameter must be lower than fltUpperLim. Set by the user.

fltinErrDK_1 float_t Input error for the derivative calculation in the step k - 1. Controlled by the algorithm.

fltBetaGain float_t The beta gain is a 32-bit single precision floating-point type non-negative value. Set by the

user. The beta gain defines the reduction overshot when the required value is changed.
Set by the user.

bLimFlag bool_t The limitation flag which identifies that the controller's output reached the limits. 1 - the limit
is reached; O - the output is within the limits. Controlled by the application.

2.24.4 Declaration
The available GFLIB_CtrlBetalPDpAWInit functions have the following declarations:

void GFLIB_CtrlBetalPDpAWInit F16 (fraclé t f16InitVal, GFLIB_CTRL BETA IPD P AW T A32
*psParam)

void GFLIB CtrlBetaIPDpAWInit FLT(float t fltInitVal, GFLIB CTRL BETA IPD P AW T FLT
*

psParam)

The available GFLIB_CtrIBetalPDpAW functions have the following declarations:

fraclé t GFLIB CtrlBetaIPDpAW F16 (fraclée t fl6InReq, fraclé t fl6In, fraclée t f16InErrD,
const bool_t *pbStopIntegFlag, GFLIB_CTRL BETA IPD P_AW T A32 *psParam)

float_t GFLIB_CtrlBetalIPDpAW FLT(float_t fltInReq, float_t fltIn, float_t fltInErrD, const
bool t *pbStopIntegFlag, GFLIB CTRL BETA IPD P AW T FLT *psParam)

2.24.5 Function use

The use of the GFLIB_CtrlBetalPDpAWInit and GFLIB_CtrlBetalPDpAW functions is
shown in the following example:

GFLIB User's Guide, Rev. 2, 11/2016
NXP Semiconductors 117

A
GFLIB_CtrIPIpAW

#include "gflib.h"

static fraclé t fl6Result, fl6InitVal, fléInReq, £16In, f16InErrD;
static bool t bStopIntegFlag;
static GFLIB CTRL BETA IPD P AW T A32 sParam;

void Isr (void) ;
void main (void)

fl16InReq = FRAC16(-0.3);

f16In = FRAC16(-0.4);

f16InErrD = FRAC16(-0.7);
sParam.a32PGain ACC32(0.1) ;
sParam.a32IGain ACC32(0.2);
sParam.a32DGain ACC32(0.001) ;
sParam. f16UpperLim FRAC16(0.9) ;
sParam.fl6LowerLim FRAC16(-0.9) ;
sParam.fl6BetaGain = FRAC16(0.5);
bStopIntegFlag = FALSE;

fl6InitVal = FRAC16(0.0) ;

GFLIB_CtrlBetaIPDpAWInit F16(f£16InitVal, &sParam) ;

}

/* periodically called function */
void Isr()

fl6Result = GFLIB CtrlBetaIPDpAW F16 (fl6InReq, f16In, fl6InErrD, &bStopIntegFlag,
&sParam) ;

}

2.25 GFLIB_CtrIPIpAW

The GFLIB_CtrIPIpAW function calculates the parallel form of the Proportional-Integral
(PI) controller with implemented integral anti-windup functionality.

The PI controller attempts to correct the error between the measured process variable and
the desired set-point by calculating a corrective action that can adjust the process
accordingly. The GFLIB_CtrlPIpAW function calculates the PI algorithm according to
the equations below. The PI algorithm is implemented in the parallel (non-interacting)
form, allowing the user to define the P and I parameters independently and without
interaction. The controller output is limited and the limit values (upper limit and lower
limit) are defined by the user.

The PI controller algorithm also returns a limitation flag, which indicates that the
controller's output is at the limit. If the PI controller output reaches the upper or lower
limit, then the limit flag is set to 1, otherwise it is O (integer values).

GFLIB User's Guide, Rev. 2, 11/2016
118 NXP Semiconductors

4
Chapter 2 Algorithms in detail

An anti-windup strategy is implemented by limiting the integral portion. The integral
state 1s limited by the controller limits in the same way as the controller output. The
integration can be stopped by a flag that is pointed to by the function's API.

The PI algorithm in the continuous time domain can be expressed as follows:

u(t)=e(t) Kp+ K, j et)dt
Equation 60.
where:

* u(t) is the controller output in the continuous time domain
* ¢(t) i1s the input error in the continuous time domain

» Kp is the proportional gain

K| is the integral gain

Equation 60 on page 119 can be expressed using the Laplace transformation as follows:

H(s)—%—KP-i-%

Equation 61.

The proportional part (up) of Equation 60 on page 119 is transformed into the discrete
time domain as follows:

uplk) = K p-e(k)
Equation 62.
where:

* up(k) 1s the proportional action in the actual step
* e(k) is the error in the actual step
» Kp is the proportional gain coefficient

Equation 62 on page 119 can be used in the fractional arithmetic as follows:

uPsc(k) “Umax = Kp* es k)" emax

Equation 63.
where:

* U,.x 1S the action output scale

* upg.(k) is the scaled proportional action in the actual step
* €max 18 the error input scale

* e..(k) 1s the scale error in the actual step

GFLIB User's Guide, Rev. 2, 11/2016
NXP Semiconductors 119

A
GFLIB_CtrIPIpAW

Transforming the integral part (uy) of Equation 60 on page 119 into a discrete time
domain using the bi-linear method, also known as the trapezoidal approximation, is as
follows:

KT,
2

KT,
(k) = (k=)+ e(k)- =5 + elk — =5

Equation 64.

where:

* uy(k) 1s the integral action in the actual step

uy(k - 1) is the integral action from the previous step
e(k) is the error in the actual step

e(k - 1) 1s the error in the previous step

T, is the sampling period of the system

* K is the integral gain coefficient

Equation 64 on page 120 can be used in the fractional arithmetic as follows:

esc(k) + esc(k — l)
e e

ulse(k)'”max = “Isc(k =D thgn Kst max

Equation 65.

where:

* U,.x 1S the action output scale

ur..(k) is the scaled integral action in the actual step

ue.(k - 1) is the scaled integral action from the previous step
* €nax 1S the error input scale

eq.(Kk) is the scaled error in the actual step

esc(k - 1) 1s the scaled error in the previous step

The output signal limitation is implemented in this controller. The actual output u(k) is
bounded not to exceed the given limit values UpperLimit and LowerLimit. This is due to
either the bounded power of the actuator or due to the physical constraints of the plant.

U pperLimit w(k)> U pperLimit

u(k) ={ LowerLimit u(k) < Lower Limit
u(k) else
Equation 66.

The bounds are described by a limitation element, as shown in Equation 66 on page 120.
When the bounds are exceeded, the nonlinear saturation characteristic will take effect and
influence the dynamic behavior. The described limitation is implemented on the integral

GFLIB User's Guide, Rev. 2, 11/2016
120 NXP Semiconductors

4
Chapter 2 Algorithms in detail
part accumulator (limitation during the calculation) and on the overall controller output.
Therefore, if the limitation occurs, the controller output is clipped to its bounds, and the
wind-up occurrence of the accumulator portion is avoided by saturating the actual sum.

For a proper use of this function, it is recommended to initialize the function data by the
GFLIB_CtrIPIpAWInit functions, before using the GFLIB_CtrlPIpAW function. You
must call this function when you want the PI controller to be initialized.

2.25.1 Available versions
This function is available in the following versions:

* Fractional output - the output is the fractional portion of the result; the result is
within the range <-1 ; 1). The parameters use the accumulator types.

* Floating-point output - the output is the floating-point result within the type's full
range.

The available versions of the GFLIB_CtrIPIpAWInit function are shown in the following
table:

Table 2-38. Init function versions

Function name Input Parameters Result Description
type type
GFLIB_CtrIPIpAWInit_F16 frac16_t |GFLIB_CTRL_PI_P_AW_T_A32* void The inputs are a 16-bit

fractional initial value and a
pointer to the controller's
parameters structure.

GFLIB_CtrIPIpAWInit_FLT float_t GFLIB_CTRL_PI_P_AW_T_FLT * void The inputs are a 32-bit single
precision floating-point initial
value and a pointer to the
controller's parameters
structure.

The available versions of the GFLIB_CtrlPIpAW function are shown in the following
table:

Table 2-39. Function versions

Function name Input type Parameters Result type

Error Stop flag
GFLIB_CtrIPIpAW_F16 frac16_t bool_t * GFLIB_CTRL_PI_P_AW_T_A32 * frac16_t

The error input is a 16-bit fractional value within the range <-1 ; 1). The integration of the PI
controller is suspended if the stop flag is set. When it is cleared, the integration continues. The
parameters are pointed to by an input pointer. The function returns a 16-bit fractional value in
the range <f16LowerLim ; f16UpperLim>.

Table continues on the next page...

GFLIB User's Guide, Rev. 2, 11/2016
NXP Semiconductors 121

A
GFLIB_CtrIPIpAW

Table 2-39. Function versions (continued)

Function name Input type Parameters Result type

Error Stop flag
GFLIB_CtrlPIpAW_FLT float_t bool_t * GFLIB_CTRL_PI_P_AW_T_FLT * float_t

The error input is a 32-bit single precision floating-point value within the full type's range. The
integration of the PI controller is suspended if the stop flag is set. When it is cleared, the
integration continues. The parameters are pointed to by an input pointer. The function returns a
32-bit single precision floating-point value in the range <fltLowerLim ; fltUpperLim>.

2.25.2 GFLIB_CTRL_PI_P_AW_T_A32

Variable name Input Description
type
a32PGain acc32_t |Proportional gain is set up according to Equation 63 on page 119 as follows:
€,
Kp: u%fc

The parameter is a 32-bit accumulator type within the range <0 ; 65536.0). Set by the user.

a32|Gain acc32_t |Integral gain is set up according to Equation 65 on page 120 as follows:

S Umax

The parameter is a 32-bit accumulator type within the range <0 ; 65536.0). Set by the user.

f321AccK_1 frac32_t |State variable of the internal accumulator (integrator). Controlled by the algorithm.
f16InErrK_1 frac16_t |Input error at the step k - 1. Controlled by the algorithm.
f16UpperLim frac16_t |Upper limit of the controller's output and the internal accumulator (integrator). This

parameter must be greater than f16LowerLim. Set by the user.

f16LowerLim frac16_t |Lower limit of the controller's output and the internal accumulator (integrator). This
parameter must be lower than f16UpperLim. Set by the user.

bLimFlag bool_t Limitation flag, which identifies that the controller's output reached the limits. 1 - the limit is
reached; 0 - the output is within the limits. Controlled by the application.

2.25.3 GFLIB_CTRL_PI_P_AW_T_FLT

Variable name Input Description
type
fltPGain float_t Proportional gain is set up according to Equation 62 on page 119 as Kp.
The parameter is a 32-bit single precision floating-point type non-negative value. Set by
the user.
fltIGain float_t Integral gain is set up according to Equation 64 on page 120 as K|Ts.

The parameter is a 32-bit single precision floating-point type non-negative value. Set by
the user.

Table continues on the next page...

GFLIB User's Guide, Rev. 2, 11/2016
122 NXP Semiconductors

Chapter 2 Algorithms in detail

Variable name Input Description
type
fltIAccK_1 float_t State variable of the internal accumulator (integrator). Controlled by the algorithm.
fltinErrK_1 float_t Input error at the step k - 1. Controlled by the algorithm.
fltUpperLim float_t Upper limit of the controller's output and the internal accumulator (integrator). This

parameter must be greater than fltLowerLim. Set by the user.

fltLowerLim float_t Lower limit of the controller's output and the internal accumulator (integrator). This
parameter must be lower than fltUpperLim. Set by the user.

bLimFlag bool_t Limitation flag, which identifies that the controller's output reached the limits. 1 - the limit is
reached; 0 - the output is within the limits. Controlled by the application.

2.25.4 Declaration
The available GFLIB_CtrlPIpAWInit functions have the following declarations:

void GFLIB_CtrlPIpAWInit F16(fraclé_t f1l6InitVal, GFLIB CTRL_PI P AW T A32 *psParam)
void GFLIB CtrlPIpAWInit FLT (float t fltInitVal, GFLIB CTRL PI P AW T FLT *psParam)

The available GFLIB_CtrIPIpAW functions have the following declarations:

fraclé_t GFLIB_CtrlPIpAW F16 (fraclé_t fl6InErr, const bool_t *pbStopIntegFlag,
GFLIB CTRL PI P AW T A32 *psParam)

float t GFLIB CtrlPIpAW FLT(float t fltInErr, const bool t *pbStopIntegFlag,
GFLIB CTRL PI P AW T FLT *psParam)

2.25.5 Function use

The use of the GFLIB_CtrlPIpAWInit and GFLIB_CtrlPIpAW functions is shown in the
following example:

#include "gflib.h"

static fraclé t flé6Result, fl6InitVal, fl6InErr;
static bool t bStopIntegFlag;
static GFLIB CTRL PI P AW T A32 sParam;

void Isr (void) ;

void main (void)

{

f16InErr = FRAC16(-0.4) ;
sParam.a32PGain = ACC32(0.1);
sParam.a32IGain = ACC32(0.2);
sParam.f16UpperLim = FRAC16(0.9);
sParam.fl6LowerLim = FRAC16(-0.9);
bStopIntegFlag = FALSE;

fl6InitVal = FRAC16(0.0) ;

GFLIB CtrlPIpAWInit F16 (fl16InitVal, &sParam) ;

GFLIB User's Guide, Rev. 2, 11/2016
NXP Semiconductors 123

A
GFLIB_CtrIPIDpAW

/* periodically called function */
void Isr()

fl6Result = GFLIB CtrlPIpAW F16 (fl6InErr, &bStopIntegFlag, &sParam);

}

2.26 GFLIB_CtrIPIDpAW

The GFLIB_CtrIPIDpAW function calculates the parallel form of the Proportional-
Integral-Derivative (PID) controller with implemented integral anti-windup functionality.

The PID controller attempts to correct the error between the measured process variable
and the desired set-point by calculating a corrective action that can adjust the process
accordingly. The GFLIB_CtrIPIDpAW function calculates the PID algorithm according
to the equations below. The PID algorithm is implemented in the parallel (non-
interacting) form, allowing the user to define the P, I, and D parameters independently
and without interaction. The controller output is limited, and the limit values (upper limit
and lower limit) are defined by the user.

The algorithm has two error inputs: one for the P and I calculation, and the other for the
D calculation. This allows the user to apply different filters on both inputs.

The PID controller algorithm also returns a limitation flag, which indicates that the
controller's output is at the limit. If the PID controller output reaches the upper or lower
limit, then the limit flag is set to 1, otherwise it is O (integer values).

An anti-windup strategy is implemented by limiting the integral portion. The integral
state is limited by the controller limits in the same way as the controller output. The
integration can be stopped by a flag, which is pointed to by the function's API.

The PID algorithm in the continuous time domain can be expressed as follows:

0=y Kt K el K ph et
Equation 67.

where

* u(t) is the controller output in the continuous time domain

* e(t) is the input error for the proportional and integral calculation in the continuous
time domain

* ep(t) is the input error for the derivative calculation in the continuous time domain

* Kp is the proportional gain

» K is the integral gain

* Kp is the derivative gain

GFLIB User's Guide, Rev. 2, 11/2016
124 NXP Semiconductors

4
Chapter 2 Algorithms in detail

Equation 67 on page 124 can be expressed using the Laplace transformation as follows:
H(s)=% =KP+@ +K,-s
Equation 68.
The proportional part (up) of Equation 68 on page 125 is transformed into the discrete
time domain as follows:
upk) = K p- ()
Equation 69.

where:

* up(k) is the proportional action in the actual step
* e(k) is the error in the actual step
» Kp is the proportional gain coefficient

Equation 69 on page 125 can be used in the fractional arithmetic as follows:

uPsc(k)' Upax = Kp es k)" emax

Equation 70.
where:

* Uy 1S the action output scale

* ups.(k) is the scaled proportional action in the actual step
* €nax 1S the error input scale

* e..(k) is the scale error in the actual step

Transforming the integral part (uy) of Equation 68 on page 125 into a discrete time
domain using the bi-linear method, also known as the trapezoidal approximation, is as
follows:

KTy KT
(k) = k= 1)+ (k) =5 + ek — =5

Equation 71.
where:

* uy(k) is the integral action in the actual step

uy(k - 1) is the integral action from the previous step
e(k) is the error in the actual step

e(k - 1) is the error in the previous step

T, 1s the sampling period of the system

» K is the integral gain coefficient

GFLIB User's Guide, Rev. 2, 11/2016
NXP Semiconductors 125

A
GFLIB_CtrIPIDpAW

Equation 71 on page 125 can be used in the fractional arithmetic as follows:

k) +eg(k— 1
s (k) thay = vy (k = 1).umM+KITS'M e

max

Equation 72.

where:

* Uy 1S the action output scale

* up(k) is the scaled integral action in the actual step

uo(k - 1) 1s the scaled integral action from the previous step
* €max 18 the error input scale

eq.(k) is the scaled error in the actual step

es(k - 1) is the scaled error in the previous step

The derivative part (up) of Equation 67 on page 124 is transformed into the discrete time
domain as follows:

K D
up(k) == [ep(k)- ep(k-1)]

N

Equation 73.

where:

* up(k) is the proportional action in the actual step

* ep(k) is the error used for the derivative input in the actual step

* ep(k - 1) is the error used for the derivative input in the previous step
» Kp is the proportional gain coefficient

Equation 69 on page 125 can be used in the fractional arithmetic as follows:

K
uDsc(k)' Umax = T? '[eDsc(k) - eDsc(k DI emax

Equation 74.

where:

* Uy 1S the action output scale

up.(k) 1s the scaled derivative action in the actual step

* €max 18 the error input scale

epsc(k) 1s the scaled error for the derivative input in the actual step
epsc(k - 1) 1s the scaled error for the derivative input in the previous step

The output signal limitation is implemented in this controller. The actual output u(k) is
bounded to not exceed the given limit values - UpperLimit and LowerLimit. This is due
to either the bounded power of the actuator, or due to the physical constraints of the plant.

GFLIB User's Guide, Rev. 2, 11/2016
126 NXP Semiconductors

4
Chapter 2 Algorithms in detail

U pperLimit u(k) > U pperLimit

u(k)=1{ LowerLimit u(k) < Lower Limit
u(k) else
Equation 75.

The bounds are described by a limitation element, as shown in Equation 75 on page 127.
When the bounds are exceeded, the non-linear saturation characteristic will take effect,
and influence the dynamic behavior. The described limitation is implemented in the
integral part accumulator (limitation during the calculation) and in the overall controller
output. Therefore, if the limitation occurs, the controller output is clipped to its bounds,
and the wind-up occurrence of the accumulator portion is avoided by saturating the actual
sum.

For a proper use of this function, it is recommended to initialize the function data by the
GFLIB_CtrlPIDpAWInit functions, before using the GFLIB_CtrIPIDpAW function. You
must call this function, when you want the PID controller to be initialized.

2.26.1 Available versions
This function is available in the following versions:

* Fractional output - the output is the fractional portion of the result; the result is
within the range <-1 ; 1). The parameters use the accumulator types.

* Floating-point output - the output is the floating-point result within the type's full
range.

The available versions of the GFLIB_CtrlPIDpAW!Init function are shown in the
following table:

Table 2-40. Init function versions

Function name Input Parameters Result Description
type type
GFLIB_CtrIPIDpAWInit_F16 frac16_t GFLIB_CTRL_PID_P_AW_T_A32* |void The inputs are a 16-bit

fractional initial value and a
pointer to the controller's
parameters structure.

GFLIB_CtrIPIDpAWInit_FLT float_t GFLIB_CTRL_PID_P_AW_T_FLT* |void The inputs are a 32-bit single
precision floating-point initial
value and a pointer to the
controller's parameters
structure.

GFLIB User's Guide, Rev. 2, 11/2016
NXP Semiconductors 127

GFLIB_CtrIPIDpAW

The available versions of the GFLIB_CtrlPIDpAW function are shown in the following

table:
Table 2-41. Function versions
Function name Input type Parameters Result
Pl error D error | Stop flag type
GFLIB_CtrIPIDpAW_F16 frac16_t |frac16_t |bool_t* GFLIB_CTRL_PID_P_AW_T_A32* frac16_t

The error inputs are 16-bit fractional values within the range <-1 ; 1). The integration of the
PID controller is suspended if the stop flag is set. When it is cleared, the integration continues.
The parameters are pointed to by an input pointer. The function returns a 16-bit fractional
value in the range <f16LowerLim ; f16UpperLim>.

GFLIB_CtrIPIDpAW_FLT

float_t float_t bool_t * GFLIB_CTRL_PID_P_AW_T_FLT * float_t

The error inputs are 32-bit single precision floating-point values within the full type's range.
The integration of the PID controller is suspended if the stop flag is set. When it is cleared, the
integration continues. The parameters are pointed to by an input pointer. The function returns
a 32-bit single precision floating-point value in the range <fltLowerLim ; fltUpperLim>.

2.26.2 GFLIB_CTRL_PID_P_AW_T_A32

Variable name Input Description
type

a32PGain acc32_t |Proportional gain is set up according to Equation 70 on page 125 as follows:

Kp: Z%i

The parameter is a 32-bit accumulator type within the range <0 ; 65536.0). Set by the user.
a32IGain acc32_t |Integral gain is set up according to Equation 72 on page 126 as follows:

K T e

The parameter is a 32-bit accumulator type within the range <0 ; 65536.0). Set by the user.
a32DGain acc32_t |Derivative gain is set up according to Equation 74 on page 126 as follows:

T, Umax

The parameter is a 32-bit accumulator type within the range <0 ; 65536.0). Set by the user.
f32IAccK_1 frac32_t |State variable of the internal accumulator (integrator). Controlled by the algorithm.
f16InErrk_1 frac16_t |Input error in the step k - 1. Controlled by the algorithm.
f16UpperLim frac16_t |Upper limit of the controller's output and the internal accumulator (integrator). This

parameter must be greater than f16LowerLim. Set by the user.
f16LowerLim frac16_t |Lower limit of the controller's output and the internal accumulator (integrator). This

parameter must be lower than f16UpperLim. Set by the user.
f16InErrDK_1 frac16_t |Input error for the derivative calculation in the step k - 1. Controlled by the algorithm.
bLimFlag bool_t Limitation flag, which identifies that the controller's output reached the limits. 1 - the limit is

reached; 0 - the output is within the limits. Controlled by the application.

GFLIB User's Guide, Rev. 2, 11/2016

128

NXP Semiconductors

4
Chapter 2 Algorithms in detail

2.26.3 GFLIB_CTRL_PID_P_AW_T_FLT

Variable name Input Description
type
fltPGain float_t Proportional gain is set up according to Equation 69 on page 125 as Kp.

The parameter is a 32-bit single precision floating-point type non-negative value. Set by the

user.

fltIGain float_t Integral gain is set up according to Equation 71 on page 125 as K|Ts.
The parameter is a 32-bit single precision floating-point type non-negative value. Set by the
user.

fltDGain float_t Derivative gain is set up according to Equation 73 on page 126 as Kp / Ts.
The parameter is a 32-bit single precision floating-point type non-negative value. Set by the
user.

fltIAccK_1 float_t State variable of the internal accumulator (integrator). Controlled by the algorithm.

fltinErrK_1 float_t Input error in the step k - 1. Controlled by the algorithm.

fltUpperLim float_t Upper limit of the controller's output and the internal accumulator (integrator). This
parameter must be greater than fltLowerLim. Set by the user.

fliLowerLim float_t Lower limit of the controller's output and the internal accumulator (integrator). This
parameter must be lower than fltUpperLim. Set by the user.

fltinErrDK_1 float_t Input error for the derivative calculation in the step k - 1. Controlled by the algorithm.

bLimFlag bool_t Limitation flag, which identifies that the controller's output reached the limits. 1 - the limit is

reached; 0 - the output is within the limits. Controlled by the application.

2.26.4 Declaration
The available GFLIB_CtrIPIDpAWInit functions have the following declarations:

void GFLIB_CtrlPIDpAWInit F16 (fraclé_t fl6InitVal, GFLIB CTRL_PID P AW T A32 *psParam)
void GFLIB CtrlPIDpAWInit FLT (float t fltInitVal, GFLIB CTRL PID P AW T FLT *psParam)

The available GFLIB_CtrIPIDpAW functions have the following declarations:

fraclé t GFLIB CtrlPIDpAW F1l6 (fraclé t fle6InErr, fraclé t fl6InErrD, const bool t
*pbStopIntegFlag, GFLIB CTRL PID P AW T A32 *psParam)

float_t GFLIB_CtrlPIDpAW FLT(float_t fltInErr, float_t fltInErrD, const bool_t
*pbStopIntegFlag, GFLIB_CTRL_PID P AW T FLT *psParam)

2.26.5 Function use

The use of the GFLIB_CtrlPIDpAWInit and GFLIB_CtrlPIDpAW functions is shown in
the following example:

GFLIB User's Guide, Rev. 2, 11/2016
NXP Semiconductors 129

GFLIB_CtrIPIDpAW

#include "gflib.h"

static fraclé t flé6Result, fleInitVal, fl6InErr, f16InErrD;
static bool t bStopIntegFlag;
static GFLIB_CTRL_PID_P AW T _A32 sParam;

void Isr (void) ;

void main (void)

f16InErr = FRAC16(-0.4);
fl16InExrr = £16InErrD;

sParam
sParam
sParam
sParam
sParam

.a32PGain = ACC32(0.1);
.a32IGain = ACC32(0.2);
.a32DGain = ACC32(0.001);
.fl16UpperLim = FRAC16(0.9) ;

.flé6LowerLim = FRAC16(-0.9);

bStopIntegFlag =

FALSE;

fl6InitVal = FRAC16(0.0) ;

GFLIB_CtrlPIDpAWInit F16(f16InitVal, &sParam);

}

/* periodically called function */

void Isr()

fl6Result = GFLIB CtrlPIDpAW Fl16 (fl6InErr, fl6InErrD, &bStopIntegFlag,

GFLIB User's Guide, Rev. 2, 11/2016

&sParam) ;

130

NXP Semiconductors

Appendix A
Library types

A.1 bool t

The bool_t type 1s a logical 16-bit type. It is able to store the boolean variables with two
states: TRUE (1) or FALSE (0). Its definition is as follows:

typedef unsigned short bool t;
The following figure shows the way in which the data is stored by this type:
Table A-1. Data storage

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Value Unused LC(;?i
0 | 0 | 0 | oo | 0 | 0 | o] o | 0 | 0 | o] o | 0 | 0 | 1
TRUE
0 0 0 1
0 | 0 | 0 | o] o | 0 | 0 | o] o | 0 | 0 | o] o | 0 | 0 | 0
FALSE
0 0 0 0

To store a logical value as bool_t, use the FALSE or TRUE macros.

A.2 uint8_t

The uint8_t type is an unsigned 8-bit integer type. It is able to store the variables within
the range <0 ; 255>. Its definition is as follows:

typedef unsigned char uint8 t;

The following figure shows the way in which the data is stored by this type:

GFLIB User's Guide, Rev. 2, 11/2016
NXP Semiconductors 131

uint16_t
Table A-2. Data storage
7 6 5 4 3 2 1 0
Value Integer
1 | 1 | 1 | 1 1 | 1 | 1 | 1
255
F F
y 0 | 0 | 0 | 0 1 | 0 | 1 | 1
0 B
0 | 1 | 1 | 1 1 | 1 | 0 | 0
124
7 C
156 1 | o | o | A R
9 F

A.3 uint16_t

The uint16_t type is an unsigned 16-bit integer type. It is able to store the variables
within the range <0 ; 65535>. Its definition is as follows:

typedef unsigned short uintlé t;
The following figure shows the way in which the data is stored by this type:
Table A-3. Data storage

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Value Integer
1 | 1 | 1 | 1 1 | 1 | 1 | 1 1 | 1 | 1 | 1 1 | 1 | 1 | 1
65535
F F F F
0 | 0 | 0 | oo | 0 | 0 | o] o | 0 | 0 | o] o | 1 | 0 | 1
5
0 0 0 5
0 | 0 | 1 | 1] 1 | 1 | 0 | o | 1 | 0 | 0 | 1] 1 | 1 | 1 | 0
15518
3 C 9 E
1 | 0 | 0 | 1] 1 | 1 | 1 | 1]o | 1 | 0 | o] o | 0 | 0 | 0
40768
9 F 4 0

A.4 uint32_t

GFLIB User's Guide, Rev. 2, 11/2016
132 NXP Semiconductors

Appendix A Library types

The uint32_t type is an unsigned 32-bit integer type. It is able to store the variables
within the range <0 ; 4294967295>. Its definition is as follows:

typedef unsigned long uint32 t;

The following figure shows the way in which the data is stored by this type:
Table A-4. Data storage

31 24 23 16 15 87 0
Value Integer
4294967295 F F F F F F F F
2147483648 8 0 0 0 0 0 0 0
55977296 0 3 5 6 2 5 5 0
3451051828 C D B 2 D F 3 4

A.5 uint64 t

The uint64_t type is an unsigned 64-bit integer type. It is able to store the variables
within the range <0 ; 264 -1>). Its definition is as follows:

typedef unsigned long long uinté64 t;

The following figure shows the way in which the data is stored by this type:
Table A-5. Data storage

63 48 47 32 31 16 15 0
Value Integer
18446744073709551315 FF FF FF FF FF FF FE D3
9223372036854775808 80 00 00 00 00 00 00 00
5971730530807955574 52 DF D9 47 37 29 Cco 76
18080213425565777426 FA E9 D2 51 46 18 B E 12

A.6 int8_t

The int8_t type is a signed 8-bit integer type. It is able to store the variables within the
range <-128 ; 127>. Its definition is as follows:

typedef char int8 t;

GFLIB User's Guide, Rev. 2, 11/2016
NXP Semiconductors 133

AR
int16_t

The following figure shows the way in which the data is stored by this type:
Table A-6. Data storage

7 6 5 4 3 2 1 0
Value Sign Integer
0 1 | 1 | 1 1 | 1 | 1 | 1
127
7 F
1 | 0 | 0 | 0 0 | 0 | 0 | 0
-128
8 0
0 | 0 | 1 | 1 1 | 1 | 0 | 0
60
3 C
o7 1 | o | o [1 R
9 F

A.7 int16_t

The int16_t type is a signed 16-bit integer type. It is able to store the variables within the
range <-32768 ; 32767>. Its definition is as follows:

typedef short intlé_t;
The following figure shows the way in which the data is stored by this type:
Table A-7. Data storage

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Value Sign Integer
0o | 1 | 1 | 1 1 | 1 | 1 | 1 1 | 1 | 1 | 1 1 | 1 | 1 | 1
32767
7 F F F
1 | 0 | 0 | o] o | 0 | 0 | o] o | 0 | 0 | oo | 0 | 0 | 0
-32768
8 0 0 0
0 | 0 | 1 | 1] 1 | 1 | 0 | o | 1 | 0 | 0 | 1] 1 | 1 | 1 | 0
15518
3 C 9 E
1 | 0 | 0 | 1] 1 | 1 | 1 | 1] o0 | 1 | 0 | o] o | 0 | 0 | 0
-24768
9 F 4 0

GFLIB User's Guide, Rev. 2, 11/2016
134 NXP Semiconductors

Appendix A Library types

A.8 int32_t

The int32_t type is a signed 32-bit integer type. It is able to store the variables within the
range <-2147483648 ; 2147483647>. Its definition is as follows:

typedef long int32 t;
The following figure shows the way in which the data is stored by this type:
Table A-8. Data storage

31 24 23 16 15 87 0
Value S | Integer
2147483647 7 F F F F F F F
-2147483648 8 0 0 0 0 0 0 0
55977296 0 3 5 6 2 5 5 0
-843915468 C D B 2 D F 3 4

A.9 int64_t

The int64_t type is a signed 64-bit integer type. It is able to store the variables within the
range <-293 ; 263-1>. Its definition is as follows:

typedef long long inté64 t;
The following figure shows the way in which the data is stored by this type:
Table A-9. Data storage

63 48 47 32 31 16 15 0
Value S| Integer
263.1 7F FF FF FF FF FF FF FF
-263 80 00 00 00 00 00 00 00
5971730530807955574 52 DF D9 47 37 29 Cco 76
-366530648143774190 FA EQ D2 51 46 18 BE 12

GFLIB User's Guide, Rev. 2, 11/2016
NXP Semiconductors 135

frac8_t

A.10 frac8 t

The frac8_t type is a signed 8-bit fractional type. It is able to store the variables within
the range <-1 ; 1). Its definition is as follows:

typedef char frac8_t;

The following figure shows the way in which the data is stored by this type:

Table A-10. Data storage

7 6 5 4 3 2 0
Value Sign Fractional
0 1 | 1 | 1 1 | 1 | | 1
0.99219
7 F
1 | 0 | 0 | 0 0 | 0 | | 0
-1.0
8 0
0 | 0 | 1 | 1 1 | 1 | | 0
0.46875
3 c
1 | 0 | 0 | 1 1 | 1 | | 1
-0.75781
9 F

To store a real number as frac8_t, use the FRACS8 macro.

A.11 frac16 t

The frac16_t type is a signed 16-bit fractional type. It is able to store the variables within
the range <-1 ; 1). Its definition is as follows:

typedef short fraclé t;

The following figure shows the way in which the data is stored by this type:

Table A-11. Data storage

15 14 13 12 11 10 9 8 7 6 5 4 1 0
Value Sign Fractional
o1|1|11|1|1|11|1|1|11|1|1|1
0.99997
7 F F F
-1.0 1|o|o|o o|o|o|o o|o|o|o o|o|o|o

Table continues on the next page...

GFLIB User's Guide, Rev. 2, 11/2016

136

NXP Semiconductors

Appendix A Library types
Table A-11. Data storage (continued)

8 0 0 0
o|o|1|11|1|o|o1|o|o|11|1|1|o
0.47357
3 C 9 E
1|o|o|11|1|1|1o|1|o|o o|o|o|o
-0.75586
9 F 4 0

To store a real number as frac16_t, use the FRAC16 macro.

A.12 frac32 t

The frac32_t type is a signed 32-bit fractional type. It is able to store the variables within
the range <-1 ; 1). Its definition is as follows:

typedef long frac32 t;
The following figure shows the way in which the data is stored by this type:
Table A-12. Data storage

31 24 23 16 15 87 0
Value S Fractional
0.9999999995 7 F F F F F F F
-1.0 8 0 0 0 0 0 0 0
0.02606645970 0 3 5 6 2 5 5 0
-0.3929787632 C D B 2 D F 3 4

To store a real number as frac32_t, use the FRAC32 macro.

A.13 acc16_t

The accl6_t type is a signed 16-bit fractional type. It is able to store the variables within
the range <-256 ; 256). Its definition is as follows:

typedef short acclé t;

The following figure shows the way in which the data is stored by this type:

GFLIB User's Guide, Rev. 2, 11/2016
NXP Semiconductors 137

acc32_t
Table A-13. Data storage
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Value Sign Integer Fractional
o1|1|11|1|1|111|1|11|1|1|1
255.9921875
7 F F F
1|o|o|o o|o|o|o o|o|o|o o|o|o|o
-256.0
8 0 0 0
o|o|o|o o|o|o|o1|o|o|o o|o|o|o
1.0
0 0 8 0
o t 1111|111]1]o]lofo]o]o]o]o
F F 8 0
o|o|o|o o|1|1|o1|1|1|o o|1|o|1
13.7890625
0 6 E 5
1|1|o|1o|o|1|1o|o|1|o o|1|o|o
-89.71875
D 3 2 4

To store a real number as accl16_t, use the ACC16 macro.

A.14 acc32_t

The acc32_t type is a signed 32-bit accumulator type. It is able to store the variables
within the range <-65536 ; 65536). Its definition is as follows:

typedef long acc32_t;
The following figure shows the way in which the data is stored by this type:
Table A-14. Data storage

31 24 23 16 15 87 0
Value S Integer | Fractional
65535.999969
-65536.0
1.0
-1.0
23.789734
-1171.306793

Mm|o|m|lo|w| N
U|lo|mn|o|o|m
Wjo|m|lo|o|m
o|m|m|o|o|m
o|m|o|o|o|m
w|lo|lo|lo|o|m
W| —=|o|o|o|m
Olo|lo|o|o|m

To store a real number as acc32_t, use the ACC32 macro.

GFLIB User's Guide, Rev. 2, 11/2016
138 NXP Semiconductors

4
Appendix A Library types

A.15 float t

The float_t type is a signed 32-bit single precision floating-point type, defined by IEEE
754. 1t is able to store the full precision (normalized) finite variables within the range
<-3.40282 - 1033 ; 3.40282 - 1038) with the minimum resolution of 2723, The smallest
normalized number is =1.17549 - 10738, Nevertheless, the denormalized numbers (with
reduced precision) reach yet lower values, from +1.40130 - 10"% to £1.17549 - 1038, The
standard also defines the additional values:

* Negative zero

* Infinity

e Negative infinity
e Not a number

The 32-bit type is composed of:

* Sign (bit 31)
* Exponent (bits 23 to 30)
e Mantissa (bits O to 22)

The conversion of the number is straighforward. The sign of the number is stored in bit
31. The binary exponent is decoded as an integer from bits 23 to 30 by subtracting 127.
The mantissa (fraction) is stored in bits O to 22. An invisible leading bit (it is not actually
stored) with value 1.0 is placed in front; therefore, bit 23 has a value of 0.5, bit 22 has a
value 0.25, and so on. As a result, the mantissa has a value between 1.0 and 2. If the
exponent reaches -127 (binary 00000000), the leading 1.0 is no longer used to enable the
gradual underflow.

The float_t type definition is as follows:
typedef float float t;
The following figure shows the way in which the data is stored by this type:

Table A-15. Data storage - normalized values

31 24 23 16 15 87 0
Value S Exponent Mantissa
20-22%.227 {0f1 1111110111111 1111111111111 1111
~ 3.40282 - 10% 7 F | 7 F | F F | F F
(20-22.22711[1 1111 110[1 1111111111111 111111111
% -3.40282 - 10% F F | 7 F | F F | F =

Table continues on the next page...

GFLIB User's Guide, Rev. 2, 11/2016
NXP Semiconductors 139

float_t
Table A-15. Data storage - normalized values (continued)
2126 0|ooooooo1|ooooooooooooooooooooooo
~1.17549 . 1038 0 0 | 8 0 | 0 0 | 0 0
2126 1|ooooooo1|ooooooooooooooooooooooo
= -1.17549 . 1038 8 0 | 8 0 | 0 0 | 0 0
1.0 o|o1111111|ooooooooooooooooooooooo
3 F | 8 0 | 0 0 | 0 0
1.0 1|o1111111|ooooooooooooooooooooooo
B F | 8 0 | 0 0 | 0 0
n o|1ooooooo|1oo1oo1oooo111111011011
~ 3.1415927 4 0 | 4 9 | 0 F | D B
-20810.086 1|1ooo11o1|o1ooo1o1oo1o1oooo1o11oo
C 6 | A 2 | 9 4 | 2 c

Table A-16. Data storage - denormalized values

31 24 23 16 15 87 0
Value S Exponent Mantissa
0.0 0/0000O0O0DO0OO|(0OO0O0DO0OOO0OO0OO0OO0OO0OO0OO0OO0OO0OO0OO0OO0OOOOODO
0 o | o o | o o | o 0
-0.0 1|oooooooo|ooooooooooooooooooooooo
8 o | o o | o o | o 0
(1.0-2-23)-2-126o|oooooooo|11111111111111111111111
~1.17549 . 10-%8 0 o | 7 F | F F | F F
-(1.0-2-23)-2-1261|oooooooo|11111111111111111111111
~-1.17549 - 1038 8 o | 7 F | F F | F F

21 2126 o|oooooooo|1oooooooooooooooooooooo
~ 5.87747 - 1039 0 0 | 4 0 | 0 0 | 0 0

1. 0126 1|oooooooo|1oooooooooooooooooooooo
=~ -5.87747 - 103 8 0 | 4 0 | 0 0 | 0 0

223 . 126 o|oooooooo|oooooooooooooooooooooo1
~1.40130 - 1045 0 0 | 0 0 | 0 0 | 0 1

223 0126 1|oooooooo|oooooooooooooooooooooo1
~-1.40130 - 1045 8 0 | 0 0 | 0 0 | 0 1

GFLIB User's Guide, Rev. 2, 11/2016
140 NXP Semiconductors

4
Appendix A Library types

Table A-17. Data storage - special values

31 24 23 16 15 87 0
Value S Exponent Mantissa
oo 0/[1t1111111/00000000000000000000O0O0GO0O0
7 F | 8 0 | 0 0 | 0 0
o0 1|11111111|ooooooooooooooooooooooo
F F | 8 0 | 0 0 | 0 0
Not a number *1T 1111 11 1| non zero
7/F F | 800001 to FFFFFF
A.16 FALSE

The FALSE macro serves to write a correct value standing for the logical FALSE value
of the bool_t type. Its definition is as follows:

#define FALSE ((bool t)0)

#include "mlib.h"
static bool t bval;
void main (void)

bval = FALSE; /* bval = FALSE */

}

A.17 TRUE

The TRUE macro serves to write a correct value standing for the logical TRUE value of
the bool_t type. Its definition is as follows:

#define TRUE ((bool_t)1)

#include "mlib.h"
static bool_t bval;
void main (void)

{

bval = TRUE; /* bVal = TRUE */

GFLIB User's Guide, Rev. 2, 11/2016
NXP Semiconductors 141

FRACS

A.18 FRACS

The FRACS8 macro serves to convert a real number to the frac8_t type. Its definition is as
follows:

#define FRAC8 (x) ((frac8_t) ((x) < 0.9921875 ? ((x) >= -1 ? (x)*0x80 : 0x80) : O0x7F))

The input is multiplied by 128 (=27). The output is limited to the range <0x80 ; Ox7F>,
which corresponds to <-1.0 ; 1.0-277>.

#include "mlib.h"
static frac8 t f8val;
void main (void)

f8val = FRAC8(0.187); /* f8val = 0.187 */

A.19 FRAC16

The FRAC16 macro serves to convert a real number to the frac16_t type. Its definition is
as follows:

#define FRAC16(x) ((fraclé t) ((x) < 0.999969482421875 ? ((x) >= -1 ? (x)*0x8000 : 0x8000) :
0x7FFF))

The input is multiplied by 32768 (=213). The output is limited to the range <0x8000 ;
0x7FFF>, which corresponds to <-1.0 ; 1.0-215>,

#include "mlib.h"
static fraclé_t flé6Val;
void main (void)

fleval = FRAC16(0.736) ; /* £16Val = 0.736 */

}

A.20 FRAC32

The FRAC32 macro serves to convert a real number to the frac32_t type. Its definition is
as follows:

GFLIB User's Guide, Rev. 2, 11/2016
142 NXP Semiconductors

4
Appendix A Library types

#define FRAC32(x) ((frac32_t) ((x) < 1 ? ((x) »>= -1 ? (x)*0x80000000 : 0x80000000) :
0x7FFFFFFF))

The input is multiplied by 2147483648 (=23!). The output is limited to the range
<0x80000000 ; 0x7FFFFFFF>, which corresponds to <-1.0 ; 1.0-2731>,

#include "mlib.h"
static frac32_t f32val;
void main (void)

f32Val = FRAC32(-0.1735667) ; /* £32Val = -0.1735667 */

}

A.21 ACC16

The ACC16 macro serves to convert a real number to the acc16_t type. Its definition is as
follows:

#define ACCle6 (x) ((acclé_t) ((x) < 255.9921875 ? ((x) >= -256 ? (x)*0x80 : 0x8000) : OxX7FFF))

The input is multiplied by 128 (=27). The output is limited to the range <0x8000 ;
0x7FFF> that corresponds to <-256.0 ; 255.9921875>.

#include "mlib.h"
static acclé_t aléVval;
void main (void)

aléVal = ACC16(19.45627); /* aleévVal = 19.45627 *x/

}

A.22 ACC32

The ACC32 macro serves to convert a real number to the acc32_t type. Its definition is as
follows:

#define ACC32(x) ((acc32_t) ((x) < 65535.999969482421875 ? ((x) >= -65536 ? (x)*0x8000 :
0x80000000) : Ox7FFFFFFF))

The input is multiplied by 32768 (=2!°). The output is limited to the range
<0x80000000 ; 0x7FFFFFFF>, which corresponds to <-65536.0 ; 65536.0-2-15>.

GFLIB User's Guide, Rev. 2, 11/2016
NXP Semiconductors 143

#include "mlib.h"
static acc32_t a32val;
void main (void)

a32Val = ACC32(-13.654437); /* a32vVal = -13.654437 */

}

GFLIB User's Guide, Rev. 2, 11/2016

144 NXP Semiconductors

How to Reach Us: Information in this document is provided solely to enable system and software
implementers to use Freescale products. There are no express or implied
copyright licenses granted hereunder to design or fabricate any integrated
circuits based on the information in this document. Freescale reserves the right
Web Support: to make changes without further notice to any products herein.
nxp.com/support

Home Page:
nxp.com

Freescale makes no warranty, representation, or guarantee regarding the
suitability of its products for any particular purpose, nor does Freescale assume
any liability arising out of the application or use of any product or circuit, and
specifically disclaims any and all liability, including without limitation
consequential or incidental damages. “Typical’ parameters that may be provided
in Freescale data sheets and/or specifications can and do vary in different
applications, and actual performance may vary over time. All operating
parameters, including “typicals,” must be validated for each customer application
by customer's technical experts. Freescale does not convey any license under its
patent rights nor the rights of others. Freescale sells products pursuant to
standard terms and conditions of sale, which can be found at the following
address: www.freescale.com/salestermsandconditions.

Freescale and the Freescale logo are trademarks of Freescale Semiconductor,
Inc. ARM and Cortex are the registered trademarks of ARM Limited, in EU and/or
elsewhere. ARM logo is the trademark of ARM Limited. All rights reserved. All
other product or service names are the property of their respective owners.

© 2017 NXP B.V.

Document Number CM7FGFLIBUG
Revision 2, 11/2016

r
4\

Yo
)
oc
w
=
<)
a
|

>
X
K4

http://www.nxp.com
http://www.nxp.com/support
http://www.freescale.com/salestermsandconditions

	Chapter 1​: Library
	Introduction
	Overview
	Data types
	API definition
	Supported compilers
	Library configuration
	Special issues

	Library integration into project (MCUXpresso IDE)
	Library path variable
	Library folder addition
	Library path setup

	Library integration into project (Kinetis Design Studio)
	Library path variable
	Library folder addition
	Library path setup

	Library integration into project (Keil µVision)
	NXP pack installation for new project (without MCUXpresso SDK)
	New project (without MCUXpresso SDK)
	Linking the files into the project
	Library path setup

	Library integration into project (IAR Embedded Workbench)
	New project (without MCUXpresso SDK)
	Library path variable
	Linking the files into the project
	Library path setup

	Chapter 2​: Algorithms in detail
	GFLIB_Sin
	Available versions
	Declaration
	Function use

	GFLIB_Cos
	Available versions
	Declaration
	Function use

	GFLIB_Tan
	Available versions
	Declaration
	Function use

	GFLIB_Asin
	Available versions
	Declaration
	Function use

	GFLIB_Acos
	Available versions
	Declaration
	Function use

	GFLIB_Atan
	Available versions
	Declaration
	Function use

	GFLIB_AtanYX
	Available versions
	Declaration
	Function use

	GFLIB_Sqrt
	Available versions
	Declaration
	Function use

	GFLIB_Limit
	Available versions
	Declaration
	Function use

	GFLIB_LowerLimit
	Available versions
	Declaration
	Function use

	GFLIB_UpperLimit
	Available versions
	Declaration
	Function use

	GFLIB_VectorLimit
	Available versions
	GFLIB_VECTORLIMIT_T_F16 type description
	GFLIB_VECTORLIMIT_T_FLT type description
	Declaration
	Function use

	GFLIB_VectorLimit1
	Available versions
	GFLIB_VECTORLIMIT_T_F16 type description
	GFLIB_VECTORLIMIT_T_FLT type description
	Declaration
	Function use

	GFLIB_Hyst
	Available versions
	GFLIB_HYST_T_F16
	GFLIB_HYST_T_FLT
	Declaration
	Function use

	GFLIB_Lut1D
	Available versions
	GFLIB_LUT1D_T_FLT type description
	Declaration
	Function use

	GFLIB_LutPer1D
	Available versions
	GFLIB_LUTPER1D_T_FLT type description
	Declaration
	Function use

	GFLIB_Ramp
	Available versions
	GFLIB_RAMP_T_F16
	GFLIB_RAMP_T_F32
	GFLIB_RAMP_T_FLT
	Declaration
	Function use

	GFLIB_DRamp
	Available versions
	GFLIB_DRAMP_T_F16
	GFLIB_DRAMP_T_F32
	GFLIB_DRAMP_T_FLT
	Declaration
	Function use

	GFLIB_FlexRamp
	Available versions
	GFLIB_FLEXRAMP_T_F32
	GFLIB_FLEXRAMP_T_FLT
	Declaration
	Function use

	GFLIB_DFlexRamp
	Available versions
	GFLIB_DFLEXRAMP_T_F32
	GFLIB_DFLEXRAMP_T_FLT
	Declaration
	Function use

	GFLIB_FlexSRamp
	Available versions
	GFLIB_FLEXSRAMP_T_F32
	GFLIB_FLEXSRAMP_T_FLT
	Declaration
	Function use

	GFLIB_Integrator
	Available versions
	GFLIB_INTEGRATOR_T_A32
	GFLIB_INTEGRATOR_T_FLT
	Declaration
	Function use

	GFLIB_CtrlBetaIPpAW
	Available versions
	GFLIB_CTRL_BETA_IP_P_AW_T_A32
	GFLIB_CTRL_BETA_IP_P_AW_T_FLT
	Declaration
	Function use

	GFLIB_CtrlBetaIPDpAW
	Available versions
	GFLIB_CTRL_BETA_IPD_P_AW_T_A32
	GFLIB_CTRL_BETA_IPD_P_AW_T_FLT
	Declaration
	Function use

	GFLIB_CtrlPIpAW
	Available versions
	GFLIB_CTRL_PI_P_AW_T_A32
	GFLIB_CTRL_PI_P_AW_T_FLT
	Declaration
	Function use

	GFLIB_CtrlPIDpAW
	Available versions
	GFLIB_CTRL_PID_P_AW_T_A32
	GFLIB_CTRL_PID_P_AW_T_FLT
	Declaration
	Function use

	Appendix A: Library types
	bool_t
	uint8_t
	uint16_t
	uint32_t
	uint64_t
	int8_t
	int16_t
	int32_t
	int64_t
	frac8_t
	frac16_t
	frac32_t
	acc16_t
	acc32_t
	float_t
	FALSE
	TRUE
	FRAC8
	FRAC16
	FRAC32
	ACC16
	ACC32

	
	

